diff options
Diffstat (limited to 'gas/expr.c')
-rw-r--r-- | gas/expr.c | 1251 |
1 files changed, 696 insertions, 555 deletions
@@ -1,5 +1,5 @@ /* expr.c -operands, expressions- - Copyright (C) 1987, 1990, 1991 Free Software Foundation, Inc. + Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. @@ -31,11 +31,11 @@ #include "obstack.h" -#ifdef __STDC__ +#if __STDC__ == 1 static void clean_up_expression(expressionS *expressionP); #else /* __STDC__ */ static void clean_up_expression(); /* Internal. */ -#endif /* __STDC__ */ +#endif /* not __STDC__ */ extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */ extern const char FLT_CHARS[]; @@ -67,6 +67,257 @@ FLONUM_TYPE generic_floating_point_number = /* If nonzero, we've been asked to assemble nan, +inf or -inf */ int generic_floating_point_magic; +floating_constant(expressionP) +expressionS *expressionP; +{ + /* input_line_pointer->*/ + /* floating-point constant. */ + int error_code; + + error_code = atof_generic + (& input_line_pointer, ".", EXP_CHARS, + & generic_floating_point_number); + + if (error_code) + { + if (error_code == ERROR_EXPONENT_OVERFLOW) + { + as_bad("bad floating-point constant: exponent overflow, probably assembling junk"); + } + else + { + as_bad("bad floating-point constant: unknown error code=%d.", error_code); + } + } + expressionP->X_seg = SEG_BIG; + /* input_line_pointer->just after constant, */ + /* which may point to whitespace. */ + expressionP->X_add_number =-1; + +} + + + +integer_constant(radix, expressionP) +int radix; +expressionS *expressionP; + + +{ + register char * digit_2; /*->2nd digit of number. */ + char c; + + register valueT number; /* offset or (absolute) value */ + register short int digit; /* value of next digit in current radix */ + register short int maxdig = 0; /* highest permitted digit value. */ + register int too_many_digits = 0; /* if we see >= this number of */ + register char *name; /* points to name of symbol */ + register symbolS * symbolP; /* points to symbol */ + + int small; /* true if fits in 32 bits. */ + extern char hex_value[]; /* in hex_value.c */ + + /* may be bignum, or may fit in 32 bits. */ + /* + * most numbers fit into 32 bits, and we want this case to be fast. + * so we pretend it will fit into 32 bits. if, after making up a 32 + * bit number, we realise that we have scanned more digits than + * comfortably fit into 32 bits, we re-scan the digits coding + * them into a bignum. for decimal and octal numbers we are conservative: some + * numbers may be assumed bignums when in fact they do fit into 32 bits. + * numbers of any radix can have excess leading zeros: we strive + * to recognise this and cast them back into 32 bits. + * we must check that the bignum really is more than 32 + * bits, and change it back to a 32-bit number if it fits. + * the number we are looking for is expected to be positive, but + * if it fits into 32 bits as an unsigned number, we let it be a 32-bit + * number. the cavalier approach is for speed in ordinary cases. + */ + + switch (radix) + { + + case 2: + maxdig = 2; + too_many_digits = 33; + break; + case 8: + maxdig = radix = 8; + too_many_digits = 11; + break; + case 16: + + + maxdig = radix = 16; + too_many_digits = 9; + break; + case 10: + maxdig = radix = 10; + too_many_digits = 11; + } + c = *input_line_pointer; + input_line_pointer++; + digit_2 = input_line_pointer; + for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++) + { + number = number * radix + digit; + } + /* c contains character after number. */ + /* input_line_pointer->char after c. */ + small = input_line_pointer - digit_2 < too_many_digits; + if (! small) + { + /* + * we saw a lot of digits. manufacture a bignum the hard way. + */ + LITTLENUM_TYPE * leader; /*->high order littlenum of the bignum. */ + LITTLENUM_TYPE * pointer; /*->littlenum we are frobbing now. */ + long carry; + + leader = generic_bignum; + generic_bignum [0] = 0; + generic_bignum [1] = 0; + /* we could just use digit_2, but lets be mnemonic. */ + input_line_pointer = -- digit_2; /*->1st digit. */ + c = *input_line_pointer ++; + for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++) + { + for (pointer = generic_bignum; + pointer <= leader; + pointer ++) + { + long work; + + work = carry + radix * * pointer; + * pointer = work & LITTLENUM_MASK; + carry = work >> LITTLENUM_NUMBER_OF_BITS; + } + if (carry) + { + if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1) + { /* room to grow a longer bignum. */ + * ++ leader = carry; + } + } + } + /* again, c is char after number, */ + /* input_line_pointer->after c. */ + know(sizeof (int) * 8 == 32); + know(LITTLENUM_NUMBER_OF_BITS == 16); + /* hence the constant "2" in the next line. */ + if (leader < generic_bignum + 2) + { /* will fit into 32 bits. */ + number = + ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS) + | (generic_bignum [0] & LITTLENUM_MASK); + small = 1; + } + else + { + number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */ + } + } + if (small) + { + /* + * here with number, in correct radix. c is the next char. + * note that unlike un*x, we allow "011f" "0x9f" to + * both mean the same as the (conventional) "9f". this is simply easier + * than checking for strict canonical form. syntax sux! + */ + if (number<10) + { + if (0 +#ifdef local_labels_fb + || c=='b' +#endif +#ifdef local_labels_dollar + || (c=='$' && local_label_defined[number]) +#endif + ) + { + /* + * backward ref to local label. + * because it is backward, expect it to be defined. + */ + /* + * construct a local label. + */ + name = local_label_name ((int)number, 0); + if (((symbolP = symbol_find(name)) != NULL) /* seen before */ + && (S_IS_DEFINED(symbolP))) /* symbol is defined: ok */ + { /* expected path: symbol defined. */ + /* local labels are never absolute. don't waste time checking absoluteness. */ + know(SEG_NORMAL(S_GET_SEGMENT(symbolP))); + + expressionP->X_add_symbol = symbolP; + expressionP->X_add_number = 0; + expressionP->X_seg = S_GET_SEGMENT(symbolP); + } + else + { /* either not seen or not defined. */ + as_bad("backw. ref to unknown label \"%d:\", 0 assumed.", + number); + expressionP->X_add_number = 0; + expressionP->X_seg = SEG_ABSOLUTE; + } + } + else + { + if (0 +#ifdef local_labels_fb + || c == 'f' +#endif +#ifdef local_labels_dollar + || (c=='$' && !local_label_defined[number]) +#endif + ) + { + /* + * forward reference. expect symbol to be undefined or + * unknown. undefined: seen it before. unknown: never seen + * it in this pass. + * construct a local label name, then an undefined symbol. + * don't create a xseg frag for it: caller may do that. + * just return it as never seen before. + */ + name = local_label_name((int)number, 1); + symbolP = symbol_find_or_make(name); + /* we have no need to check symbol properties. */ +#ifndef many_segments + /* since "know" puts its arg into a "string", we + can't have newlines in the argument. */ + know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA); +#endif + expressionP->X_add_symbol = symbolP; + expressionP->X_seg = SEG_UNKNOWN; + expressionP->X_subtract_symbol = NULL; + expressionP->X_add_number = 0; + } + else + { /* really a number, not a local label. */ + expressionP->X_add_number = number; + expressionP->X_seg = SEG_ABSOLUTE; + input_line_pointer --; /* restore following character. */ + } /* if (c=='f') */ + } /* if (c=='b') */ + } + else + { /* really a number. */ + expressionP->X_add_number = number; + expressionP->X_seg = SEG_ABSOLUTE; + input_line_pointer --; /* restore following character. */ + } /* if (number<10) */ + } + else + { + expressionP->X_add_number = number; + expressionP->X_seg = SEG_BIG; + input_line_pointer --; /*->char following number. */ + } /* if (small) */ +} + + /* * Summary of operand(). * @@ -80,390 +331,280 @@ int generic_floating_point_magic; * */ + + static segT - operand (expressionP) -register expressionS * expressionP; +operand (expressionP) + register expressionS * expressionP; { - register char c; - register char *name; /* points to name of symbol */ - register symbolS * symbolP; /* Points to symbol */ - - extern char hex_value[]; /* In hex_value.c */ + register char c; + register symbolS * symbolP; /* points to symbol */ + register char *name; /* points to name of symbol */ + /* invented for humans only, hope */ + /* optimising compiler flushes it! */ + register short int radix; /* 2, 8, 10 or 16, 0 when floating */ + /* 0 means we saw start of a floating- */ + /* point constant. */ + + /* digits, assume it is a bignum. */ + + + + + SKIP_WHITESPACE(); /* leading whitespace is part of operand. */ + c = * input_line_pointer ++; /* input_line_pointer->past char in c. */ + + switch (c) + { +#ifdef MRI + case '%': + integer_constant(2, expressionP); + break; + case '@': + integer_constant(8, expressionP); + break; + case '$': + integer_constant(16, expressionP); + break; +#endif + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': + input_line_pointer--; - SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */ - c = * input_line_pointer ++; /* Input_line_pointer->past char in c. */ - if (isdigit(c) || (c == 'H' && input_line_pointer[0] == '\'')) + integer_constant(10, expressionP); + break; + + case '0': + /* non-decimal radix */ + + + c = *input_line_pointer; + switch (c) { - register valueT number; /* offset or (absolute) value */ - register short int digit; /* value of next digit in current radix */ - /* invented for humans only, hope */ - /* optimising compiler flushes it! */ - register short int radix; /* 2, 8, 10 or 16 */ - /* 0 means we saw start of a floating- */ - /* point constant. */ - register short int maxdig = 0;/* Highest permitted digit value. */ - register int too_many_digits = 0; /* If we see >= this number of */ - /* digits, assume it is a bignum. */ - register char * digit_2; /*->2nd digit of number. */ - int small; /* TRUE if fits in 32 bits. */ - - - if (c == 'H' || c == '0') { /* non-decimal radix */ - if ((c = *input_line_pointer ++)=='x' || c=='X' || c=='\'') { - c = *input_line_pointer ++; /* read past "0x" or "0X" or H' */ - maxdig = radix = 16; - too_many_digits = 9; - } else { - /* If it says '0f' and the line ends or it DOESN'T look like - a floating point #, its a local label ref. DTRT */ - /* likewise for the b's. xoxorich. */ - if ((c == 'f' || c == 'b' || c == 'B') - && (!*input_line_pointer || - (!strchr("+-.0123456789",*input_line_pointer) && - !strchr(EXP_CHARS,*input_line_pointer)))) { - maxdig = radix = 10; - too_many_digits = 11; - c = '0'; - input_line_pointer -= 2; - - } else if (c == 'b' || c == 'B') { - c = *input_line_pointer++; - maxdig = radix = 2; - too_many_digits = 33; - - } else if (c && strchr(FLT_CHARS,c)) { - radix = 0; /* Start of floating-point constant. */ - /* input_line_pointer->1st char of number. */ - expressionP->X_add_number = -(isupper(c) ? tolower(c) : c); - - } else { /* By elimination, assume octal radix. */ - radix = maxdig = 8; - too_many_digits = 11; - } - } /* c == char after "0" or "0x" or "0X" or "0e" etc. */ - } else { - maxdig = radix = 10; - too_many_digits = 11; - } /* if operand starts with a zero */ - - if (radix) { /* Fixed-point integer constant. */ - /* May be bignum, or may fit in 32 bits. */ - /* - * Most numbers fit into 32 bits, and we want this case to be fast. - * So we pretend it will fit into 32 bits. If, after making up a 32 - * bit number, we realise that we have scanned more digits than - * comfortably fit into 32 bits, we re-scan the digits coding - * them into a bignum. For decimal and octal numbers we are conservative: some - * numbers may be assumed bignums when in fact they do fit into 32 bits. - * Numbers of any radix can have excess leading zeros: we strive - * to recognise this and cast them back into 32 bits. - * We must check that the bignum really is more than 32 - * bits, and change it back to a 32-bit number if it fits. - * The number we are looking for is expected to be positive, but - * if it fits into 32 bits as an unsigned number, we let it be a 32-bit - * number. The cavalier approach is for speed in ordinary cases. - */ - digit_2 = input_line_pointer; - for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++) - { - number = number * radix + digit; - } - /* C contains character after number. */ - /* Input_line_pointer->char after C. */ - small = input_line_pointer - digit_2 < too_many_digits; - if (! small) - { - /* - * We saw a lot of digits. Manufacture a bignum the hard way. - */ - LITTLENUM_TYPE * leader; /*->high order littlenum of the bignum. */ - LITTLENUM_TYPE * pointer; /*->littlenum we are frobbing now. */ - long carry; - - leader = generic_bignum; - generic_bignum [0] = 0; - generic_bignum [1] = 0; - /* We could just use digit_2, but lets be mnemonic. */ - input_line_pointer = -- digit_2; /*->1st digit. */ - c = *input_line_pointer ++; - for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++) - { - for (pointer = generic_bignum; - pointer <= leader; - pointer ++) - { - long work; - - work = carry + radix * * pointer; - * pointer = work & LITTLENUM_MASK; - carry = work >> LITTLENUM_NUMBER_OF_BITS; - } - if (carry) - { - if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1) - { /* Room to grow a longer bignum. */ - * ++ leader = carry; - } - } - } - /* Again, C is char after number, */ - /* input_line_pointer->after C. */ - know(sizeof (int) * 8 == 32); - know(LITTLENUM_NUMBER_OF_BITS == 16); - /* Hence the constant "2" in the next line. */ - if (leader < generic_bignum + 2) - { /* Will fit into 32 bits. */ - number = - ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS) - | (generic_bignum [0] & LITTLENUM_MASK); - small = 1; - } - else - { - number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */ - } - } - if (small) - { - /* - * Here with number, in correct radix. c is the next char. - * Note that unlike Un*x, we allow "011f" "0x9f" to - * both mean the same as the (conventional) "9f". This is simply easier - * than checking for strict canonical form. Syntax sux! - */ - if (number<10) - { - if (0 -#ifdef LOCAL_LABELS_FB - || c=='b' -#endif -#ifdef LOCAL_LABELS_DOLLAR - || (c=='$' && local_label_defined[number]) -#endif - ) - { - /* - * Backward ref to local label. - * Because it is backward, expect it to be DEFINED. - */ - /* - * Construct a local label. - */ - name = local_label_name ((int)number, 0); - if (((symbolP = symbol_find(name)) != NULL) /* seen before */ - && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */ - { /* Expected path: symbol defined. */ - /* Local labels are never absolute. Don't waste time checking absoluteness. */ - know(SEG_NORMAL(S_GET_SEGMENT(symbolP))); - - expressionP->X_add_symbol = symbolP; - expressionP->X_add_number = 0; - expressionP->X_seg = S_GET_SEGMENT(symbolP); - } - else - { /* Either not seen or not defined. */ - as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.", - number); - expressionP->X_add_number = 0; - expressionP->X_seg = SEG_ABSOLUTE; - } - } - else - { - if (0 -#ifdef LOCAL_LABELS_FB - || c == 'f' -#endif -#ifdef LOCAL_LABELS_DOLLAR - || (c=='$' && !local_label_defined[number]) -#endif - ) - { - /* - * Forward reference. Expect symbol to be undefined or - * unknown. Undefined: seen it before. Unknown: never seen - * it in this pass. - * Construct a local label name, then an undefined symbol. - * Don't create a XSEG frag for it: caller may do that. - * Just return it as never seen before. - */ - name = local_label_name((int)number, 1); - symbolP = symbol_find_or_make(name); - /* We have no need to check symbol properties. */ -#ifndef MANY_SEGMENTS - /* Since "know" puts its arg into a "string", we - can't have newlines in the argument. */ - know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA); -#endif - expressionP->X_add_symbol = symbolP; - expressionP->X_seg = SEG_UNKNOWN; - expressionP->X_subtract_symbol = NULL; - expressionP->X_add_number = 0; - } - else - { /* Really a number, not a local label. */ - expressionP->X_add_number = number; - expressionP->X_seg = SEG_ABSOLUTE; - input_line_pointer --; /* Restore following character. */ - } /* if (c=='f') */ - } /* if (c=='b') */ - } - else - { /* Really a number. */ - expressionP->X_add_number = number; - expressionP->X_seg = SEG_ABSOLUTE; - input_line_pointer --; /* Restore following character. */ - } /* if (number<10) */ - } - else - { - expressionP->X_add_number = number; - expressionP->X_seg = SEG_BIG; - input_line_pointer --; /*->char following number. */ - } /* if (small) */ - } /* (If integer constant) */ - else - { /* input_line_pointer->*/ - /* floating-point constant. */ - int error_code; - - error_code = atof_generic - (& input_line_pointer, ".", EXP_CHARS, - & generic_floating_point_number); - - if (error_code) - { - if (error_code == ERROR_EXPONENT_OVERFLOW) - { - as_bad("Bad floating-point constant: exponent overflow, probably assembling junk"); - } - else - { - as_bad("Bad floating-point constant: unknown error code=%d.", error_code); - } - } - expressionP->X_seg = SEG_BIG; - /* input_line_pointer->just after constant, */ - /* which may point to whitespace. */ - know(expressionP->X_add_number < 0); /* < 0 means "floating point". */ - } /* if (not floating-point constant) */ + + default: + /* The string was only zero */ + expressionP->X_add_symbol = 0; + expressionP->X_add_number = 0; + expressionP->X_seg = SEG_ABSOLUTE; + break; + + case 'x': + case 'X': + input_line_pointer++; + integer_constant(16, expressionP); + break; + case 'B': + case 'b': + input_line_pointer++; + integer_constant(2, expressionP); + break; + + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + integer_constant(8, expressionP); + break; + + case 'f': + /* if it says '0f' and the line ends or it doesn't look like + a floating point #, its a local label ref. dtrt */ + /* likewise for the b's. xoxorich. */ + if ((c == 'f' || c == 'b' || c == 'b') + && (!*input_line_pointer || + (!strchr("+-.0123456789",*input_line_pointer) && + !strchr(EXP_CHARS,*input_line_pointer)))) + { + input_line_pointer -= 2; + integer_constant(10, expressionP); + break; + } + + case 'd': + case 'D': + case 'F': + + case 'e': + case 'E': + case 'g': + case 'G': + + input_line_pointer++; + floating_constant(expressionP); + break; } - else if(c=='.' && !is_part_of_name(*input_line_pointer)) { - extern struct obstack frags; - - /* - JF: '.' is pseudo symbol with value of current location in current - segment. . . - */ - symbolP = symbol_new("L0\001", - now_seg, - (valueT)(obstack_next_free(&frags)-frag_now->fr_literal), - frag_now); - - expressionP->X_add_number=0; - expressionP->X_add_symbol=symbolP; - expressionP->X_seg = now_seg; - - } else if (is_name_beginner(c)) /* here if did not begin with a digit */ + + break; + case '(': + /* didn't begin with digit & not a name */ + { + (void)expression(expressionP); + /* Expression() will pass trailing whitespace */ + if (* input_line_pointer ++ != ')') { - /* - * Identifier begins here. - * This is kludged for speed, so code is repeated. - */ - name = -- input_line_pointer; - c = get_symbol_end(); - symbolP = symbol_find_or_make(name); - /* - * If we have an absolute symbol or a reg, then we know its value now. - */ - expressionP->X_seg = S_GET_SEGMENT(symbolP); - switch (expressionP->X_seg) + as_bad("Missing ')' assumed"); + input_line_pointer --; + } + /* here with input_line_pointer->char after "(...)" */ + } + return; + + + case '\'': + /* + * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted + * for a single quote. The next character, parity errors and all, is taken + * as the value of the operand. VERY KINKY. + */ + expressionP->X_add_number = * input_line_pointer ++; + expressionP->X_seg = SEG_ABSOLUTE; + break; + + case '~': + case '-': + case '+': + + { + /* unary operator: hope for SEG_ABSOLUTE */ + switch(operand (expressionP)) { + case SEG_ABSOLUTE: + /* input_line_pointer -> char after operand */ + if ( c=='-' ) { - case SEG_ABSOLUTE: - case SEG_REGISTER: - expressionP->X_add_number = S_GET_VALUE(symbolP); - break; - - default: - expressionP->X_add_number = 0; - expressionP->X_add_symbol = symbolP; + expressionP -> X_add_number = - expressionP -> X_add_number; + /* + * Notice: '-' may overflow: no warning is given. This is compatible + * with other people's assemblers. Sigh. + */ } - * input_line_pointer = c; - expressionP->X_subtract_symbol = NULL; - } - else if (c=='(')/* didn't begin with digit & not a name */ - { - (void)expression(expressionP); - /* Expression() will pass trailing whitespace */ - if (* input_line_pointer ++ != ')') + else { - as_bad("Missing ')' assumed"); - input_line_pointer --; + expressionP -> X_add_number = ~ expressionP -> X_add_number; } - /* here with input_line_pointer->char after "(...)" */ - } - else if (c == '~' || c == '-' || c == '+') { - /* unary operator: hope for SEG_ABSOLUTE */ - switch (operand (expressionP)) { - case SEG_ABSOLUTE: - /* input_line_pointer->char after operand */ - if (c=='-') { - expressionP->X_add_number = - expressionP->X_add_number; - /* - * Notice: '-' may overflow: no warning is given. This is compatible - * with other people's assemblers. Sigh. - */ - } else if (c == '~') { - expressionP->X_add_number = ~ expressionP->X_add_number; - } else if (c != '+') { - know(0); - } /* switch on unary operator */ + break; + + case SEG_TEXT: + case SEG_DATA: + case SEG_BSS: + case SEG_PASS1: + case SEG_UNKNOWN: + if(c=='-') { /* JF I hope this hack works */ + expressionP->X_subtract_symbol=expressionP->X_add_symbol; + expressionP->X_add_symbol=0; + expressionP->X_seg=SEG_DIFFERENCE; break; - - default: /* unary on non-absolute is unsuported */ - if (!SEG_NORMAL(operand(expressionP))) - { - as_bad("Unary operator %c ignored because bad operand follows", c); - break; - } - /* Fall through for normal segments ****/ - case SEG_PASS1: - case SEG_UNKNOWN: - if(c=='-') { /* JF I hope this hack works */ - expressionP->X_subtract_symbol=expressionP->X_add_symbol; - expressionP->X_add_symbol=0; - expressionP->X_seg=SEG_DIFFERENCE; - break; - } - /* Expression undisturbed from operand(). */ - } - } - else if (c=='\'') + } + default: /* unary on non-absolute is unsuported */ + as_warn("Unary operator %c ignored because bad operand follows", c); + break; + /* Expression undisturbed from operand(). */ + } + } + + + + break; + + case '.': + if( !is_part_of_name(*input_line_pointer)) { - /* - * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted - * for a single quote. The next character, parity errors and all, is taken - * as the value of the operand. VERY KINKY. - */ - expressionP->X_add_number = * input_line_pointer ++; - expressionP->X_seg = SEG_ABSOLUTE; + extern struct obstack frags; + + /* + JF: '.' is pseudo symbol with value of current location in current + segment. . . + */ + symbolP = symbol_new("L0\001", + now_seg, + (valueT)(obstack_next_free(&frags)-frag_now->fr_literal), + frag_now); + + expressionP->X_add_number=0; + expressionP->X_add_symbol=symbolP; + expressionP->X_seg = now_seg; + break; + } - else + else { + goto isname; + + + } + + case '\n': /* can't imagine any other kind of operand */ expressionP->X_seg = SEG_ABSENT; input_line_pointer --; md_operand (expressionP); + break; + /* Fall through */ + default: + if (is_name_beginner(c)) /* here if did not begin with a digit */ + { + /* + * Identifier begins here. + * This is kludged for speed, so code is repeated. + */ +isname: + name = -- input_line_pointer; + c = get_symbol_end(); + symbolP = symbol_find_or_make(name); + /* + * If we have an absolute symbol or a reg, then we know its value now. + */ + expressionP->X_seg = S_GET_SEGMENT(symbolP); + switch (expressionP->X_seg) + { + case SEG_ABSOLUTE: + case SEG_REGISTER: + expressionP->X_add_number = S_GET_VALUE(symbolP); + break; + + default: + expressionP->X_add_number = 0; + expressionP->X_add_symbol = symbolP; + } + * input_line_pointer = c; + expressionP->X_subtract_symbol = NULL; } - /* - * It is more 'efficient' to clean up the expressions when they are created. - * Doing it here saves lines of code. - */ - clean_up_expression (expressionP); - SKIP_WHITESPACE(); /*->1st char after operand. */ - know(* input_line_pointer != ' '); - return (expressionP->X_seg); + else + { + as_bad("Bad expression"); + expressionP->X_add_number = 0; + expressionP->X_seg = SEG_ABSOLUTE; + + } + + } + + + + + + + + /* + * It is more 'efficient' to clean up the expressionS when they are created. + * Doing it here saves lines of code. + */ + clean_up_expression (expressionP); + SKIP_WHITESPACE(); /*->1st char after operand. */ + know(* input_line_pointer != ' '); + return (expressionP->X_seg); } /* operand() */ + /* Internal. Simplify a struct expression for use by expr() */ @@ -479,29 +620,29 @@ register expressionS * expressionP; */ static void - clean_up_expression (expressionP) -register expressionS * expressionP; +clean_up_expression (expressionP) + register expressionS * expressionP; { - switch (expressionP->X_seg) - { - case SEG_ABSENT: - case SEG_PASS1: + switch (expressionP->X_seg) + { + case SEG_ABSENT: + case SEG_PASS1: expressionP->X_add_symbol = NULL; expressionP->X_subtract_symbol = NULL; expressionP->X_add_number = 0; break; - - case SEG_BIG: - case SEG_ABSOLUTE: + + case SEG_BIG: + case SEG_ABSOLUTE: expressionP->X_subtract_symbol = NULL; expressionP->X_add_symbol = NULL; break; - - case SEG_UNKNOWN: + + case SEG_UNKNOWN: expressionP->X_subtract_symbol = NULL; break; - - case SEG_DIFFERENCE: + + case SEG_DIFFERENCE: /* * It does not hurt to 'cancel' NULL==NULL * when comparing symbols for 'eq'ness. @@ -518,21 +659,21 @@ register expressionS * expressionP; expressionP->X_seg = SEG_ABSOLUTE; } break; - - case SEG_REGISTER: + + case SEG_REGISTER: expressionP->X_add_symbol = NULL; expressionP->X_subtract_symbol = NULL; break; - - default: + + default: if (SEG_NORMAL(expressionP->X_seg)) { - expressionP->X_subtract_symbol = NULL; + expressionP->X_subtract_symbol = NULL; } else { BAD_CASE (expressionP->X_seg); } break; - } + } } /* clean_up_expression() */ /* @@ -547,72 +688,72 @@ register expressionS * expressionP; */ static segT - expr_part (symbol_1_PP, symbol_2_P) -symbolS ** symbol_1_PP; -symbolS * symbol_2_P; +expr_part (symbol_1_PP, symbol_2_P) + symbolS ** symbol_1_PP; + symbolS * symbol_2_P; { segT return_value; #ifndef MANY_SEGMENTS know((* symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED(* symbol_1_PP))); know(symbol_2_P == NULL || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED(symbol_2_P))); #endif - if (* symbol_1_PP) + if (* symbol_1_PP) { - if (!S_IS_DEFINED(* symbol_1_PP)) + if (!S_IS_DEFINED(* symbol_1_PP)) { - if (symbol_2_P) + if (symbol_2_P) { return_value = SEG_PASS1; * symbol_1_PP = NULL; } - else + else { know(!S_IS_DEFINED(* symbol_1_PP)); return_value = SEG_UNKNOWN; } } - else + else { - if (symbol_2_P) + if (symbol_2_P) { - if (!S_IS_DEFINED(symbol_2_P)) + if (!S_IS_DEFINED(symbol_2_P)) { - * symbol_1_PP = NULL; - return_value = SEG_PASS1; + * symbol_1_PP = NULL; + return_value = SEG_PASS1; } - else + else { - /* {seg1} - {seg2} */ - as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"", - S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P)); - * symbol_1_PP = NULL; - return_value = SEG_ABSOLUTE; + /* {seg1} - {seg2} */ + as_bad("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"", + S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P)); + * symbol_1_PP = NULL; + return_value = SEG_ABSOLUTE; } } - else + else { - return_value = S_GET_SEGMENT(* symbol_1_PP); + return_value = S_GET_SEGMENT(* symbol_1_PP); } } } - else + else { /* (* symbol_1_PP) == NULL */ - if (symbol_2_P) + if (symbol_2_P) { - * symbol_1_PP = symbol_2_P; - return_value = S_GET_SEGMENT(symbol_2_P); + * symbol_1_PP = symbol_2_P; + return_value = S_GET_SEGMENT(symbol_2_P); } - else + else { - * symbol_1_PP = NULL; - return_value = SEG_ABSOLUTE; + * symbol_1_PP = NULL; + return_value = SEG_ABSOLUTE; } } #ifndef MANY_SEGMENTS - know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1); + know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1); #endif - know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value)); - return (return_value); + know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value)); + return (return_value); } /* expr_part() */ /* Expression parser. */ @@ -692,191 +833,191 @@ static const operatorT op_encoding [256] = { /* maps ASCII->operators */ * 3 * / % << >> */ static const operator_rankT - op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 }; +op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 }; /* Return resultP->X_seg. */ segT expr(rank, resultP) - register operator_rankT rank; /* Larger # is higher rank. */ - register expressionS *resultP; /* Deliver result here. */ +register operator_rankT rank; /* Larger # is higher rank. */ +register expressionS *resultP; /* Deliver result here. */ { - expressionS right; - register operatorT op_left; - register char c_left; /* 1st operator character. */ - register operatorT op_right; - register char c_right; - - know(rank >= 0); - (void)operand (resultP); - know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */ - c_left = * input_line_pointer; /* Potential operator character. */ - op_left = op_encoding [c_left]; - while (op_left != O_illegal && op_rank [(int) op_left] > rank) + expressionS right; + register operatorT op_left; + register char c_left; /* 1st operator character. */ + register operatorT op_right; + register char c_right; + + know(rank >= 0); + (void)operand (resultP); + know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */ + c_left = * input_line_pointer; /* Potential operator character. */ + op_left = op_encoding [c_left]; + while (op_left != O_illegal && op_rank [(int) op_left] > rank) { - input_line_pointer ++; /*->after 1st character of operator. */ - /* Operators "<<" and ">>" have 2 characters. */ - if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>')) + input_line_pointer ++; /*->after 1st character of operator. */ + /* Operators "<<" and ">>" have 2 characters. */ + if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>')) { - input_line_pointer ++; + input_line_pointer ++; } /*->after operator. */ - if (SEG_ABSENT == expr (op_rank[(int) op_left], &right)) + if (SEG_ABSENT == expr (op_rank[(int) op_left], &right)) { - as_warn("Missing operand value assumed absolute 0."); - resultP->X_add_number = 0; - resultP->X_subtract_symbol = NULL; - resultP->X_add_symbol = NULL; - resultP->X_seg = SEG_ABSOLUTE; + as_warn("Missing operand value assumed absolute 0."); + resultP->X_add_number = 0; + resultP->X_subtract_symbol = NULL; + resultP->X_add_symbol = NULL; + resultP->X_seg = SEG_ABSOLUTE; } - know(* input_line_pointer != ' '); - c_right = * input_line_pointer; - op_right = op_encoding [c_right]; - if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>')) + know(* input_line_pointer != ' '); + c_right = * input_line_pointer; + op_right = op_encoding [c_right]; + if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>')) { - input_line_pointer ++; + input_line_pointer ++; } /*->after operator. */ - know((int) op_right == 0 || op_rank [(int) op_right] <= op_rank[(int) op_left]); - /* input_line_pointer->after right-hand quantity. */ - /* left-hand quantity in resultP */ - /* right-hand quantity in right. */ - /* operator in op_left. */ - if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1) + know((int) op_right == 0 || op_rank [(int) op_right] <= op_rank[(int) op_left]); + /* input_line_pointer->after right-hand quantity. */ + /* left-hand quantity in resultP */ + /* right-hand quantity in right. */ + /* operator in op_left. */ + if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1) { - resultP->X_seg = SEG_PASS1; + resultP->X_seg = SEG_PASS1; } - else + else { - if (resultP->X_seg == SEG_BIG) + if (resultP->X_seg == SEG_BIG) { - as_warn("Left operand of %c is a %s. Integer 0 assumed.", - c_left, resultP->X_add_number > 0 ? "bignum" : "float"); - resultP->X_seg = SEG_ABSOLUTE; - resultP->X_add_symbol = 0; - resultP->X_subtract_symbol = 0; - resultP->X_add_number = 0; + as_warn("Left operand of %c is a %s. Integer 0 assumed.", + c_left, resultP->X_add_number > 0 ? "bignum" : "float"); + resultP->X_seg = SEG_ABSOLUTE; + resultP->X_add_symbol = 0; + resultP->X_subtract_symbol = 0; + resultP->X_add_number = 0; } - if (right . X_seg == SEG_BIG) + if (right . X_seg == SEG_BIG) { - as_warn("Right operand of %c is a %s. Integer 0 assumed.", - c_left, right . X_add_number > 0 ? "bignum" : "float"); - right . X_seg = SEG_ABSOLUTE; - right . X_add_symbol = 0; - right . X_subtract_symbol = 0; - right . X_add_number = 0; + as_warn("Right operand of %c is a %s. Integer 0 assumed.", + c_left, right . X_add_number > 0 ? "bignum" : "float"); + right . X_seg = SEG_ABSOLUTE; + right . X_add_symbol = 0; + right . X_subtract_symbol = 0; + right . X_add_number = 0; } - if (op_left == O_subtract) + if (op_left == O_subtract) { - /* - * Convert - into + by exchanging symbols and negating number. - * I know -infinity can't be negated in 2's complement: - * but then it can't be subtracted either. This trick - * does not cause any further inaccuracy. - */ - - register symbolS * symbolP; - - right . X_add_number = - right . X_add_number; - symbolP = right . X_add_symbol; - right . X_add_symbol = right . X_subtract_symbol; - right . X_subtract_symbol = symbolP; - if (symbolP) + /* + * Convert - into + by exchanging symbolS and negating number. + * I know -infinity can't be negated in 2's complement: + * but then it can't be subtracted either. This trick + * does not cause any further inaccuracy. + */ + + register symbolS * symbolP; + + right . X_add_number = - right . X_add_number; + symbolP = right . X_add_symbol; + right . X_add_symbol = right . X_subtract_symbol; + right . X_subtract_symbol = symbolP; + if (symbolP) { - right . X_seg = SEG_DIFFERENCE; + right . X_seg = SEG_DIFFERENCE; } - op_left = O_add; + op_left = O_add; } - - if (op_left == O_add) + + if (op_left == O_add) { - segT seg1; - segT seg2; + segT seg1; + segT seg2; #ifndef MANY_SEGMENTS - know(resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1); - know(right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1); + know(resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1); + know(right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1); #endif - clean_up_expression (& right); - clean_up_expression (resultP); - - seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol); - seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol); - if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) { - need_pass_2 = 1; - resultP->X_seg = SEG_PASS1; - } else if (seg2 == SEG_ABSOLUTE) - resultP->X_seg = seg1; - else if (seg1 != SEG_UNKNOWN - && seg1 != SEG_ABSOLUTE - && seg2 != SEG_UNKNOWN - && seg1 != seg2) { - know(seg2 != SEG_ABSOLUTE); - know(resultP->X_subtract_symbol); + clean_up_expression (& right); + clean_up_expression (resultP); + + seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol); + seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol); + if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) { + need_pass_2 = 1; + resultP->X_seg = SEG_PASS1; + } else if (seg2 == SEG_ABSOLUTE) + resultP->X_seg = seg1; + else if (seg1 != SEG_UNKNOWN + && seg1 != SEG_ABSOLUTE + && seg2 != SEG_UNKNOWN + && seg1 != seg2) { + know(seg2 != SEG_ABSOLUTE); + know(resultP->X_subtract_symbol); #ifndef MANY_SEGMENTS - know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS); - know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS); + know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS); + know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS); #endif - know(resultP->X_add_symbol); - know(resultP->X_subtract_symbol); - as_bad("Expression too complex: forgetting %s - %s", - S_GET_NAME(resultP->X_add_symbol), - S_GET_NAME(resultP->X_subtract_symbol)); - resultP->X_seg = SEG_ABSOLUTE; - /* Clean_up_expression() will do the rest. */ - } else - resultP->X_seg = SEG_DIFFERENCE; - - resultP->X_add_number += right . X_add_number; - clean_up_expression (resultP); - } - else + know(resultP->X_add_symbol); + know(resultP->X_subtract_symbol); + as_bad("Expression too complex: forgetting %s - %s", + S_GET_NAME(resultP->X_add_symbol), + S_GET_NAME(resultP->X_subtract_symbol)); + resultP->X_seg = SEG_ABSOLUTE; + /* Clean_up_expression() will do the rest. */ + } else + resultP->X_seg = SEG_DIFFERENCE; + + resultP->X_add_number += right . X_add_number; + clean_up_expression (resultP); + } + else { /* Not +. */ - if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN) + if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN) { - resultP->X_seg = SEG_PASS1; - need_pass_2 = 1; + resultP->X_seg = SEG_PASS1; + need_pass_2 = 1; } - else + else { - resultP->X_subtract_symbol = NULL; - resultP->X_add_symbol = NULL; - /* Will be SEG_ABSOLUTE. */ - if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE) + resultP->X_subtract_symbol = NULL; + resultP->X_add_symbol = NULL; + /* Will be SEG_ABSOLUTE. */ + if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE) { - as_bad("Relocation error. Absolute 0 assumed."); - resultP->X_seg = SEG_ABSOLUTE; - resultP->X_add_number = 0; + as_bad("Relocation error. Absolute 0 assumed."); + resultP->X_seg = SEG_ABSOLUTE; + resultP->X_add_number = 0; } - else + else { - switch (op_left) + switch (op_left) { case O_bit_inclusive_or: - resultP->X_add_number |= right . X_add_number; - break; - + resultP->X_add_number |= right . X_add_number; + break; + case O_modulus: - if (right . X_add_number) + if (right . X_add_number) { - resultP->X_add_number %= right . X_add_number; + resultP->X_add_number %= right . X_add_number; } - else + else { - as_warn("Division by 0. 0 assumed."); - resultP->X_add_number = 0; + as_warn("Division by 0. 0 assumed."); + resultP->X_add_number = 0; } - break; - + break; + case O_bit_and: - resultP->X_add_number &= right . X_add_number; - break; - + resultP->X_add_number &= right . X_add_number; + break; + case O_multiply: - resultP->X_add_number *= right . X_add_number; - break; - + resultP->X_add_number *= right . X_add_number; + break; + case O_divide: - if (right . X_add_number) + if (right . X_add_number) { - resultP->X_add_number /= right . X_add_number; + resultP->X_add_number /= right . X_add_number; } - else + else { as_warn("Division by 0. 0 assumed."); resultP->X_add_number = 0; |