diff options
Diffstat (limited to 'gdb/a29k-tdep.c')
-rw-r--r-- | gdb/a29k-tdep.c | 1040 |
1 files changed, 0 insertions, 1040 deletions
diff --git a/gdb/a29k-tdep.c b/gdb/a29k-tdep.c deleted file mode 100644 index b3c0567..0000000 --- a/gdb/a29k-tdep.c +++ /dev/null @@ -1,1040 +0,0 @@ -/* Target-machine dependent code for the AMD 29000 - Copyright 1990, 1991, 1992, 1993, 1994, 1995 - Free Software Foundation, Inc. - Contributed by Cygnus Support. Written by Jim Kingdon. - -This file is part of GDB. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -#include "defs.h" -#include "gdbcore.h" -#include "frame.h" -#include "value.h" -#include "symtab.h" -#include "inferior.h" -#include "gdbcmd.h" - -/* If all these bits in an instruction word are zero, it is a "tag word" - which precedes a function entry point and gives stack traceback info. - This used to be defined as 0xff000000, but that treated 0x00000deb as - a tag word, while it is really used as a breakpoint. */ -#define TAGWORD_ZERO_MASK 0xff00f800 - -extern CORE_ADDR text_start; /* FIXME, kludge... */ - -/* The user-settable top of the register stack in virtual memory. We - won't attempt to access any stored registers above this address, if set - nonzero. */ - -static CORE_ADDR rstack_high_address = UINT_MAX; - - -/* Should call_function allocate stack space for a struct return? */ -/* On the a29k objects over 16 words require the caller to allocate space. */ -int -a29k_use_struct_convention (gcc_p, type) - int gcc_p; - struct type *type; -{ - return (TYPE_LENGTH (type) > 16 * 4); -} - - -/* Structure to hold cached info about function prologues. */ - -struct prologue_info -{ - CORE_ADDR pc; /* First addr after fn prologue */ - unsigned rsize, msize; /* register stack frame size, mem stack ditto */ - unsigned mfp_used : 1; /* memory frame pointer used */ - unsigned rsize_valid : 1; /* Validity bits for the above */ - unsigned msize_valid : 1; - unsigned mfp_valid : 1; -}; - -/* Examine the prologue of a function which starts at PC. Return - the first addess past the prologue. If MSIZE is non-NULL, then - set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, - then set *RSIZE to the register stack frame size (not including - incoming arguments and the return address & frame pointer stored - with them). If no prologue is found, *RSIZE is set to zero. - If no prologue is found, or a prologue which doesn't involve - allocating a memory stack frame, then set *MSIZE to zero. - - Note that both msize and rsize are in bytes. This is not consistent - with the _User's Manual_ with respect to rsize, but it is much more - convenient. - - If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory - frame pointer is being used. */ - -CORE_ADDR -examine_prologue (pc, rsize, msize, mfp_used) - CORE_ADDR pc; - unsigned *msize; - unsigned *rsize; - int *mfp_used; -{ - long insn; - CORE_ADDR p = pc; - struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); - struct prologue_info *mi = 0; - - if (msymbol != NULL) - mi = (struct prologue_info *) msymbol -> info; - - if (mi != 0) - { - int valid = 1; - if (rsize != NULL) - { - *rsize = mi->rsize; - valid &= mi->rsize_valid; - } - if (msize != NULL) - { - *msize = mi->msize; - valid &= mi->msize_valid; - } - if (mfp_used != NULL) - { - *mfp_used = mi->mfp_used; - valid &= mi->mfp_valid; - } - if (valid) - return mi->pc; - } - - if (rsize != NULL) - *rsize = 0; - if (msize != NULL) - *msize = 0; - if (mfp_used != NULL) - *mfp_used = 0; - - /* Prologue must start with subtracting a constant from gr1. - Normally this is sub gr1,gr1,<rsize * 4>. */ - insn = read_memory_integer (p, 4); - if ((insn & 0xffffff00) != 0x25010100) - { - /* If the frame is large, instead of a single instruction it - might be a pair of instructions: - const <reg>, <rsize * 4> - sub gr1,gr1,<reg> - */ - int reg; - /* Possible value for rsize. */ - unsigned int rsize0; - - if ((insn & 0xff000000) != 0x03000000) - { - p = pc; - goto done; - } - reg = (insn >> 8) & 0xff; - rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); - p += 4; - insn = read_memory_integer (p, 4); - if ((insn & 0xffffff00) != 0x24010100 - || (insn & 0xff) != reg) - { - p = pc; - goto done; - } - if (rsize != NULL) - *rsize = rsize0; - } - else - { - if (rsize != NULL) - *rsize = (insn & 0xff); - } - p += 4; - - /* Next instruction ought to be asgeu V_SPILL,gr1,rab. - * We don't check the vector number to allow for kernel debugging. The - * kernel will use a different trap number. - * If this insn is missing, we just keep going; Metaware R2.3u compiler - * generates prologue that intermixes initializations and puts the asgeu - * way down. - */ - insn = read_memory_integer (p, 4); - if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM)) - { - p += 4; - } - - /* Next instruction usually sets the frame pointer (lr1) by adding - <size * 4> from gr1. However, this can (and high C does) be - deferred until anytime before the first function call. So it is - OK if we don't see anything which sets lr1. - To allow for alternate register sets (gcc -mkernel-registers) the msp - register number is a compile time constant. */ - - /* Normally this is just add lr1,gr1,<size * 4>. */ - insn = read_memory_integer (p, 4); - if ((insn & 0xffffff00) == 0x15810100) - p += 4; - else - { - /* However, for large frames it can be - const <reg>, <size *4> - add lr1,gr1,<reg> - */ - int reg; - CORE_ADDR q; - - if ((insn & 0xff000000) == 0x03000000) - { - reg = (insn >> 8) & 0xff; - q = p + 4; - insn = read_memory_integer (q, 4); - if ((insn & 0xffffff00) == 0x14810100 - && (insn & 0xff) == reg) - p = q; - } - } - - /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory - frame pointer is in use. We just check for add lr<anything>,msp,0; - we don't check this rsize against the first instruction, and - we don't check that the trace-back tag indicates a memory frame pointer - is in use. - To allow for alternate register sets (gcc -mkernel-registers) the msp - register number is a compile time constant. - - The recommended instruction is actually "sll lr<whatever>,msp,0". - We check for that, too. Originally Jim Kingdon's code seemed - to be looking for a "sub" instruction here, but the mask was set - up to lose all the time. */ - insn = read_memory_integer (p, 4); - if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */ - || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */ - { - p += 4; - if (mfp_used != NULL) - *mfp_used = 1; - } - - /* Next comes a subtraction from msp to allocate a memory frame, - but only if a memory frame is - being used. We don't check msize against the trace-back tag. - - To allow for alternate register sets (gcc -mkernel-registers) the msp - register number is a compile time constant. - - Normally this is just - sub msp,msp,<msize> - */ - insn = read_memory_integer (p, 4); - if ((insn & 0xffffff00) == - (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))) - { - p += 4; - if (msize != NULL) - *msize = insn & 0xff; - } - else - { - /* For large frames, instead of a single instruction it might - be - - const <reg>, <msize> - consth <reg>, <msize> ; optional - sub msp,msp,<reg> - */ - int reg; - unsigned msize0; - CORE_ADDR q = p; - - if ((insn & 0xff000000) == 0x03000000) - { - reg = (insn >> 8) & 0xff; - msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); - q += 4; - insn = read_memory_integer (q, 4); - /* Check for consth. */ - if ((insn & 0xff000000) == 0x02000000 - && (insn & 0x0000ff00) == reg) - { - msize0 |= (insn << 8) & 0xff000000; - msize0 |= (insn << 16) & 0x00ff0000; - q += 4; - insn = read_memory_integer (q, 4); - } - /* Check for sub msp,msp,<reg>. */ - if ((insn & 0xffffff00) == - (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)) - && (insn & 0xff) == reg) - { - p = q + 4; - if (msize != NULL) - *msize = msize0; - } - } - } - - /* Next instruction might be asgeu V_SPILL,gr1,rab. - * We don't check the vector number to allow for kernel debugging. The - * kernel will use a different trap number. - * Metaware R2.3u compiler - * generates prologue that intermixes initializations and puts the asgeu - * way down after everything else. - */ - insn = read_memory_integer (p, 4); - if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM)) - { - p += 4; - } - - done: - if (msymbol != NULL) - { - if (mi == 0) - { - /* Add a new cache entry. */ - mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); - msymbol -> info = (char *)mi; - mi->rsize_valid = 0; - mi->msize_valid = 0; - mi->mfp_valid = 0; - } - /* else, cache entry exists, but info is incomplete. */ - mi->pc = p; - if (rsize != NULL) - { - mi->rsize = *rsize; - mi->rsize_valid = 1; - } - if (msize != NULL) - { - mi->msize = *msize; - mi->msize_valid = 1; - } - if (mfp_used != NULL) - { - mi->mfp_used = *mfp_used; - mi->mfp_valid = 1; - } - } - return p; -} - -/* Advance PC across any function entry prologue instructions - to reach some "real" code. */ - -CORE_ADDR -skip_prologue (pc) - CORE_ADDR pc; -{ - return examine_prologue (pc, NULL, NULL, NULL); -} - -/* - * Examine the one or two word tag at the beginning of a function. - * The tag word is expect to be at 'p', if it is not there, we fail - * by returning 0. The documentation for the tag word was taken from - * page 7-15 of the 29050 User's Manual. We are assuming that the - * m bit is in bit 22 of the tag word, which seems to be the agreed upon - * convention today (1/15/92). - * msize is return in bytes. - */ - -static int /* 0/1 - failure/success of finding the tag word */ -examine_tag (p, is_trans, argcount, msize, mfp_used) - CORE_ADDR p; - int *is_trans; - int *argcount; - unsigned *msize; - int *mfp_used; -{ - unsigned int tag1, tag2; - - tag1 = read_memory_integer (p, 4); - if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */ - return 0; - if (tag1 & (1<<23)) /* A two word tag */ - { - tag2 = read_memory_integer (p-4, 4); - if (msize) - *msize = tag2 * 2; - } - else /* A one word tag */ - { - if (msize) - *msize = tag1 & 0x7ff; - } - if (is_trans) - *is_trans = ((tag1 & (1<<21)) ? 1 : 0); - /* Note that this includes the frame pointer and the return address - register, so the actual number of registers of arguments is two less. - argcount can be zero, however, sometimes, for strange assembler - routines. */ - if (argcount) - *argcount = (tag1 >> 16) & 0x1f; - if (mfp_used) - *mfp_used = ((tag1 & (1<<22)) ? 1 : 0); - return 1; -} - -/* Initialize the frame. In addition to setting "extra" frame info, - we also set ->frame because we use it in a nonstandard way, and ->pc - because we need to know it to get the other stuff. See the diagram - of stacks and the frame cache in tm-a29k.h for more detail. */ - -static void -init_frame_info (innermost_frame, frame) - int innermost_frame; - struct frame_info *frame; -{ - CORE_ADDR p; - long insn; - unsigned rsize; - unsigned msize; - int mfp_used, trans; - struct symbol *func; - - p = frame->pc; - - if (innermost_frame) - frame->frame = read_register (GR1_REGNUM); - else - frame->frame = frame->next->frame + frame->next->rsize; - -#if 0 /* CALL_DUMMY_LOCATION == ON_STACK */ - This wont work; -#else - if (PC_IN_CALL_DUMMY (p, 0, 0)) -#endif - { - frame->rsize = DUMMY_FRAME_RSIZE; - /* This doesn't matter since we never try to get locals or args - from a dummy frame. */ - frame->msize = 0; - /* Dummy frames always use a memory frame pointer. */ - frame->saved_msp = - read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4); - frame->flags |= (TRANSPARENT_FRAME|MFP_USED); - return; - } - - func = find_pc_function (p); - if (func != NULL) - p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); - else - { - /* Search backward to find the trace-back tag. However, - do not trace back beyond the start of the text segment - (just as a sanity check to avoid going into never-never land). */ -#if 1 - while (p >= text_start - && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0) - p -= 4; -#else /* 0 */ - char pat[4] = {0, 0, 0, 0}; - char mask[4]; - char insn_raw[4]; - store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK); - /* Enable this once target_search is enabled and tested. */ - target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw); - insn = extract_unsigned_integer (insn_raw, 4); -#endif /* 0 */ - - if (p < text_start) - { - /* Couldn't find the trace-back tag. - Something strange is going on. */ - frame->saved_msp = 0; - frame->rsize = 0; - frame->msize = 0; - frame->flags = TRANSPARENT_FRAME; - return; - } - else - /* Advance to the first word of the function, i.e. the word - after the trace-back tag. */ - p += 4; - } - - /* We've found the start of the function. - Try looking for a tag word that indicates whether there is a - memory frame pointer and what the memory stack allocation is. - If one doesn't exist, try using a more exhaustive search of - the prologue. */ - - if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */ - examine_prologue (p, &rsize, 0, 0); - else /* No tag try prologue */ - examine_prologue (p, &rsize, &msize, &mfp_used); - - frame->rsize = rsize; - frame->msize = msize; - frame->flags = 0; - if (mfp_used) - frame->flags |= MFP_USED; - if (trans) - frame->flags |= TRANSPARENT_FRAME; - if (innermost_frame) - { - frame->saved_msp = read_register (MSP_REGNUM) + msize; - } - else - { - if (mfp_used) - frame->saved_msp = - read_register_stack_integer (frame->frame + rsize - 4, 4); - else - frame->saved_msp = frame->next->saved_msp + msize; - } -} - -void -init_extra_frame_info (frame) - struct frame_info *frame; -{ - if (frame->next == 0) - /* Assume innermost frame. May produce strange results for "info frame" - but there isn't any way to tell the difference. */ - init_frame_info (1, frame); - else { - /* We're in get_prev_frame_info. - Take care of everything in init_frame_pc. */ - ; - } -} - -void -init_frame_pc (fromleaf, frame) - int fromleaf; - struct frame_info *frame; -{ - frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) : - frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ()); - init_frame_info (fromleaf, frame); -} - -/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their - offsets being relative to the memory stack pointer (high C) or - saved_msp (gcc). */ - -CORE_ADDR -frame_locals_address (fi) - struct frame_info *fi; -{ - if (fi->flags & MFP_USED) - return fi->saved_msp; - else - return fi->saved_msp - fi->msize; -} - -/* Routines for reading the register stack. The caller gets to treat - the register stack as a uniform stack in memory, from address $gr1 - straight through $rfb and beyond. */ - -/* Analogous to read_memory except the length is understood to be 4. - Also, myaddr can be NULL (meaning don't bother to read), and - if actual_mem_addr is non-NULL, store there the address that it - was fetched from (or if from a register the offset within - registers). Set *LVAL to lval_memory or lval_register, depending - on where it came from. The contents written into MYADDR are in - target format. */ -void -read_register_stack (memaddr, myaddr, actual_mem_addr, lval) - CORE_ADDR memaddr; - char *myaddr; - CORE_ADDR *actual_mem_addr; - enum lval_type *lval; -{ - long rfb = read_register (RFB_REGNUM); - long rsp = read_register (RSP_REGNUM); - - /* If we don't do this 'info register' stops in the middle. */ - if (memaddr >= rstack_high_address) - { - /* a bogus value */ - static char val[] = {~0, ~0, ~0, ~0}; - /* It's in a local register, but off the end of the stack. */ - int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; - if (myaddr != NULL) - { - /* Provide bogusness */ - memcpy (myaddr, val, 4); - } - supply_register(regnum, val); /* More bogusness */ - if (lval != NULL) - *lval = lval_register; - if (actual_mem_addr != NULL) - *actual_mem_addr = REGISTER_BYTE (regnum); - } - /* If it's in the part of the register stack that's in real registers, - get the value from the registers. If it's anywhere else in memory - (e.g. in another thread's saved stack), skip this part and get - it from real live memory. */ - else if (memaddr < rfb && memaddr >= rsp) - { - /* It's in a register. */ - int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; - if (regnum > LR0_REGNUM + 127) - error ("Attempt to read register stack out of range."); - if (myaddr != NULL) - read_register_gen (regnum, myaddr); - if (lval != NULL) - *lval = lval_register; - if (actual_mem_addr != NULL) - *actual_mem_addr = REGISTER_BYTE (regnum); - } - else - { - /* It's in the memory portion of the register stack. */ - if (myaddr != NULL) - read_memory (memaddr, myaddr, 4); - if (lval != NULL) - *lval = lval_memory; - if (actual_mem_addr != NULL) - *actual_mem_addr = memaddr; - } -} - -/* Analogous to read_memory_integer - except the length is understood to be 4. */ -long -read_register_stack_integer (memaddr, len) - CORE_ADDR memaddr; - int len; -{ - char buf[4]; - read_register_stack (memaddr, buf, NULL, NULL); - return extract_signed_integer (buf, 4); -} - -/* Copy 4 bytes from GDB memory at MYADDR into inferior memory - at MEMADDR and put the actual address written into in - *ACTUAL_MEM_ADDR. */ -static void -write_register_stack (memaddr, myaddr, actual_mem_addr) - CORE_ADDR memaddr; - char *myaddr; - CORE_ADDR *actual_mem_addr; -{ - long rfb = read_register (RFB_REGNUM); - long rsp = read_register (RSP_REGNUM); - /* If we don't do this 'info register' stops in the middle. */ - if (memaddr >= rstack_high_address) - { - /* It's in a register, but off the end of the stack. */ - if (actual_mem_addr != NULL) - *actual_mem_addr = 0; - } - else if (memaddr < rfb) - { - /* It's in a register. */ - int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; - if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) - error ("Attempt to read register stack out of range."); - if (myaddr != NULL) - write_register (regnum, *(long *)myaddr); - if (actual_mem_addr != NULL) - *actual_mem_addr = 0; - } - else - { - /* It's in the memory portion of the register stack. */ - if (myaddr != NULL) - write_memory (memaddr, myaddr, 4); - if (actual_mem_addr != NULL) - *actual_mem_addr = memaddr; - } -} - -/* Find register number REGNUM relative to FRAME and put its - (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable - was optimized out (and thus can't be fetched). If the variable - was fetched from memory, set *ADDRP to where it was fetched from, - otherwise it was fetched from a register. - - The argument RAW_BUFFER must point to aligned memory. */ - -void -get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) - char *raw_buffer; - int *optimized; - CORE_ADDR *addrp; - struct frame_info *frame; - int regnum; - enum lval_type *lvalp; -{ - struct frame_info *fi; - CORE_ADDR addr; - enum lval_type lval; - - if (!target_has_registers) - error ("No registers."); - - /* Probably now redundant with the target_has_registers check. */ - if (frame == 0) - return; - - /* Once something has a register number, it doesn't get optimized out. */ - if (optimized != NULL) - *optimized = 0; - if (regnum == RSP_REGNUM) - { - if (raw_buffer != NULL) - { - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame); - } - if (lvalp != NULL) - *lvalp = not_lval; - return; - } - else if (regnum == PC_REGNUM && frame->next != NULL) - { - if (raw_buffer != NULL) - { - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); - } - - /* Not sure we have to do this. */ - if (lvalp != NULL) - *lvalp = not_lval; - - return; - } - else if (regnum == MSP_REGNUM) - { - if (raw_buffer != NULL) - { - if (frame->next != NULL) - { - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), - frame->next->saved_msp); - } - else - read_register_gen (MSP_REGNUM, raw_buffer); - } - /* The value may have been computed, not fetched. */ - if (lvalp != NULL) - *lvalp = not_lval; - return; - } - else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) - { - /* These registers are not saved over procedure calls, - so just print out the current values. */ - if (raw_buffer != NULL) - read_register_gen (regnum, raw_buffer); - if (lvalp != NULL) - *lvalp = lval_register; - if (addrp != NULL) - *addrp = REGISTER_BYTE (regnum); - return; - } - - addr = frame->frame + (regnum - LR0_REGNUM) * 4; - if (raw_buffer != NULL) - read_register_stack (addr, raw_buffer, &addr, &lval); - if (lvalp != NULL) - *lvalp = lval; - if (addrp != NULL) - *addrp = addr; -} - - -/* Discard from the stack the innermost frame, - restoring all saved registers. */ - -void -pop_frame () -{ - struct frame_info *frame = get_current_frame (); - CORE_ADDR rfb = read_register (RFB_REGNUM); - CORE_ADDR gr1 = frame->frame + frame->rsize; - CORE_ADDR lr1; - CORE_ADDR original_lr0; - int must_fix_lr0 = 0; - int i; - - /* If popping a dummy frame, need to restore registers. */ - if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), - read_register (SP_REGNUM), - FRAME_FP (frame))) - { - int lrnum = LR0_REGNUM + DUMMY_ARG/4; - for (i = 0; i < DUMMY_SAVE_SR128; ++i) - write_register (SR_REGNUM (i + 128),read_register (lrnum++)); - for (i = 0; i < DUMMY_SAVE_SR160; ++i) - write_register (SR_REGNUM(i+160), read_register (lrnum++)); - for (i = 0; i < DUMMY_SAVE_GREGS; ++i) - write_register (RETURN_REGNUM + i, read_register (lrnum++)); - /* Restore the PCs and prepare to restore LR0. */ - write_register(PC_REGNUM, read_register (lrnum++)); - write_register(NPC_REGNUM, read_register (lrnum++)); - write_register(PC2_REGNUM, read_register (lrnum++)); - original_lr0 = read_register (lrnum++); - must_fix_lr0 = 1; - } - - /* Restore the memory stack pointer. */ - write_register (MSP_REGNUM, frame->saved_msp); - /* Restore the register stack pointer. */ - write_register (GR1_REGNUM, gr1); - - /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */ - if (must_fix_lr0) - write_register (LR0_REGNUM, original_lr0); - - /* Check whether we need to fill registers. */ - lr1 = read_register (LR0_REGNUM + 1); - if (lr1 > rfb) - { - /* Fill. */ - int num_bytes = lr1 - rfb; - int i; - long word; - - write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); - write_register (RFB_REGNUM, lr1); - for (i = 0; i < num_bytes; i += 4) - { - /* Note: word is in host byte order. */ - word = read_memory_integer (rfb + i, 4); - write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); - } - } - flush_cached_frames (); -} - -/* Push an empty stack frame, to record the current PC, etc. */ - -void -push_dummy_frame () -{ - long w; - CORE_ADDR rab, gr1; - CORE_ADDR msp = read_register (MSP_REGNUM); - int lrnum, i; - CORE_ADDR original_lr0; - - /* Read original lr0 before changing gr1. This order isn't really needed - since GDB happens to have a snapshot of all the regs and doesn't toss - it when gr1 is changed. But it's The Right Thing To Do. */ - original_lr0 = read_register (LR0_REGNUM); - - /* Allocate the new frame. */ - gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; - write_register (GR1_REGNUM, gr1); - -#ifdef VXWORKS_TARGET - /* We force re-reading all registers to get the new local registers set - after gr1 has been modified. This fix is due to the lack of single - register read/write operation in the RPC interface between VxGDB and - VxWorks. This really must be changed ! */ - - vx_read_register (-1); - -#endif /* VXWORK_TARGET */ - - rab = read_register (RAB_REGNUM); - if (gr1 < rab) - { - /* We need to spill registers. */ - int num_bytes = rab - gr1; - CORE_ADDR rfb = read_register (RFB_REGNUM); - int i; - long word; - - write_register (RFB_REGNUM, rfb - num_bytes); - write_register (RAB_REGNUM, gr1); - for (i = 0; i < num_bytes; i += 4) - { - /* Note: word is in target byte order. */ - read_register_gen (LR0_REGNUM + i / 4, (char *) &word); - write_memory (rfb - num_bytes + i, (char *) &word, 4); - } - } - - /* There are no arguments in to the dummy frame, so we don't need - more than rsize plus the return address and lr1. */ - write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); - - /* Set the memory frame pointer. */ - write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); - - /* Allocate arg_slop. */ - write_register (MSP_REGNUM, msp - 16 * 4); - - /* Save registers. */ - lrnum = LR0_REGNUM + DUMMY_ARG/4; - for (i = 0; i < DUMMY_SAVE_SR128; ++i) - write_register (lrnum++, read_register (SR_REGNUM (i + 128))); - for (i = 0; i < DUMMY_SAVE_SR160; ++i) - write_register (lrnum++, read_register (SR_REGNUM (i + 160))); - for (i = 0; i < DUMMY_SAVE_GREGS; ++i) - write_register (lrnum++, read_register (RETURN_REGNUM + i)); - /* Save the PCs and LR0. */ - write_register (lrnum++, read_register (PC_REGNUM)); - write_register (lrnum++, read_register (NPC_REGNUM)); - write_register (lrnum++, read_register (PC2_REGNUM)); - - /* Why are we saving LR0? What would clobber it? (the dummy frame should - be below it on the register stack, no?). */ - write_register (lrnum++, original_lr0); -} - - - -/* - This routine takes three arguments and makes the cached frames look - as if these arguments defined a frame on the cache. This allows the - rest of `info frame' to extract the important arguments without much - difficulty. Since an individual frame on the 29K is determined by - three values (FP, PC, and MSP), we really need all three to do a - good job. */ - -struct frame_info * -setup_arbitrary_frame (argc, argv) - int argc; - CORE_ADDR *argv; -{ - struct frame_info *frame; - - if (argc != 3) - error ("AMD 29k frame specifications require three arguments: rsp pc msp"); - - frame = create_new_frame (argv[0], argv[1]); - - if (!frame) - fatal ("internal: create_new_frame returned invalid frame id"); - - /* Creating a new frame munges the `frame' value from the current - GR1, so we restore it again here. FIXME, untangle all this - 29K frame stuff... */ - frame->frame = argv[0]; - - /* Our MSP is in argv[2]. It'd be intelligent if we could just - save this value in the FRAME. But the way it's set up (FIXME), - we must save our caller's MSP. We compute that by adding our - memory stack frame size to our MSP. */ - frame->saved_msp = argv[2] + frame->msize; - - return frame; -} - -int -gdb_print_insn_a29k (memaddr, info) - bfd_vma memaddr; - disassemble_info *info; -{ - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - return print_insn_big_a29k (memaddr, info); - else - return print_insn_little_a29k (memaddr, info); -} - -enum a29k_processor_types processor_type = a29k_unknown; - -void -a29k_get_processor_type () -{ - unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM); - - /* Most of these don't have freeze mode. */ - processor_type = a29k_no_freeze_mode; - - switch ((cfg_reg >> 28) & 0xf) - { - case 0: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29000"); - break; - case 1: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29005"); - break; - case 2: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29050"); - processor_type = a29k_freeze_mode; - break; - case 3: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29035"); - break; - case 4: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29030"); - break; - case 5: - fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*"); - break; - case 6: - fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*"); - break; - case 7: - fprintf_filtered (gdb_stderr, "Remote debugging an Am29040"); - break; - default: - fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n"); - /* Don't bother to print the revision. */ - return; - } - fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f)); -} - -#ifdef GET_LONGJMP_TARGET -/* Figure out where the longjmp will land. We expect that we have just entered - longjmp and haven't yet setup the stack frame, so the args are still in the - output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we - extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. - This routine returns true on success */ - -int -get_longjmp_target(pc) - CORE_ADDR *pc; -{ - CORE_ADDR jb_addr; - char buf[sizeof(CORE_ADDR)]; - - jb_addr = read_register(LR2_REGNUM); - - if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf, - sizeof(CORE_ADDR))) - return 0; - - *pc = extract_address ((PTR) buf, sizeof(CORE_ADDR)); - return 1; -} -#endif /* GET_LONGJMP_TARGET */ - -void -_initialize_a29k_tdep () -{ - extern CORE_ADDR text_end; - - tm_print_insn = gdb_print_insn_a29k; - - /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ - add_show_from_set - (add_set_cmd ("rstack_high_address", class_support, var_uinteger, - (char *)&rstack_high_address, - "Set top address in memory of the register stack.\n\ -Attempts to access registers saved above this address will be ignored\n\ -or will produce the value -1.", &setlist), - &showlist); - - /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ - add_show_from_set - (add_set_cmd ("call_scratch_address", class_support, var_uinteger, - (char *)&text_end, -"Set address in memory where small amounts of RAM can be used\n\ -when making function calls into the inferior.", &setlist), - &showlist); -} |