aboutsummaryrefslogtreecommitdiff
path: root/gdb/arm-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/arm-tdep.c')
-rw-r--r--gdb/arm-tdep.c1194
1 files changed, 1070 insertions, 124 deletions
diff --git a/gdb/arm-tdep.c b/gdb/arm-tdep.c
index 4a40e16..ce55733 100644
--- a/gdb/arm-tdep.c
+++ b/gdb/arm-tdep.c
@@ -1,5 +1,5 @@
/* Target-dependent code for the Acorn Risc Machine, for GDB, the GNU Debugger.
- Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996
+ Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998
Free Software Foundation, Inc.
This file is part of GDB.
@@ -22,16 +22,85 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "frame.h"
#include "inferior.h"
#include "gdbcmd.h"
-
+#include "gdbcore.h"
+#include "symfile.h"
+#include "gdb_string.h"
+#include "coff/internal.h" /* Internal format of COFF symbols in BFD */
+
+/* Thumb function addresses are odd (bit 0 is set). Here are some
+ macros to test, set, or clear bit 0 of addresses. */
+#define IS_THUMB_ADDR(addr) ((addr) & 1)
+#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
+#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
+
+/* Macros to round N up or down to the next A boundary; A must be
+ a power of two. */
+#define ROUND_DOWN(n,a) ((n) & ~((a) - 1))
+#define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1))
+
/* Set to true if the 32-bit mode is in use. */
int arm_apcs_32 = 1;
+/* Flag set by arm_fix_call_dummy that tells whether the target function
+ is a Thumb function. This flag is checked by arm_push_arguments.
+ FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to
+ pass the function address as an additional parameter. */
+
+static int target_is_thumb;
+
+/* Flag set by arm_fix_call_dummy that tells whether the calling function
+ is a Thumb function. This flag is checked by arm_pc_is_thumb
+ and arm_call_dummy_breakpoint_offset. */
+
+static int caller_is_thumb;
+
+/* Tell if the program counter value in MEMADDR is in a Thumb function. */
+
+int
+arm_pc_is_thumb (memaddr)
+ bfd_vma memaddr;
+{
+ struct minimal_symbol * sym;
+ CORE_ADDR sp;
+
+ /* If bit 0 of the address is set, assume this is a Thumb address. */
+ if (IS_THUMB_ADDR (memaddr))
+ return 1;
+
+ /* Thumb function have a "special" bit set in minimal symbols */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ {
+ return (MSYMBOL_IS_SPECIAL(sym));
+ }
+ else
+ return 0;
+}
+
+/* Tell if the program counter value in MEMADDR is in a call dummy that
+ is being called from a Thumb function. */
+
+int
+arm_pc_is_thumb_dummy (memaddr)
+ bfd_vma memaddr;
+{
+ CORE_ADDR sp = read_sp();
+
+ if (PC_IN_CALL_DUMMY (memaddr, sp, sp+64))
+ return caller_is_thumb;
+ else
+ return 0;
+}
+
CORE_ADDR
arm_addr_bits_remove (val)
-CORE_ADDR val;
+ CORE_ADDR val;
{
- return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
+ if (arm_pc_is_thumb (val))
+ return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
+ else
+ return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
}
CORE_ADDR
@@ -41,6 +110,35 @@ arm_saved_pc_after_call (frame)
return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
}
+/* A typical Thumb prologue looks like this:
+ push {r7, lr}
+ add sp, sp, #-28
+ add r7, sp, #12
+ Sometimes the latter instruction may be replaced by:
+ mov r7, sp
+*/
+
+static CORE_ADDR
+thumb_skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ CORE_ADDR current_pc;
+
+ for (current_pc = pc; current_pc < pc + 20; current_pc += 2)
+ {
+ unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ( (insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */
+ && (insn & 0xff00) != 0xb000 /* add sp, #simm */
+ && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */
+ && insn != 0x466f /* mov r7, sp */
+ && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */
+ break;
+ }
+
+ return current_pc;
+}
+
/* APCS (ARM procedure call standard) defines the following prologue:
mov ip, sp
@@ -55,11 +153,28 @@ arm_saved_pc_after_call (frame)
CORE_ADDR
arm_skip_prologue (pc)
-CORE_ADDR pc;
+ CORE_ADDR pc;
{
unsigned long inst;
- CORE_ADDR skip_pc = pc;
+ CORE_ADDR skip_pc;
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* See what the symbol table says. */
+ if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+ if (sal.line != 0 && sal.end < func_end)
+ return sal.end;
+ }
+
+ /* Check if this is Thumb code. */
+ if (arm_pc_is_thumb (pc))
+ return thumb_skip_prologue (pc);
+ /* Can't find the prologue end in the symbol table, try it the hard way
+ by disassembling the instructions. */
+ skip_pc = pc;
inst = read_memory_integer (skip_pc, 4);
if (inst != 0xe1a0c00d) /* mov ip, sp */
return pc;
@@ -104,101 +219,735 @@ CORE_ADDR pc;
return skip_pc;
}
-void
-arm_frame_find_saved_regs (frame_info, saved_regs_addr)
- struct frame_info *frame_info;
- struct frame_saved_regs *saved_regs_addr;
+
+
+/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
+ This function decodes a Thumb function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+ This information is stored in the "extra" fields of the frame_info.
+
+ A typical Thumb function prologue might look like this:
+ push {r7, lr}
+ sub sp, #28,
+ add r7, sp, #12
+ Which would create this stack frame (offsets relative to FP)
+ old SP -> 24 stack parameters
+ 20 LR
+ 16 R7
+ R7 -> 0 local variables (16 bytes)
+ SP -> -12 additional stack space (12 bytes)
+ The frame size would thus be 36 bytes, and the frame offset would be
+ 12 bytes. The frame register is R7. */
+
+static void
+thumb_scan_prologue (fi)
+ struct frame_info * fi;
{
- register int regnum;
- register int frame;
- register int next_addr;
- register int return_data_save;
- register int saved_register_mask;
+ CORE_ADDR prologue_start;
+ CORE_ADDR prologue_end;
+ CORE_ADDR current_pc;
+ int saved_reg[16]; /* which register has been copied to register n? */
+ int i;
- memset (saved_regs_addr, '\0', sizeof (*saved_regs_addr));
- frame = frame_info->frame;
- return_data_save = read_memory_integer (frame, 4) & 0x03fffffc - 12;
- saved_register_mask = read_memory_integer (return_data_save, 4);
- next_addr = frame - 12;
- for (regnum = 4; regnum < 10; regnum++)
- if (saved_register_mask & (1 << regnum))
- {
- next_addr -= 4;
- saved_regs_addr->regs[regnum] = next_addr;
- }
- if (read_memory_integer (return_data_save + 4, 4) == 0xed6d7103)
+ if (find_pc_partial_function (fi->pc, NULL, & prologue_start, & prologue_end))
{
- next_addr -= 12;
- saved_regs_addr->regs[F0_REGNUM + 7] = next_addr;
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
}
- if (read_memory_integer (return_data_save + 8, 4) == 0xed6d6103)
+ else
+ prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
+ /* 16 pushes, an add, and "mv fp,sp" */
+
+ prologue_end = min (prologue_end, fi->pc);
+
+ /* Initialize the saved register map. When register H is copied to
+ register L, we will put H in saved_reg[L]. */
+ for (i = 0; i < 16; i++)
+ saved_reg[i] = i;
+
+ /* Search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers. */
+
+ fi->framesize = 0;
+ for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
{
- next_addr -= 12;
- saved_regs_addr->regs[F0_REGNUM + 6] = next_addr;
+ unsigned short insn;
+ int regno;
+ int offset;
+
+ insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
+ {
+ /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
+ whether to save LR (R14). */
+ int mask = (insn & 0xff) | ((insn & 0x100) << 6);
+
+ /* Calculate offsets of saved R0-R7 and LR. */
+ for (regno = LR_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ fi->framesize += 4;
+ fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
+ saved_reg[regno] = regno; /* reset saved register map */
+ }
+ }
+ else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */
+ {
+ offset = (insn & 0x7f) << 2; /* get scaled offset */
+ if (insn & 0x80) /* is it signed? */
+ offset = -offset;
+ fi->framesize -= offset;
+ }
+ else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
+ {
+ fi->framereg = THUMB_FP_REGNUM;
+ fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
+ }
+ else if (insn == 0x466f) /* mov r7, sp */
+ {
+ fi->framereg = THUMB_FP_REGNUM;
+ fi->frameoffset = 0;
+ saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
+ }
+ else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
+ {
+ int lo_reg = insn & 7; /* dest. register (r0-r7) */
+ int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
+ saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
+ }
+ else
+ break; /* anything else isn't prologue */
}
- if (read_memory_integer (return_data_save + 12, 4) == 0xed6d5103)
+}
+
+/* Function: check_prologue_cache
+ Check if prologue for this frame's PC has already been scanned.
+ If it has, copy the relevant information about that prologue and
+ return non-zero. Otherwise do not copy anything and return zero.
+
+ The information saved in the cache includes:
+ * the frame register number;
+ * the size of the stack frame;
+ * the offsets of saved regs (relative to the old SP); and
+ * the offset from the stack pointer to the frame pointer
+
+ The cache contains only one entry, since this is adequate
+ for the typical sequence of prologue scan requests we get.
+ When performing a backtrace, GDB will usually ask to scan
+ the same function twice in a row (once to get the frame chain,
+ and once to fill in the extra frame information).
+*/
+
+static struct frame_info prologue_cache;
+
+static int
+check_prologue_cache (fi)
+ struct frame_info * fi;
+{
+ int i;
+
+ if (fi->pc == prologue_cache.pc)
{
- next_addr -= 12;
- saved_regs_addr->regs[F0_REGNUM + 5] = next_addr;
+ fi->framereg = prologue_cache.framereg;
+ fi->framesize = prologue_cache.framesize;
+ fi->frameoffset = prologue_cache.frameoffset;
+ for (i = 0; i <= NUM_REGS; i++)
+ fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
+ return 1;
}
- if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103)
+ else
+ return 0;
+}
+
+
+/* Function: save_prologue_cache
+ Copy the prologue information from fi to the prologue cache.
+*/
+
+static void
+save_prologue_cache (fi)
+ struct frame_info * fi;
+{
+ int i;
+
+ prologue_cache.pc = fi->pc;
+ prologue_cache.framereg = fi->framereg;
+ prologue_cache.framesize = fi->framesize;
+ prologue_cache.frameoffset = fi->frameoffset;
+
+ for (i = 0; i <= NUM_REGS; i++)
+ prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
+}
+
+
+/* Function: arm_scan_prologue
+ This function decodes an ARM function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+ This information is stored in the "extra" fields of the frame_info.
+
+ A typical Arm function prologue might look like this:
+ mov ip, sp
+ stmfd sp!, {fp, ip, lr, pc}
+ sub fp, ip, #4
+ sub sp, sp, #16
+ Which would create this stack frame (offsets relative to FP):
+ IP -> 4 (caller's stack)
+ FP -> 0 PC (points to address of stmfd instruction + 12 in callee)
+ -4 LR (return address in caller)
+ -8 IP (copy of caller's SP)
+ -12 FP (caller's FP)
+ SP -> -28 Local variables
+ The frame size would thus be 32 bytes, and the frame offset would be
+ 28 bytes. */
+
+static void
+arm_scan_prologue (fi)
+ struct frame_info * fi;
+{
+ int regno, sp_offset, fp_offset;
+ CORE_ADDR prologue_start, prologue_end, current_pc;
+
+ /* Check if this function is already in the cache of frame information. */
+ if (check_prologue_cache (fi))
+ return;
+
+ /* Assume there is no frame until proven otherwise. */
+ fi->framereg = SP_REGNUM;
+ fi->framesize = 0;
+ fi->frameoffset = 0;
+
+ /* Check for Thumb prologue. */
+ if (arm_pc_is_thumb (fi->pc))
+ {
+ thumb_scan_prologue (fi);
+ save_prologue_cache (fi);
+ return;
+ }
+
+ /* Find the function prologue. If we can't find the function in
+ the symbol table, peek in the stack frame to find the PC. */
+ if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
+ {
+ /* Assume the prologue is everything between the first instruction
+ in the function and the first source line. */
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
+ }
+ else
+ {
+ /* Get address of the stmfd in the prologue of the callee; the saved
+ PC is the address of the stmfd + 12. */
+ prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
+ prologue_end = prologue_start + 40; /* FIXME: should be big enough */
+ }
+
+ /* Now search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers. */
+
+ sp_offset = fp_offset = 0;
+ for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4)
+ {
+ unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
+
+ if ((insn & 0xffff0000) == 0xe92d0000) /* stmfd sp!, {..., r7, lr} */
+ {
+ int mask = insn & 0xffff;
+
+ /* Calculate offsets of saved registers. */
+ for (regno = PC_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ sp_offset -= 4;
+ fi->fsr.regs[regno] = sp_offset;
+ }
+ }
+ else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32-rot));
+ fp_offset = -imm;
+ fi->framereg = FP_REGNUM;
+ }
+ else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32-rot));
+ sp_offset -= imm;
+ }
+ else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
+ {
+ sp_offset -= 12;
+ regno = F0_REGNUM + ((insn >> 12) & 0x07);
+ fi->fsr.regs[regno] = sp_offset;
+ }
+ else if (insn == 0xe1a0c00d) /* mov ip, sp */
+ continue;
+ else
+ break; /* not a recognized prologue instruction */
+ }
+
+ /* The frame size is just the negative of the offset (from the original SP)
+ of the last thing thing we pushed on the stack. The frame offset is
+ [new FP] - [new SP]. */
+ fi->framesize = -sp_offset;
+ fi->frameoffset = fp_offset - sp_offset;
+
+ save_prologue_cache (fi);
+}
+
+
+/* Function: find_callers_reg
+ Find REGNUM on the stack. Otherwise, it's in an active register. One thing
+ we might want to do here is to check REGNUM against the clobber mask, and
+ somehow flag it as invalid if it isn't saved on the stack somewhere. This
+ would provide a graceful failure mode when trying to get the value of
+ caller-saves registers for an inner frame. */
+
+static CORE_ADDR
+arm_find_callers_reg (fi, regnum)
+ struct frame_info * fi;
+ int regnum;
+{
+ for (; fi; fi = fi->next)
+
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return generic_read_register_dummy (fi->pc, fi->frame, regnum);
+ else
+#endif
+ if (fi->fsr.regs[regnum] != 0)
+ return read_memory_integer (fi->fsr.regs[regnum],
+ REGISTER_RAW_SIZE(regnum));
+ return read_register (regnum);
+}
+
+
+/* Function: frame_chain
+ Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+ For ARM, we save the frame size when we initialize the frame_info.
+
+ The original definition of this function was a macro in tm-arm.h:
+ { In the case of the ARM, the frame's nominal address is the FP value,
+ and 12 bytes before comes the saved previous FP value as a 4-byte word. }
+
+ #define FRAME_CHAIN(thisframe) \
+ ((thisframe)->pc >= LOWEST_PC ? \
+ read_memory_integer ((thisframe)->frame - 12, 4) :\
+ 0)
+*/
+
+CORE_ADDR
+arm_frame_chain (fi)
+ struct frame_info * fi;
+{
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ CORE_ADDR fn_start, callers_pc, fp;
+
+ /* is this a dummy frame? */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return fi->frame; /* dummy frame same as caller's frame */
+
+ /* is caller-of-this a dummy frame? */
+ callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */
+ fp = arm_find_callers_reg (fi, FP_REGNUM);
+ if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
+ return fp; /* dummy frame's frame may bear no relation to ours */
+
+ if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
+ if (fn_start == entry_point_address ())
+ return 0; /* in _start fn, don't chain further */
+#endif
+ CORE_ADDR caller_pc, fn_start;
+ struct frame_info caller_fi;
+ int framereg = fi->framereg;
+
+ if (fi->pc < LOWEST_PC)
+ return 0;
+
+ /* If the caller is the startup code, we're at the end of the chain. */
+ caller_pc = FRAME_SAVED_PC (fi);
+ if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
+ if (fn_start == entry_point_address ())
+ return 0;
+
+ /* If the caller is Thumb and the caller is ARM, or vice versa,
+ the frame register of the caller is different from ours.
+ So we must scan the prologue of the caller to determine its
+ frame register number. */
+ if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
{
- next_addr -= 12;
- saved_regs_addr->regs[F0_REGNUM + 4] = next_addr;
+ memset (& caller_fi, 0, sizeof (caller_fi));
+ caller_fi.pc = caller_pc;
+ arm_scan_prologue (& caller_fi);
+ framereg = caller_fi.framereg;
}
- saved_regs_addr->regs[SP_REGNUM] = next_addr;
- saved_regs_addr->regs[PC_REGNUM] = frame - 4;
- saved_regs_addr->regs[PS_REGNUM] = frame - 4;
- saved_regs_addr->regs[FP_REGNUM] = frame - 12;
+
+ /* If the caller used a frame register, return its value.
+ Otherwise, return the caller's stack pointer. */
+ if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
+ return arm_find_callers_reg (fi, framereg);
+ else
+ return fi->frame + fi->framesize;
}
+/* Function: init_extra_frame_info
+ This function actually figures out the frame address for a given pc and
+ sp. This is tricky because we sometimes don't use an explicit
+ frame pointer, and the previous stack pointer isn't necessarily recorded
+ on the stack. The only reliable way to get this info is to
+ examine the prologue. */
+
void
-arm_push_dummy_frame ()
+arm_init_extra_frame_info (fi)
+ struct frame_info * fi;
{
- register CORE_ADDR sp = read_register (SP_REGNUM);
- register int regnum;
+ int reg;
+
+ if (fi->next)
+ fi->pc = FRAME_SAVED_PC (fi->next);
+
+ memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
+
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ {
+ /* We need to setup fi->frame here because run_stack_dummy gets it wrong
+ by assuming it's always FP. */
+ fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
+ fi->framesize = 0;
+ fi->frameoffset = 0;
+ return;
+ }
+ else
+#endif
+ {
+ arm_scan_prologue (fi);
+
+ if (!fi->next) /* this is the innermost frame? */
+ fi->frame = read_register (fi->framereg);
+ else /* not the innermost frame */
+ /* If we have an FP, the callee saved it. */
+ if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
+ if (fi->next->fsr.regs[fi->framereg] != 0)
+ fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
+ 4);
+
+ /* Calculate actual addresses of saved registers using offsets determined
+ by arm_scan_prologue. */
+ for (reg = 0; reg < NUM_REGS; reg++)
+ if (fi->fsr.regs[reg] != 0)
+ fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
+ }
+}
+
+
+/* Function: frame_saved_pc
+ Find the caller of this frame. We do this by seeing if LR_REGNUM is saved
+ in the stack anywhere, otherwise we get it from the registers.
- /* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */
- sp = push_word (sp, 0xe92dbf0); /* dummy return_data_save ins */
- /* push a pointer to the dummy instruction minus 12 */
- sp = push_word (sp, read_register (SP_REGNUM) - 16);
- sp = push_word (sp, read_register (PS_REGNUM));
- sp = push_word (sp, read_register (SP_REGNUM));
+ The old definition of this function was a macro:
+ #define FRAME_SAVED_PC(FRAME) \
+ ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4))
+*/
+
+CORE_ADDR
+arm_frame_saved_pc (fi)
+ struct frame_info * fi;
+{
+#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
+ else
+#endif
+ {
+ CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
+ return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
+ }
+}
+
+
+/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
+ Examine the Program Status Register to decide which state we're in. */
+
+CORE_ADDR
+arm_target_read_fp ()
+{
+ if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
+ return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
+ else
+ return read_register (FP_REGNUM); /* R11 if ARM */
+}
+
+
+/* Calculate the frame offsets of the saved registers (ARM version). */
+void
+arm_frame_find_saved_regs (fi, regaddr)
+ struct frame_info *fi;
+ struct frame_saved_regs *regaddr;
+{
+ memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
+}
+
+
+void
+arm_push_dummy_frame ()
+{
+ CORE_ADDR old_sp = read_register (SP_REGNUM);
+ CORE_ADDR sp = old_sp;
+ CORE_ADDR fp, prologue_start;
+ int regnum;
+
+ /* Push the two dummy prologue instructions in reverse order,
+ so that they'll be in the correct low-to-high order in memory. */
+ /* sub fp, ip, #4 */
+ sp = push_word (sp, 0xe24cb004);
+ /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
+ prologue_start = sp = push_word (sp, 0xe92ddfff);
+
+ /* push a pointer to the dummy prologue + 12, because when
+ stm instruction stores the PC, it stores the address of the stm
+ instruction itself plus 12. */
+ fp = sp = push_word (sp, prologue_start + 12);
+ sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */
+ sp = push_word (sp, old_sp);
sp = push_word (sp, read_register (FP_REGNUM));
- for (regnum = 9; regnum >= 4; regnum --)
+
+ for (regnum = 10; regnum >= 0; regnum --)
sp = push_word (sp, read_register (regnum));
- write_register (FP_REGNUM, read_register (SP_REGNUM) - 8);
+
+ write_register (FP_REGNUM, fp);
+ write_register (THUMB_FP_REGNUM, fp);
write_register (SP_REGNUM, sp);
}
+/* Fix up the call dummy, based on whether the processor is currently
+ in Thumb or ARM mode, and whether the target function is Thumb
+ or ARM. There are three different situations requiring three
+ different dummies:
+
+ * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
+ been copied into the dummy parameter to this function.
+ * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
+ "mov pc,r4" instruction patched to be a "bx r4" instead.
+ * Thumb calling anything: uses the Thumb dummy defined below, which
+ works for calling both ARM and Thumb functions.
+
+ All three call dummies expect to receive the target function address
+ in R4, with the low bit set if it's a Thumb function.
+*/
+
void
-arm_pop_frame ()
+arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
+ char * dummy;
+ CORE_ADDR pc;
+ CORE_ADDR fun;
+ int nargs;
+ value_ptr * args;
+ struct type * type;
+ int gcc_p;
{
- register CORE_ADDR fp = read_register (FP_REGNUM);
- register unsigned long return_data_save =
- read_memory_integer (ADDR_BITS_REMOVE (read_memory_integer (fp, 4)) - 12,
- 4);
- register int regnum;
+ static short thumb_dummy[4] =
+ {
+ 0xf000, 0xf801, /* bl label */
+ 0xdf18, /* swi 24 */
+ 0x4720, /* label: bx r4 */
+ };
+ static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
+
+ /* Set flag indicating whether the current PC is in a Thumb function. */
+ caller_is_thumb = arm_pc_is_thumb (read_pc());
+
+ /* If the target function is Thumb, set the low bit of the function address.
+ And if the CPU is currently in ARM mode, patch the second instruction
+ of call dummy to use a BX instruction to switch to Thumb mode. */
+ target_is_thumb = arm_pc_is_thumb (fun);
+ if (target_is_thumb)
+ {
+ fun |= 1;
+ if (!caller_is_thumb)
+ store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
+ }
- write_register (PS_REGNUM, read_memory_integer (fp - 4, 4));
- write_register (PC_REGNUM, ADDR_BITS_REMOVE (read_register (PS_REGNUM)));
- write_register (SP_REGNUM, read_memory_integer (fp - 8, 4));
- write_register (FP_REGNUM, read_memory_integer (fp - 12, 4));
- fp -= 12;
- for (regnum = 9; regnum >= 4; regnum--)
+ /* If the CPU is currently in Thumb mode, use the Thumb call dummy
+ instead of the ARM one that's already been copied. This will
+ work for both Thumb and ARM target functions. */
+ if (caller_is_thumb)
{
- if (return_data_save & (1 << regnum))
+ int i;
+ char *p = dummy;
+ int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
+
+ for (i = 0; i < len; i++)
{
- fp -= 4;
- write_register (regnum, read_memory_integer (fp, 4));
+ store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
+ p += sizeof (thumb_dummy[0]);
+ }
+ }
+
+ /* Put the target address in r4; the call dummy will copy this to the PC. */
+ write_register (4, fun);
+}
+
+
+/* Return the offset in the call dummy of the instruction that needs
+ to have a breakpoint placed on it. This is the offset of the 'swi 24'
+ instruction, which is no longer actually used, but simply acts
+ as a place-holder now.
+
+ This implements the CALL_DUMMY_BREAK_OFFSET macro.
+*/
+
+int
+arm_call_dummy_breakpoint_offset ()
+{
+ if (caller_is_thumb)
+ return 4;
+ else
+ return 8;
+}
+
+
+CORE_ADDR
+arm_push_arguments(nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr * args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int argreg;
+ int float_argreg;
+ int argnum;
+ int stack_offset;
+
+ /* Initialize the integer and float register pointers. */
+ argreg = A1_REGNUM;
+ float_argreg = F0_REGNUM;
+
+ /* the struct_return pointer occupies the first parameter-passing reg */
+ if (struct_return)
+ write_register (argreg++, struct_addr);
+
+ /* The offset onto the stack at which we will start copying parameters
+ (after the registers are used up) begins at 16 in the old ABI.
+ This leaves room for the "home" area for register parameters. */
+ stack_offset = REGISTER_SIZE * 4;
+
+ /* Now load as many as possible of the first arguments into
+ registers, and push the rest onto the stack. Loop thru args
+ from first to last. */
+ for (argnum = 0; argnum < nargs; argnum++)
+ {
+ char * val;
+ value_ptr arg = args[argnum];
+ struct type * arg_type = check_typedef (VALUE_TYPE (arg));
+ struct type * target_type = TYPE_TARGET_TYPE (arg_type);
+ int len = TYPE_LENGTH (arg_type);
+ enum type_code typecode = TYPE_CODE (arg_type);
+ CORE_ADDR regval;
+
+ val = (char *) VALUE_CONTENTS (arg);
+
+ /* If the argument is a pointer to a function, and it's a Thumb
+ function, set the low bit of the pointer. */
+ if (typecode == TYPE_CODE_PTR
+ && target_type != NULL
+ && TYPE_CODE (target_type) == TYPE_CODE_FUNC)
+ {
+ regval = extract_address (val, len);
+ if (arm_pc_is_thumb (regval))
+ store_address (val, len, MAKE_THUMB_ADDR (regval));
+ }
+
+#define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */
+#if MAPCS_FLOAT
+ /* Up to four floating point arguments can be passed in floating
+ point registers on ARM (not on Thumb). */
+ if (typecode == TYPE_CODE_FLT
+ && float_argreg <= ARM_LAST_FP_ARG_REGNUM
+ && !target_is_thumb)
+ {
+ /* This is a floating point value that fits entirely
+ in a single register. */
+ regval = extract_address (val, len);
+ write_register (float_argreg++, regval);
+ }
+ else
+#endif
+ {
+ /* Copy the argument to general registers or the stack in
+ register-sized pieces. Large arguments are split between
+ registers and stack. */
+ while (len > 0)
+ {
+ int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
+
+ if (argreg <= ARM_LAST_ARG_REGNUM)
+ {
+ regval = extract_address (val, partial_len);
+
+ /* It's a simple argument being passed in a general
+ register. */
+ write_register (argreg, regval);
+ argreg++;
+ }
+ else
+ {
+ /* Write this portion of the argument to the stack. */
+ partial_len = len;
+ sp -= partial_len;
+ write_memory (sp, val, partial_len);
+ }
+
+ len -= partial_len;
+ val += partial_len;
+ }
}
}
+
+ /* Return adjusted stack pointer. */
+ return sp;
+}
+
+void
+arm_pop_frame ()
+{
+ struct frame_info *frame = get_current_frame();
+ int regnum;
+
+ for (regnum = 0; regnum < NUM_REGS; regnum++)
+ if (frame->fsr.regs[regnum] != 0)
+ write_register (regnum,
+ read_memory_integer (frame->fsr.regs[regnum], 4));
+
+ write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
+ write_register (SP_REGNUM, read_register (frame->framereg));
+
flush_cached_frames ();
}
static void
print_fpu_flags (flags)
-int flags;
+ int flags;
{
if (flags & (1 << 0)) fputs ("IVO ", stdout);
if (flags & (1 << 1)) fputs ("DVZ ", stdout);
@@ -240,72 +989,67 @@ arm_othernames ()
void
convert_from_extended (ptr, dbl)
-void *ptr;
-double *dbl;
+ void * ptr;
+ double * dbl;
{
*dbl = *(double*)ptr;
}
void
convert_to_extended (dbl, ptr)
-void *ptr;
-double *dbl;
+ void * ptr;
+ double * dbl;
{
*(double*)ptr = *dbl;
}
-int
-arm_nullified_insn (inst)
- unsigned long inst;
+static int
+condition_true (cond, status_reg)
+ unsigned long cond;
+ unsigned long status_reg;
{
- unsigned long cond = inst & 0xf0000000;
- unsigned long status_reg;
-
if (cond == INST_AL || cond == INST_NV)
- return 0;
-
- status_reg = read_register (PS_REGNUM);
+ return 1;
switch (cond)
{
case INST_EQ:
- return ((status_reg & FLAG_Z) == 0);
- case INST_NE:
return ((status_reg & FLAG_Z) != 0);
+ case INST_NE:
+ return ((status_reg & FLAG_Z) == 0);
case INST_CS:
- return ((status_reg & FLAG_C) == 0);
- case INST_CC:
return ((status_reg & FLAG_C) != 0);
+ case INST_CC:
+ return ((status_reg & FLAG_C) == 0);
case INST_MI:
- return ((status_reg & FLAG_N) == 0);
- case INST_PL:
return ((status_reg & FLAG_N) != 0);
+ case INST_PL:
+ return ((status_reg & FLAG_N) == 0);
case INST_VS:
- return ((status_reg & FLAG_V) == 0);
- case INST_VC:
return ((status_reg & FLAG_V) != 0);
+ case INST_VC:
+ return ((status_reg & FLAG_V) == 0);
case INST_HI:
- return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
+ return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
case INST_LS:
- return (((status_reg & (FLAG_C | FLAG_Z)) ^ FLAG_C) == 0);
+ return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
case INST_GE:
- return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
- case INST_LT:
return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
+ case INST_LT:
+ return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
case INST_GT:
- return (((status_reg & FLAG_Z) != 0) ||
- (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
- case INST_LE:
return (((status_reg & FLAG_Z) == 0) &&
(((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
+ case INST_LE:
+ return (((status_reg & FLAG_Z) != 0) ||
+ (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
}
- return 0;
+ return 1;
}
#define submask(x) ((1L << ((x) + 1)) - 1)
-#define bit(obj,st) (((obj) & (1L << (st))) >> st)
-#define bits(obj,st,fn) \
- (((obj) & submask (fn) & ~ submask ((st) - 1)) >> (st))
+#define bit(obj,st) (((obj) >> (st)) & 1)
+#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
#define sbits(obj,st,fn) \
((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
#define BranchDest(addr,instr) \
@@ -313,10 +1057,11 @@ arm_nullified_insn (inst)
#define ARM_PC_32 1
static unsigned long
-shifted_reg_val (inst, carry, pc_val)
+shifted_reg_val (inst, carry, pc_val, status_reg)
unsigned long inst;
int carry;
unsigned long pc_val;
+ unsigned long status_reg;
{
unsigned long res, shift;
int rm = bits (inst, 0, 3);
@@ -331,7 +1076,7 @@ shifted_reg_val (inst, carry, pc_val)
shift = bits (inst, 7, 11);
res = (rm == 15
- ? ((pc_val | (ARM_PC_32 ? 0 : read_register (PS_REGNUM)))
+ ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
+ (bit (inst, 4) ? 12 : 8))
: read_register (rm));
@@ -364,18 +1109,83 @@ shifted_reg_val (inst, carry, pc_val)
}
+/* Return number of 1-bits in VAL. */
+
+static int
+bitcount (val)
+ unsigned long val;
+{
+ int nbits;
+ for (nbits = 0; val != 0; nbits++)
+ val &= val - 1; /* delete rightmost 1-bit in val */
+ return nbits;
+}
+
+
+static CORE_ADDR
+thumb_get_next_pc (pc)
+ CORE_ADDR pc;
+{
+ unsigned long pc_val = ((unsigned long)pc) + 4; /* PC after prefetch */
+ unsigned short inst1 = read_memory_integer (pc, 2);
+ CORE_ADDR nextpc = pc + 2; /* default is next instruction */
+ unsigned long offset;
+
+ if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
+ {
+ CORE_ADDR sp;
+
+ /* Fetch the saved PC from the stack. It's stored above
+ all of the other registers. */
+ offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
+ sp = read_register (SP_REGNUM);
+ nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
+ {
+ unsigned long status = read_register (PS_REGNUM);
+ unsigned long cond = bits (inst1, 8, 11);
+ if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
+ nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
+ {
+ nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
+ {
+ unsigned short inst2 = read_memory_integer (pc + 2, 2);
+ offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
+ nextpc = pc_val + offset;
+ }
+
+ return nextpc;
+}
+
+
CORE_ADDR
arm_get_next_pc (pc)
CORE_ADDR pc;
{
- unsigned long pc_val = (unsigned long) pc;
- unsigned long this_instr = read_memory_integer (pc, 4);
- unsigned long status = read_register (PS_REGNUM);
- CORE_ADDR nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
+ unsigned long pc_val;
+ unsigned long this_instr;
+ unsigned long status;
+ CORE_ADDR nextpc;
+
+ if (arm_pc_is_thumb (pc))
+ return thumb_get_next_pc (pc);
+
+ pc_val = (unsigned long) pc;
+ this_instr = read_memory_integer (pc, 4);
+ status = read_register (PS_REGNUM);
+ nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
- if (! arm_nullified_insn (this_instr))
+ if (condition_true (bits (this_instr, 28, 31), status))
{
- switch (bits(this_instr, 24, 27))
+ switch (bits (this_instr, 24, 27))
{
case 0x0: case 0x1: /* data processing */
case 0x2: case 0x3:
@@ -384,7 +1194,7 @@ arm_get_next_pc (pc)
unsigned long rn;
int c;
- if (bits(this_instr, 12, 15) != 15)
+ if (bits (this_instr, 12, 15) != 15)
break;
if (bits (this_instr, 22, 25) == 0
@@ -400,11 +1210,11 @@ arm_get_next_pc (pc)
{
unsigned long immval = bits (this_instr, 0, 7);
unsigned long rotate = 2 * bits (this_instr, 8, 11);
- operand2 = ((immval >> rotate) | (immval << (32-rotate))
- & 0xffffffff);
+ operand2 = ((immval >> rotate) | (immval << (32-rotate)))
+ & 0xffffffff;
}
else /* operand 2 is a shifted register */
- operand2 = shifted_reg_val (this_instr, c, pc_val);
+ operand2 = shifted_reg_val (this_instr, c, pc_val, status);
switch (bits (this_instr, 21, 24))
{
@@ -523,14 +1333,7 @@ arm_get_next_pc (pc)
{
/* up */
unsigned long reglist = bits (this_instr, 0, 14);
- unsigned long regbit;
-
- for (; reglist != 0; reglist &= ~regbit)
- {
- regbit = reglist & (-reglist);
- offset += 4;
- }
-
+ offset = bitcount (reglist) * 4;
if (bit (this_instr, 24)) /* pre */
offset += 4;
}
@@ -577,17 +1380,160 @@ arm_get_next_pc (pc)
return nextpc;
}
+#include "bfd-in2.h"
+#include "libcoff.h"
+
+static int
+gdb_print_insn_arm (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info * info;
+{
+ if (arm_pc_is_thumb (memaddr))
+ {
+ static asymbol * asym;
+ static combined_entry_type ce;
+ static struct coff_symbol_struct csym;
+ static struct _bfd fake_bfd;
+ static bfd_target fake_target;
+
+ if (csym.native == NULL)
+ {
+ /* Create a fake symbol vector containing a Thumb symbol. This is
+ solely so that the code in print_insn_little_arm() and
+ print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
+ of a Thumb symbol and switch to decoding Thumb instructions. */
+
+ fake_target.flavour = bfd_target_coff_flavour;
+ fake_bfd.xvec = & fake_target;
+ ce.u.syment.n_sclass = C_THUMBEXTFUNC;
+ csym.native = & ce;
+ csym.symbol.the_bfd = & fake_bfd;
+ csym.symbol.name = "fake";
+ asym = (asymbol *) & csym;
+ }
+
+ memaddr = UNMAKE_THUMB_ADDR (memaddr);
+ info->symbols = & asym;
+ }
+ else
+ info->symbols = NULL;
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return print_insn_big_arm (memaddr, info);
+ else
+ return print_insn_little_arm (memaddr, info);
+}
+
+/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
+ counter value to determine whether a 16- or 32-bit breakpoint should be
+ used. It returns a pointer to a string of bytes that encode a breakpoint
+ instruction, stores the length of the string to *lenptr, and adjusts pc
+ (if necessary) to point to the actual memory location where the
+ breakpoint should be inserted. */
+
+unsigned char *
+arm_breakpoint_from_pc (pcptr, lenptr)
+ CORE_ADDR * pcptr;
+ int * lenptr;
+{
+ CORE_ADDR sp = read_sp();
+
+ if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
+ {
+ static char thumb_breakpoint[] = THUMB_BREAKPOINT;
+
+ *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
+ *lenptr = sizeof (thumb_breakpoint);
+
+ return thumb_breakpoint;
+ }
+ else
+ {
+ static char arm_breakpoint[] = ARM_BREAKPOINT;
+
+ *lenptr = sizeof (arm_breakpoint);
+
+ return arm_breakpoint;
+ }
+}
+
+/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
+ This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
+
+int
+arm_in_call_stub (pc, name)
+ CORE_ADDR pc;
+ char * name;
+{
+ CORE_ADDR start_addr;
+
+ /* Find the starting address of the function containing the PC. If the
+ caller didn't give us a name, look it up at the same time. */
+ if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
+ return 0;
+
+ return strncmp (name, "_call_via_r", 11) == 0;
+}
+
+
+/* If PC is in a Thumb call or return stub, return the address of the target
+ PC, which is in a register. The thunk functions are called _called_via_xx,
+ where x is the register name. The possible names are r0-r9, sl, fp, ip,
+ sp, and lr. */
+
+CORE_ADDR
+arm_skip_stub (pc)
+ CORE_ADDR pc;
+{
+ char * name;
+ CORE_ADDR start_addr;
+
+ /* Find the starting address and name of the function containing the PC. */
+ if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
+ return 0;
+
+ /* Call thunks always start with "_call_via_". */
+ if (strncmp (name, "_call_via_", 10) == 0)
+ {
+ /* Use the name suffix to determine which register contains
+ the target PC. */
+ static char *table[15] =
+ { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "sl", "fp", "ip", "sp", "lr"
+ };
+ int regno;
+
+ for (regno = 0; regno <= 14; regno++)
+ if (strcmp (&name[10], table[regno]) == 0)
+ return read_register (regno);
+ }
+ return 0; /* not a stub */
+}
+
+
void
_initialize_arm_tdep ()
{
- tm_print_insn = print_insn_little_arm;
+ tm_print_insn = gdb_print_insn_arm;
add_com ("othernames", class_obscure, arm_othernames,
"Switch to the other set of register names.");
+ /* ??? Maybe this should be a boolean. */
add_show_from_set (add_set_cmd ("apcs32", no_class,
- var_integer, (char *)&arm_apcs_32,
+ var_zinteger, (char *)&arm_apcs_32,
"Set usage of ARM 32-bit mode.\n", &setlist),
- &showlist);
+ & showlist);
+
+}
+/* Test whether the coff symbol specific value corresponds to a Thumb function */
+int
+coff_sym_is_thumb(int val)
+{
+ return (val == C_THUMBEXT ||
+ val == C_THUMBSTAT ||
+ val == C_THUMBEXTFUNC ||
+ val == C_THUMBSTATFUNC ||
+ val == C_THUMBLABEL);
}