aboutsummaryrefslogtreecommitdiff
path: root/gdb/a29k-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/a29k-tdep.c')
-rw-r--r--gdb/a29k-tdep.c1040
1 files changed, 0 insertions, 1040 deletions
diff --git a/gdb/a29k-tdep.c b/gdb/a29k-tdep.c
deleted file mode 100644
index b3c0567..0000000
--- a/gdb/a29k-tdep.c
+++ /dev/null
@@ -1,1040 +0,0 @@
-/* Target-machine dependent code for the AMD 29000
- Copyright 1990, 1991, 1992, 1993, 1994, 1995
- Free Software Foundation, Inc.
- Contributed by Cygnus Support. Written by Jim Kingdon.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "gdbcore.h"
-#include "frame.h"
-#include "value.h"
-#include "symtab.h"
-#include "inferior.h"
-#include "gdbcmd.h"
-
-/* If all these bits in an instruction word are zero, it is a "tag word"
- which precedes a function entry point and gives stack traceback info.
- This used to be defined as 0xff000000, but that treated 0x00000deb as
- a tag word, while it is really used as a breakpoint. */
-#define TAGWORD_ZERO_MASK 0xff00f800
-
-extern CORE_ADDR text_start; /* FIXME, kludge... */
-
-/* The user-settable top of the register stack in virtual memory. We
- won't attempt to access any stored registers above this address, if set
- nonzero. */
-
-static CORE_ADDR rstack_high_address = UINT_MAX;
-
-
-/* Should call_function allocate stack space for a struct return? */
-/* On the a29k objects over 16 words require the caller to allocate space. */
-int
-a29k_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
-{
- return (TYPE_LENGTH (type) > 16 * 4);
-}
-
-
-/* Structure to hold cached info about function prologues. */
-
-struct prologue_info
-{
- CORE_ADDR pc; /* First addr after fn prologue */
- unsigned rsize, msize; /* register stack frame size, mem stack ditto */
- unsigned mfp_used : 1; /* memory frame pointer used */
- unsigned rsize_valid : 1; /* Validity bits for the above */
- unsigned msize_valid : 1;
- unsigned mfp_valid : 1;
-};
-
-/* Examine the prologue of a function which starts at PC. Return
- the first addess past the prologue. If MSIZE is non-NULL, then
- set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
- then set *RSIZE to the register stack frame size (not including
- incoming arguments and the return address & frame pointer stored
- with them). If no prologue is found, *RSIZE is set to zero.
- If no prologue is found, or a prologue which doesn't involve
- allocating a memory stack frame, then set *MSIZE to zero.
-
- Note that both msize and rsize are in bytes. This is not consistent
- with the _User's Manual_ with respect to rsize, but it is much more
- convenient.
-
- If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
- frame pointer is being used. */
-
-CORE_ADDR
-examine_prologue (pc, rsize, msize, mfp_used)
- CORE_ADDR pc;
- unsigned *msize;
- unsigned *rsize;
- int *mfp_used;
-{
- long insn;
- CORE_ADDR p = pc;
- struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
- struct prologue_info *mi = 0;
-
- if (msymbol != NULL)
- mi = (struct prologue_info *) msymbol -> info;
-
- if (mi != 0)
- {
- int valid = 1;
- if (rsize != NULL)
- {
- *rsize = mi->rsize;
- valid &= mi->rsize_valid;
- }
- if (msize != NULL)
- {
- *msize = mi->msize;
- valid &= mi->msize_valid;
- }
- if (mfp_used != NULL)
- {
- *mfp_used = mi->mfp_used;
- valid &= mi->mfp_valid;
- }
- if (valid)
- return mi->pc;
- }
-
- if (rsize != NULL)
- *rsize = 0;
- if (msize != NULL)
- *msize = 0;
- if (mfp_used != NULL)
- *mfp_used = 0;
-
- /* Prologue must start with subtracting a constant from gr1.
- Normally this is sub gr1,gr1,<rsize * 4>. */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) != 0x25010100)
- {
- /* If the frame is large, instead of a single instruction it
- might be a pair of instructions:
- const <reg>, <rsize * 4>
- sub gr1,gr1,<reg>
- */
- int reg;
- /* Possible value for rsize. */
- unsigned int rsize0;
-
- if ((insn & 0xff000000) != 0x03000000)
- {
- p = pc;
- goto done;
- }
- reg = (insn >> 8) & 0xff;
- rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
- p += 4;
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) != 0x24010100
- || (insn & 0xff) != reg)
- {
- p = pc;
- goto done;
- }
- if (rsize != NULL)
- *rsize = rsize0;
- }
- else
- {
- if (rsize != NULL)
- *rsize = (insn & 0xff);
- }
- p += 4;
-
- /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
- * We don't check the vector number to allow for kernel debugging. The
- * kernel will use a different trap number.
- * If this insn is missing, we just keep going; Metaware R2.3u compiler
- * generates prologue that intermixes initializations and puts the asgeu
- * way down.
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
- {
- p += 4;
- }
-
- /* Next instruction usually sets the frame pointer (lr1) by adding
- <size * 4> from gr1. However, this can (and high C does) be
- deferred until anytime before the first function call. So it is
- OK if we don't see anything which sets lr1.
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant. */
-
- /* Normally this is just add lr1,gr1,<size * 4>. */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) == 0x15810100)
- p += 4;
- else
- {
- /* However, for large frames it can be
- const <reg>, <size *4>
- add lr1,gr1,<reg>
- */
- int reg;
- CORE_ADDR q;
-
- if ((insn & 0xff000000) == 0x03000000)
- {
- reg = (insn >> 8) & 0xff;
- q = p + 4;
- insn = read_memory_integer (q, 4);
- if ((insn & 0xffffff00) == 0x14810100
- && (insn & 0xff) == reg)
- p = q;
- }
- }
-
- /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
- frame pointer is in use. We just check for add lr<anything>,msp,0;
- we don't check this rsize against the first instruction, and
- we don't check that the trace-back tag indicates a memory frame pointer
- is in use.
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant.
-
- The recommended instruction is actually "sll lr<whatever>,msp,0".
- We check for that, too. Originally Jim Kingdon's code seemed
- to be looking for a "sub" instruction here, but the mask was set
- up to lose all the time. */
- insn = read_memory_integer (p, 4);
- if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
- || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
- {
- p += 4;
- if (mfp_used != NULL)
- *mfp_used = 1;
- }
-
- /* Next comes a subtraction from msp to allocate a memory frame,
- but only if a memory frame is
- being used. We don't check msize against the trace-back tag.
-
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant.
-
- Normally this is just
- sub msp,msp,<msize>
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) ==
- (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
- {
- p += 4;
- if (msize != NULL)
- *msize = insn & 0xff;
- }
- else
- {
- /* For large frames, instead of a single instruction it might
- be
-
- const <reg>, <msize>
- consth <reg>, <msize> ; optional
- sub msp,msp,<reg>
- */
- int reg;
- unsigned msize0;
- CORE_ADDR q = p;
-
- if ((insn & 0xff000000) == 0x03000000)
- {
- reg = (insn >> 8) & 0xff;
- msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
- q += 4;
- insn = read_memory_integer (q, 4);
- /* Check for consth. */
- if ((insn & 0xff000000) == 0x02000000
- && (insn & 0x0000ff00) == reg)
- {
- msize0 |= (insn << 8) & 0xff000000;
- msize0 |= (insn << 16) & 0x00ff0000;
- q += 4;
- insn = read_memory_integer (q, 4);
- }
- /* Check for sub msp,msp,<reg>. */
- if ((insn & 0xffffff00) ==
- (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
- && (insn & 0xff) == reg)
- {
- p = q + 4;
- if (msize != NULL)
- *msize = msize0;
- }
- }
- }
-
- /* Next instruction might be asgeu V_SPILL,gr1,rab.
- * We don't check the vector number to allow for kernel debugging. The
- * kernel will use a different trap number.
- * Metaware R2.3u compiler
- * generates prologue that intermixes initializations and puts the asgeu
- * way down after everything else.
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
- {
- p += 4;
- }
-
- done:
- if (msymbol != NULL)
- {
- if (mi == 0)
- {
- /* Add a new cache entry. */
- mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
- msymbol -> info = (char *)mi;
- mi->rsize_valid = 0;
- mi->msize_valid = 0;
- mi->mfp_valid = 0;
- }
- /* else, cache entry exists, but info is incomplete. */
- mi->pc = p;
- if (rsize != NULL)
- {
- mi->rsize = *rsize;
- mi->rsize_valid = 1;
- }
- if (msize != NULL)
- {
- mi->msize = *msize;
- mi->msize_valid = 1;
- }
- if (mfp_used != NULL)
- {
- mi->mfp_used = *mfp_used;
- mi->mfp_valid = 1;
- }
- }
- return p;
-}
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code. */
-
-CORE_ADDR
-skip_prologue (pc)
- CORE_ADDR pc;
-{
- return examine_prologue (pc, NULL, NULL, NULL);
-}
-
-/*
- * Examine the one or two word tag at the beginning of a function.
- * The tag word is expect to be at 'p', if it is not there, we fail
- * by returning 0. The documentation for the tag word was taken from
- * page 7-15 of the 29050 User's Manual. We are assuming that the
- * m bit is in bit 22 of the tag word, which seems to be the agreed upon
- * convention today (1/15/92).
- * msize is return in bytes.
- */
-
-static int /* 0/1 - failure/success of finding the tag word */
-examine_tag (p, is_trans, argcount, msize, mfp_used)
- CORE_ADDR p;
- int *is_trans;
- int *argcount;
- unsigned *msize;
- int *mfp_used;
-{
- unsigned int tag1, tag2;
-
- tag1 = read_memory_integer (p, 4);
- if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
- return 0;
- if (tag1 & (1<<23)) /* A two word tag */
- {
- tag2 = read_memory_integer (p-4, 4);
- if (msize)
- *msize = tag2 * 2;
- }
- else /* A one word tag */
- {
- if (msize)
- *msize = tag1 & 0x7ff;
- }
- if (is_trans)
- *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
- /* Note that this includes the frame pointer and the return address
- register, so the actual number of registers of arguments is two less.
- argcount can be zero, however, sometimes, for strange assembler
- routines. */
- if (argcount)
- *argcount = (tag1 >> 16) & 0x1f;
- if (mfp_used)
- *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
- return 1;
-}
-
-/* Initialize the frame. In addition to setting "extra" frame info,
- we also set ->frame because we use it in a nonstandard way, and ->pc
- because we need to know it to get the other stuff. See the diagram
- of stacks and the frame cache in tm-a29k.h for more detail. */
-
-static void
-init_frame_info (innermost_frame, frame)
- int innermost_frame;
- struct frame_info *frame;
-{
- CORE_ADDR p;
- long insn;
- unsigned rsize;
- unsigned msize;
- int mfp_used, trans;
- struct symbol *func;
-
- p = frame->pc;
-
- if (innermost_frame)
- frame->frame = read_register (GR1_REGNUM);
- else
- frame->frame = frame->next->frame + frame->next->rsize;
-
-#if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
- This wont work;
-#else
- if (PC_IN_CALL_DUMMY (p, 0, 0))
-#endif
- {
- frame->rsize = DUMMY_FRAME_RSIZE;
- /* This doesn't matter since we never try to get locals or args
- from a dummy frame. */
- frame->msize = 0;
- /* Dummy frames always use a memory frame pointer. */
- frame->saved_msp =
- read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
- frame->flags |= (TRANSPARENT_FRAME|MFP_USED);
- return;
- }
-
- func = find_pc_function (p);
- if (func != NULL)
- p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
- else
- {
- /* Search backward to find the trace-back tag. However,
- do not trace back beyond the start of the text segment
- (just as a sanity check to avoid going into never-never land). */
-#if 1
- while (p >= text_start
- && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
- p -= 4;
-#else /* 0 */
- char pat[4] = {0, 0, 0, 0};
- char mask[4];
- char insn_raw[4];
- store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
- /* Enable this once target_search is enabled and tested. */
- target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
- insn = extract_unsigned_integer (insn_raw, 4);
-#endif /* 0 */
-
- if (p < text_start)
- {
- /* Couldn't find the trace-back tag.
- Something strange is going on. */
- frame->saved_msp = 0;
- frame->rsize = 0;
- frame->msize = 0;
- frame->flags = TRANSPARENT_FRAME;
- return;
- }
- else
- /* Advance to the first word of the function, i.e. the word
- after the trace-back tag. */
- p += 4;
- }
-
- /* We've found the start of the function.
- Try looking for a tag word that indicates whether there is a
- memory frame pointer and what the memory stack allocation is.
- If one doesn't exist, try using a more exhaustive search of
- the prologue. */
-
- if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
- examine_prologue (p, &rsize, 0, 0);
- else /* No tag try prologue */
- examine_prologue (p, &rsize, &msize, &mfp_used);
-
- frame->rsize = rsize;
- frame->msize = msize;
- frame->flags = 0;
- if (mfp_used)
- frame->flags |= MFP_USED;
- if (trans)
- frame->flags |= TRANSPARENT_FRAME;
- if (innermost_frame)
- {
- frame->saved_msp = read_register (MSP_REGNUM) + msize;
- }
- else
- {
- if (mfp_used)
- frame->saved_msp =
- read_register_stack_integer (frame->frame + rsize - 4, 4);
- else
- frame->saved_msp = frame->next->saved_msp + msize;
- }
-}
-
-void
-init_extra_frame_info (frame)
- struct frame_info *frame;
-{
- if (frame->next == 0)
- /* Assume innermost frame. May produce strange results for "info frame"
- but there isn't any way to tell the difference. */
- init_frame_info (1, frame);
- else {
- /* We're in get_prev_frame_info.
- Take care of everything in init_frame_pc. */
- ;
- }
-}
-
-void
-init_frame_pc (fromleaf, frame)
- int fromleaf;
- struct frame_info *frame;
-{
- frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
- frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
- init_frame_info (fromleaf, frame);
-}
-
-/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
- offsets being relative to the memory stack pointer (high C) or
- saved_msp (gcc). */
-
-CORE_ADDR
-frame_locals_address (fi)
- struct frame_info *fi;
-{
- if (fi->flags & MFP_USED)
- return fi->saved_msp;
- else
- return fi->saved_msp - fi->msize;
-}
-
-/* Routines for reading the register stack. The caller gets to treat
- the register stack as a uniform stack in memory, from address $gr1
- straight through $rfb and beyond. */
-
-/* Analogous to read_memory except the length is understood to be 4.
- Also, myaddr can be NULL (meaning don't bother to read), and
- if actual_mem_addr is non-NULL, store there the address that it
- was fetched from (or if from a register the offset within
- registers). Set *LVAL to lval_memory or lval_register, depending
- on where it came from. The contents written into MYADDR are in
- target format. */
-void
-read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
- CORE_ADDR memaddr;
- char *myaddr;
- CORE_ADDR *actual_mem_addr;
- enum lval_type *lval;
-{
- long rfb = read_register (RFB_REGNUM);
- long rsp = read_register (RSP_REGNUM);
-
- /* If we don't do this 'info register' stops in the middle. */
- if (memaddr >= rstack_high_address)
- {
- /* a bogus value */
- static char val[] = {~0, ~0, ~0, ~0};
- /* It's in a local register, but off the end of the stack. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (myaddr != NULL)
- {
- /* Provide bogusness */
- memcpy (myaddr, val, 4);
- }
- supply_register(regnum, val); /* More bogusness */
- if (lval != NULL)
- *lval = lval_register;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = REGISTER_BYTE (regnum);
- }
- /* If it's in the part of the register stack that's in real registers,
- get the value from the registers. If it's anywhere else in memory
- (e.g. in another thread's saved stack), skip this part and get
- it from real live memory. */
- else if (memaddr < rfb && memaddr >= rsp)
- {
- /* It's in a register. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (regnum > LR0_REGNUM + 127)
- error ("Attempt to read register stack out of range.");
- if (myaddr != NULL)
- read_register_gen (regnum, myaddr);
- if (lval != NULL)
- *lval = lval_register;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = REGISTER_BYTE (regnum);
- }
- else
- {
- /* It's in the memory portion of the register stack. */
- if (myaddr != NULL)
- read_memory (memaddr, myaddr, 4);
- if (lval != NULL)
- *lval = lval_memory;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = memaddr;
- }
-}
-
-/* Analogous to read_memory_integer
- except the length is understood to be 4. */
-long
-read_register_stack_integer (memaddr, len)
- CORE_ADDR memaddr;
- int len;
-{
- char buf[4];
- read_register_stack (memaddr, buf, NULL, NULL);
- return extract_signed_integer (buf, 4);
-}
-
-/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
- at MEMADDR and put the actual address written into in
- *ACTUAL_MEM_ADDR. */
-static void
-write_register_stack (memaddr, myaddr, actual_mem_addr)
- CORE_ADDR memaddr;
- char *myaddr;
- CORE_ADDR *actual_mem_addr;
-{
- long rfb = read_register (RFB_REGNUM);
- long rsp = read_register (RSP_REGNUM);
- /* If we don't do this 'info register' stops in the middle. */
- if (memaddr >= rstack_high_address)
- {
- /* It's in a register, but off the end of the stack. */
- if (actual_mem_addr != NULL)
- *actual_mem_addr = 0;
- }
- else if (memaddr < rfb)
- {
- /* It's in a register. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
- error ("Attempt to read register stack out of range.");
- if (myaddr != NULL)
- write_register (regnum, *(long *)myaddr);
- if (actual_mem_addr != NULL)
- *actual_mem_addr = 0;
- }
- else
- {
- /* It's in the memory portion of the register stack. */
- if (myaddr != NULL)
- write_memory (memaddr, myaddr, 4);
- if (actual_mem_addr != NULL)
- *actual_mem_addr = memaddr;
- }
-}
-
-/* Find register number REGNUM relative to FRAME and put its
- (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
- was optimized out (and thus can't be fetched). If the variable
- was fetched from memory, set *ADDRP to where it was fetched from,
- otherwise it was fetched from a register.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lvalp;
-{
- struct frame_info *fi;
- CORE_ADDR addr;
- enum lval_type lval;
-
- if (!target_has_registers)
- error ("No registers.");
-
- /* Probably now redundant with the target_has_registers check. */
- if (frame == 0)
- return;
-
- /* Once something has a register number, it doesn't get optimized out. */
- if (optimized != NULL)
- *optimized = 0;
- if (regnum == RSP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
- }
- if (lvalp != NULL)
- *lvalp = not_lval;
- return;
- }
- else if (regnum == PC_REGNUM && frame->next != NULL)
- {
- if (raw_buffer != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
- }
-
- /* Not sure we have to do this. */
- if (lvalp != NULL)
- *lvalp = not_lval;
-
- return;
- }
- else if (regnum == MSP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- if (frame->next != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
- frame->next->saved_msp);
- }
- else
- read_register_gen (MSP_REGNUM, raw_buffer);
- }
- /* The value may have been computed, not fetched. */
- if (lvalp != NULL)
- *lvalp = not_lval;
- return;
- }
- else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
- {
- /* These registers are not saved over procedure calls,
- so just print out the current values. */
- if (raw_buffer != NULL)
- read_register_gen (regnum, raw_buffer);
- if (lvalp != NULL)
- *lvalp = lval_register;
- if (addrp != NULL)
- *addrp = REGISTER_BYTE (regnum);
- return;
- }
-
- addr = frame->frame + (regnum - LR0_REGNUM) * 4;
- if (raw_buffer != NULL)
- read_register_stack (addr, raw_buffer, &addr, &lval);
- if (lvalp != NULL)
- *lvalp = lval;
- if (addrp != NULL)
- *addrp = addr;
-}
-
-
-/* Discard from the stack the innermost frame,
- restoring all saved registers. */
-
-void
-pop_frame ()
-{
- struct frame_info *frame = get_current_frame ();
- CORE_ADDR rfb = read_register (RFB_REGNUM);
- CORE_ADDR gr1 = frame->frame + frame->rsize;
- CORE_ADDR lr1;
- CORE_ADDR original_lr0;
- int must_fix_lr0 = 0;
- int i;
-
- /* If popping a dummy frame, need to restore registers. */
- if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
- read_register (SP_REGNUM),
- FRAME_FP (frame)))
- {
- int lrnum = LR0_REGNUM + DUMMY_ARG/4;
- for (i = 0; i < DUMMY_SAVE_SR128; ++i)
- write_register (SR_REGNUM (i + 128),read_register (lrnum++));
- for (i = 0; i < DUMMY_SAVE_SR160; ++i)
- write_register (SR_REGNUM(i+160), read_register (lrnum++));
- for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
- write_register (RETURN_REGNUM + i, read_register (lrnum++));
- /* Restore the PCs and prepare to restore LR0. */
- write_register(PC_REGNUM, read_register (lrnum++));
- write_register(NPC_REGNUM, read_register (lrnum++));
- write_register(PC2_REGNUM, read_register (lrnum++));
- original_lr0 = read_register (lrnum++);
- must_fix_lr0 = 1;
- }
-
- /* Restore the memory stack pointer. */
- write_register (MSP_REGNUM, frame->saved_msp);
- /* Restore the register stack pointer. */
- write_register (GR1_REGNUM, gr1);
-
- /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
- if (must_fix_lr0)
- write_register (LR0_REGNUM, original_lr0);
-
- /* Check whether we need to fill registers. */
- lr1 = read_register (LR0_REGNUM + 1);
- if (lr1 > rfb)
- {
- /* Fill. */
- int num_bytes = lr1 - rfb;
- int i;
- long word;
-
- write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
- write_register (RFB_REGNUM, lr1);
- for (i = 0; i < num_bytes; i += 4)
- {
- /* Note: word is in host byte order. */
- word = read_memory_integer (rfb + i, 4);
- write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
- }
- }
- flush_cached_frames ();
-}
-
-/* Push an empty stack frame, to record the current PC, etc. */
-
-void
-push_dummy_frame ()
-{
- long w;
- CORE_ADDR rab, gr1;
- CORE_ADDR msp = read_register (MSP_REGNUM);
- int lrnum, i;
- CORE_ADDR original_lr0;
-
- /* Read original lr0 before changing gr1. This order isn't really needed
- since GDB happens to have a snapshot of all the regs and doesn't toss
- it when gr1 is changed. But it's The Right Thing To Do. */
- original_lr0 = read_register (LR0_REGNUM);
-
- /* Allocate the new frame. */
- gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
- write_register (GR1_REGNUM, gr1);
-
-#ifdef VXWORKS_TARGET
- /* We force re-reading all registers to get the new local registers set
- after gr1 has been modified. This fix is due to the lack of single
- register read/write operation in the RPC interface between VxGDB and
- VxWorks. This really must be changed ! */
-
- vx_read_register (-1);
-
-#endif /* VXWORK_TARGET */
-
- rab = read_register (RAB_REGNUM);
- if (gr1 < rab)
- {
- /* We need to spill registers. */
- int num_bytes = rab - gr1;
- CORE_ADDR rfb = read_register (RFB_REGNUM);
- int i;
- long word;
-
- write_register (RFB_REGNUM, rfb - num_bytes);
- write_register (RAB_REGNUM, gr1);
- for (i = 0; i < num_bytes; i += 4)
- {
- /* Note: word is in target byte order. */
- read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
- write_memory (rfb - num_bytes + i, (char *) &word, 4);
- }
- }
-
- /* There are no arguments in to the dummy frame, so we don't need
- more than rsize plus the return address and lr1. */
- write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
-
- /* Set the memory frame pointer. */
- write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
-
- /* Allocate arg_slop. */
- write_register (MSP_REGNUM, msp - 16 * 4);
-
- /* Save registers. */
- lrnum = LR0_REGNUM + DUMMY_ARG/4;
- for (i = 0; i < DUMMY_SAVE_SR128; ++i)
- write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
- for (i = 0; i < DUMMY_SAVE_SR160; ++i)
- write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
- for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
- write_register (lrnum++, read_register (RETURN_REGNUM + i));
- /* Save the PCs and LR0. */
- write_register (lrnum++, read_register (PC_REGNUM));
- write_register (lrnum++, read_register (NPC_REGNUM));
- write_register (lrnum++, read_register (PC2_REGNUM));
-
- /* Why are we saving LR0? What would clobber it? (the dummy frame should
- be below it on the register stack, no?). */
- write_register (lrnum++, original_lr0);
-}
-
-
-
-/*
- This routine takes three arguments and makes the cached frames look
- as if these arguments defined a frame on the cache. This allows the
- rest of `info frame' to extract the important arguments without much
- difficulty. Since an individual frame on the 29K is determined by
- three values (FP, PC, and MSP), we really need all three to do a
- good job. */
-
-struct frame_info *
-setup_arbitrary_frame (argc, argv)
- int argc;
- CORE_ADDR *argv;
-{
- struct frame_info *frame;
-
- if (argc != 3)
- error ("AMD 29k frame specifications require three arguments: rsp pc msp");
-
- frame = create_new_frame (argv[0], argv[1]);
-
- if (!frame)
- fatal ("internal: create_new_frame returned invalid frame id");
-
- /* Creating a new frame munges the `frame' value from the current
- GR1, so we restore it again here. FIXME, untangle all this
- 29K frame stuff... */
- frame->frame = argv[0];
-
- /* Our MSP is in argv[2]. It'd be intelligent if we could just
- save this value in the FRAME. But the way it's set up (FIXME),
- we must save our caller's MSP. We compute that by adding our
- memory stack frame size to our MSP. */
- frame->saved_msp = argv[2] + frame->msize;
-
- return frame;
-}
-
-int
-gdb_print_insn_a29k (memaddr, info)
- bfd_vma memaddr;
- disassemble_info *info;
-{
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- return print_insn_big_a29k (memaddr, info);
- else
- return print_insn_little_a29k (memaddr, info);
-}
-
-enum a29k_processor_types processor_type = a29k_unknown;
-
-void
-a29k_get_processor_type ()
-{
- unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
-
- /* Most of these don't have freeze mode. */
- processor_type = a29k_no_freeze_mode;
-
- switch ((cfg_reg >> 28) & 0xf)
- {
- case 0:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
- break;
- case 1:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
- break;
- case 2:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
- processor_type = a29k_freeze_mode;
- break;
- case 3:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
- break;
- case 4:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
- break;
- case 5:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
- break;
- case 6:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
- break;
- case 7:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
- break;
- default:
- fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
- /* Don't bother to print the revision. */
- return;
- }
- fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
-}
-
-#ifdef GET_LONGJMP_TARGET
-/* Figure out where the longjmp will land. We expect that we have just entered
- longjmp and haven't yet setup the stack frame, so the args are still in the
- output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
- extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
- This routine returns true on success */
-
-int
-get_longjmp_target(pc)
- CORE_ADDR *pc;
-{
- CORE_ADDR jb_addr;
- char buf[sizeof(CORE_ADDR)];
-
- jb_addr = read_register(LR2_REGNUM);
-
- if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
- sizeof(CORE_ADDR)))
- return 0;
-
- *pc = extract_address ((PTR) buf, sizeof(CORE_ADDR));
- return 1;
-}
-#endif /* GET_LONGJMP_TARGET */
-
-void
-_initialize_a29k_tdep ()
-{
- extern CORE_ADDR text_end;
-
- tm_print_insn = gdb_print_insn_a29k;
-
- /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
- add_show_from_set
- (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
- (char *)&rstack_high_address,
- "Set top address in memory of the register stack.\n\
-Attempts to access registers saved above this address will be ignored\n\
-or will produce the value -1.", &setlist),
- &showlist);
-
- /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
- add_show_from_set
- (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
- (char *)&text_end,
-"Set address in memory where small amounts of RAM can be used\n\
-when making function calls into the inferior.", &setlist),
- &showlist);
-}