aboutsummaryrefslogtreecommitdiff
path: root/gdb/a29k-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/a29k-tdep.c')
-rw-r--r--gdb/a29k-tdep.c1040
1 files changed, 1040 insertions, 0 deletions
diff --git a/gdb/a29k-tdep.c b/gdb/a29k-tdep.c
new file mode 100644
index 0000000..b3c0567
--- /dev/null
+++ b/gdb/a29k-tdep.c
@@ -0,0 +1,1040 @@
+/* Target-machine dependent code for the AMD 29000
+ Copyright 1990, 1991, 1992, 1993, 1994, 1995
+ Free Software Foundation, Inc.
+ Contributed by Cygnus Support. Written by Jim Kingdon.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "gdbcore.h"
+#include "frame.h"
+#include "value.h"
+#include "symtab.h"
+#include "inferior.h"
+#include "gdbcmd.h"
+
+/* If all these bits in an instruction word are zero, it is a "tag word"
+ which precedes a function entry point and gives stack traceback info.
+ This used to be defined as 0xff000000, but that treated 0x00000deb as
+ a tag word, while it is really used as a breakpoint. */
+#define TAGWORD_ZERO_MASK 0xff00f800
+
+extern CORE_ADDR text_start; /* FIXME, kludge... */
+
+/* The user-settable top of the register stack in virtual memory. We
+ won't attempt to access any stored registers above this address, if set
+ nonzero. */
+
+static CORE_ADDR rstack_high_address = UINT_MAX;
+
+
+/* Should call_function allocate stack space for a struct return? */
+/* On the a29k objects over 16 words require the caller to allocate space. */
+int
+a29k_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ return (TYPE_LENGTH (type) > 16 * 4);
+}
+
+
+/* Structure to hold cached info about function prologues. */
+
+struct prologue_info
+{
+ CORE_ADDR pc; /* First addr after fn prologue */
+ unsigned rsize, msize; /* register stack frame size, mem stack ditto */
+ unsigned mfp_used : 1; /* memory frame pointer used */
+ unsigned rsize_valid : 1; /* Validity bits for the above */
+ unsigned msize_valid : 1;
+ unsigned mfp_valid : 1;
+};
+
+/* Examine the prologue of a function which starts at PC. Return
+ the first addess past the prologue. If MSIZE is non-NULL, then
+ set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
+ then set *RSIZE to the register stack frame size (not including
+ incoming arguments and the return address & frame pointer stored
+ with them). If no prologue is found, *RSIZE is set to zero.
+ If no prologue is found, or a prologue which doesn't involve
+ allocating a memory stack frame, then set *MSIZE to zero.
+
+ Note that both msize and rsize are in bytes. This is not consistent
+ with the _User's Manual_ with respect to rsize, but it is much more
+ convenient.
+
+ If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
+ frame pointer is being used. */
+
+CORE_ADDR
+examine_prologue (pc, rsize, msize, mfp_used)
+ CORE_ADDR pc;
+ unsigned *msize;
+ unsigned *rsize;
+ int *mfp_used;
+{
+ long insn;
+ CORE_ADDR p = pc;
+ struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
+ struct prologue_info *mi = 0;
+
+ if (msymbol != NULL)
+ mi = (struct prologue_info *) msymbol -> info;
+
+ if (mi != 0)
+ {
+ int valid = 1;
+ if (rsize != NULL)
+ {
+ *rsize = mi->rsize;
+ valid &= mi->rsize_valid;
+ }
+ if (msize != NULL)
+ {
+ *msize = mi->msize;
+ valid &= mi->msize_valid;
+ }
+ if (mfp_used != NULL)
+ {
+ *mfp_used = mi->mfp_used;
+ valid &= mi->mfp_valid;
+ }
+ if (valid)
+ return mi->pc;
+ }
+
+ if (rsize != NULL)
+ *rsize = 0;
+ if (msize != NULL)
+ *msize = 0;
+ if (mfp_used != NULL)
+ *mfp_used = 0;
+
+ /* Prologue must start with subtracting a constant from gr1.
+ Normally this is sub gr1,gr1,<rsize * 4>. */
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xffffff00) != 0x25010100)
+ {
+ /* If the frame is large, instead of a single instruction it
+ might be a pair of instructions:
+ const <reg>, <rsize * 4>
+ sub gr1,gr1,<reg>
+ */
+ int reg;
+ /* Possible value for rsize. */
+ unsigned int rsize0;
+
+ if ((insn & 0xff000000) != 0x03000000)
+ {
+ p = pc;
+ goto done;
+ }
+ reg = (insn >> 8) & 0xff;
+ rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
+ p += 4;
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xffffff00) != 0x24010100
+ || (insn & 0xff) != reg)
+ {
+ p = pc;
+ goto done;
+ }
+ if (rsize != NULL)
+ *rsize = rsize0;
+ }
+ else
+ {
+ if (rsize != NULL)
+ *rsize = (insn & 0xff);
+ }
+ p += 4;
+
+ /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
+ * We don't check the vector number to allow for kernel debugging. The
+ * kernel will use a different trap number.
+ * If this insn is missing, we just keep going; Metaware R2.3u compiler
+ * generates prologue that intermixes initializations and puts the asgeu
+ * way down.
+ */
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
+ {
+ p += 4;
+ }
+
+ /* Next instruction usually sets the frame pointer (lr1) by adding
+ <size * 4> from gr1. However, this can (and high C does) be
+ deferred until anytime before the first function call. So it is
+ OK if we don't see anything which sets lr1.
+ To allow for alternate register sets (gcc -mkernel-registers) the msp
+ register number is a compile time constant. */
+
+ /* Normally this is just add lr1,gr1,<size * 4>. */
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xffffff00) == 0x15810100)
+ p += 4;
+ else
+ {
+ /* However, for large frames it can be
+ const <reg>, <size *4>
+ add lr1,gr1,<reg>
+ */
+ int reg;
+ CORE_ADDR q;
+
+ if ((insn & 0xff000000) == 0x03000000)
+ {
+ reg = (insn >> 8) & 0xff;
+ q = p + 4;
+ insn = read_memory_integer (q, 4);
+ if ((insn & 0xffffff00) == 0x14810100
+ && (insn & 0xff) == reg)
+ p = q;
+ }
+ }
+
+ /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
+ frame pointer is in use. We just check for add lr<anything>,msp,0;
+ we don't check this rsize against the first instruction, and
+ we don't check that the trace-back tag indicates a memory frame pointer
+ is in use.
+ To allow for alternate register sets (gcc -mkernel-registers) the msp
+ register number is a compile time constant.
+
+ The recommended instruction is actually "sll lr<whatever>,msp,0".
+ We check for that, too. Originally Jim Kingdon's code seemed
+ to be looking for a "sub" instruction here, but the mask was set
+ up to lose all the time. */
+ insn = read_memory_integer (p, 4);
+ if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
+ || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
+ {
+ p += 4;
+ if (mfp_used != NULL)
+ *mfp_used = 1;
+ }
+
+ /* Next comes a subtraction from msp to allocate a memory frame,
+ but only if a memory frame is
+ being used. We don't check msize against the trace-back tag.
+
+ To allow for alternate register sets (gcc -mkernel-registers) the msp
+ register number is a compile time constant.
+
+ Normally this is just
+ sub msp,msp,<msize>
+ */
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xffffff00) ==
+ (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
+ {
+ p += 4;
+ if (msize != NULL)
+ *msize = insn & 0xff;
+ }
+ else
+ {
+ /* For large frames, instead of a single instruction it might
+ be
+
+ const <reg>, <msize>
+ consth <reg>, <msize> ; optional
+ sub msp,msp,<reg>
+ */
+ int reg;
+ unsigned msize0;
+ CORE_ADDR q = p;
+
+ if ((insn & 0xff000000) == 0x03000000)
+ {
+ reg = (insn >> 8) & 0xff;
+ msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
+ q += 4;
+ insn = read_memory_integer (q, 4);
+ /* Check for consth. */
+ if ((insn & 0xff000000) == 0x02000000
+ && (insn & 0x0000ff00) == reg)
+ {
+ msize0 |= (insn << 8) & 0xff000000;
+ msize0 |= (insn << 16) & 0x00ff0000;
+ q += 4;
+ insn = read_memory_integer (q, 4);
+ }
+ /* Check for sub msp,msp,<reg>. */
+ if ((insn & 0xffffff00) ==
+ (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
+ && (insn & 0xff) == reg)
+ {
+ p = q + 4;
+ if (msize != NULL)
+ *msize = msize0;
+ }
+ }
+ }
+
+ /* Next instruction might be asgeu V_SPILL,gr1,rab.
+ * We don't check the vector number to allow for kernel debugging. The
+ * kernel will use a different trap number.
+ * Metaware R2.3u compiler
+ * generates prologue that intermixes initializations and puts the asgeu
+ * way down after everything else.
+ */
+ insn = read_memory_integer (p, 4);
+ if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
+ {
+ p += 4;
+ }
+
+ done:
+ if (msymbol != NULL)
+ {
+ if (mi == 0)
+ {
+ /* Add a new cache entry. */
+ mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
+ msymbol -> info = (char *)mi;
+ mi->rsize_valid = 0;
+ mi->msize_valid = 0;
+ mi->mfp_valid = 0;
+ }
+ /* else, cache entry exists, but info is incomplete. */
+ mi->pc = p;
+ if (rsize != NULL)
+ {
+ mi->rsize = *rsize;
+ mi->rsize_valid = 1;
+ }
+ if (msize != NULL)
+ {
+ mi->msize = *msize;
+ mi->msize_valid = 1;
+ }
+ if (mfp_used != NULL)
+ {
+ mi->mfp_used = *mfp_used;
+ mi->mfp_valid = 1;
+ }
+ }
+ return p;
+}
+
+/* Advance PC across any function entry prologue instructions
+ to reach some "real" code. */
+
+CORE_ADDR
+skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ return examine_prologue (pc, NULL, NULL, NULL);
+}
+
+/*
+ * Examine the one or two word tag at the beginning of a function.
+ * The tag word is expect to be at 'p', if it is not there, we fail
+ * by returning 0. The documentation for the tag word was taken from
+ * page 7-15 of the 29050 User's Manual. We are assuming that the
+ * m bit is in bit 22 of the tag word, which seems to be the agreed upon
+ * convention today (1/15/92).
+ * msize is return in bytes.
+ */
+
+static int /* 0/1 - failure/success of finding the tag word */
+examine_tag (p, is_trans, argcount, msize, mfp_used)
+ CORE_ADDR p;
+ int *is_trans;
+ int *argcount;
+ unsigned *msize;
+ int *mfp_used;
+{
+ unsigned int tag1, tag2;
+
+ tag1 = read_memory_integer (p, 4);
+ if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
+ return 0;
+ if (tag1 & (1<<23)) /* A two word tag */
+ {
+ tag2 = read_memory_integer (p-4, 4);
+ if (msize)
+ *msize = tag2 * 2;
+ }
+ else /* A one word tag */
+ {
+ if (msize)
+ *msize = tag1 & 0x7ff;
+ }
+ if (is_trans)
+ *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
+ /* Note that this includes the frame pointer and the return address
+ register, so the actual number of registers of arguments is two less.
+ argcount can be zero, however, sometimes, for strange assembler
+ routines. */
+ if (argcount)
+ *argcount = (tag1 >> 16) & 0x1f;
+ if (mfp_used)
+ *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
+ return 1;
+}
+
+/* Initialize the frame. In addition to setting "extra" frame info,
+ we also set ->frame because we use it in a nonstandard way, and ->pc
+ because we need to know it to get the other stuff. See the diagram
+ of stacks and the frame cache in tm-a29k.h for more detail. */
+
+static void
+init_frame_info (innermost_frame, frame)
+ int innermost_frame;
+ struct frame_info *frame;
+{
+ CORE_ADDR p;
+ long insn;
+ unsigned rsize;
+ unsigned msize;
+ int mfp_used, trans;
+ struct symbol *func;
+
+ p = frame->pc;
+
+ if (innermost_frame)
+ frame->frame = read_register (GR1_REGNUM);
+ else
+ frame->frame = frame->next->frame + frame->next->rsize;
+
+#if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
+ This wont work;
+#else
+ if (PC_IN_CALL_DUMMY (p, 0, 0))
+#endif
+ {
+ frame->rsize = DUMMY_FRAME_RSIZE;
+ /* This doesn't matter since we never try to get locals or args
+ from a dummy frame. */
+ frame->msize = 0;
+ /* Dummy frames always use a memory frame pointer. */
+ frame->saved_msp =
+ read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
+ frame->flags |= (TRANSPARENT_FRAME|MFP_USED);
+ return;
+ }
+
+ func = find_pc_function (p);
+ if (func != NULL)
+ p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
+ else
+ {
+ /* Search backward to find the trace-back tag. However,
+ do not trace back beyond the start of the text segment
+ (just as a sanity check to avoid going into never-never land). */
+#if 1
+ while (p >= text_start
+ && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
+ p -= 4;
+#else /* 0 */
+ char pat[4] = {0, 0, 0, 0};
+ char mask[4];
+ char insn_raw[4];
+ store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
+ /* Enable this once target_search is enabled and tested. */
+ target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
+ insn = extract_unsigned_integer (insn_raw, 4);
+#endif /* 0 */
+
+ if (p < text_start)
+ {
+ /* Couldn't find the trace-back tag.
+ Something strange is going on. */
+ frame->saved_msp = 0;
+ frame->rsize = 0;
+ frame->msize = 0;
+ frame->flags = TRANSPARENT_FRAME;
+ return;
+ }
+ else
+ /* Advance to the first word of the function, i.e. the word
+ after the trace-back tag. */
+ p += 4;
+ }
+
+ /* We've found the start of the function.
+ Try looking for a tag word that indicates whether there is a
+ memory frame pointer and what the memory stack allocation is.
+ If one doesn't exist, try using a more exhaustive search of
+ the prologue. */
+
+ if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
+ examine_prologue (p, &rsize, 0, 0);
+ else /* No tag try prologue */
+ examine_prologue (p, &rsize, &msize, &mfp_used);
+
+ frame->rsize = rsize;
+ frame->msize = msize;
+ frame->flags = 0;
+ if (mfp_used)
+ frame->flags |= MFP_USED;
+ if (trans)
+ frame->flags |= TRANSPARENT_FRAME;
+ if (innermost_frame)
+ {
+ frame->saved_msp = read_register (MSP_REGNUM) + msize;
+ }
+ else
+ {
+ if (mfp_used)
+ frame->saved_msp =
+ read_register_stack_integer (frame->frame + rsize - 4, 4);
+ else
+ frame->saved_msp = frame->next->saved_msp + msize;
+ }
+}
+
+void
+init_extra_frame_info (frame)
+ struct frame_info *frame;
+{
+ if (frame->next == 0)
+ /* Assume innermost frame. May produce strange results for "info frame"
+ but there isn't any way to tell the difference. */
+ init_frame_info (1, frame);
+ else {
+ /* We're in get_prev_frame_info.
+ Take care of everything in init_frame_pc. */
+ ;
+ }
+}
+
+void
+init_frame_pc (fromleaf, frame)
+ int fromleaf;
+ struct frame_info *frame;
+{
+ frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
+ frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
+ init_frame_info (fromleaf, frame);
+}
+
+/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
+ offsets being relative to the memory stack pointer (high C) or
+ saved_msp (gcc). */
+
+CORE_ADDR
+frame_locals_address (fi)
+ struct frame_info *fi;
+{
+ if (fi->flags & MFP_USED)
+ return fi->saved_msp;
+ else
+ return fi->saved_msp - fi->msize;
+}
+
+/* Routines for reading the register stack. The caller gets to treat
+ the register stack as a uniform stack in memory, from address $gr1
+ straight through $rfb and beyond. */
+
+/* Analogous to read_memory except the length is understood to be 4.
+ Also, myaddr can be NULL (meaning don't bother to read), and
+ if actual_mem_addr is non-NULL, store there the address that it
+ was fetched from (or if from a register the offset within
+ registers). Set *LVAL to lval_memory or lval_register, depending
+ on where it came from. The contents written into MYADDR are in
+ target format. */
+void
+read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
+ CORE_ADDR memaddr;
+ char *myaddr;
+ CORE_ADDR *actual_mem_addr;
+ enum lval_type *lval;
+{
+ long rfb = read_register (RFB_REGNUM);
+ long rsp = read_register (RSP_REGNUM);
+
+ /* If we don't do this 'info register' stops in the middle. */
+ if (memaddr >= rstack_high_address)
+ {
+ /* a bogus value */
+ static char val[] = {~0, ~0, ~0, ~0};
+ /* It's in a local register, but off the end of the stack. */
+ int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
+ if (myaddr != NULL)
+ {
+ /* Provide bogusness */
+ memcpy (myaddr, val, 4);
+ }
+ supply_register(regnum, val); /* More bogusness */
+ if (lval != NULL)
+ *lval = lval_register;
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = REGISTER_BYTE (regnum);
+ }
+ /* If it's in the part of the register stack that's in real registers,
+ get the value from the registers. If it's anywhere else in memory
+ (e.g. in another thread's saved stack), skip this part and get
+ it from real live memory. */
+ else if (memaddr < rfb && memaddr >= rsp)
+ {
+ /* It's in a register. */
+ int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
+ if (regnum > LR0_REGNUM + 127)
+ error ("Attempt to read register stack out of range.");
+ if (myaddr != NULL)
+ read_register_gen (regnum, myaddr);
+ if (lval != NULL)
+ *lval = lval_register;
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = REGISTER_BYTE (regnum);
+ }
+ else
+ {
+ /* It's in the memory portion of the register stack. */
+ if (myaddr != NULL)
+ read_memory (memaddr, myaddr, 4);
+ if (lval != NULL)
+ *lval = lval_memory;
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = memaddr;
+ }
+}
+
+/* Analogous to read_memory_integer
+ except the length is understood to be 4. */
+long
+read_register_stack_integer (memaddr, len)
+ CORE_ADDR memaddr;
+ int len;
+{
+ char buf[4];
+ read_register_stack (memaddr, buf, NULL, NULL);
+ return extract_signed_integer (buf, 4);
+}
+
+/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
+ at MEMADDR and put the actual address written into in
+ *ACTUAL_MEM_ADDR. */
+static void
+write_register_stack (memaddr, myaddr, actual_mem_addr)
+ CORE_ADDR memaddr;
+ char *myaddr;
+ CORE_ADDR *actual_mem_addr;
+{
+ long rfb = read_register (RFB_REGNUM);
+ long rsp = read_register (RSP_REGNUM);
+ /* If we don't do this 'info register' stops in the middle. */
+ if (memaddr >= rstack_high_address)
+ {
+ /* It's in a register, but off the end of the stack. */
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = 0;
+ }
+ else if (memaddr < rfb)
+ {
+ /* It's in a register. */
+ int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
+ if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
+ error ("Attempt to read register stack out of range.");
+ if (myaddr != NULL)
+ write_register (regnum, *(long *)myaddr);
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = 0;
+ }
+ else
+ {
+ /* It's in the memory portion of the register stack. */
+ if (myaddr != NULL)
+ write_memory (memaddr, myaddr, 4);
+ if (actual_mem_addr != NULL)
+ *actual_mem_addr = memaddr;
+ }
+}
+
+/* Find register number REGNUM relative to FRAME and put its
+ (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
+ was optimized out (and thus can't be fetched). If the variable
+ was fetched from memory, set *ADDRP to where it was fetched from,
+ otherwise it was fetched from a register.
+
+ The argument RAW_BUFFER must point to aligned memory. */
+
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
+ char *raw_buffer;
+ int *optimized;
+ CORE_ADDR *addrp;
+ struct frame_info *frame;
+ int regnum;
+ enum lval_type *lvalp;
+{
+ struct frame_info *fi;
+ CORE_ADDR addr;
+ enum lval_type lval;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ /* Probably now redundant with the target_has_registers check. */
+ if (frame == 0)
+ return;
+
+ /* Once something has a register number, it doesn't get optimized out. */
+ if (optimized != NULL)
+ *optimized = 0;
+ if (regnum == RSP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
+ }
+ if (lvalp != NULL)
+ *lvalp = not_lval;
+ return;
+ }
+ else if (regnum == PC_REGNUM && frame->next != NULL)
+ {
+ if (raw_buffer != NULL)
+ {
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
+ }
+
+ /* Not sure we have to do this. */
+ if (lvalp != NULL)
+ *lvalp = not_lval;
+
+ return;
+ }
+ else if (regnum == MSP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ if (frame->next != NULL)
+ {
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
+ frame->next->saved_msp);
+ }
+ else
+ read_register_gen (MSP_REGNUM, raw_buffer);
+ }
+ /* The value may have been computed, not fetched. */
+ if (lvalp != NULL)
+ *lvalp = not_lval;
+ return;
+ }
+ else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
+ {
+ /* These registers are not saved over procedure calls,
+ so just print out the current values. */
+ if (raw_buffer != NULL)
+ read_register_gen (regnum, raw_buffer);
+ if (lvalp != NULL)
+ *lvalp = lval_register;
+ if (addrp != NULL)
+ *addrp = REGISTER_BYTE (regnum);
+ return;
+ }
+
+ addr = frame->frame + (regnum - LR0_REGNUM) * 4;
+ if (raw_buffer != NULL)
+ read_register_stack (addr, raw_buffer, &addr, &lval);
+ if (lvalp != NULL)
+ *lvalp = lval;
+ if (addrp != NULL)
+ *addrp = addr;
+}
+
+
+/* Discard from the stack the innermost frame,
+ restoring all saved registers. */
+
+void
+pop_frame ()
+{
+ struct frame_info *frame = get_current_frame ();
+ CORE_ADDR rfb = read_register (RFB_REGNUM);
+ CORE_ADDR gr1 = frame->frame + frame->rsize;
+ CORE_ADDR lr1;
+ CORE_ADDR original_lr0;
+ int must_fix_lr0 = 0;
+ int i;
+
+ /* If popping a dummy frame, need to restore registers. */
+ if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
+ read_register (SP_REGNUM),
+ FRAME_FP (frame)))
+ {
+ int lrnum = LR0_REGNUM + DUMMY_ARG/4;
+ for (i = 0; i < DUMMY_SAVE_SR128; ++i)
+ write_register (SR_REGNUM (i + 128),read_register (lrnum++));
+ for (i = 0; i < DUMMY_SAVE_SR160; ++i)
+ write_register (SR_REGNUM(i+160), read_register (lrnum++));
+ for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
+ write_register (RETURN_REGNUM + i, read_register (lrnum++));
+ /* Restore the PCs and prepare to restore LR0. */
+ write_register(PC_REGNUM, read_register (lrnum++));
+ write_register(NPC_REGNUM, read_register (lrnum++));
+ write_register(PC2_REGNUM, read_register (lrnum++));
+ original_lr0 = read_register (lrnum++);
+ must_fix_lr0 = 1;
+ }
+
+ /* Restore the memory stack pointer. */
+ write_register (MSP_REGNUM, frame->saved_msp);
+ /* Restore the register stack pointer. */
+ write_register (GR1_REGNUM, gr1);
+
+ /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
+ if (must_fix_lr0)
+ write_register (LR0_REGNUM, original_lr0);
+
+ /* Check whether we need to fill registers. */
+ lr1 = read_register (LR0_REGNUM + 1);
+ if (lr1 > rfb)
+ {
+ /* Fill. */
+ int num_bytes = lr1 - rfb;
+ int i;
+ long word;
+
+ write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
+ write_register (RFB_REGNUM, lr1);
+ for (i = 0; i < num_bytes; i += 4)
+ {
+ /* Note: word is in host byte order. */
+ word = read_memory_integer (rfb + i, 4);
+ write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
+ }
+ }
+ flush_cached_frames ();
+}
+
+/* Push an empty stack frame, to record the current PC, etc. */
+
+void
+push_dummy_frame ()
+{
+ long w;
+ CORE_ADDR rab, gr1;
+ CORE_ADDR msp = read_register (MSP_REGNUM);
+ int lrnum, i;
+ CORE_ADDR original_lr0;
+
+ /* Read original lr0 before changing gr1. This order isn't really needed
+ since GDB happens to have a snapshot of all the regs and doesn't toss
+ it when gr1 is changed. But it's The Right Thing To Do. */
+ original_lr0 = read_register (LR0_REGNUM);
+
+ /* Allocate the new frame. */
+ gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
+ write_register (GR1_REGNUM, gr1);
+
+#ifdef VXWORKS_TARGET
+ /* We force re-reading all registers to get the new local registers set
+ after gr1 has been modified. This fix is due to the lack of single
+ register read/write operation in the RPC interface between VxGDB and
+ VxWorks. This really must be changed ! */
+
+ vx_read_register (-1);
+
+#endif /* VXWORK_TARGET */
+
+ rab = read_register (RAB_REGNUM);
+ if (gr1 < rab)
+ {
+ /* We need to spill registers. */
+ int num_bytes = rab - gr1;
+ CORE_ADDR rfb = read_register (RFB_REGNUM);
+ int i;
+ long word;
+
+ write_register (RFB_REGNUM, rfb - num_bytes);
+ write_register (RAB_REGNUM, gr1);
+ for (i = 0; i < num_bytes; i += 4)
+ {
+ /* Note: word is in target byte order. */
+ read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
+ write_memory (rfb - num_bytes + i, (char *) &word, 4);
+ }
+ }
+
+ /* There are no arguments in to the dummy frame, so we don't need
+ more than rsize plus the return address and lr1. */
+ write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
+
+ /* Set the memory frame pointer. */
+ write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
+
+ /* Allocate arg_slop. */
+ write_register (MSP_REGNUM, msp - 16 * 4);
+
+ /* Save registers. */
+ lrnum = LR0_REGNUM + DUMMY_ARG/4;
+ for (i = 0; i < DUMMY_SAVE_SR128; ++i)
+ write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
+ for (i = 0; i < DUMMY_SAVE_SR160; ++i)
+ write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
+ for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
+ write_register (lrnum++, read_register (RETURN_REGNUM + i));
+ /* Save the PCs and LR0. */
+ write_register (lrnum++, read_register (PC_REGNUM));
+ write_register (lrnum++, read_register (NPC_REGNUM));
+ write_register (lrnum++, read_register (PC2_REGNUM));
+
+ /* Why are we saving LR0? What would clobber it? (the dummy frame should
+ be below it on the register stack, no?). */
+ write_register (lrnum++, original_lr0);
+}
+
+
+
+/*
+ This routine takes three arguments and makes the cached frames look
+ as if these arguments defined a frame on the cache. This allows the
+ rest of `info frame' to extract the important arguments without much
+ difficulty. Since an individual frame on the 29K is determined by
+ three values (FP, PC, and MSP), we really need all three to do a
+ good job. */
+
+struct frame_info *
+setup_arbitrary_frame (argc, argv)
+ int argc;
+ CORE_ADDR *argv;
+{
+ struct frame_info *frame;
+
+ if (argc != 3)
+ error ("AMD 29k frame specifications require three arguments: rsp pc msp");
+
+ frame = create_new_frame (argv[0], argv[1]);
+
+ if (!frame)
+ fatal ("internal: create_new_frame returned invalid frame id");
+
+ /* Creating a new frame munges the `frame' value from the current
+ GR1, so we restore it again here. FIXME, untangle all this
+ 29K frame stuff... */
+ frame->frame = argv[0];
+
+ /* Our MSP is in argv[2]. It'd be intelligent if we could just
+ save this value in the FRAME. But the way it's set up (FIXME),
+ we must save our caller's MSP. We compute that by adding our
+ memory stack frame size to our MSP. */
+ frame->saved_msp = argv[2] + frame->msize;
+
+ return frame;
+}
+
+int
+gdb_print_insn_a29k (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info *info;
+{
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return print_insn_big_a29k (memaddr, info);
+ else
+ return print_insn_little_a29k (memaddr, info);
+}
+
+enum a29k_processor_types processor_type = a29k_unknown;
+
+void
+a29k_get_processor_type ()
+{
+ unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
+
+ /* Most of these don't have freeze mode. */
+ processor_type = a29k_no_freeze_mode;
+
+ switch ((cfg_reg >> 28) & 0xf)
+ {
+ case 0:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
+ break;
+ case 1:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
+ break;
+ case 2:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
+ processor_type = a29k_freeze_mode;
+ break;
+ case 3:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
+ break;
+ case 4:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
+ break;
+ case 5:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
+ break;
+ case 6:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
+ break;
+ case 7:
+ fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
+ break;
+ default:
+ fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
+ /* Don't bother to print the revision. */
+ return;
+ }
+ fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
+}
+
+#ifdef GET_LONGJMP_TARGET
+/* Figure out where the longjmp will land. We expect that we have just entered
+ longjmp and haven't yet setup the stack frame, so the args are still in the
+ output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
+ extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
+ This routine returns true on success */
+
+int
+get_longjmp_target(pc)
+ CORE_ADDR *pc;
+{
+ CORE_ADDR jb_addr;
+ char buf[sizeof(CORE_ADDR)];
+
+ jb_addr = read_register(LR2_REGNUM);
+
+ if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
+ sizeof(CORE_ADDR)))
+ return 0;
+
+ *pc = extract_address ((PTR) buf, sizeof(CORE_ADDR));
+ return 1;
+}
+#endif /* GET_LONGJMP_TARGET */
+
+void
+_initialize_a29k_tdep ()
+{
+ extern CORE_ADDR text_end;
+
+ tm_print_insn = gdb_print_insn_a29k;
+
+ /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
+ add_show_from_set
+ (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
+ (char *)&rstack_high_address,
+ "Set top address in memory of the register stack.\n\
+Attempts to access registers saved above this address will be ignored\n\
+or will produce the value -1.", &setlist),
+ &showlist);
+
+ /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
+ add_show_from_set
+ (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
+ (char *)&text_end,
+"Set address in memory where small amounts of RAM can be used\n\
+when making function calls into the inferior.", &setlist),
+ &showlist);
+}