aboutsummaryrefslogtreecommitdiff
path: root/gas/expr.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/expr.c')
-rw-r--r--gas/expr.c1251
1 files changed, 696 insertions, 555 deletions
diff --git a/gas/expr.c b/gas/expr.c
index 601feaf..c3bd0b7 100644
--- a/gas/expr.c
+++ b/gas/expr.c
@@ -1,5 +1,5 @@
/* expr.c -operands, expressions-
- Copyright (C) 1987, 1990, 1991 Free Software Foundation, Inc.
+ Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
@@ -31,11 +31,11 @@
#include "obstack.h"
-#ifdef __STDC__
+#if __STDC__ == 1
static void clean_up_expression(expressionS *expressionP);
#else /* __STDC__ */
static void clean_up_expression(); /* Internal. */
-#endif /* __STDC__ */
+#endif /* not __STDC__ */
extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
extern const char FLT_CHARS[];
@@ -67,6 +67,257 @@ FLONUM_TYPE generic_floating_point_number =
/* If nonzero, we've been asked to assemble nan, +inf or -inf */
int generic_floating_point_magic;
+floating_constant(expressionP)
+expressionS *expressionP;
+{
+ /* input_line_pointer->*/
+ /* floating-point constant. */
+ int error_code;
+
+ error_code = atof_generic
+ (& input_line_pointer, ".", EXP_CHARS,
+ & generic_floating_point_number);
+
+ if (error_code)
+ {
+ if (error_code == ERROR_EXPONENT_OVERFLOW)
+ {
+ as_bad("bad floating-point constant: exponent overflow, probably assembling junk");
+ }
+ else
+ {
+ as_bad("bad floating-point constant: unknown error code=%d.", error_code);
+ }
+ }
+ expressionP->X_seg = SEG_BIG;
+ /* input_line_pointer->just after constant, */
+ /* which may point to whitespace. */
+ expressionP->X_add_number =-1;
+
+}
+
+
+
+integer_constant(radix, expressionP)
+int radix;
+expressionS *expressionP;
+
+
+{
+ register char * digit_2; /*->2nd digit of number. */
+ char c;
+
+ register valueT number; /* offset or (absolute) value */
+ register short int digit; /* value of next digit in current radix */
+ register short int maxdig = 0; /* highest permitted digit value. */
+ register int too_many_digits = 0; /* if we see >= this number of */
+ register char *name; /* points to name of symbol */
+ register symbolS * symbolP; /* points to symbol */
+
+ int small; /* true if fits in 32 bits. */
+ extern char hex_value[]; /* in hex_value.c */
+
+ /* may be bignum, or may fit in 32 bits. */
+ /*
+ * most numbers fit into 32 bits, and we want this case to be fast.
+ * so we pretend it will fit into 32 bits. if, after making up a 32
+ * bit number, we realise that we have scanned more digits than
+ * comfortably fit into 32 bits, we re-scan the digits coding
+ * them into a bignum. for decimal and octal numbers we are conservative: some
+ * numbers may be assumed bignums when in fact they do fit into 32 bits.
+ * numbers of any radix can have excess leading zeros: we strive
+ * to recognise this and cast them back into 32 bits.
+ * we must check that the bignum really is more than 32
+ * bits, and change it back to a 32-bit number if it fits.
+ * the number we are looking for is expected to be positive, but
+ * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
+ * number. the cavalier approach is for speed in ordinary cases.
+ */
+
+ switch (radix)
+ {
+
+ case 2:
+ maxdig = 2;
+ too_many_digits = 33;
+ break;
+ case 8:
+ maxdig = radix = 8;
+ too_many_digits = 11;
+ break;
+ case 16:
+
+
+ maxdig = radix = 16;
+ too_many_digits = 9;
+ break;
+ case 10:
+ maxdig = radix = 10;
+ too_many_digits = 11;
+ }
+ c = *input_line_pointer;
+ input_line_pointer++;
+ digit_2 = input_line_pointer;
+ for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
+ {
+ number = number * radix + digit;
+ }
+ /* c contains character after number. */
+ /* input_line_pointer->char after c. */
+ small = input_line_pointer - digit_2 < too_many_digits;
+ if (! small)
+ {
+ /*
+ * we saw a lot of digits. manufacture a bignum the hard way.
+ */
+ LITTLENUM_TYPE * leader; /*->high order littlenum of the bignum. */
+ LITTLENUM_TYPE * pointer; /*->littlenum we are frobbing now. */
+ long carry;
+
+ leader = generic_bignum;
+ generic_bignum [0] = 0;
+ generic_bignum [1] = 0;
+ /* we could just use digit_2, but lets be mnemonic. */
+ input_line_pointer = -- digit_2; /*->1st digit. */
+ c = *input_line_pointer ++;
+ for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++)
+ {
+ for (pointer = generic_bignum;
+ pointer <= leader;
+ pointer ++)
+ {
+ long work;
+
+ work = carry + radix * * pointer;
+ * pointer = work & LITTLENUM_MASK;
+ carry = work >> LITTLENUM_NUMBER_OF_BITS;
+ }
+ if (carry)
+ {
+ if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
+ { /* room to grow a longer bignum. */
+ * ++ leader = carry;
+ }
+ }
+ }
+ /* again, c is char after number, */
+ /* input_line_pointer->after c. */
+ know(sizeof (int) * 8 == 32);
+ know(LITTLENUM_NUMBER_OF_BITS == 16);
+ /* hence the constant "2" in the next line. */
+ if (leader < generic_bignum + 2)
+ { /* will fit into 32 bits. */
+ number =
+ ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
+ | (generic_bignum [0] & LITTLENUM_MASK);
+ small = 1;
+ }
+ else
+ {
+ number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
+ }
+ }
+ if (small)
+ {
+ /*
+ * here with number, in correct radix. c is the next char.
+ * note that unlike un*x, we allow "011f" "0x9f" to
+ * both mean the same as the (conventional) "9f". this is simply easier
+ * than checking for strict canonical form. syntax sux!
+ */
+ if (number<10)
+ {
+ if (0
+#ifdef local_labels_fb
+ || c=='b'
+#endif
+#ifdef local_labels_dollar
+ || (c=='$' && local_label_defined[number])
+#endif
+ )
+ {
+ /*
+ * backward ref to local label.
+ * because it is backward, expect it to be defined.
+ */
+ /*
+ * construct a local label.
+ */
+ name = local_label_name ((int)number, 0);
+ if (((symbolP = symbol_find(name)) != NULL) /* seen before */
+ && (S_IS_DEFINED(symbolP))) /* symbol is defined: ok */
+ { /* expected path: symbol defined. */
+ /* local labels are never absolute. don't waste time checking absoluteness. */
+ know(SEG_NORMAL(S_GET_SEGMENT(symbolP)));
+
+ expressionP->X_add_symbol = symbolP;
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = S_GET_SEGMENT(symbolP);
+ }
+ else
+ { /* either not seen or not defined. */
+ as_bad("backw. ref to unknown label \"%d:\", 0 assumed.",
+ number);
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ }
+ }
+ else
+ {
+ if (0
+#ifdef local_labels_fb
+ || c == 'f'
+#endif
+#ifdef local_labels_dollar
+ || (c=='$' && !local_label_defined[number])
+#endif
+ )
+ {
+ /*
+ * forward reference. expect symbol to be undefined or
+ * unknown. undefined: seen it before. unknown: never seen
+ * it in this pass.
+ * construct a local label name, then an undefined symbol.
+ * don't create a xseg frag for it: caller may do that.
+ * just return it as never seen before.
+ */
+ name = local_label_name((int)number, 1);
+ symbolP = symbol_find_or_make(name);
+ /* we have no need to check symbol properties. */
+#ifndef many_segments
+ /* since "know" puts its arg into a "string", we
+ can't have newlines in the argument. */
+ know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA);
+#endif
+ expressionP->X_add_symbol = symbolP;
+ expressionP->X_seg = SEG_UNKNOWN;
+ expressionP->X_subtract_symbol = NULL;
+ expressionP->X_add_number = 0;
+ }
+ else
+ { /* really a number, not a local label. */
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ input_line_pointer --; /* restore following character. */
+ } /* if (c=='f') */
+ } /* if (c=='b') */
+ }
+ else
+ { /* really a number. */
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ input_line_pointer --; /* restore following character. */
+ } /* if (number<10) */
+ }
+ else
+ {
+ expressionP->X_add_number = number;
+ expressionP->X_seg = SEG_BIG;
+ input_line_pointer --; /*->char following number. */
+ } /* if (small) */
+}
+
+
/*
* Summary of operand().
*
@@ -80,390 +331,280 @@ int generic_floating_point_magic;
*
*/
+
+
static segT
- operand (expressionP)
-register expressionS * expressionP;
+operand (expressionP)
+ register expressionS * expressionP;
{
- register char c;
- register char *name; /* points to name of symbol */
- register symbolS * symbolP; /* Points to symbol */
-
- extern char hex_value[]; /* In hex_value.c */
+ register char c;
+ register symbolS * symbolP; /* points to symbol */
+ register char *name; /* points to name of symbol */
+ /* invented for humans only, hope */
+ /* optimising compiler flushes it! */
+ register short int radix; /* 2, 8, 10 or 16, 0 when floating */
+ /* 0 means we saw start of a floating- */
+ /* point constant. */
+
+ /* digits, assume it is a bignum. */
+
+
+
+
+ SKIP_WHITESPACE(); /* leading whitespace is part of operand. */
+ c = * input_line_pointer ++; /* input_line_pointer->past char in c. */
+
+ switch (c)
+ {
+#ifdef MRI
+ case '%':
+ integer_constant(2, expressionP);
+ break;
+ case '@':
+ integer_constant(8, expressionP);
+ break;
+ case '$':
+ integer_constant(16, expressionP);
+ break;
+#endif
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ input_line_pointer--;
- SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
- c = * input_line_pointer ++; /* Input_line_pointer->past char in c. */
- if (isdigit(c) || (c == 'H' && input_line_pointer[0] == '\''))
+ integer_constant(10, expressionP);
+ break;
+
+ case '0':
+ /* non-decimal radix */
+
+
+ c = *input_line_pointer;
+ switch (c)
{
- register valueT number; /* offset or (absolute) value */
- register short int digit; /* value of next digit in current radix */
- /* invented for humans only, hope */
- /* optimising compiler flushes it! */
- register short int radix; /* 2, 8, 10 or 16 */
- /* 0 means we saw start of a floating- */
- /* point constant. */
- register short int maxdig = 0;/* Highest permitted digit value. */
- register int too_many_digits = 0; /* If we see >= this number of */
- /* digits, assume it is a bignum. */
- register char * digit_2; /*->2nd digit of number. */
- int small; /* TRUE if fits in 32 bits. */
-
-
- if (c == 'H' || c == '0') { /* non-decimal radix */
- if ((c = *input_line_pointer ++)=='x' || c=='X' || c=='\'') {
- c = *input_line_pointer ++; /* read past "0x" or "0X" or H' */
- maxdig = radix = 16;
- too_many_digits = 9;
- } else {
- /* If it says '0f' and the line ends or it DOESN'T look like
- a floating point #, its a local label ref. DTRT */
- /* likewise for the b's. xoxorich. */
- if ((c == 'f' || c == 'b' || c == 'B')
- && (!*input_line_pointer ||
- (!strchr("+-.0123456789",*input_line_pointer) &&
- !strchr(EXP_CHARS,*input_line_pointer)))) {
- maxdig = radix = 10;
- too_many_digits = 11;
- c = '0';
- input_line_pointer -= 2;
-
- } else if (c == 'b' || c == 'B') {
- c = *input_line_pointer++;
- maxdig = radix = 2;
- too_many_digits = 33;
-
- } else if (c && strchr(FLT_CHARS,c)) {
- radix = 0; /* Start of floating-point constant. */
- /* input_line_pointer->1st char of number. */
- expressionP->X_add_number = -(isupper(c) ? tolower(c) : c);
-
- } else { /* By elimination, assume octal radix. */
- radix = maxdig = 8;
- too_many_digits = 11;
- }
- } /* c == char after "0" or "0x" or "0X" or "0e" etc. */
- } else {
- maxdig = radix = 10;
- too_many_digits = 11;
- } /* if operand starts with a zero */
-
- if (radix) { /* Fixed-point integer constant. */
- /* May be bignum, or may fit in 32 bits. */
- /*
- * Most numbers fit into 32 bits, and we want this case to be fast.
- * So we pretend it will fit into 32 bits. If, after making up a 32
- * bit number, we realise that we have scanned more digits than
- * comfortably fit into 32 bits, we re-scan the digits coding
- * them into a bignum. For decimal and octal numbers we are conservative: some
- * numbers may be assumed bignums when in fact they do fit into 32 bits.
- * Numbers of any radix can have excess leading zeros: we strive
- * to recognise this and cast them back into 32 bits.
- * We must check that the bignum really is more than 32
- * bits, and change it back to a 32-bit number if it fits.
- * The number we are looking for is expected to be positive, but
- * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
- * number. The cavalier approach is for speed in ordinary cases.
- */
- digit_2 = input_line_pointer;
- for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
- {
- number = number * radix + digit;
- }
- /* C contains character after number. */
- /* Input_line_pointer->char after C. */
- small = input_line_pointer - digit_2 < too_many_digits;
- if (! small)
- {
- /*
- * We saw a lot of digits. Manufacture a bignum the hard way.
- */
- LITTLENUM_TYPE * leader; /*->high order littlenum of the bignum. */
- LITTLENUM_TYPE * pointer; /*->littlenum we are frobbing now. */
- long carry;
-
- leader = generic_bignum;
- generic_bignum [0] = 0;
- generic_bignum [1] = 0;
- /* We could just use digit_2, but lets be mnemonic. */
- input_line_pointer = -- digit_2; /*->1st digit. */
- c = *input_line_pointer ++;
- for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++)
- {
- for (pointer = generic_bignum;
- pointer <= leader;
- pointer ++)
- {
- long work;
-
- work = carry + radix * * pointer;
- * pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
- if (carry)
- {
- if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
- { /* Room to grow a longer bignum. */
- * ++ leader = carry;
- }
- }
- }
- /* Again, C is char after number, */
- /* input_line_pointer->after C. */
- know(sizeof (int) * 8 == 32);
- know(LITTLENUM_NUMBER_OF_BITS == 16);
- /* Hence the constant "2" in the next line. */
- if (leader < generic_bignum + 2)
- { /* Will fit into 32 bits. */
- number =
- ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
- | (generic_bignum [0] & LITTLENUM_MASK);
- small = 1;
- }
- else
- {
- number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
- }
- }
- if (small)
- {
- /*
- * Here with number, in correct radix. c is the next char.
- * Note that unlike Un*x, we allow "011f" "0x9f" to
- * both mean the same as the (conventional) "9f". This is simply easier
- * than checking for strict canonical form. Syntax sux!
- */
- if (number<10)
- {
- if (0
-#ifdef LOCAL_LABELS_FB
- || c=='b'
-#endif
-#ifdef LOCAL_LABELS_DOLLAR
- || (c=='$' && local_label_defined[number])
-#endif
- )
- {
- /*
- * Backward ref to local label.
- * Because it is backward, expect it to be DEFINED.
- */
- /*
- * Construct a local label.
- */
- name = local_label_name ((int)number, 0);
- if (((symbolP = symbol_find(name)) != NULL) /* seen before */
- && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */
- { /* Expected path: symbol defined. */
- /* Local labels are never absolute. Don't waste time checking absoluteness. */
- know(SEG_NORMAL(S_GET_SEGMENT(symbolP)));
-
- expressionP->X_add_symbol = symbolP;
- expressionP->X_add_number = 0;
- expressionP->X_seg = S_GET_SEGMENT(symbolP);
- }
- else
- { /* Either not seen or not defined. */
- as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.",
- number);
- expressionP->X_add_number = 0;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- }
- else
- {
- if (0
-#ifdef LOCAL_LABELS_FB
- || c == 'f'
-#endif
-#ifdef LOCAL_LABELS_DOLLAR
- || (c=='$' && !local_label_defined[number])
-#endif
- )
- {
- /*
- * Forward reference. Expect symbol to be undefined or
- * unknown. Undefined: seen it before. Unknown: never seen
- * it in this pass.
- * Construct a local label name, then an undefined symbol.
- * Don't create a XSEG frag for it: caller may do that.
- * Just return it as never seen before.
- */
- name = local_label_name((int)number, 1);
- symbolP = symbol_find_or_make(name);
- /* We have no need to check symbol properties. */
-#ifndef MANY_SEGMENTS
- /* Since "know" puts its arg into a "string", we
- can't have newlines in the argument. */
- know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN || S_GET_SEGMENT(symbolP) == SEG_TEXT || S_GET_SEGMENT(symbolP) == SEG_DATA);
-#endif
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = SEG_UNKNOWN;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- }
- else
- { /* Really a number, not a local label. */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer --; /* Restore following character. */
- } /* if (c=='f') */
- } /* if (c=='b') */
- }
- else
- { /* Really a number. */
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_ABSOLUTE;
- input_line_pointer --; /* Restore following character. */
- } /* if (number<10) */
- }
- else
- {
- expressionP->X_add_number = number;
- expressionP->X_seg = SEG_BIG;
- input_line_pointer --; /*->char following number. */
- } /* if (small) */
- } /* (If integer constant) */
- else
- { /* input_line_pointer->*/
- /* floating-point constant. */
- int error_code;
-
- error_code = atof_generic
- (& input_line_pointer, ".", EXP_CHARS,
- & generic_floating_point_number);
-
- if (error_code)
- {
- if (error_code == ERROR_EXPONENT_OVERFLOW)
- {
- as_bad("Bad floating-point constant: exponent overflow, probably assembling junk");
- }
- else
- {
- as_bad("Bad floating-point constant: unknown error code=%d.", error_code);
- }
- }
- expressionP->X_seg = SEG_BIG;
- /* input_line_pointer->just after constant, */
- /* which may point to whitespace. */
- know(expressionP->X_add_number < 0); /* < 0 means "floating point". */
- } /* if (not floating-point constant) */
+
+ default:
+ /* The string was only zero */
+ expressionP->X_add_symbol = 0;
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ break;
+
+ case 'x':
+ case 'X':
+ input_line_pointer++;
+ integer_constant(16, expressionP);
+ break;
+ case 'B':
+ case 'b':
+ input_line_pointer++;
+ integer_constant(2, expressionP);
+ break;
+
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ integer_constant(8, expressionP);
+ break;
+
+ case 'f':
+ /* if it says '0f' and the line ends or it doesn't look like
+ a floating point #, its a local label ref. dtrt */
+ /* likewise for the b's. xoxorich. */
+ if ((c == 'f' || c == 'b' || c == 'b')
+ && (!*input_line_pointer ||
+ (!strchr("+-.0123456789",*input_line_pointer) &&
+ !strchr(EXP_CHARS,*input_line_pointer))))
+ {
+ input_line_pointer -= 2;
+ integer_constant(10, expressionP);
+ break;
+ }
+
+ case 'd':
+ case 'D':
+ case 'F':
+
+ case 'e':
+ case 'E':
+ case 'g':
+ case 'G':
+
+ input_line_pointer++;
+ floating_constant(expressionP);
+ break;
}
- else if(c=='.' && !is_part_of_name(*input_line_pointer)) {
- extern struct obstack frags;
-
- /*
- JF: '.' is pseudo symbol with value of current location in current
- segment. . .
- */
- symbolP = symbol_new("L0\001",
- now_seg,
- (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
- frag_now);
-
- expressionP->X_add_number=0;
- expressionP->X_add_symbol=symbolP;
- expressionP->X_seg = now_seg;
-
- } else if (is_name_beginner(c)) /* here if did not begin with a digit */
+
+ break;
+ case '(':
+ /* didn't begin with digit & not a name */
+ {
+ (void)expression(expressionP);
+ /* Expression() will pass trailing whitespace */
+ if (* input_line_pointer ++ != ')')
{
- /*
- * Identifier begins here.
- * This is kludged for speed, so code is repeated.
- */
- name = -- input_line_pointer;
- c = get_symbol_end();
- symbolP = symbol_find_or_make(name);
- /*
- * If we have an absolute symbol or a reg, then we know its value now.
- */
- expressionP->X_seg = S_GET_SEGMENT(symbolP);
- switch (expressionP->X_seg)
+ as_bad("Missing ')' assumed");
+ input_line_pointer --;
+ }
+ /* here with input_line_pointer->char after "(...)" */
+ }
+ return;
+
+
+ case '\'':
+ /*
+ * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
+ * for a single quote. The next character, parity errors and all, is taken
+ * as the value of the operand. VERY KINKY.
+ */
+ expressionP->X_add_number = * input_line_pointer ++;
+ expressionP->X_seg = SEG_ABSOLUTE;
+ break;
+
+ case '~':
+ case '-':
+ case '+':
+
+ {
+ /* unary operator: hope for SEG_ABSOLUTE */
+ switch(operand (expressionP)) {
+ case SEG_ABSOLUTE:
+ /* input_line_pointer -> char after operand */
+ if ( c=='-' )
{
- case SEG_ABSOLUTE:
- case SEG_REGISTER:
- expressionP->X_add_number = S_GET_VALUE(symbolP);
- break;
-
- default:
- expressionP->X_add_number = 0;
- expressionP->X_add_symbol = symbolP;
+ expressionP -> X_add_number = - expressionP -> X_add_number;
+ /*
+ * Notice: '-' may overflow: no warning is given. This is compatible
+ * with other people's assemblers. Sigh.
+ */
}
- * input_line_pointer = c;
- expressionP->X_subtract_symbol = NULL;
- }
- else if (c=='(')/* didn't begin with digit & not a name */
- {
- (void)expression(expressionP);
- /* Expression() will pass trailing whitespace */
- if (* input_line_pointer ++ != ')')
+ else
{
- as_bad("Missing ')' assumed");
- input_line_pointer --;
+ expressionP -> X_add_number = ~ expressionP -> X_add_number;
}
- /* here with input_line_pointer->char after "(...)" */
- }
- else if (c == '~' || c == '-' || c == '+') {
- /* unary operator: hope for SEG_ABSOLUTE */
- switch (operand (expressionP)) {
- case SEG_ABSOLUTE:
- /* input_line_pointer->char after operand */
- if (c=='-') {
- expressionP->X_add_number = - expressionP->X_add_number;
- /*
- * Notice: '-' may overflow: no warning is given. This is compatible
- * with other people's assemblers. Sigh.
- */
- } else if (c == '~') {
- expressionP->X_add_number = ~ expressionP->X_add_number;
- } else if (c != '+') {
- know(0);
- } /* switch on unary operator */
+ break;
+
+ case SEG_TEXT:
+ case SEG_DATA:
+ case SEG_BSS:
+ case SEG_PASS1:
+ case SEG_UNKNOWN:
+ if(c=='-') { /* JF I hope this hack works */
+ expressionP->X_subtract_symbol=expressionP->X_add_symbol;
+ expressionP->X_add_symbol=0;
+ expressionP->X_seg=SEG_DIFFERENCE;
break;
-
- default: /* unary on non-absolute is unsuported */
- if (!SEG_NORMAL(operand(expressionP)))
- {
- as_bad("Unary operator %c ignored because bad operand follows", c);
- break;
- }
- /* Fall through for normal segments ****/
- case SEG_PASS1:
- case SEG_UNKNOWN:
- if(c=='-') { /* JF I hope this hack works */
- expressionP->X_subtract_symbol=expressionP->X_add_symbol;
- expressionP->X_add_symbol=0;
- expressionP->X_seg=SEG_DIFFERENCE;
- break;
- }
- /* Expression undisturbed from operand(). */
- }
- }
- else if (c=='\'')
+ }
+ default: /* unary on non-absolute is unsuported */
+ as_warn("Unary operator %c ignored because bad operand follows", c);
+ break;
+ /* Expression undisturbed from operand(). */
+ }
+ }
+
+
+
+ break;
+
+ case '.':
+ if( !is_part_of_name(*input_line_pointer))
{
- /*
- * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
- * for a single quote. The next character, parity errors and all, is taken
- * as the value of the operand. VERY KINKY.
- */
- expressionP->X_add_number = * input_line_pointer ++;
- expressionP->X_seg = SEG_ABSOLUTE;
+ extern struct obstack frags;
+
+ /*
+ JF: '.' is pseudo symbol with value of current location in current
+ segment. . .
+ */
+ symbolP = symbol_new("L0\001",
+ now_seg,
+ (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
+ frag_now);
+
+ expressionP->X_add_number=0;
+ expressionP->X_add_symbol=symbolP;
+ expressionP->X_seg = now_seg;
+ break;
+
}
- else
+ else
{
+ goto isname;
+
+
+ }
+
+ case '\n':
/* can't imagine any other kind of operand */
expressionP->X_seg = SEG_ABSENT;
input_line_pointer --;
md_operand (expressionP);
+ break;
+ /* Fall through */
+ default:
+ if (is_name_beginner(c)) /* here if did not begin with a digit */
+ {
+ /*
+ * Identifier begins here.
+ * This is kludged for speed, so code is repeated.
+ */
+isname:
+ name = -- input_line_pointer;
+ c = get_symbol_end();
+ symbolP = symbol_find_or_make(name);
+ /*
+ * If we have an absolute symbol or a reg, then we know its value now.
+ */
+ expressionP->X_seg = S_GET_SEGMENT(symbolP);
+ switch (expressionP->X_seg)
+ {
+ case SEG_ABSOLUTE:
+ case SEG_REGISTER:
+ expressionP->X_add_number = S_GET_VALUE(symbolP);
+ break;
+
+ default:
+ expressionP->X_add_number = 0;
+ expressionP->X_add_symbol = symbolP;
+ }
+ * input_line_pointer = c;
+ expressionP->X_subtract_symbol = NULL;
}
- /*
- * It is more 'efficient' to clean up the expressions when they are created.
- * Doing it here saves lines of code.
- */
- clean_up_expression (expressionP);
- SKIP_WHITESPACE(); /*->1st char after operand. */
- know(* input_line_pointer != ' ');
- return (expressionP->X_seg);
+ else
+ {
+ as_bad("Bad expression");
+ expressionP->X_add_number = 0;
+ expressionP->X_seg = SEG_ABSOLUTE;
+
+ }
+
+ }
+
+
+
+
+
+
+
+ /*
+ * It is more 'efficient' to clean up the expressionS when they are created.
+ * Doing it here saves lines of code.
+ */
+ clean_up_expression (expressionP);
+ SKIP_WHITESPACE(); /*->1st char after operand. */
+ know(* input_line_pointer != ' ');
+ return (expressionP->X_seg);
} /* operand() */
+
/* Internal. Simplify a struct expression for use by expr() */
@@ -479,29 +620,29 @@ register expressionS * expressionP;
*/
static void
- clean_up_expression (expressionP)
-register expressionS * expressionP;
+clean_up_expression (expressionP)
+ register expressionS * expressionP;
{
- switch (expressionP->X_seg)
- {
- case SEG_ABSENT:
- case SEG_PASS1:
+ switch (expressionP->X_seg)
+ {
+ case SEG_ABSENT:
+ case SEG_PASS1:
expressionP->X_add_symbol = NULL;
expressionP->X_subtract_symbol = NULL;
expressionP->X_add_number = 0;
break;
-
- case SEG_BIG:
- case SEG_ABSOLUTE:
+
+ case SEG_BIG:
+ case SEG_ABSOLUTE:
expressionP->X_subtract_symbol = NULL;
expressionP->X_add_symbol = NULL;
break;
-
- case SEG_UNKNOWN:
+
+ case SEG_UNKNOWN:
expressionP->X_subtract_symbol = NULL;
break;
-
- case SEG_DIFFERENCE:
+
+ case SEG_DIFFERENCE:
/*
* It does not hurt to 'cancel' NULL==NULL
* when comparing symbols for 'eq'ness.
@@ -518,21 +659,21 @@ register expressionS * expressionP;
expressionP->X_seg = SEG_ABSOLUTE;
}
break;
-
- case SEG_REGISTER:
+
+ case SEG_REGISTER:
expressionP->X_add_symbol = NULL;
expressionP->X_subtract_symbol = NULL;
break;
-
- default:
+
+ default:
if (SEG_NORMAL(expressionP->X_seg)) {
- expressionP->X_subtract_symbol = NULL;
+ expressionP->X_subtract_symbol = NULL;
}
else {
BAD_CASE (expressionP->X_seg);
}
break;
- }
+ }
} /* clean_up_expression() */
/*
@@ -547,72 +688,72 @@ register expressionS * expressionP;
*/
static segT
- expr_part (symbol_1_PP, symbol_2_P)
-symbolS ** symbol_1_PP;
-symbolS * symbol_2_P;
+expr_part (symbol_1_PP, symbol_2_P)
+ symbolS ** symbol_1_PP;
+ symbolS * symbol_2_P;
{
segT return_value;
#ifndef MANY_SEGMENTS
know((* symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED(* symbol_1_PP)));
know(symbol_2_P == NULL || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED(symbol_2_P)));
#endif
- if (* symbol_1_PP)
+ if (* symbol_1_PP)
{
- if (!S_IS_DEFINED(* symbol_1_PP))
+ if (!S_IS_DEFINED(* symbol_1_PP))
{
- if (symbol_2_P)
+ if (symbol_2_P)
{
return_value = SEG_PASS1;
* symbol_1_PP = NULL;
}
- else
+ else
{
know(!S_IS_DEFINED(* symbol_1_PP));
return_value = SEG_UNKNOWN;
}
}
- else
+ else
{
- if (symbol_2_P)
+ if (symbol_2_P)
{
- if (!S_IS_DEFINED(symbol_2_P))
+ if (!S_IS_DEFINED(symbol_2_P))
{
- * symbol_1_PP = NULL;
- return_value = SEG_PASS1;
+ * symbol_1_PP = NULL;
+ return_value = SEG_PASS1;
}
- else
+ else
{
- /* {seg1} - {seg2} */
- as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
- S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
+ /* {seg1} - {seg2} */
+ as_bad("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"",
+ S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
+ * symbol_1_PP = NULL;
+ return_value = SEG_ABSOLUTE;
}
}
- else
+ else
{
- return_value = S_GET_SEGMENT(* symbol_1_PP);
+ return_value = S_GET_SEGMENT(* symbol_1_PP);
}
}
}
- else
+ else
{ /* (* symbol_1_PP) == NULL */
- if (symbol_2_P)
+ if (symbol_2_P)
{
- * symbol_1_PP = symbol_2_P;
- return_value = S_GET_SEGMENT(symbol_2_P);
+ * symbol_1_PP = symbol_2_P;
+ return_value = S_GET_SEGMENT(symbol_2_P);
}
- else
+ else
{
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
+ * symbol_1_PP = NULL;
+ return_value = SEG_ABSOLUTE;
}
}
#ifndef MANY_SEGMENTS
- know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
+ know(return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
#endif
- know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value));
- return (return_value);
+ know((*symbol_1_PP) == NULL || (S_GET_SEGMENT(*symbol_1_PP) == return_value));
+ return (return_value);
} /* expr_part() */
/* Expression parser. */
@@ -692,191 +833,191 @@ static const operatorT op_encoding [256] = { /* maps ASCII->operators */
* 3 * / % << >>
*/
static const operator_rankT
- op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
+op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
/* Return resultP->X_seg. */
segT expr(rank, resultP)
- register operator_rankT rank; /* Larger # is higher rank. */
- register expressionS *resultP; /* Deliver result here. */
+register operator_rankT rank; /* Larger # is higher rank. */
+register expressionS *resultP; /* Deliver result here. */
{
- expressionS right;
- register operatorT op_left;
- register char c_left; /* 1st operator character. */
- register operatorT op_right;
- register char c_right;
-
- know(rank >= 0);
- (void)operand (resultP);
- know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */
- c_left = * input_line_pointer; /* Potential operator character. */
- op_left = op_encoding [c_left];
- while (op_left != O_illegal && op_rank [(int) op_left] > rank)
+ expressionS right;
+ register operatorT op_left;
+ register char c_left; /* 1st operator character. */
+ register operatorT op_right;
+ register char c_right;
+
+ know(rank >= 0);
+ (void)operand (resultP);
+ know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */
+ c_left = * input_line_pointer; /* Potential operator character. */
+ op_left = op_encoding [c_left];
+ while (op_left != O_illegal && op_rank [(int) op_left] > rank)
{
- input_line_pointer ++; /*->after 1st character of operator. */
- /* Operators "<<" and ">>" have 2 characters. */
- if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
+ input_line_pointer ++; /*->after 1st character of operator. */
+ /* Operators "<<" and ">>" have 2 characters. */
+ if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
{
- input_line_pointer ++;
+ input_line_pointer ++;
} /*->after operator. */
- if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
+ if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
{
- as_warn("Missing operand value assumed absolute 0.");
- resultP->X_add_number = 0;
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- resultP->X_seg = SEG_ABSOLUTE;
+ as_warn("Missing operand value assumed absolute 0.");
+ resultP->X_add_number = 0;
+ resultP->X_subtract_symbol = NULL;
+ resultP->X_add_symbol = NULL;
+ resultP->X_seg = SEG_ABSOLUTE;
}
- know(* input_line_pointer != ' ');
- c_right = * input_line_pointer;
- op_right = op_encoding [c_right];
- if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
+ know(* input_line_pointer != ' ');
+ c_right = * input_line_pointer;
+ op_right = op_encoding [c_right];
+ if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
{
- input_line_pointer ++;
+ input_line_pointer ++;
} /*->after operator. */
- know((int) op_right == 0 || op_rank [(int) op_right] <= op_rank[(int) op_left]);
- /* input_line_pointer->after right-hand quantity. */
- /* left-hand quantity in resultP */
- /* right-hand quantity in right. */
- /* operator in op_left. */
- if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1)
+ know((int) op_right == 0 || op_rank [(int) op_right] <= op_rank[(int) op_left]);
+ /* input_line_pointer->after right-hand quantity. */
+ /* left-hand quantity in resultP */
+ /* right-hand quantity in right. */
+ /* operator in op_left. */
+ if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1)
{
- resultP->X_seg = SEG_PASS1;
+ resultP->X_seg = SEG_PASS1;
}
- else
+ else
{
- if (resultP->X_seg == SEG_BIG)
+ if (resultP->X_seg == SEG_BIG)
{
- as_warn("Left operand of %c is a %s. Integer 0 assumed.",
- c_left, resultP->X_add_number > 0 ? "bignum" : "float");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_symbol = 0;
- resultP->X_subtract_symbol = 0;
- resultP->X_add_number = 0;
+ as_warn("Left operand of %c is a %s. Integer 0 assumed.",
+ c_left, resultP->X_add_number > 0 ? "bignum" : "float");
+ resultP->X_seg = SEG_ABSOLUTE;
+ resultP->X_add_symbol = 0;
+ resultP->X_subtract_symbol = 0;
+ resultP->X_add_number = 0;
}
- if (right . X_seg == SEG_BIG)
+ if (right . X_seg == SEG_BIG)
{
- as_warn("Right operand of %c is a %s. Integer 0 assumed.",
- c_left, right . X_add_number > 0 ? "bignum" : "float");
- right . X_seg = SEG_ABSOLUTE;
- right . X_add_symbol = 0;
- right . X_subtract_symbol = 0;
- right . X_add_number = 0;
+ as_warn("Right operand of %c is a %s. Integer 0 assumed.",
+ c_left, right . X_add_number > 0 ? "bignum" : "float");
+ right . X_seg = SEG_ABSOLUTE;
+ right . X_add_symbol = 0;
+ right . X_subtract_symbol = 0;
+ right . X_add_number = 0;
}
- if (op_left == O_subtract)
+ if (op_left == O_subtract)
{
- /*
- * Convert - into + by exchanging symbols and negating number.
- * I know -infinity can't be negated in 2's complement:
- * but then it can't be subtracted either. This trick
- * does not cause any further inaccuracy.
- */
-
- register symbolS * symbolP;
-
- right . X_add_number = - right . X_add_number;
- symbolP = right . X_add_symbol;
- right . X_add_symbol = right . X_subtract_symbol;
- right . X_subtract_symbol = symbolP;
- if (symbolP)
+ /*
+ * Convert - into + by exchanging symbolS and negating number.
+ * I know -infinity can't be negated in 2's complement:
+ * but then it can't be subtracted either. This trick
+ * does not cause any further inaccuracy.
+ */
+
+ register symbolS * symbolP;
+
+ right . X_add_number = - right . X_add_number;
+ symbolP = right . X_add_symbol;
+ right . X_add_symbol = right . X_subtract_symbol;
+ right . X_subtract_symbol = symbolP;
+ if (symbolP)
{
- right . X_seg = SEG_DIFFERENCE;
+ right . X_seg = SEG_DIFFERENCE;
}
- op_left = O_add;
+ op_left = O_add;
}
-
- if (op_left == O_add)
+
+ if (op_left == O_add)
{
- segT seg1;
- segT seg2;
+ segT seg1;
+ segT seg2;
#ifndef MANY_SEGMENTS
- know(resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1);
- know(right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1);
+ know(resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1);
+ know(right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1);
#endif
- clean_up_expression (& right);
- clean_up_expression (resultP);
-
- seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol);
- seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol);
- if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
- need_pass_2 = 1;
- resultP->X_seg = SEG_PASS1;
- } else if (seg2 == SEG_ABSOLUTE)
- resultP->X_seg = seg1;
- else if (seg1 != SEG_UNKNOWN
- && seg1 != SEG_ABSOLUTE
- && seg2 != SEG_UNKNOWN
- && seg1 != seg2) {
- know(seg2 != SEG_ABSOLUTE);
- know(resultP->X_subtract_symbol);
+ clean_up_expression (& right);
+ clean_up_expression (resultP);
+
+ seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol);
+ seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol);
+ if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
+ need_pass_2 = 1;
+ resultP->X_seg = SEG_PASS1;
+ } else if (seg2 == SEG_ABSOLUTE)
+ resultP->X_seg = seg1;
+ else if (seg1 != SEG_UNKNOWN
+ && seg1 != SEG_ABSOLUTE
+ && seg2 != SEG_UNKNOWN
+ && seg1 != seg2) {
+ know(seg2 != SEG_ABSOLUTE);
+ know(resultP->X_subtract_symbol);
#ifndef MANY_SEGMENTS
- know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS);
- know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS);
+ know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS);
+ know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS);
#endif
- know(resultP->X_add_symbol);
- know(resultP->X_subtract_symbol);
- as_bad("Expression too complex: forgetting %s - %s",
- S_GET_NAME(resultP->X_add_symbol),
- S_GET_NAME(resultP->X_subtract_symbol));
- resultP->X_seg = SEG_ABSOLUTE;
- /* Clean_up_expression() will do the rest. */
- } else
- resultP->X_seg = SEG_DIFFERENCE;
-
- resultP->X_add_number += right . X_add_number;
- clean_up_expression (resultP);
- }
- else
+ know(resultP->X_add_symbol);
+ know(resultP->X_subtract_symbol);
+ as_bad("Expression too complex: forgetting %s - %s",
+ S_GET_NAME(resultP->X_add_symbol),
+ S_GET_NAME(resultP->X_subtract_symbol));
+ resultP->X_seg = SEG_ABSOLUTE;
+ /* Clean_up_expression() will do the rest. */
+ } else
+ resultP->X_seg = SEG_DIFFERENCE;
+
+ resultP->X_add_number += right . X_add_number;
+ clean_up_expression (resultP);
+ }
+ else
{ /* Not +. */
- if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN)
+ if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN)
{
- resultP->X_seg = SEG_PASS1;
- need_pass_2 = 1;
+ resultP->X_seg = SEG_PASS1;
+ need_pass_2 = 1;
}
- else
+ else
{
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- /* Will be SEG_ABSOLUTE. */
- if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE)
+ resultP->X_subtract_symbol = NULL;
+ resultP->X_add_symbol = NULL;
+ /* Will be SEG_ABSOLUTE. */
+ if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE)
{
- as_bad("Relocation error. Absolute 0 assumed.");
- resultP->X_seg = SEG_ABSOLUTE;
- resultP->X_add_number = 0;
+ as_bad("Relocation error. Absolute 0 assumed.");
+ resultP->X_seg = SEG_ABSOLUTE;
+ resultP->X_add_number = 0;
}
- else
+ else
{
- switch (op_left)
+ switch (op_left)
{
case O_bit_inclusive_or:
- resultP->X_add_number |= right . X_add_number;
- break;
-
+ resultP->X_add_number |= right . X_add_number;
+ break;
+
case O_modulus:
- if (right . X_add_number)
+ if (right . X_add_number)
{
- resultP->X_add_number %= right . X_add_number;
+ resultP->X_add_number %= right . X_add_number;
}
- else
+ else
{
- as_warn("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
+ as_warn("Division by 0. 0 assumed.");
+ resultP->X_add_number = 0;
}
- break;
-
+ break;
+
case O_bit_and:
- resultP->X_add_number &= right . X_add_number;
- break;
-
+ resultP->X_add_number &= right . X_add_number;
+ break;
+
case O_multiply:
- resultP->X_add_number *= right . X_add_number;
- break;
-
+ resultP->X_add_number *= right . X_add_number;
+ break;
+
case O_divide:
- if (right . X_add_number)
+ if (right . X_add_number)
{
- resultP->X_add_number /= right . X_add_number;
+ resultP->X_add_number /= right . X_add_number;
}
- else
+ else
{
as_warn("Division by 0. 0 assumed.");
resultP->X_add_number = 0;