diff options
Diffstat (limited to 'gdb/blockframe.c')
-rw-r--r-- | gdb/blockframe.c | 1301 |
1 files changed, 1301 insertions, 0 deletions
diff --git a/gdb/blockframe.c b/gdb/blockframe.c new file mode 100644 index 0000000..9366ca6 --- /dev/null +++ b/gdb/blockframe.c @@ -0,0 +1,1301 @@ +/* Get info from stack frames; + convert between frames, blocks, functions and pc values. + Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998 + Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "symtab.h" +#include "bfd.h" +#include "symfile.h" +#include "objfiles.h" +#include "frame.h" +#include "gdbcore.h" +#include "value.h" /* for read_register */ +#include "target.h" /* for target_has_stack */ +#include "inferior.h" /* for read_pc */ +#include "annotate.h" + +/* Prototypes for exported functions. */ + +void _initialize_blockframe PARAMS ((void)); + +/* A default FRAME_CHAIN_VALID, in the form that is suitable for most + targets. If FRAME_CHAIN_VALID returns zero it means that the given + frame is the outermost one and has no caller. */ + +int +default_frame_chain_valid (chain, thisframe) + CORE_ADDR chain; + struct frame_info *thisframe; +{ + return ((chain) != 0 + && !inside_main_func ((thisframe) -> pc) + && !inside_entry_func ((thisframe) -> pc)); +} + +/* Use the alternate method of avoiding running up off the end of the + frame chain or following frames back into the startup code. See + the comments in objfiles.h. */ + +int +alternate_frame_chain_valid (chain, thisframe) + CORE_ADDR chain; + struct frame_info *thisframe; +{ + return ((chain) != 0 + && !inside_entry_file (FRAME_SAVED_PC (thisframe))); +} + +/* A very simple method of determining a valid frame */ + +int +nonnull_frame_chain_valid (chain, thisframe) + CORE_ADDR chain; + struct frame_info *thisframe; +{ + return ((chain) != 0); +} + +/* Is ADDR inside the startup file? Note that if your machine + has a way to detect the bottom of the stack, there is no need + to call this function from FRAME_CHAIN_VALID; the reason for + doing so is that some machines have no way of detecting bottom + of stack. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_entry_file (addr) + CORE_ADDR addr; +{ + if (addr == 0) + return 1; + if (symfile_objfile == 0) + return 0; +#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT + /* Do not stop backtracing if the pc is in the call dummy + at the entry point. */ +/* FIXME: Won't always work with zeros for the last two arguments */ + if (PC_IN_CALL_DUMMY (addr, 0, 0)) + return 0; +#endif + return (addr >= symfile_objfile -> ei.entry_file_lowpc && + addr < symfile_objfile -> ei.entry_file_highpc); +} + +/* Test a specified PC value to see if it is in the range of addresses + that correspond to the main() function. See comments above for why + we might want to do this. + + Typically called from FRAME_CHAIN_VALID. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_main_func (pc) +CORE_ADDR pc; +{ + if (pc == 0) + return 1; + if (symfile_objfile == 0) + return 0; + + /* If the addr range is not set up at symbol reading time, set it up now. + This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because + it is unable to set it up and symbol reading time. */ + + if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC && + symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC) + { + struct symbol *mainsym; + + mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL); + if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK) + { + symfile_objfile->ei.main_func_lowpc = + BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym)); + symfile_objfile->ei.main_func_highpc = + BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym)); + } + } + return (symfile_objfile -> ei.main_func_lowpc <= pc && + symfile_objfile -> ei.main_func_highpc > pc); +} + +/* Test a specified PC value to see if it is in the range of addresses + that correspond to the process entry point function. See comments + in objfiles.h for why we might want to do this. + + Typically called from FRAME_CHAIN_VALID. + + A PC of zero is always considered to be the bottom of the stack. */ + +int +inside_entry_func (pc) +CORE_ADDR pc; +{ + if (pc == 0) + return 1; + if (symfile_objfile == 0) + return 0; +#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT + /* Do not stop backtracing if the pc is in the call dummy + at the entry point. */ +/* FIXME: Won't always work with zeros for the last two arguments */ + if (PC_IN_CALL_DUMMY (pc, 0, 0)) + return 0; +#endif + return (symfile_objfile -> ei.entry_func_lowpc <= pc && + symfile_objfile -> ei.entry_func_highpc > pc); +} + +/* Info about the innermost stack frame (contents of FP register) */ + +static struct frame_info *current_frame; + +/* Cache for frame addresses already read by gdb. Valid only while + inferior is stopped. Control variables for the frame cache should + be local to this module. */ + +static struct obstack frame_cache_obstack; + +void * +frame_obstack_alloc (size) + unsigned long size; +{ + return obstack_alloc (&frame_cache_obstack, size); +} + +void +frame_saved_regs_zalloc (fi) + struct frame_info *fi; +{ + fi->saved_regs = (CORE_ADDR*) + frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); + memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); +} + + +/* Return the innermost (currently executing) stack frame. */ + +struct frame_info * +get_current_frame () +{ + if (current_frame == NULL) + { + if (target_has_stack) + current_frame = create_new_frame (read_fp (), read_pc ()); + else + error ("No stack."); + } + return current_frame; +} + +void +set_current_frame (frame) + struct frame_info *frame; +{ + current_frame = frame; +} + +/* Create an arbitrary (i.e. address specified by user) or innermost frame. + Always returns a non-NULL value. */ + +struct frame_info * +create_new_frame (addr, pc) + CORE_ADDR addr; + CORE_ADDR pc; +{ + struct frame_info *fi; + char *name; + + fi = (struct frame_info *) + obstack_alloc (&frame_cache_obstack, + sizeof (struct frame_info)); + + /* Arbitrary frame */ + fi->saved_regs = NULL; + fi->next = NULL; + fi->prev = NULL; + fi->frame = addr; + fi->pc = pc; + find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); + fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name); + +#ifdef INIT_EXTRA_FRAME_INFO + INIT_EXTRA_FRAME_INFO (0, fi); +#endif + + return fi; +} + +/* Return the frame that called FI. + If FI is the original frame (it has no caller), return 0. */ + +struct frame_info * +get_prev_frame (frame) + struct frame_info *frame; +{ + return get_prev_frame_info (frame); +} + +/* Return the frame that FRAME calls (NULL if FRAME is the innermost + frame). */ + +struct frame_info * +get_next_frame (frame) + struct frame_info *frame; +{ + return frame->next; +} + +/* Flush the entire frame cache. */ + +void +flush_cached_frames () +{ + /* Since we can't really be sure what the first object allocated was */ + obstack_free (&frame_cache_obstack, 0); + obstack_init (&frame_cache_obstack); + + current_frame = NULL; /* Invalidate cache */ + select_frame (NULL, -1); + annotate_frames_invalid (); +} + +/* Flush the frame cache, and start a new one if necessary. */ + +void +reinit_frame_cache () +{ + flush_cached_frames (); + + /* FIXME: The inferior_pid test is wrong if there is a corefile. */ + if (inferior_pid != 0) + { + select_frame (get_current_frame (), 0); + } +} + +/* If a machine allows frameless functions, it should define a macro + FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct + frame_info for the frame, and FRAMELESS should be set to nonzero + if it represents a frameless function invocation. */ + +/* Return nonzero if the function for this frame lacks a prologue. Many + machines can define FRAMELESS_FUNCTION_INVOCATION to just call this + function. */ + +int +frameless_look_for_prologue (frame) + struct frame_info *frame; +{ + CORE_ADDR func_start, after_prologue; + func_start = get_pc_function_start (frame->pc); + if (func_start) + { + func_start += FUNCTION_START_OFFSET; + after_prologue = func_start; +#ifdef SKIP_PROLOGUE_FRAMELESS_P + /* This is faster, since only care whether there *is* a prologue, + not how long it is. */ + SKIP_PROLOGUE_FRAMELESS_P (after_prologue); +#else + SKIP_PROLOGUE (after_prologue); +#endif + return after_prologue == func_start; + } + else if (frame->pc == 0) + /* A frame with a zero PC is usually created by dereferencing a NULL + function pointer, normally causing an immediate core dump of the + inferior. Mark function as frameless, as the inferior has no chance + of setting up a stack frame. */ + return 1; + else + /* If we can't find the start of the function, we don't really + know whether the function is frameless, but we should be able + to get a reasonable (i.e. best we can do under the + circumstances) backtrace by saying that it isn't. */ + return 0; +} + +/* Default a few macros that people seldom redefine. */ + +#if !defined (INIT_FRAME_PC) +#define INIT_FRAME_PC(fromleaf, prev) \ + prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \ + prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); +#endif + +#ifndef FRAME_CHAIN_COMBINE +#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) +#endif + +/* Return a structure containing various interesting information + about the frame that called NEXT_FRAME. Returns NULL + if there is no such frame. */ + +struct frame_info * +get_prev_frame_info (next_frame) + struct frame_info *next_frame; +{ + CORE_ADDR address = 0; + struct frame_info *prev; + int fromleaf = 0; + char *name; + + /* If the requested entry is in the cache, return it. + Otherwise, figure out what the address should be for the entry + we're about to add to the cache. */ + + if (!next_frame) + { +#if 0 + /* This screws value_of_variable, which just wants a nice clean + NULL return from block_innermost_frame if there are no frames. + I don't think I've ever seen this message happen otherwise. + And returning NULL here is a perfectly legitimate thing to do. */ + if (!current_frame) + { + error ("You haven't set up a process's stack to examine."); + } +#endif + + return current_frame; + } + + /* If we have the prev one, return it */ + if (next_frame->prev) + return next_frame->prev; + + /* On some machines it is possible to call a function without + setting up a stack frame for it. On these machines, we + define this macro to take two args; a frameinfo pointer + identifying a frame and a variable to set or clear if it is + or isn't leafless. */ +#ifdef FRAMELESS_FUNCTION_INVOCATION + /* Still don't want to worry about this except on the innermost + frame. This macro will set FROMLEAF if NEXT_FRAME is a + frameless function invocation. */ + if (!(next_frame->next)) + { + FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf); + if (fromleaf) + address = FRAME_FP (next_frame); + } +#endif + + if (!fromleaf) + { + /* Two macros defined in tm.h specify the machine-dependent + actions to be performed here. + First, get the frame's chain-pointer. + If that is zero, the frame is the outermost frame or a leaf + called by the outermost frame. This means that if start + calls main without a frame, we'll return 0 (which is fine + anyway). + + Nope; there's a problem. This also returns when the current + routine is a leaf of main. This is unacceptable. We move + this to after the ffi test; I'd rather have backtraces from + start go curfluy than have an abort called from main not show + main. */ + address = FRAME_CHAIN (next_frame); + if (!FRAME_CHAIN_VALID (address, next_frame)) + return 0; + address = FRAME_CHAIN_COMBINE (address, next_frame); + } + if (address == 0) + return 0; + + prev = (struct frame_info *) + obstack_alloc (&frame_cache_obstack, + sizeof (struct frame_info)); + + prev->saved_regs = NULL; + if (next_frame) + next_frame->prev = prev; + prev->next = next_frame; + prev->prev = (struct frame_info *) 0; + prev->frame = address; + prev->signal_handler_caller = 0; + +/* This change should not be needed, FIXME! We should + determine whether any targets *need* INIT_FRAME_PC to happen + after INIT_EXTRA_FRAME_INFO and come up with a simple way to + express what goes on here. + + INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame + (where the PC is already set up) and here (where it isn't). + INIT_FRAME_PC is only called from here, always after + INIT_EXTRA_FRAME_INFO. + + The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC + value (which hasn't been set yet). Some other machines appear to + require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo. + + We shouldn't need INIT_FRAME_PC_FIRST to add more complication to + an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92. + + Assuming that some machines need INIT_FRAME_PC after + INIT_EXTRA_FRAME_INFO, one possible scheme: + + SETUP_INNERMOST_FRAME() + Default version is just create_new_frame (read_fp ()), + read_pc ()). Machines with extra frame info would do that (or the + local equivalent) and then set the extra fields. + SETUP_ARBITRARY_FRAME(argc, argv) + Only change here is that create_new_frame would no longer init extra + frame info; SETUP_ARBITRARY_FRAME would have to do that. + INIT_PREV_FRAME(fromleaf, prev) + Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should + also return a flag saying whether to keep the new frame, or + whether to discard it, because on some machines (e.g. mips) it + is really awkward to have FRAME_CHAIN_VALID called *before* + INIT_EXTRA_FRAME_INFO (there is no good way to get information + deduced in FRAME_CHAIN_VALID into the extra fields of the new frame). + std_frame_pc(fromleaf, prev) + This is the default setting for INIT_PREV_FRAME. It just does what + the default INIT_FRAME_PC does. Some machines will call it from + INIT_PREV_FRAME (either at the beginning, the end, or in the middle). + Some machines won't use it. + kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */ + +#ifdef INIT_FRAME_PC_FIRST + INIT_FRAME_PC_FIRST (fromleaf, prev); +#endif + +#ifdef INIT_EXTRA_FRAME_INFO + INIT_EXTRA_FRAME_INFO(fromleaf, prev); +#endif + + /* This entry is in the frame queue now, which is good since + FRAME_SAVED_PC may use that queue to figure out its value + (see tm-sparc.h). We want the pc saved in the inferior frame. */ + INIT_FRAME_PC(fromleaf, prev); + + /* If ->frame and ->pc are unchanged, we are in the process of getting + ourselves into an infinite backtrace. Some architectures check this + in FRAME_CHAIN or thereabouts, but it seems like there is no reason + this can't be an architecture-independent check. */ + if (next_frame != NULL) + { + if (prev->frame == next_frame->frame + && prev->pc == next_frame->pc) + { + next_frame->prev = NULL; + obstack_free (&frame_cache_obstack, prev); + return NULL; + } + } + + find_pc_partial_function (prev->pc, &name, + (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); + if (IN_SIGTRAMP (prev->pc, name)) + prev->signal_handler_caller = 1; + + return prev; +} + +CORE_ADDR +get_frame_pc (frame) + struct frame_info *frame; +{ + return frame->pc; +} + + +#ifdef FRAME_FIND_SAVED_REGS +/* XXX - deprecated. This is a compatibility function for targets + that do not yet implement FRAME_INIT_SAVED_REGS. */ +/* Find the addresses in which registers are saved in FRAME. */ + +void +get_frame_saved_regs (frame, saved_regs_addr) + struct frame_info *frame; + struct frame_saved_regs *saved_regs_addr; +{ + if (frame->saved_regs == NULL) + { + frame->saved_regs = (CORE_ADDR*) + frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); + } + if (saved_regs_addr == NULL) + { + struct frame_saved_regs saved_regs; + FRAME_FIND_SAVED_REGS (frame, saved_regs); + memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS); + } + else + { + FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr); + memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS); + } +} +#endif + +/* Return the innermost lexical block in execution + in a specified stack frame. The frame address is assumed valid. */ + +struct block * +get_frame_block (frame) + struct frame_info *frame; +{ + CORE_ADDR pc; + + pc = frame->pc; + if (frame->next != 0 && frame->next->signal_handler_caller == 0) + /* We are not in the innermost frame and we were not interrupted + by a signal. We need to subtract one to get the correct block, + in case the call instruction was the last instruction of the block. + If there are any machines on which the saved pc does not point to + after the call insn, we probably want to make frame->pc point after + the call insn anyway. */ + --pc; + return block_for_pc (pc); +} + +struct block * +get_current_block () +{ + return block_for_pc (read_pc ()); +} + +CORE_ADDR +get_pc_function_start (pc) + CORE_ADDR pc; +{ + register struct block *bl; + register struct symbol *symbol; + register struct minimal_symbol *msymbol; + CORE_ADDR fstart; + + if ((bl = block_for_pc (pc)) != NULL && + (symbol = block_function (bl)) != NULL) + { + bl = SYMBOL_BLOCK_VALUE (symbol); + fstart = BLOCK_START (bl); + } + else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL) + { + fstart = SYMBOL_VALUE_ADDRESS (msymbol); + } + else + { + fstart = 0; + } + return (fstart); +} + +/* Return the symbol for the function executing in frame FRAME. */ + +struct symbol * +get_frame_function (frame) + struct frame_info *frame; +{ + register struct block *bl = get_frame_block (frame); + if (bl == 0) + return 0; + return block_function (bl); +} + + +/* Return the blockvector immediately containing the innermost lexical block + containing the specified pc value and section, or 0 if there is none. + PINDEX is a pointer to the index value of the block. If PINDEX + is NULL, we don't pass this information back to the caller. */ + +struct blockvector * +blockvector_for_pc_sect (pc, section, pindex, symtab) + register CORE_ADDR pc; + struct sec *section; + int *pindex; + struct symtab *symtab; + +{ + register struct block *b; + register int bot, top, half; + struct blockvector *bl; + + if (symtab == 0) /* if no symtab specified by caller */ + { + /* First search all symtabs for one whose file contains our pc */ + if ((symtab = find_pc_sect_symtab (pc, section)) == 0) + return 0; + } + + bl = BLOCKVECTOR (symtab); + b = BLOCKVECTOR_BLOCK (bl, 0); + + /* Then search that symtab for the smallest block that wins. */ + /* Use binary search to find the last block that starts before PC. */ + + bot = 0; + top = BLOCKVECTOR_NBLOCKS (bl); + + while (top - bot > 1) + { + half = (top - bot + 1) >> 1; + b = BLOCKVECTOR_BLOCK (bl, bot + half); + if (BLOCK_START (b) <= pc) + bot += half; + else + top = bot + half; + } + + /* Now search backward for a block that ends after PC. */ + + while (bot >= 0) + { + b = BLOCKVECTOR_BLOCK (bl, bot); + if (BLOCK_END (b) >= pc) + { + if (pindex) + *pindex = bot; + return bl; + } + bot--; + } + return 0; +} + +/* Return the blockvector immediately containing the innermost lexical block + containing the specified pc value, or 0 if there is none. + Backward compatibility, no section. */ + +struct blockvector * +blockvector_for_pc (pc, pindex) + register CORE_ADDR pc; + int *pindex; +{ + return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), + pindex, NULL); +} + +/* Return the innermost lexical block containing the specified pc value + in the specified section, or 0 if there is none. */ + +struct block * +block_for_pc_sect (pc, section) + register CORE_ADDR pc; + struct sec *section; +{ + register struct blockvector *bl; + int index; + + bl = blockvector_for_pc_sect (pc, section, &index, NULL); + if (bl) + return BLOCKVECTOR_BLOCK (bl, index); + return 0; +} + +/* Return the innermost lexical block containing the specified pc value, + or 0 if there is none. Backward compatibility, no section. */ + +struct block * +block_for_pc (pc) + register CORE_ADDR pc; +{ + return block_for_pc_sect (pc, find_pc_mapped_section (pc)); +} + +/* Return the function containing pc value PC in section SECTION. + Returns 0 if function is not known. */ + +struct symbol * +find_pc_sect_function (pc, section) + CORE_ADDR pc; + struct sec *section; +{ + register struct block *b = block_for_pc_sect (pc, section); + if (b == 0) + return 0; + return block_function (b); +} + +/* Return the function containing pc value PC. + Returns 0 if function is not known. Backward compatibility, no section */ + +struct symbol * +find_pc_function (pc) + CORE_ADDR pc; +{ + return find_pc_sect_function (pc, find_pc_mapped_section (pc)); +} + +/* These variables are used to cache the most recent result + * of find_pc_partial_function. */ + +static CORE_ADDR cache_pc_function_low = 0; +static CORE_ADDR cache_pc_function_high = 0; +static char *cache_pc_function_name = 0; +static struct sec *cache_pc_function_section = NULL; + +/* Clear cache, e.g. when symbol table is discarded. */ + +void +clear_pc_function_cache() +{ + cache_pc_function_low = 0; + cache_pc_function_high = 0; + cache_pc_function_name = (char *)0; + cache_pc_function_section = NULL; +} + +/* Finds the "function" (text symbol) that is smaller than PC but + greatest of all of the potential text symbols in SECTION. Sets + *NAME and/or *ADDRESS conditionally if that pointer is non-null. + If ENDADDR is non-null, then set *ENDADDR to be the end of the + function (exclusive), but passing ENDADDR as non-null means that + the function might cause symbols to be read. This function either + succeeds or fails (not halfway succeeds). If it succeeds, it sets + *NAME, *ADDRESS, and *ENDADDR to real information and returns 1. + If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and + returns 0. */ + +int +find_pc_sect_partial_function (pc, section, name, address, endaddr) + CORE_ADDR pc; + asection *section; + char **name; + CORE_ADDR *address; + CORE_ADDR *endaddr; +{ + struct partial_symtab *pst; + struct symbol *f; + struct minimal_symbol *msymbol; + struct partial_symbol *psb; + struct obj_section *osect; + int i; + CORE_ADDR mapped_pc; + + mapped_pc = overlay_mapped_address (pc, section); + + if (mapped_pc >= cache_pc_function_low && + mapped_pc < cache_pc_function_high && + section == cache_pc_function_section) + goto return_cached_value; + + /* If sigtramp is in the u area, it counts as a function (especially + important for step_1). */ +#if defined SIGTRAMP_START + if (IN_SIGTRAMP (mapped_pc, (char *)NULL)) + { + cache_pc_function_low = SIGTRAMP_START (mapped_pc); + cache_pc_function_high = SIGTRAMP_END (mapped_pc); + cache_pc_function_name = "<sigtramp>"; + cache_pc_function_section = section; + goto return_cached_value; + } +#endif + + msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); + pst = find_pc_sect_psymtab (mapped_pc, section); + if (pst) + { + /* Need to read the symbols to get a good value for the end address. */ + if (endaddr != NULL && !pst->readin) + { + /* Need to get the terminal in case symbol-reading produces + output. */ + target_terminal_ours_for_output (); + PSYMTAB_TO_SYMTAB (pst); + } + + if (pst->readin) + { + /* Checking whether the msymbol has a larger value is for the + "pathological" case mentioned in print_frame_info. */ + f = find_pc_sect_function (mapped_pc, section); + if (f != NULL + && (msymbol == NULL + || (BLOCK_START (SYMBOL_BLOCK_VALUE (f)) + >= SYMBOL_VALUE_ADDRESS (msymbol)))) + { + cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f)); + cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f)); + cache_pc_function_name = SYMBOL_NAME (f); + cache_pc_function_section = section; + goto return_cached_value; + } + } + else + { + /* Now that static symbols go in the minimal symbol table, perhaps + we could just ignore the partial symbols. But at least for now + we use the partial or minimal symbol, whichever is larger. */ + psb = find_pc_sect_psymbol (pst, mapped_pc, section); + + if (psb + && (msymbol == NULL || + (SYMBOL_VALUE_ADDRESS (psb) + >= SYMBOL_VALUE_ADDRESS (msymbol)))) + { + /* This case isn't being cached currently. */ + if (address) + *address = SYMBOL_VALUE_ADDRESS (psb); + if (name) + *name = SYMBOL_NAME (psb); + /* endaddr non-NULL can't happen here. */ + return 1; + } + } + } + + /* Not in the normal symbol tables, see if the pc is in a known section. + If it's not, then give up. This ensures that anything beyond the end + of the text seg doesn't appear to be part of the last function in the + text segment. */ + + osect = find_pc_sect_section (mapped_pc, section); + + if (!osect) + msymbol = NULL; + + /* Must be in the minimal symbol table. */ + if (msymbol == NULL) + { + /* No available symbol. */ + if (name != NULL) + *name = 0; + if (address != NULL) + *address = 0; + if (endaddr != NULL) + *endaddr = 0; + return 0; + } + + cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol); + cache_pc_function_name = SYMBOL_NAME (msymbol); + cache_pc_function_section = section; + + /* Use the lesser of the next minimal symbol in the same section, or + the end of the section, as the end of the function. */ + + /* Step over other symbols at this same address, and symbols in + other sections, to find the next symbol in this section with + a different address. */ + + for (i=1; SYMBOL_NAME (msymbol+i) != NULL; i++) + { + if (SYMBOL_VALUE_ADDRESS (msymbol+i) != SYMBOL_VALUE_ADDRESS (msymbol) + && SYMBOL_BFD_SECTION (msymbol+i) == SYMBOL_BFD_SECTION (msymbol)) + break; + } + + if (SYMBOL_NAME (msymbol + i) != NULL + && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr) + cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i); + else + /* We got the start address from the last msymbol in the objfile. + So the end address is the end of the section. */ + cache_pc_function_high = osect->endaddr; + + return_cached_value: + + if (address) + { + if (pc_in_unmapped_range (pc, section)) + *address = overlay_unmapped_address (cache_pc_function_low, section); + else + *address = cache_pc_function_low; + } + + if (name) + *name = cache_pc_function_name; + + if (endaddr) + { + if (pc_in_unmapped_range (pc, section)) + { + /* Because the high address is actually beyond the end of + the function (and therefore possibly beyond the end of + the overlay), we must actually convert (high - 1) + and then add one to that. */ + + *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, + section); + } + else + *endaddr = cache_pc_function_high; + } + + return 1; +} + +/* Backward compatibility, no section argument */ + +int +find_pc_partial_function (pc, name, address, endaddr) + CORE_ADDR pc; + char **name; + CORE_ADDR *address; + CORE_ADDR *endaddr; +{ + asection *section; + + section = find_pc_overlay (pc); + return find_pc_sect_partial_function (pc, section, name, address, endaddr); +} + +/* Return the innermost stack frame executing inside of BLOCK, + or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */ + +struct frame_info * +block_innermost_frame (block) + struct block *block; +{ + struct frame_info *frame; + register CORE_ADDR start; + register CORE_ADDR end; + + if (block == NULL) + return NULL; + + start = BLOCK_START (block); + end = BLOCK_END (block); + + frame = NULL; + while (1) + { + frame = get_prev_frame (frame); + if (frame == NULL) + return NULL; + if (frame->pc >= start && frame->pc < end) + return frame; + } +} + +/* Return the full FRAME which corresponds to the given CORE_ADDR + or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ + +struct frame_info * +find_frame_addr_in_frame_chain (frame_addr) + CORE_ADDR frame_addr; +{ + struct frame_info *frame = NULL; + + if (frame_addr == (CORE_ADDR)0) + return NULL; + + while (1) + { + frame = get_prev_frame (frame); + if (frame == NULL) + return NULL; + if (FRAME_FP (frame) == frame_addr) + return frame; + } +} + +#ifdef SIGCONTEXT_PC_OFFSET +/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */ + +CORE_ADDR +sigtramp_saved_pc (frame) + struct frame_info *frame; +{ + CORE_ADDR sigcontext_addr; + char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; + int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT; + int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT; + + /* Get sigcontext address, it is the third parameter on the stack. */ + if (frame->next) + sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next) + + FRAME_ARGS_SKIP + + sigcontext_offs, + ptrbytes); + else + sigcontext_addr = read_memory_integer (read_register (SP_REGNUM) + + sigcontext_offs, + ptrbytes); + + /* Don't cause a memory_error when accessing sigcontext in case the stack + layout has changed or the stack is corrupt. */ + target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes); + return extract_unsigned_integer (buf, ptrbytes); +} +#endif /* SIGCONTEXT_PC_OFFSET */ + +#ifdef USE_GENERIC_DUMMY_FRAMES + +/* + * GENERIC DUMMY FRAMES + * + * The following code serves to maintain the dummy stack frames for + * inferior function calls (ie. when gdb calls into the inferior via + * call_function_by_hand). This code saves the machine state before + * the call in host memory, so we must maintain an independant stack + * and keep it consistant etc. I am attempting to make this code + * generic enough to be used by many targets. + * + * The cheapest and most generic way to do CALL_DUMMY on a new target + * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to + * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember + * to define PUSH_RETURN_ADDRESS, because no call instruction will be + * being executed by the target. Also FRAME_CHAIN_VALID as + * generic_frame_chain_valid. */ + +static struct dummy_frame *dummy_frame_stack = NULL; + +/* Function: find_dummy_frame(pc, fp, sp) + Search the stack of dummy frames for one matching the given PC, FP and SP. + This is the work-horse for pc_in_call_dummy and read_register_dummy */ + +char * +generic_find_dummy_frame (pc, fp) + CORE_ADDR pc; + CORE_ADDR fp; +{ + struct dummy_frame * dummyframe; + + if (pc != entry_point_address ()) + return 0; + + for (dummyframe = dummy_frame_stack; dummyframe != NULL; + dummyframe = dummyframe->next) + if (fp == dummyframe->fp || fp == dummyframe->sp) + /* The frame in question lies between the saved fp and sp, inclusive */ + return dummyframe->regs; + + return 0; +} + +/* Function: pc_in_call_dummy (pc, fp) + Return true if this is a dummy frame created by gdb for an inferior call */ + +int +generic_pc_in_call_dummy (pc, fp) + CORE_ADDR pc; + CORE_ADDR fp; +{ + /* if find_dummy_frame succeeds, then PC is in a call dummy */ + return (generic_find_dummy_frame (pc, fp) != 0); +} + +/* Function: read_register_dummy + Find a saved register from before GDB calls a function in the inferior */ + +CORE_ADDR +generic_read_register_dummy (pc, fp, regno) + CORE_ADDR pc; + CORE_ADDR fp; + int regno; +{ + char *dummy_regs = generic_find_dummy_frame (pc, fp); + + if (dummy_regs) + return extract_address (&dummy_regs[REGISTER_BYTE (regno)], + REGISTER_RAW_SIZE(regno)); + else + return 0; +} + +/* Save all the registers on the dummy frame stack. Most ports save the + registers on the target stack. This results in lots of unnecessary memory + references, which are slow when debugging via a serial line. Instead, we + save all the registers internally, and never write them to the stack. The + registers get restored when the called function returns to the entry point, + where a breakpoint is laying in wait. */ + +void +generic_push_dummy_frame () +{ + struct dummy_frame *dummy_frame; + CORE_ADDR fp = (get_current_frame ())->frame; + + /* check to see if there are stale dummy frames, + perhaps left over from when a longjump took us out of a + function that was called by the debugger */ + + dummy_frame = dummy_frame_stack; + while (dummy_frame) + if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */ + { + dummy_frame_stack = dummy_frame->next; + free (dummy_frame); + dummy_frame = dummy_frame_stack; + } + else + dummy_frame = dummy_frame->next; + + dummy_frame = xmalloc (sizeof (struct dummy_frame)); + dummy_frame->pc = read_register (PC_REGNUM); + dummy_frame->sp = read_register (SP_REGNUM); + dummy_frame->fp = fp; + read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); + dummy_frame->next = dummy_frame_stack; + dummy_frame_stack = dummy_frame; +} + +/* Function: pop_frame + Restore the machine state from either the saved dummy stack or a + real stack frame. */ + +void +generic_pop_current_frame (pop) + void (*pop) PARAMS ((struct frame_info *frame)); +{ + struct frame_info *frame = get_current_frame (); + if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame)) + generic_pop_dummy_frame (); + else + pop (frame); +} + +/* Function: pop_dummy_frame + Restore the machine state from a saved dummy stack frame. */ + +void +generic_pop_dummy_frame () +{ + struct dummy_frame *dummy_frame = dummy_frame_stack; + + /* FIXME: what if the first frame isn't the right one, eg.. + because one call-by-hand function has done a longjmp into another one? */ + + if (!dummy_frame) + error ("Can't pop dummy frame!"); + dummy_frame_stack = dummy_frame->next; + write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES); + flush_cached_frames (); + free (dummy_frame); +} + +/* Function: frame_chain_valid + Returns true for a user frame or a call_function_by_hand dummy frame, + and false for the CRT0 start-up frame. Purpose is to terminate backtrace */ + +int +generic_frame_chain_valid (fp, fi) + CORE_ADDR fp; + struct frame_info *fi; +{ + if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp)) + return 1; /* don't prune CALL_DUMMY frames */ + else /* fall back to default algorithm (see frame.h) */ + return (fp != 0 + && (INNER_THAN (fi->frame, fp) || fi->frame == fp) + && !inside_entry_file (FRAME_SAVED_PC(fi))); +} + +/* Function: get_saved_register + Find register number REGNUM relative to FRAME and put its (raw, + target format) contents in *RAW_BUFFER. + + Set *OPTIMIZED if the variable was optimized out (and thus can't be + fetched). Note that this is never set to anything other than zero + in this implementation. + + Set *LVAL to lval_memory, lval_register, or not_lval, depending on + whether the value was fetched from memory, from a register, or in a + strange and non-modifiable way (e.g. a frame pointer which was + calculated rather than fetched). We will use not_lval for values + fetched from generic dummy frames. + + Set *ADDRP to the address, either in memory on as a REGISTER_BYTE + offset into the registers array. If the value is stored in a dummy + frame, set *ADDRP to zero. + + To use this implementation, define a function called + "get_saved_register" in your target code, which simply passes all + of its arguments to this function. + + The argument RAW_BUFFER must point to aligned memory. */ + +void +generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) + char *raw_buffer; + int *optimized; + CORE_ADDR *addrp; + struct frame_info *frame; + int regnum; + enum lval_type *lval; +{ + if (!target_has_registers) + error ("No registers."); + + /* Normal systems don't optimize out things with register numbers. */ + if (optimized != NULL) + *optimized = 0; + + if (addrp) /* default assumption: not found in memory */ + *addrp = 0; + + /* Note: since the current frame's registers could only have been + saved by frames INTERIOR TO the current frame, we skip examining + the current frame itself: otherwise, we would be getting the + previous frame's registers which were saved by the current frame. */ + + while (frame && ((frame = frame->next) != NULL)) + { + if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) + { + if (lval) /* found it in a CALL_DUMMY frame */ + *lval = not_lval; + if (raw_buffer) + memcpy (raw_buffer, + generic_find_dummy_frame (frame->pc, frame->frame) + + REGISTER_BYTE (regnum), + REGISTER_RAW_SIZE (regnum)); + return; + } + + FRAME_INIT_SAVED_REGS (frame); + if (frame->saved_regs != NULL + && frame->saved_regs[regnum] != 0) + { + if (lval) /* found it saved on the stack */ + *lval = lval_memory; + if (regnum == SP_REGNUM) + { + if (raw_buffer) /* SP register treated specially */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), + frame->saved_regs[regnum]); + } + else + { + if (addrp) /* any other register */ + *addrp = frame->saved_regs[regnum]; + if (raw_buffer) + read_memory (frame->saved_regs[regnum], raw_buffer, + REGISTER_RAW_SIZE (regnum)); + } + return; + } + } + + /* If we get thru the loop to this point, it means the register was + not saved in any frame. Return the actual live-register value. */ + + if (lval) /* found it in a live register */ + *lval = lval_register; + if (addrp) + *addrp = REGISTER_BYTE (regnum); + if (raw_buffer) + read_register_gen (regnum, raw_buffer); +} +#endif /* USE_GENERIC_DUMMY_FRAMES */ + +void +_initialize_blockframe () +{ + obstack_init (&frame_cache_obstack); +} |