aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-tahoe.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/config/tc-tahoe.c')
-rw-r--r--gas/config/tc-tahoe.c2027
1 files changed, 2027 insertions, 0 deletions
diff --git a/gas/config/tc-tahoe.c b/gas/config/tc-tahoe.c
new file mode 100644
index 0000000..2bd63ca
--- /dev/null
+++ b/gas/config/tc-tahoe.c
@@ -0,0 +1,2027 @@
+/* tc-tahoe.c
+ Not part of GAS yet. */
+
+#include "as.h"
+#include "obstack.h"
+
+/* this bit glommed from tahoe-inst.h */
+
+typedef unsigned char byte;
+typedef byte tahoe_opcodeT;
+
+/*
+ * This is part of tahoe-ins-parse.c & friends.
+ * We want to parse a tahoe instruction text into a tree defined here.
+ */
+
+#define TIT_MAX_OPERANDS (4) /* maximum number of operands in one
+ single tahoe instruction */
+
+struct top /* tahoe instruction operand */
+{
+ int top_ndx; /* -1, or index register. eg 7=[R7] */
+ int top_reg; /* -1, or register number. eg 7 = R7 or (R7) */
+ byte top_mode; /* Addressing mode byte. This byte, defines
+ which of the 11 modes opcode is. */
+
+ char top_access; /* Access type wanted for this opperand
+ 'b'branch ' 'no-instruction 'amrvw' */
+ char top_width; /* Operand width expected, one of "bwlq?-:!" */
+
+ char *top_error; /* Say if operand is inappropriate */
+
+ segT seg_of_operand; /* segment as returned by expression()*/
+
+ expressionS exp_of_operand; /* The expression as parsed by expression()*/
+
+ byte top_dispsize; /* Number of bytes in the displacement if we
+ can figure it out */
+};
+
+/* The addressing modes for an operand. These numbers are the acutal values
+ for certain modes, so be carefull if you screw with them. */
+#define TAHOE_DIRECT_REG (0x50)
+#define TAHOE_REG_DEFERRED (0x60)
+
+#define TAHOE_REG_DISP (0xE0)
+#define TAHOE_REG_DISP_DEFERRED (0xF0)
+
+#define TAHOE_IMMEDIATE (0x8F)
+#define TAHOE_IMMEDIATE_BYTE (0x88)
+#define TAHOE_IMMEDIATE_WORD (0x89)
+#define TAHOE_IMMEDIATE_LONGWORD (0x8F)
+#define TAHOE_ABSOLUTE_ADDR (0x9F)
+
+#define TAHOE_DISPLACED_RELATIVE (0xEF)
+#define TAHOE_DISP_REL_DEFERRED (0xFF)
+
+#define TAHOE_AUTO_DEC (0x7E)
+#define TAHOE_AUTO_INC (0x8E)
+#define TAHOE_AUTO_INC_DEFERRED (0x9E)
+/* INDEXED_REG is decided by the existance or lack of a [reg] */
+
+/* These are encoded into top_width when top_access=='b'
+ and it's a psuedo op.*/
+#define TAHOE_WIDTH_ALWAYS_JUMP '-'
+#define TAHOE_WIDTH_CONDITIONAL_JUMP '?'
+#define TAHOE_WIDTH_BIG_REV_JUMP '!'
+#define TAHOE_WIDTH_BIG_NON_REV_JUMP ':'
+
+/* The hex code for certain tahoe commands and modes.
+ This is just for readability. */
+#define TAHOE_JMP (0x71)
+#define TAHOE_PC_REL_LONG (0xEF)
+#define TAHOE_BRB (0x11)
+#define TAHOE_BRW (0x13)
+/* These, when 'ored' with, or added to, a register number,
+ set up the number for the displacement mode. */
+#define TAHOE_PC_OR_BYTE (0xA0)
+#define TAHOE_PC_OR_WORD (0xC0)
+#define TAHOE_PC_OR_LONG (0xE0)
+
+struct tit /* get it out of the sewer, it stands for
+ tahoe instruction tree (Geeze!) */
+{
+ tahoe_opcodeT tit_opcode; /* The opcode. */
+ byte tit_operands; /* How many operands are here. */
+ struct top tit_operand[TIT_MAX_OPERANDS]; /* Operands */
+ char *tit_error; /* "" or fatal error text */
+};
+
+/* end: tahoe-inst.h */
+
+/* tahoe.c - tahoe-specific -
+ Not part of gas yet.
+ */
+
+#include "opcode/tahoe.h"
+
+/* This is the number to put at the beginning of the a.out file */
+long omagic = OMAGIC;
+
+/* These chars start a comment anywhere in a source file (except inside
+ another comment or a quoted string. */
+const char comment_chars[] = "#;";
+
+/* These chars only start a comment at the beginning of a line. */
+const char line_comment_chars[] = "#";
+
+/* Chars that can be used to separate mant from exp in floating point nums */
+const char EXP_CHARS[] = "eE";
+
+/* Chars that mean this number is a floating point constant
+ as in 0f123.456
+ or 0d1.234E-12 (see exp chars above)
+ Note: The Tahoe port doesn't support floating point constants. This is
+ consistant with 'as' If it's needed, I can always add it later. */
+const char FLT_CHARS[] = "df";
+
+/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
+ changed in read.c . Ideally it shouldn't have to know about it at all,
+ but nothing is ideal around here.
+ (The tahoe has plenty of room, so the change currently isn't needed.)
+ */
+
+static struct tit t; /* A tahoe instruction after decoding. */
+
+void float_cons ();
+/* A table of pseudo ops (sans .), the function called, and an integer op
+ that the function is called with. */
+
+const pseudo_typeS md_pseudo_table[] =
+{
+ {"dfloat", float_cons, 'd'},
+ {"ffloat", float_cons, 'f'},
+ {0}
+};
+
+/*
+ * For Tahoe, relative addresses of "just the right length" are pretty easy.
+ * The branch displacement is always the last operand, even in
+ * synthetic instructions.
+ * For Tahoe, we encode the relax_substateTs (in e.g. fr_substate) as:
+ *
+ * 4 3 2 1 0 bit number
+ * ---/ /--+-------+-------+-------+-------+-------+
+ * | what state ? | how long ? |
+ * ---/ /--+-------+-------+-------+-------+-------+
+ *
+ * The "how long" bits are 00=byte, 01=word, 10=long.
+ * This is a Un*x convention.
+ * Not all lengths are legit for a given value of (what state).
+ * The four states are listed below.
+ * The "how long" refers merely to the displacement length.
+ * The address usually has some constant bytes in it as well.
+ *
+
+States for Tahoe address relaxing.
+1. TAHOE_WIDTH_ALWAYS_JUMP (-)
+ Format: "b-"
+ Tahoe opcodes are: (Hex)
+ jr 11
+ jbr 11
+ Simple branch.
+ Always, 1 byte opcode, then displacement/absolute.
+ If word or longword, change opcode to brw or jmp.
+
+
+2. TAHOE_WIDTH_CONDITIONAL_JUMP (?)
+ J<cond> where <cond> is a simple flag test.
+ Format: "b?"
+ Tahoe opcodes are: (Hex)
+ jneq/jnequ 21
+ jeql/jeqlu 31
+ jgtr 41
+ jleq 51
+ jgeq 81
+ jlss 91
+ jgtru a1
+ jlequ b1
+ jvc c1
+ jvs d1
+ jlssu/jcs e1
+ jgequ/jcc f1
+ Always, you complement 4th bit to reverse the condition.
+ Always, 1-byte opcode, then 1-byte displacement.
+
+3. TAHOE_WIDTH_BIG_REV_JUMP (!)
+ Jbc/Jbs where cond tests a memory bit.
+ Format: "rlvlb!"
+ Tahoe opcodes are: (Hex)
+ jbs 0e
+ jbc 1e
+ Always, you complement 4th bit to reverse the condition.
+ Always, 1-byte opcde, longword, longword-address, 1-word-displacement
+
+4. TAHOE_WIDTH_BIG_NON_REV_JUMP (:)
+ JaoblXX/Jbssi
+ Format: "rlmlb:"
+ Tahoe opcodes are: (Hex)
+ aojlss 2f
+ jaoblss 2f
+ aojleq 3f
+ jaobleq 3f
+ jbssi 5f
+ Always, we cannot reverse the sense of the branch; we have a word
+ displacement.
+
+We need to modify the opcode is for class 1, 2 and 3 instructions.
+After relax() we may complement the 4th bit of 2 or 3 to reverse sense of
+branch.
+
+We sometimes store context in the operand literal. This way we can figure out
+after relax() what the original addressing mode was. (Was is pc_rel, or
+pc_rel_disp? That sort of thing.) */
+
+/* These displacements are relative to the START address of the
+ displacement which is at the start of the displacement, not the end of
+ the instruction. The hardware pc_rel is at the end of the instructions.
+ That's why all the displacements have the length of the displacement added
+ to them. (WF + length(word))
+
+ The first letter is Byte, Word.
+ 2nd letter is Forward, Backward. */
+#define BF (1+ 127)
+#define BB (1+-128)
+#define WF (2+ 32767)
+#define WB (2+-32768)
+/* Dont need LF, LB because they always reach. [They are coded as 0.] */
+
+#define C(a,b) ENCODE_RELAX(a,b)
+/* This macro has no side-effects. */
+#define ENCODE_RELAX(what,length) (((what) << 2) + (length))
+#define RELAX_STATE(what) ((what) >> 2)
+#define RELAX_LENGTH(length) ((length) && 3)
+
+#define STATE_ALWAYS_BRANCH (1)
+#define STATE_CONDITIONAL_BRANCH (2)
+#define STATE_BIG_REV_BRANCH (3)
+#define STATE_BIG_NON_REV_BRANCH (4)
+#define STATE_PC_RELATIVE (5)
+
+#define STATE_BYTE (0)
+#define STATE_WORD (1)
+#define STATE_LONG (2)
+#define STATE_UNDF (3) /* Symbol undefined in pass1 */
+
+/* This is the table used by gas to figure out relaxing modes. The fields are
+ forward_branch reach, backward_branch reach, number of bytes it would take,
+ where the next biggest branch is. */
+const relax_typeS md_relax_table[] =
+{
+ {
+ 1, 1, 0, 0
+ }, /* error sentinel 0,0 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 0,1 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 0,2 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 0,3 */
+/* Unconditional branch cases "jrb"
+ The relax part is the actual displacement */
+ {
+ BF, BB, 1, C (1, 1)
+ }, /* brb B`foo 1,0 */
+ {
+ WF, WB, 2, C (1, 2)
+ }, /* brw W`foo 1,1 */
+ {
+ 0, 0, 5, 0
+ }, /* Jmp L`foo 1,2 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 1,3 */
+/* Reversible Conditional Branch. If the branch won't reach, reverse
+ it, and jump over a brw or a jmp that will reach. The relax part is the
+ actual address. */
+ {
+ BF, BB, 1, C (2, 1)
+ }, /* b<cond> B`foo 2,0 */
+ {
+ WF + 2, WB + 2, 4, C (2, 2)
+ }, /* brev over, brw W`foo, over: 2,1 */
+ {
+ 0, 0, 7, 0
+ }, /* brev over, jmp L`foo, over: 2,2 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 2,3 */
+/* Another type of reversable branch. But this only has a word
+ displacement. */
+ {
+ 1, 1, 0, 0
+ }, /* unused 3,0 */
+ {
+ WF, WB, 2, C (3, 2)
+ }, /* jbX W`foo 3,1 */
+ {
+ 0, 0, 8, 0
+ }, /* jrevX over, jmp L`foo, over: 3,2 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 3,3 */
+/* These are the non reversable branches, all of which have a word
+ displacement. If I can't reach, branch over a byte branch, to a
+ jump that will reach. The jumped branch jumps over the reaching
+ branch, to continue with the flow of the program. It's like playing
+ leap frog. */
+ {
+ 1, 1, 0, 0
+ }, /* unused 4,0 */
+ {
+ WF, WB, 2, C (4, 2)
+ }, /* aobl_ W`foo 4,1 */
+ {
+ 0, 0, 10, 0
+ }, /*aobl_ W`hop,br over,hop: jmp L^foo,over 4,2*/
+ {
+ 1, 1, 0, 0
+ }, /* unused 4,3 */
+/* Normal displacement mode, no jumping or anything like that.
+ The relax points to one byte before the address, thats why all
+ the numbers are up by one. */
+ {
+ BF + 1, BB + 1, 2, C (5, 1)
+ }, /* B^"foo" 5,0 */
+ {
+ WF + 1, WB + 1, 3, C (5, 2)
+ }, /* W^"foo" 5,1 */
+ {
+ 0, 0, 5, 0
+ }, /* L^"foo" 5,2 */
+ {
+ 1, 1, 0, 0
+ }, /* unused 5,3 */
+};
+
+#undef C
+#undef BF
+#undef BB
+#undef WF
+#undef WB
+/* End relax stuff */
+
+/* Handle of the OPCODE hash table. NULL means any use before
+ md_begin() will crash. */
+static struct hash_control *op_hash;
+
+/* Init function. Build the hash table. */
+void
+md_begin ()
+{
+ struct tot *tP;
+ char *errorval = 0;
+ int synthetic_too = 1; /* If 0, just use real opcodes. */
+
+ op_hash = hash_new ();
+
+ for (tP = totstrs; *tP->name && !errorval; tP++)
+ errorval = hash_insert (op_hash, tP->name, &tP->detail);
+
+ if (synthetic_too)
+ for (tP = synthetic_totstrs; *tP->name && !errorval; tP++)
+ errorval = hash_insert (op_hash, tP->name, &tP->detail);
+
+ if (errorval)
+ as_fatal (errorval);
+}
+
+CONST char *md_shortopts = "ad:STt:V";
+struct option md_longopts[] = {
+ {NULL, no_argument, NULL, 0}
+};
+size_t md_longopts_size = sizeof(md_longopts);
+
+int
+md_parse_option (c, arg)
+ int c;
+ char *arg;
+{
+ switch (c)
+ {
+ case 'a':
+ as_warn (_("The -a option doesn't exist. (Despite what the man page says!"));
+ break;
+
+ case 'd':
+ as_warn (_("Displacement length %s ignored!"), arg);
+ break;
+
+ case 'S':
+ as_warn (_("SYMBOL TABLE not implemented"));
+ break;
+
+ case 'T':
+ as_warn (_("TOKEN TRACE not implemented"));
+ break;
+
+ case 't':
+ as_warn (_("I don't need or use temp. file \"%s\"."), arg);
+ break;
+
+ case 'V':
+ as_warn (_("I don't use an interpass file! -V ignored"));
+ break;
+
+ default:
+ return 0;
+ }
+
+ return 1;
+}
+
+void
+md_show_usage (stream)
+ FILE *stream;
+{
+ fprintf(stream, _("\
+Tahoe options:\n\
+-a ignored\n\
+-d LENGTH ignored\n\
+-J ignored\n\
+-S ignored\n\
+-t FILE ignored\n\
+-T ignored\n\
+-V ignored\n"));
+}
+
+/* The functions in this section take numbers in the machine format, and
+ munges them into Tahoe byte order.
+ They exist primarily for cross assembly purpose. */
+void /* Knows about order of bytes in address. */
+md_number_to_chars (con, value, nbytes)
+ char con[]; /* Return 'nbytes' of chars here. */
+ valueT value; /* The value of the bits. */
+ int nbytes; /* Number of bytes in the output. */
+{
+ number_to_chars_bigendian (con, value, nbytes);
+}
+
+#ifdef comment
+void /* Knows about order of bytes in address. */
+md_number_to_imm (con, value, nbytes)
+ char con[]; /* Return 'nbytes' of chars here. */
+ long int value; /* The value of the bits. */
+ int nbytes; /* Number of bytes in the output. */
+{
+ md_number_to_chars (con, value, nbytes);
+}
+
+#endif /* comment */
+
+void
+tc_apply_fix (fixP, val)
+ fixS *fixP;
+ long val;
+{
+ /* should never be called */
+ know (0);
+}
+
+void /* Knows about order of bytes in address. */
+md_number_to_disp (con, value, nbytes)
+ char con[]; /* Return 'nbytes' of chars here. */
+ long int value; /* The value of the bits. */
+ int nbytes; /* Number of bytes in the output. */
+{
+ md_number_to_chars (con, value, nbytes);
+}
+
+void /* Knows about order of bytes in address. */
+md_number_to_field (con, value, nbytes)
+ char con[]; /* Return 'nbytes' of chars here. */
+ long int value; /* The value of the bits. */
+ int nbytes; /* Number of bytes in the output. */
+{
+ md_number_to_chars (con, value, nbytes);
+}
+
+/* Put the bits in an order that a tahoe will understand, despite the ordering
+ of the native machine.
+ On Tahoe: first 4 bytes are normal unsigned big endian long,
+ next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last).
+ The last byte is broken up with bit 7 as pcrel,
+ bits 6 & 5 as length,
+ bit 4 as extern and the last nibble as 'undefined'. */
+
+#if comment
+void
+md_ri_to_chars (ri_p, ri)
+ struct relocation_info *ri_p, ri;
+{
+ byte the_bytes[sizeof (struct relocation_info)];
+ /* The reason I can't just encode these directly into ri_p is that
+ ri_p may point to ri. */
+
+ /* This is easy */
+ md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
+
+ /* now the fun stuff */
+ the_bytes[4] = (ri.r_symbolnum >> 16) & 0x0ff;
+ the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
+ the_bytes[6] = ri.r_symbolnum & 0x0ff;
+ the_bytes[7] = (((ri.r_extern << 4) & 0x10) | ((ri.r_length << 5) & 0x60) |
+ ((ri.r_pcrel << 7) & 0x80)) & 0xf0;
+
+ bcopy (the_bytes, (char *) ri_p, sizeof (struct relocation_info));
+}
+
+#endif /* comment */
+
+/* Put the bits in an order that a tahoe will understand, despite the ordering
+ of the native machine.
+ On Tahoe: first 4 bytes are normal unsigned big endian long,
+ next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last).
+ The last byte is broken up with bit 7 as pcrel,
+ bits 6 & 5 as length,
+ bit 4 as extern and the last nibble as 'undefined'. */
+
+void
+tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
+ char *where;
+ fixS *fixP;
+ relax_addressT segment_address_in_file;
+{
+ long r_symbolnum;
+
+ know (fixP->fx_addsy != NULL);
+
+ md_number_to_chars (where,
+ fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
+ 4);
+
+ r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
+ ? S_GET_TYPE (fixP->fx_addsy)
+ : fixP->fx_addsy->sy_number);
+
+ where[4] = (r_symbolnum >> 16) & 0x0ff;
+ where[5] = (r_symbolnum >> 8) & 0x0ff;
+ where[6] = r_symbolnum & 0x0ff;
+ where[7] = (((is_pcrel (fixP) << 7) & 0x80)
+ | ((((fixP->fx_type == FX_8 || fixP->fx_type == FX_PCREL8
+ ? 0
+ : (fixP->fx_type == FX_16 || fixP->fx_type == FX_PCREL16
+ ? 1
+ : (fixP->fx_type == FX_32 || fixP->fx_type == FX_PCREL32
+ ? 2
+ : 42)))) << 5) & 0x60)
+ | ((!S_IS_DEFINED (fixP->fx_addsy) << 4) & 0x10));
+}
+
+/* Relocate byte stuff */
+
+/* This is for broken word. */
+const int md_short_jump_size = 3;
+
+void
+md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ valueT offset;
+
+ offset = to_addr - (from_addr + 1);
+ *ptr++ = TAHOE_BRW;
+ md_number_to_chars (ptr, offset, 2);
+}
+
+const int md_long_jump_size = 6;
+const int md_reloc_size = 8; /* Size of relocation record */
+
+void
+md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ valueT offset;
+
+ offset = to_addr - (from_addr + 4);
+ *ptr++ = TAHOE_JMP;
+ *ptr++ = TAHOE_PC_REL_LONG;
+ md_number_to_chars (ptr, offset, 4);
+}
+
+/*
+ * md_estimate_size_before_relax()
+ *
+ * Called just before relax().
+ * Any symbol that is now undefined will not become defined, so we assumed
+ * that it will be resolved by the linker.
+ * Return the correct fr_subtype in the frag, for relax()
+ * Return the initial "guess for fr_var" to caller. (How big I think this
+ * will be.)
+ * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
+ * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
+ * Although it may not be explicit in the frag, pretend fr_var starts with a
+ * 0 value.
+ */
+int
+md_estimate_size_before_relax (fragP, segment_type)
+ register fragS *fragP;
+ segT segment_type; /* N_DATA or N_TEXT. */
+{
+ register char *p;
+ register int old_fr_fix;
+ /* int pc_rel; FIXME: remove this */
+
+ old_fr_fix = fragP->fr_fix;
+ switch (fragP->fr_subtype)
+ {
+ case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
+ if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
+ {
+ /* The symbol was in the same segment as the opcode, and it's
+ a real pc_rel case so it's a relaxable case. */
+ fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
+ }
+ else
+ {
+ /* This case is still undefined, so asume it's a long word for the
+ linker to fix. */
+ p = fragP->fr_literal + old_fr_fix;
+ *p |= TAHOE_PC_OR_LONG;
+ /* We now know how big it will be, one long word. */
+ fragP->fr_fix += 1 + 4;
+ fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol,
+ fragP->fr_offset, FX_PCREL32, NULL);
+ frag_wane (fragP);
+ }
+ break;
+
+ case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
+ if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
+ {
+ fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
+ }
+ else
+ {
+ p = fragP->fr_literal + old_fr_fix;
+ *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = TAHOE_PC_REL_LONG;
+ fragP->fr_fix += 1 + 1 + 1 + 4;
+ fix_new (fragP, old_fr_fix + 3, fragP->fr_symbol,
+ fragP->fr_offset, FX_PCREL32, NULL);
+ frag_wane (fragP);
+ }
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_UNDF):
+ if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
+ {
+ fragP->fr_subtype =
+ ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD);
+ }
+ else
+ {
+ p = fragP->fr_literal + old_fr_fix;
+ *fragP->fr_opcode ^= 0x10; /* Reverse sense of branch. */
+ *p++ = 0;
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = TAHOE_PC_REL_LONG;
+ fragP->fr_fix += 2 + 2 + 4;
+ fix_new (fragP, old_fr_fix + 4, fragP->fr_symbol,
+ fragP->fr_offset, FX_PCREL32, NULL);
+ frag_wane (fragP);
+ }
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_UNDF):
+ if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
+ {
+ fragP->fr_subtype = ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD);
+ }
+ else
+ {
+ p = fragP->fr_literal + old_fr_fix;
+ *p++ = 2;
+ *p++ = 0;
+ *p++ = TAHOE_BRB;
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = TAHOE_PC_REL_LONG;
+ fragP->fr_fix += 2 + 2 + 2 + 4;
+ fix_new (fragP, old_fr_fix + 6, fragP->fr_symbol,
+ fragP->fr_offset, FX_PCREL32, NULL);
+ frag_wane (fragP);
+ }
+ break;
+
+ case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
+ if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
+ {
+ fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
+ }
+ else
+ {
+ p = fragP->fr_literal + old_fr_fix;
+ *fragP->fr_opcode = TAHOE_JMP;
+ *p++ = TAHOE_PC_REL_LONG;
+ fragP->fr_fix += 1 + 4;
+ fix_new (fragP, old_fr_fix + 1, fragP->fr_symbol,
+ fragP->fr_offset, FX_PCREL32, NULL);
+ frag_wane (fragP);
+ }
+ break;
+
+ default:
+ break;
+ }
+ return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
+} /* md_estimate_size_before_relax() */
+
+/*
+ * md_convert_frag();
+ *
+ * Called after relax() is finished.
+ * In: Address of frag.
+ * fr_type == rs_machine_dependent.
+ * fr_subtype is what the address relaxed to.
+ *
+ * Out: Any fixSs and constants are set up.
+ * Caller will turn frag into a ".space 0".
+ */
+void
+md_convert_frag (headers, seg, fragP)
+ object_headers *headers;
+ segT seg;
+ register fragS *fragP;
+{
+ register char *addressP; /* -> _var to change. */
+ register char *opcodeP; /* -> opcode char(s) to change. */
+ register short int length_code; /* 2=long 1=word 0=byte */
+ register short int extension = 0; /* Size of relaxed address.
+ Added to fr_fix: incl. ALL var chars. */
+ register symbolS *symbolP;
+ register long int where;
+ register long int address_of_var;
+ /* Where, in file space, is _var of *fragP? */
+ register long int target_address;
+ /* Where, in file space, does addr point? */
+
+ know (fragP->fr_type == rs_machine_dependent);
+ length_code = RELAX_LENGTH (fragP->fr_subtype);
+ know (length_code >= 0 && length_code < 3);
+ where = fragP->fr_fix;
+ addressP = fragP->fr_literal + where;
+ opcodeP = fragP->fr_opcode;
+ symbolP = fragP->fr_symbol;
+ know (symbolP);
+ target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
+ address_of_var = fragP->fr_address + where;
+ switch (fragP->fr_subtype)
+ {
+ case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
+ /* *addressP holds the registers number, plus 0x10, if it's deferred
+ mode. To set up the right mode, just OR the size of this displacement */
+ /* Byte displacement. */
+ *addressP++ |= TAHOE_PC_OR_BYTE;
+ *addressP = target_address - (address_of_var + 2);
+ extension = 2;
+ break;
+
+ case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
+ /* Word displacement. */
+ *addressP++ |= TAHOE_PC_OR_WORD;
+ md_number_to_chars (addressP, target_address - (address_of_var + 3), 2);
+ extension = 3;
+ break;
+
+ case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
+ /* Long word displacement. */
+ *addressP++ |= TAHOE_PC_OR_LONG;
+ md_number_to_chars (addressP, target_address - (address_of_var + 5), 4);
+ extension = 5;
+ break;
+
+ case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
+ *addressP = target_address - (address_of_var + 1);
+ extension = 1;
+ break;
+
+ case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
+ *opcodeP ^= 0x10; /* Reverse sense of test. */
+ *addressP++ = 3; /* Jump over word branch */
+ *addressP++ = TAHOE_BRW;
+ md_number_to_chars (addressP, target_address - (address_of_var + 4), 2);
+ extension = 4;
+ break;
+
+ case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
+ *opcodeP ^= 0x10; /* Reverse sense of test. */
+ *addressP++ = 6;
+ *addressP++ = TAHOE_JMP;
+ *addressP++ = TAHOE_PC_REL_LONG;
+ md_number_to_chars (addressP, target_address, 4);
+ extension = 7;
+ break;
+
+ case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
+ *addressP = target_address - (address_of_var + 1);
+ extension = 1;
+ break;
+
+ case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
+ *opcodeP = TAHOE_BRW;
+ md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
+ extension = 2;
+ break;
+
+ case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
+ *opcodeP = TAHOE_JMP;
+ *addressP++ = TAHOE_PC_REL_LONG;
+ md_number_to_chars (addressP, target_address - (address_of_var + 5), 4);
+ extension = 5;
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_WORD):
+ md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
+ extension = 2;
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_REV_BRANCH, STATE_LONG):
+ *opcodeP ^= 0x10;
+ *addressP++ = 0;
+ *addressP++ = 6;
+ *addressP++ = TAHOE_JMP;
+ *addressP++ = TAHOE_PC_REL_LONG;
+ md_number_to_chars (addressP, target_address, 4);
+ extension = 8;
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_WORD):
+ md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
+ extension = 2;
+ break;
+
+ case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH, STATE_LONG):
+ *addressP++ = 0;
+ *addressP++ = 2;
+ *addressP++ = TAHOE_BRB;
+ *addressP++ = 6;
+ *addressP++ = TAHOE_JMP;
+ *addressP++ = TAHOE_PC_REL_LONG;
+ md_number_to_chars (addressP, target_address, 4);
+ extension = 10;
+ break;
+
+ default:
+ BAD_CASE (fragP->fr_subtype);
+ break;
+ }
+ fragP->fr_fix += extension;
+} /* md_convert_frag */
+
+
+/* This is the stuff for md_assemble. */
+#define FP_REG 13
+#define SP_REG 14
+#define PC_REG 15
+#define BIGGESTREG PC_REG
+
+/*
+ * Parse the string pointed to by START
+ * If it represents a valid register, point START to the character after
+ * the last valid register char, and return the register number (0-15).
+ * If invalid, leave START alone, return -1.
+ * The format has to be exact. I don't do things like eat leading zeros
+ * or the like.
+ * Note: This doesn't check for the next character in the string making
+ * this invalid. Ex: R123 would return 12, it's the callers job to check
+ * what start is point to apon return.
+ *
+ * Valid registers are R1-R15, %1-%15, FP (13), SP (14), PC (15)
+ * Case doesn't matter.
+ */
+int
+tahoe_reg_parse (start)
+ char **start; /* A pointer to the string to parse. */
+{
+ register char *regpoint = *start;
+ register int regnum = -1;
+
+ switch (*regpoint++)
+ {
+ case '%': /* Registers can start with a %,
+ R or r, and then a number. */
+ case 'R':
+ case 'r':
+ if (isdigit (*regpoint))
+ {
+ /* Got the first digit. */
+ regnum = *regpoint++ - '0';
+ if ((regnum == 1) && isdigit (*regpoint))
+ {
+ /* Its a two digit number. */
+ regnum = 10 + (*regpoint++ - '0');
+ if (regnum > BIGGESTREG)
+ { /* Number too big? */
+ regnum = -1;
+ }
+ }
+ }
+ break;
+ case 'F': /* Is it the FP */
+ case 'f':
+ switch (*regpoint++)
+ {
+ case 'p':
+ case 'P':
+ regnum = FP_REG;
+ }
+ break;
+ case 's': /* How about the SP */
+ case 'S':
+ switch (*regpoint++)
+ {
+ case 'p':
+ case 'P':
+ regnum = SP_REG;
+ }
+ break;
+ case 'p': /* OR the PC even */
+ case 'P':
+ switch (*regpoint++)
+ {
+ case 'c':
+ case 'C':
+ regnum = PC_REG;
+ }
+ break;
+ }
+
+ if (regnum != -1)
+ { /* No error, so move string pointer */
+ *start = regpoint;
+ }
+ return regnum; /* Return results */
+} /* tahoe_reg_parse */
+
+/*
+ * This chops up an operand and figures out its modes and stuff.
+ * It's a little touchy about extra characters.
+ * Optex to start with one extra character so it can be overwritten for
+ * the backward part of the parsing.
+ * You can't put a bunch of extra characters in side to
+ * make the command look cute. ie: * foo ( r1 ) [ r0 ]
+ * If you like doing a lot of typing, try COBOL!
+ * Actually, this parser is a little weak all around. It's designed to be
+ * used with compliers, so I emphisise correct decoding of valid code quickly
+ * rather that catching every possable error.
+ * Note: This uses the expression function, so save input_line_pointer before
+ * calling.
+ *
+ * Sperry defines the semantics of address modes (and values)
+ * by a two-letter code, explained here.
+ *
+ * letter 1: access type
+ *
+ * a address calculation - no data access, registers forbidden
+ * b branch displacement
+ * m read - let go of bus - write back "modify"
+ * r read
+ * w write
+ * v bit field address: like 'a' but registers are OK
+ *
+ * letter 2: data type (i.e. width, alignment)
+ *
+ * b byte
+ * w word
+ * l longword
+ * q quadword (Even regs < 14 allowed) (if 12, you get a warning)
+ * - unconditional synthetic jbr operand
+ * ? simple synthetic reversable branch operand
+ * ! complex synthetic reversable branch operand
+ * : complex synthetic non-reversable branch operand
+ *
+ * The '-?!:' letter 2's are not for external consumption. They are used
+ * by GAS for psuedo ops relaxing code.
+ *
+ * After parsing topP has:
+ *
+ * top_ndx: -1, or the index register. eg 7=[R7]
+ * top_reg: -1, or register number. eg 7 = R7 or (R7)
+ * top_mode: The addressing mode byte. This byte, defines which of
+ * the 11 modes opcode is.
+ * top_access: Access type wanted for this opperand 'b'branch ' '
+ * no-instruction 'amrvw'
+ * top_width: Operand width expected, one of "bwlq?-:!"
+ * exp_of_operand: The expression as parsed by expression()
+ * top_dispsize: Number of bytes in the displacement if we can figure it
+ * out and it's relavent.
+ *
+ * Need syntax checks built.
+ */
+
+void
+tip_op (optex, topP)
+ char *optex; /* The users text input, with one leading character */
+ struct top *topP; /* The tahoe instruction with some fields already set:
+ in: access, width
+ out: ndx, reg, mode, error, dispsize */
+
+{
+ int mode = 0; /* This operand's mode. */
+ char segfault = *optex; /* To keep the back parsing from freaking. */
+ char *point = optex + 1; /* Parsing from front to back. */
+ char *end; /* Parsing from back to front. */
+ int reg = -1; /* major register, -1 means absent */
+ int imreg = -1; /* Major register in immediate mode */
+ int ndx = -1; /* index register number, -1 means absent */
+ char dec_inc = ' '; /* Is the SP auto-incremented '+' or
+ auto-decremented '-' or neither ' '. */
+ int immediate = 0; /* 1 if '$' immediate mode */
+ int call_width = 0; /* If the caller casts the displacement */
+ int abs_width = 0; /* The width of the absolute displacment */
+ int com_width = 0; /* Displacement width required by branch */
+ int deferred = 0; /* 1 if '*' deferral is used */
+ byte disp_size = 0; /* How big is this operand. 0 == don't know */
+ char *op_bad = ""; /* Bad operand error */
+
+ char *tp, *temp, c; /* Temporary holders */
+
+ char access = topP->top_access; /* Save on a deref. */
+ char width = topP->top_width;
+
+ int really_none = 0; /* Empty expressions evaluate to 0
+ but I need to know if it's there or not */
+ expressionS *expP; /* -> expression values for this operand */
+
+ /* Does this command restrict the displacement size. */
+ if (access == 'b')
+ com_width = (width == 'b' ? 1 :
+ (width == 'w' ? 2 :
+ (width == 'l' ? 4 : 0)));
+
+ *optex = '\0'; /* This is kind of a back stop for all
+ the searches to fail on if needed.*/
+ if (*point == '*')
+ { /* A dereference? */
+ deferred = 1;
+ point++;
+ }
+
+ /* Force words into a certain mode */
+ /* Bitch, Bitch, Bitch! */
+ /*
+ * Using the ^ operator is ambigous. If I have an absolute label
+ * called 'w' set to, say 2, and I have the expression 'w^1', do I get
+ * 1, forced to be in word displacement mode, or do I get the value of
+ * 'w' or'ed with 1 (3 in this case).
+ * The default is 'w' as an offset, so that's what I use.
+ * Stick with `, it does the same, and isn't ambig.
+ */
+
+ if (*point != '\0' && ((point[1] == '^') || (point[1] == '`')))
+ switch (*point)
+ {
+ case 'b':
+ case 'B':
+ case 'w':
+ case 'W':
+ case 'l':
+ case 'L':
+ if (com_width)
+ as_warn (_("Casting a branch displacement is bad form, and is ignored."));
+ else
+ {
+ c = (isupper (*point) ? tolower (*point) : *point);
+ call_width = ((c == 'b') ? 1 :
+ ((c == 'w') ? 2 : 4));
+ }
+ point += 2;
+ break;
+ }
+
+ /* Setting immediate mode */
+ if (*point == '$')
+ {
+ immediate = 1;
+ point++;
+ }
+
+ /*
+ * I've pulled off all the easy stuff off the front, move to the end and
+ * yank.
+ */
+
+ for (end = point; *end != '\0'; end++) /* Move to the end. */
+ ;
+
+ if (end != point) /* Null string? */
+ end--;
+
+ if (end > point && *end == ' ' && end[-1] != '\'')
+ end--; /* Hop white space */
+
+ /* Is this an index reg. */
+ if ((*end == ']') && (end[-1] != '\''))
+ {
+ temp = end;
+
+ /* Find opening brace. */
+ for (--end; (*end != '[' && end != point); end--)
+ ;
+
+ /* If I found the opening brace, get the index register number. */
+ if (*end == '[')
+ {
+ tp = end + 1; /* tp should point to the start of a reg. */
+ ndx = tahoe_reg_parse (&tp);
+ if (tp != temp)
+ { /* Reg. parse error. */
+ ndx = -1;
+ }
+ else
+ {
+ end--; /* Found it, move past brace. */
+ }
+ if (ndx == -1)
+ {
+ op_bad = _("Couldn't parse the [index] in this operand.");
+ end = point; /* Force all the rest of the tests to fail. */
+ }
+ }
+ else
+ {
+ op_bad = _("Couldn't find the opening '[' for the index of this operand.");
+ end = point; /* Force all the rest of the tests to fail. */
+ }
+ }
+
+ /* Post increment? */
+ if (*end == '+')
+ {
+ dec_inc = '+';
+ /* was: *end--; */
+ end--;
+ }
+
+ /* register in parens? */
+ if ((*end == ')') && (end[-1] != '\''))
+ {
+ temp = end;
+
+ /* Find opening paren. */
+ for (--end; (*end != '(' && end != point); end--)
+ ;
+
+ /* If I found the opening paren, get the register number. */
+ if (*end == '(')
+ {
+ tp = end + 1;
+ reg = tahoe_reg_parse (&tp);
+ if (tp != temp)
+ {
+ /* Not a register, but could be part of the expression. */
+ reg = -1;
+ end = temp; /* Rest the pointer back */
+ }
+ else
+ {
+ end--; /* Found the reg. move before opening paren. */
+ }
+ }
+ else
+ {
+ op_bad = _("Couldn't find the opening '(' for the deref of this operand.");
+ end = point; /* Force all the rest of the tests to fail. */
+ }
+ }
+
+ /* Pre decrement? */
+ if (*end == '-')
+ {
+ if (dec_inc != ' ')
+ {
+ op_bad = _("Operand can't be both pre-inc and post-dec.");
+ end = point;
+ }
+ else
+ {
+ dec_inc = '-';
+ /* was: *end--; */
+ end--;
+ }
+ }
+
+ /*
+ * Everything between point and end is the 'expression', unless it's
+ * a register name.
+ */
+
+ c = end[1];
+ end[1] = '\0';
+
+ tp = point;
+ imreg = tahoe_reg_parse (&point); /* Get the immediate register
+ if it is there.*/
+ if (*point != '\0')
+ {
+ /* If there is junk after point, then the it's not immediate reg. */
+ point = tp;
+ imreg = -1;
+ }
+
+ if (imreg != -1 && reg != -1)
+ op_bad = _("I parsed 2 registers in this operand.");
+
+ /*
+ * Evaluate whats left of the expression to see if it's valid.
+ * Note again: This assumes that the calling expression has saved
+ * input_line_pointer. (Nag, nag, nag!)
+ */
+
+ if (*op_bad == '\0')
+ {
+ /* statement has no syntax goofs yet: lets sniff the expression */
+ input_line_pointer = point;
+ expP = &(topP->exp_of_operand);
+ topP->seg_of_operand = expression (expP);
+ switch (expP->X_op)
+ {
+ case O_absent:
+ /* No expression. For BSD4.2 compatibility, missing expression is
+ absolute 0 */
+ expP->X_op = O_constant;
+ expP->X_add_number = 0;
+ really_none = 1;
+ case O_constant:
+ /* for SEG_ABSOLUTE, we shouldnt need to set X_op_symbol,
+ X_add_symbol to any particular value. */
+ /* But, we will program defensively. Since this situation occurs
+ rarely so it costs us little to do so. */
+ expP->X_add_symbol = NULL;
+ expP->X_op_symbol = NULL;
+ /* How many bytes are needed to express this abs value? */
+ abs_width =
+ ((((expP->X_add_number & 0xFFFFFF80) == 0) ||
+ ((expP->X_add_number & 0xFFFFFF80) == 0xFFFFFF80)) ? 1 :
+ (((expP->X_add_number & 0xFFFF8000) == 0) ||
+ ((expP->X_add_number & 0xFFFF8000) == 0xFFFF8000)) ? 2 : 4);
+
+ case O_symbol:
+ break;
+
+ default:
+ /*
+ * Major bug. We can't handle the case of a operator
+ * expression in a synthetic opcode variable-length
+ * instruction. We don't have a frag type that is smart
+ * enough to relax a operator, and so we just force all
+ * operators to behave like SEG_PASS1s. Clearly, if there is
+ * a demand we can invent a new or modified frag type and
+ * then coding up a frag for this case will be easy.
+ */
+ need_pass_2 = 1;
+ op_bad = _("Can't relocate expression error.");
+ break;
+
+ case O_big:
+ /* This is an error. Tahoe doesn't allow any expressions
+ bigger that a 32 bit long word. Any bigger has to be referenced
+ by address. */
+ op_bad = _("Expression is too large for a 32 bits.");
+ break;
+ }
+ if (*input_line_pointer != '\0')
+ {
+ op_bad = _("Junk at end of expression.");
+ }
+ }
+
+ end[1] = c;
+
+ /* I'm done, so restore optex */
+ *optex = segfault;
+
+
+ /*
+ * At this point in the game, we (in theory) have all the components of
+ * the operand at least parsed. Now it's time to check for syntax/semantic
+ * errors, and build the mode.
+ * This is what I have:
+ * deferred = 1 if '*'
+ * call_width = 0,1,2,4
+ * abs_width = 0,1,2,4
+ * com_width = 0,1,2,4
+ * immediate = 1 if '$'
+ * ndx = -1 or reg num
+ * dec_inc = '-' or '+' or ' '
+ * reg = -1 or reg num
+ * imreg = -1 or reg num
+ * topP->exp_of_operand
+ * really_none
+ */
+ /* Is there a displacement size? */
+ disp_size = (call_width ? call_width :
+ (com_width ? com_width :
+ abs_width ? abs_width : 0));
+
+ if (*op_bad == '\0')
+ {
+ if (imreg != -1)
+ {
+ /* Rn */
+ mode = TAHOE_DIRECT_REG;
+ if (deferred || immediate || (dec_inc != ' ') ||
+ (reg != -1) || !really_none)
+ op_bad = _("Syntax error in direct register mode.");
+ else if (ndx != -1)
+ op_bad = _("You can't index a register in direct register mode.");
+ else if (imreg == SP_REG && access == 'r')
+ op_bad =
+ _("SP can't be the source operand with direct register addressing.");
+ else if (access == 'a')
+ op_bad = _("Can't take the address of a register.");
+ else if (access == 'b')
+ op_bad = _("Direct Register can't be used in a branch.");
+ else if (width == 'q' && ((imreg % 2) || (imreg > 13)))
+ op_bad = _("For quad access, the register must be even and < 14.");
+ else if (call_width)
+ op_bad = _("You can't cast a direct register.");
+
+ if (*op_bad == '\0')
+ {
+ /* No errors, check for warnings */
+ if (width == 'q' && imreg == 12)
+ as_warn (_("Using reg 14 for quadwords can tromp the FP register."));
+
+ reg = imreg;
+ }
+
+ /* We know: imm = -1 */
+ }
+ else if (dec_inc == '-')
+ {
+ /* -(SP) */
+ mode = TAHOE_AUTO_DEC;
+ if (deferred || immediate || !really_none)
+ op_bad = _("Syntax error in auto-dec mode.");
+ else if (ndx != -1)
+ op_bad = _("You can't have an index auto dec mode.");
+ else if (access == 'r')
+ op_bad = _("Auto dec mode cant be used for reading.");
+ else if (reg != SP_REG)
+ op_bad = _("Auto dec only works of the SP register.");
+ else if (access == 'b')
+ op_bad = _("Auto dec can't be used in a branch.");
+ else if (width == 'q')
+ op_bad = _("Auto dec won't work with quadwords.");
+
+ /* We know: imm = -1, dec_inc != '-' */
+ }
+ else if (dec_inc == '+')
+ {
+ if (immediate || !really_none)
+ op_bad = _("Syntax error in one of the auto-inc modes.");
+ else if (deferred)
+ {
+ /* *(SP)+ */
+ mode = TAHOE_AUTO_INC_DEFERRED;
+ if (reg != SP_REG)
+ op_bad = _("Auto inc deferred only works of the SP register.");
+ else if (ndx != -1)
+ op_bad = _("You can't have an index auto inc deferred mode.");
+ else if (access == 'b')
+ op_bad = _("Auto inc can't be used in a branch.");
+ }
+ else
+ {
+ /* (SP)+ */
+ mode = TAHOE_AUTO_INC;
+ if (access == 'm' || access == 'w')
+ op_bad = _("You can't write to an auto inc register.");
+ else if (reg != SP_REG)
+ op_bad = _("Auto inc only works of the SP register.");
+ else if (access == 'b')
+ op_bad = _("Auto inc can't be used in a branch.");
+ else if (width == 'q')
+ op_bad = _("Auto inc won't work with quadwords.");
+ else if (ndx != -1)
+ op_bad = _("You can't have an index in auto inc mode.");
+ }
+
+ /* We know: imm = -1, dec_inc == ' ' */
+ }
+ else if (reg != -1)
+ {
+ if ((ndx != -1) && (reg == SP_REG))
+ op_bad = _("You can't index the sp register.");
+ if (deferred)
+ {
+ /* *<disp>(Rn) */
+ mode = TAHOE_REG_DISP_DEFERRED;
+ if (immediate)
+ op_bad = _("Syntax error in register displaced mode.");
+ }
+ else if (really_none)
+ {
+ /* (Rn) */
+ mode = TAHOE_REG_DEFERRED;
+ /* if reg = SP then cant be indexed */
+ }
+ else
+ {
+ /* <disp>(Rn) */
+ mode = TAHOE_REG_DISP;
+ }
+
+ /* We know: imm = -1, dec_inc == ' ', Reg = -1 */
+ }
+ else
+ {
+ if (really_none)
+ op_bad = _("An offest is needed for this operand.");
+ if (deferred && immediate)
+ {
+ /* *$<ADDR> */
+ mode = TAHOE_ABSOLUTE_ADDR;
+ disp_size = 4;
+ }
+ else if (immediate)
+ {
+ /* $<disp> */
+ mode = TAHOE_IMMEDIATE;
+ if (ndx != -1)
+ op_bad = _("You can't index a register in immediate mode.");
+ if (access == 'a')
+ op_bad = _("Immediate access can't be used as an address.");
+ /* ponder the wisdom of a cast because it doesn't do any good. */
+ }
+ else if (deferred)
+ {
+ /* *<disp> */
+ mode = TAHOE_DISP_REL_DEFERRED;
+ }
+ else
+ {
+ /* <disp> */
+ mode = TAHOE_DISPLACED_RELATIVE;
+ }
+ }
+ }
+
+ /*
+ * At this point, all the errors we can do have be checked for.
+ * We can build the 'top'. */
+
+ topP->top_ndx = ndx;
+ topP->top_reg = reg;
+ topP->top_mode = mode;
+ topP->top_error = op_bad;
+ topP->top_dispsize = disp_size;
+} /* tip_op */
+
+/*
+ * t i p ( )
+ *
+ * This converts a string into a tahoe instruction.
+ * The string must be a bare single instruction in tahoe (with BSD4 frobs)
+ * format.
+ * It provides at most one fatal error message (which stops the scan)
+ * some warning messages as it finds them.
+ * The tahoe instruction is returned in exploded form.
+ *
+ * The exploded instruction is returned to a struct tit of your choice.
+ * #include "tahoe-inst.h" to know what a struct tit is.
+ *
+ */
+
+static void
+tip (titP, instring)
+ struct tit *titP; /* We build an exploded instruction here. */
+ char *instring; /* Text of a vax instruction: we modify. */
+{
+ register struct tot_wot *twP = NULL; /* How to bit-encode this opcode. */
+ register char *p; /* 1/skip whitespace.2/scan vot_how */
+ register char *q; /* */
+ register unsigned char count; /* counts number of operands seen */
+ register struct top *operandp;/* scan operands in struct tit */
+ register char *alloperr = ""; /* error over all operands */
+ register char c; /* Remember char, (we clobber it
+ with '\0' temporarily). */
+ char *save_input_line_pointer;
+
+ if (*instring == ' ')
+ ++instring; /* Skip leading whitespace. */
+ for (p = instring; *p && *p != ' '; p++)
+ ; /* MUST end in end-of-string or
+ exactly 1 space. */
+ /* Scanned up to end of operation-code. */
+ /* Operation-code is ended with whitespace. */
+ if (p == instring)
+ {
+ titP->tit_error = _("No operator");
+ count = 0;
+ titP->tit_opcode = 0;
+ }
+ else
+ {
+ c = *p;
+ *p = '\0';
+ /*
+ * Here with instring pointing to what better be an op-name, and p
+ * pointing to character just past that.
+ * We trust instring points to an op-name, with no whitespace.
+ */
+ twP = (struct tot_wot *) hash_find (op_hash, instring);
+ *p = c; /* Restore char after op-code. */
+ if (twP == 0)
+ {
+ titP->tit_error = _("Unknown operator");
+ count = 0;
+ titP->tit_opcode = 0;
+ }
+ else
+ {
+ /*
+ * We found a match! So lets pick up as many operands as the
+ * instruction wants, and even gripe if there are too many.
+ * We expect comma to seperate each operand.
+ * We let instring track the text, while p tracks a part of the
+ * struct tot.
+ */
+
+ count = 0; /* no operands seen yet */
+ instring = p + (*p != '\0'); /* point past the operation code */
+ /* tip_op() screws with the input_line_pointer, so save it before
+ I jump in */
+ save_input_line_pointer = input_line_pointer;
+ for (p = twP->args, operandp = titP->tit_operand;
+ !*alloperr && *p;
+ operandp++, p += 2)
+ {
+ /*
+ * Here to parse one operand. Leave instring pointing just
+ * past any one ',' that marks the end of this operand.
+ */
+ if (!p[1])
+ as_fatal (_("Compiler bug: ODD number of bytes in arg structure %s."),
+ twP->args);
+ else if (*instring)
+ {
+ for (q = instring; (*q != ',' && *q != '\0'); q++)
+ {
+ if (*q == '\'' && q[1] != '\0') /* Jump quoted characters */
+ q++;
+ }
+ c = *q;
+ /*
+ * Q points to ',' or '\0' that ends argument. C is that
+ * character.
+ */
+ *q = '\0';
+ operandp->top_access = p[0];
+ operandp->top_width = p[1];
+ tip_op (instring - 1, operandp);
+ *q = c; /* Restore input text. */
+ if (*(operandp->top_error))
+ {
+ alloperr = operandp->top_error;
+ }
+ instring = q + (c ? 1 : 0); /* next operand (if any) */
+ count++; /* won another argument, may have an operr */
+ }
+ else
+ alloperr = _("Not enough operands");
+ }
+ /* Restore the pointer. */
+ input_line_pointer = save_input_line_pointer;
+
+ if (!*alloperr)
+ {
+ if (*instring == ' ')
+ instring++; /* Skip whitespace. */
+ if (*instring)
+ alloperr = _("Too many operands");
+ }
+ titP->tit_error = alloperr;
+ }
+ }
+
+ titP->tit_opcode = twP->code; /* The op-code. */
+ titP->tit_operands = count;
+} /* tip */
+
+/* md_assemble() emit frags for 1 instruction */
+void
+md_assemble (instruction_string)
+ char *instruction_string; /* A string: assemble 1 instruction. */
+{
+ char *p;
+ register struct top *operandP;/* An operand. Scans all operands. */
+ /* char c_save; fixme: remove this line *//* What used to live after an expression. */
+ /* struct frag *fragP; fixme: remove this line *//* Fragment of code we just made. */
+ /* register struct top *end_operandP; fixme: remove this line *//* -> slot just after last operand
+ Limit of the for (each operand). */
+ register expressionS *expP; /* -> expression values for this operand */
+
+ /* These refer to an instruction operand expression. */
+ segT to_seg; /* Target segment of the address. */
+
+ register valueT this_add_number;
+ register struct symbol *this_add_symbol; /* +ve (minuend) symbol. */
+
+ /* tahoe_opcodeT opcode_as_number; fixme: remove this line *//* The opcode as a number. */
+ char *opcodeP; /* Where it is in a frag. */
+ /* char *opmodeP; fixme: remove this line *//* Where opcode type is, in a frag. */
+
+ int dispsize; /* From top_dispsize: tahoe_operand_width
+ (in bytes) */
+ int is_undefined; /* 1 if operand expression's
+ segment not known yet. */
+ int pc_rel; /* Is this operand pc relative? */
+
+ /* Decode the operand. */
+ tip (&t, instruction_string);
+
+ /*
+ * Check to see if this operand decode properly.
+ * Notice that we haven't made any frags yet.
+ * If it goofed, then this instruction will wedge in any pass,
+ * and we can safely flush it, without causing interpass symbol phase
+ * errors. That is, without changing label values in different passes.
+ */
+ if (*t.tit_error)
+ {
+ as_warn (_("Ignoring statement due to \"%s\""), t.tit_error);
+ }
+ else
+ {
+ /* We saw no errors in any operands - try to make frag(s) */
+ /* Emit op-code. */
+ /* Remember where it is, in case we want to modify the op-code later. */
+ opcodeP = frag_more (1);
+ *opcodeP = t.tit_opcode;
+ /* Now do each operand. */
+ for (operandP = t.tit_operand;
+ operandP < t.tit_operand + t.tit_operands;
+ operandP++)
+ { /* for each operand */
+ expP = &(operandP->exp_of_operand);
+ if (operandP->top_ndx >= 0)
+ {
+ /* Indexed addressing byte
+ Legality of indexed mode already checked: it is OK */
+ FRAG_APPEND_1_CHAR (0x40 + operandP->top_ndx);
+ } /* if(top_ndx>=0) */
+
+ /* Here to make main operand frag(s). */
+ this_add_number = expP->X_add_number;
+ this_add_symbol = expP->X_add_symbol;
+ to_seg = operandP->seg_of_operand;
+ know (to_seg == SEG_UNKNOWN || \
+ to_seg == SEG_ABSOLUTE || \
+ to_seg == SEG_DATA || \
+ to_seg == SEG_TEXT || \
+ to_seg == SEG_BSS);
+ is_undefined = (to_seg == SEG_UNKNOWN);
+ /* Do we know how big this opperand is? */
+ dispsize = operandP->top_dispsize;
+ pc_rel = 0;
+ /* Deal with the branch possabilities. (Note, this doesn't include
+ jumps.)*/
+ if (operandP->top_access == 'b')
+ {
+ /* Branches must be expressions. A psuedo branch can also jump to
+ an absolute address. */
+ if (to_seg == now_seg || is_undefined)
+ {
+ /* If is_undefined, then it might BECOME now_seg by relax time. */
+ if (dispsize)
+ {
+ /* I know how big the branch is supposed to be (it's a normal
+ branch), so I set up the frag, and let GAS do the rest. */
+ p = frag_more (dispsize);
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ size_to_fx (dispsize, 1),
+ NULL);
+ }
+ else
+ {
+ /* (to_seg==now_seg || to_seg == SEG_UNKNOWN) && dispsize==0 */
+ /* If we don't know how big it is, then its a synthetic branch,
+ so we set up a simple relax state. */
+ switch (operandP->top_width)
+ {
+ case TAHOE_WIDTH_CONDITIONAL_JUMP:
+ /* Simple (conditional) jump. I may have to reverse the
+ condition of opcodeP, and then jump to my destination.
+ I set 1 byte aside for the branch off set, and could need 6
+ more bytes for the pc_rel jump */
+ frag_var (rs_machine_dependent, 7, 1,
+ ENCODE_RELAX (STATE_CONDITIONAL_BRANCH,
+ is_undefined ? STATE_UNDF : STATE_BYTE),
+ this_add_symbol, this_add_number, opcodeP);
+ break;
+ case TAHOE_WIDTH_ALWAYS_JUMP:
+ /* Simple (unconditional) jump. I may have to convert this to
+ a word branch, or an absolute jump. */
+ frag_var (rs_machine_dependent, 5, 1,
+ ENCODE_RELAX (STATE_ALWAYS_BRANCH,
+ is_undefined ? STATE_UNDF : STATE_BYTE),
+ this_add_symbol, this_add_number, opcodeP);
+ break;
+ /* The smallest size for the next 2 cases is word. */
+ case TAHOE_WIDTH_BIG_REV_JUMP:
+ frag_var (rs_machine_dependent, 8, 2,
+ ENCODE_RELAX (STATE_BIG_REV_BRANCH,
+ is_undefined ? STATE_UNDF : STATE_WORD),
+ this_add_symbol, this_add_number,
+ opcodeP);
+ break;
+ case TAHOE_WIDTH_BIG_NON_REV_JUMP:
+ frag_var (rs_machine_dependent, 10, 2,
+ ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH,
+ is_undefined ? STATE_UNDF : STATE_WORD),
+ this_add_symbol, this_add_number,
+ opcodeP);
+ break;
+ default:
+ as_fatal (_("Compliler bug: Got a case (%d) I wasn't expecting."),
+ operandP->top_width);
+ }
+ }
+ }
+ else
+ {
+ /* to_seg != now_seg && to_seg != seg_unknown (still in branch)
+ In other words, I'm jumping out of my segment so extend the
+ branches to jumps, and let GAS fix them. */
+
+ /* These are "branches" what will always be branches around a jump
+ to the correct addresss in real life.
+ If to_seg is SEG_ABSOLUTE, just encode the branch in,
+ else let GAS fix the address. */
+
+ switch (operandP->top_width)
+ {
+ /* The theory:
+ For SEG_ABSOLUTE, then mode is ABSOLUTE_ADDR, jump
+ to that addresss (not pc_rel).
+ For other segs, address is a long word PC rel jump. */
+ case TAHOE_WIDTH_CONDITIONAL_JUMP:
+ /* b<cond> */
+ /* To reverse the condition in a TAHOE branch,
+ complement bit 4 */
+ *opcodeP ^= 0x10;
+ p = frag_more (7);
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = (operandP->top_mode ==
+ TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR :
+ TAHOE_PC_REL_LONG);
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL);
+ /*
+ * Now (eg) BLEQ 1f
+ * JMP foo
+ * 1:
+ */
+ break;
+ case TAHOE_WIDTH_ALWAYS_JUMP:
+ /* br, just turn it into a jump */
+ *opcodeP = TAHOE_JMP;
+ p = frag_more (5);
+ *p++ = (operandP->top_mode ==
+ TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR :
+ TAHOE_PC_REL_LONG);
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL);
+ /* Now (eg) JMP foo */
+ break;
+ case TAHOE_WIDTH_BIG_REV_JUMP:
+ p = frag_more (8);
+ *opcodeP ^= 0x10;
+ *p++ = 0;
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = (operandP->top_mode ==
+ TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR :
+ TAHOE_PC_REL_LONG);
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL);
+ /*
+ * Now (eg) ACBx 1f
+ * JMP foo
+ * 1:
+ */
+ break;
+ case TAHOE_WIDTH_BIG_NON_REV_JUMP:
+ p = frag_more (10);
+ *p++ = 0;
+ *p++ = 2;
+ *p++ = TAHOE_BRB;
+ *p++ = 6;
+ *p++ = TAHOE_JMP;
+ *p++ = (operandP->top_mode ==
+ TAHOE_ABSOLUTE_ADDR ? TAHOE_ABSOLUTE_ADDR :
+ TAHOE_PC_REL_LONG);
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ (to_seg != SEG_ABSOLUTE) ? FX_PCREL32 : FX_32, NULL);
+ /*
+ * Now (eg) xOBxxx 1f
+ * BRB 2f
+ * 1: JMP @#foo
+ * 2:
+ */
+ break;
+ case 'b':
+ case 'w':
+ as_warn (_("Real branch displacements must be expressions."));
+ break;
+ default:
+ as_fatal (_("Complier error: I got an unknown synthetic branch :%c"),
+ operandP->top_width);
+ break;
+ }
+ }
+ }
+ else
+ {
+ /* It ain't a branch operand. */
+ switch (operandP->top_mode)
+ {
+ /* Auto-foo access, only works for one reg (SP)
+ so the only thing needed is the mode. */
+ case TAHOE_AUTO_DEC:
+ case TAHOE_AUTO_INC:
+ case TAHOE_AUTO_INC_DEFERRED:
+ FRAG_APPEND_1_CHAR (operandP->top_mode);
+ break;
+
+ /* Numbered Register only access. Only thing needed is the
+ mode + Register number */
+ case TAHOE_DIRECT_REG:
+ case TAHOE_REG_DEFERRED:
+ FRAG_APPEND_1_CHAR (operandP->top_mode + operandP->top_reg);
+ break;
+
+ /* An absolute address. It's size is always 5 bytes.
+ (mode_type + 4 byte address). */
+ case TAHOE_ABSOLUTE_ADDR:
+ know ((this_add_symbol == NULL));
+ p = frag_more (5);
+ *p = TAHOE_ABSOLUTE_ADDR;
+ md_number_to_chars (p + 1, this_add_number, 4);
+ break;
+
+ /* Immediate data. If the size isn't known, then it's an address
+ + and offset, which is 4 bytes big. */
+ case TAHOE_IMMEDIATE:
+ if (this_add_symbol != NULL)
+ {
+ p = frag_more (5);
+ *p++ = TAHOE_IMMEDIATE_LONGWORD;
+ fix_new (frag_now, p - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ FX_32, NULL);
+ }
+ else
+ {
+ /* It's a integer, and I know it's size. */
+ if ((unsigned) this_add_number < 0x40)
+ {
+ /* Will it fit in a literal? */
+ FRAG_APPEND_1_CHAR ((byte) this_add_number);
+ }
+ else
+ {
+ p = frag_more (dispsize + 1);
+ switch (dispsize)
+ {
+ case 1:
+ *p++ = TAHOE_IMMEDIATE_BYTE;
+ *p = (byte) this_add_number;
+ break;
+ case 2:
+ *p++ = TAHOE_IMMEDIATE_WORD;
+ md_number_to_chars (p, this_add_number, 2);
+ break;
+ case 4:
+ *p++ = TAHOE_IMMEDIATE_LONGWORD;
+ md_number_to_chars (p, this_add_number, 4);
+ break;
+ }
+ }
+ }
+ break;
+
+ /* Distance from the PC. If the size isn't known, we have to relax
+ into it. The difference between this and disp(sp) is that
+ this offset is pc_rel, and disp(sp) isn't.
+ Note the drop through code. */
+
+ case TAHOE_DISPLACED_RELATIVE:
+ case TAHOE_DISP_REL_DEFERRED:
+ operandP->top_reg = PC_REG;
+ pc_rel = 1;
+
+ /* Register, plus a displacement mode. Save the register number,
+ and weather its deffered or not, and relax the size if it isn't
+ known. */
+ case TAHOE_REG_DISP:
+ case TAHOE_REG_DISP_DEFERRED:
+ if (operandP->top_mode == TAHOE_DISP_REL_DEFERRED ||
+ operandP->top_mode == TAHOE_REG_DISP_DEFERRED)
+ operandP->top_reg += 0x10; /* deffered mode is always 0x10 higher
+ than it's non-deffered sibling. */
+
+ /* Is this a value out of this segment?
+ The first part of this conditional is a cludge to make gas
+ produce the same output as 'as' when there is a lable, in
+ the current segment, displaceing a register. It's strange,
+ and no one in their right mind would do it, but it's easy
+ to cludge. */
+ if ((dispsize == 0 && !pc_rel) ||
+ (to_seg != now_seg && !is_undefined && to_seg != SEG_ABSOLUTE))
+ dispsize = 4;
+
+ if (dispsize == 0)
+ {
+ /*
+ * We have a SEG_UNKNOWN symbol, or the size isn't cast.
+ * It might turn out to be in the same segment as
+ * the instruction, permitting relaxation.
+ */
+ p = frag_var (rs_machine_dependent, 5, 2,
+ ENCODE_RELAX (STATE_PC_RELATIVE,
+ is_undefined ? STATE_UNDF : STATE_BYTE),
+ this_add_symbol, this_add_number, 0);
+ *p = operandP->top_reg;
+ }
+ else
+ {
+ /* Either this is an abs, or a cast. */
+ p = frag_more (dispsize + 1);
+ switch (dispsize)
+ {
+ case 1:
+ *p = TAHOE_PC_OR_BYTE + operandP->top_reg;
+ break;
+ case 2:
+ *p = TAHOE_PC_OR_WORD + operandP->top_reg;
+ break;
+ case 4:
+ *p = TAHOE_PC_OR_LONG + operandP->top_reg;
+ break;
+ };
+ fix_new (frag_now, p + 1 - frag_now->fr_literal,
+ this_add_symbol, this_add_number,
+ size_to_fx (dispsize, pc_rel), NULL);
+ }
+ break;
+ default:
+ as_fatal (_("Barf, bad mode %x\n"), operandP->top_mode);
+ }
+ }
+ } /* for(operandP) */
+ } /* if(!need_pass_2 && !goofed) */
+} /* tahoe_assemble() */
+
+
+/* We have no need to default values of symbols. */
+
+/* ARGSUSED */
+symbolS *
+md_undefined_symbol (name)
+ char *name;
+{
+ return 0;
+} /* md_undefined_symbol() */
+
+/* Round up a section size to the appropriate boundary. */
+valueT
+md_section_align (segment, size)
+ segT segment;
+ valueT size;
+{
+ return ((size + 7) & ~7); /* Round all sects to multiple of 8 */
+} /* md_section_align() */
+
+/* Exactly what point is a PC-relative offset relative TO?
+ On the sparc, they're relative to the address of the offset, plus
+ its size. This gets us to the following instruction.
+ (??? Is this right? FIXME-SOON) */
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return (((fixP->fx_type == FX_8
+ || fixP->fx_type == FX_PCREL8)
+ ? 1
+ : ((fixP->fx_type == FX_16
+ || fixP->fx_type == FX_PCREL16)
+ ? 2
+ : ((fixP->fx_type == FX_32
+ || fixP->fx_type == FX_PCREL32)
+ ? 4
+ : 0))) + fixP->fx_where + fixP->fx_frag->fr_address);
+} /* md_pcrel_from() */
+
+int
+tc_is_pcrel (fixP)
+ fixS *fixP;
+{
+ /* should never be called */
+ know (0);
+ return (0);
+} /* tc_is_pcrel() */
+
+/* end of tc-tahoe.c */