aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i960.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/config/tc-i960.c')
-rw-r--r--gas/config/tc-i960.c2800
1 files changed, 2800 insertions, 0 deletions
diff --git a/gas/config/tc-i960.c b/gas/config/tc-i960.c
new file mode 100644
index 0000000..a32325b
--- /dev/null
+++ b/gas/config/tc-i960.c
@@ -0,0 +1,2800 @@
+/* i960.c - All the i80960-specific stuff
+ Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
+
+This file is part of GAS.
+
+GAS is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 1, or (at your option)
+any later version.
+
+GAS is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GAS; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* $Id$ */
+
+/* See comment on md_parse_option for 80960-specific invocation options. */
+
+/******************************************************************************
+ * i80690 NOTE!!!:
+ * Header, symbol, and relocation info will be used on the host machine
+ * only -- only executable code is actually downloaded to the i80960.
+ * Therefore, leave all such information in host byte order.
+ *
+ * (That's a slight lie -- we DO download some header information, but
+ * the downloader converts the file format and corrects the byte-ordering
+ * of the relevant fields while doing so.)
+ *
+ ***************************************************************************** */
+
+/* There are 4 different lengths of (potentially) symbol-based displacements
+ * in the 80960 instruction set, each of which could require address fix-ups
+ * and (in the case of external symbols) emission of relocation directives:
+ *
+ * 32-bit (MEMB)
+ * This is a standard length for the base assembler and requires no
+ * special action.
+ *
+ * 13-bit (COBR)
+ * This is a non-standard length, but the base assembler has a hook for
+ * bit field address fixups: the fixS structure can point to a descriptor
+ * of the field, in which case our md_number_to_field() routine gets called
+ * to process it.
+ *
+ * I made the hook a little cleaner by having fix_new() (in the base
+ * assembler) return a pointer to the fixS in question. And I made it a
+ * little simpler by storing the field size (in this case 13) instead of
+ * of a pointer to another structure: 80960 displacements are ALWAYS
+ * stored in the low-order bits of a 4-byte word.
+ *
+ * Since the target of a COBR cannot be external, no relocation directives
+ * for this size displacement have to be generated. But the base assembler
+ * had to be modified to issue error messages if the symbol did turn out
+ * to be external.
+ *
+ * 24-bit (CTRL)
+ * Fixups are handled as for the 13-bit case (except that 24 is stored
+ * in the fixS).
+ *
+ * The relocation directive generated is the same as that for the 32-bit
+ * displacement, except that it's PC-relative (the 32-bit displacement
+ * never is). The i80960 version of the linker needs a mod to
+ * distinguish and handle the 24-bit case.
+ *
+ * 12-bit (MEMA)
+ * MEMA formats are always promoted to MEMB (32-bit) if the displacement
+ * is based on a symbol, because it could be relocated at link time.
+ * The only time we use the 12-bit format is if an absolute value of
+ * less than 4096 is specified, in which case we need neither a fixup nor
+ * a relocation directive.
+ */
+
+#include <stdio.h>
+#include <ctype.h>
+
+#include "as.h"
+
+#include "obstack.h"
+
+#include "i960-opcode.h"
+
+extern char *input_line_pointer;
+extern struct hash_control *po_hash;
+extern unsigned char nbytes_r_length[];
+extern char *next_object_file_charP;
+
+#ifdef OBJ_COFF
+int md_reloc_size = sizeof(struct reloc);
+#else /* OBJ_COFF */
+int md_reloc_size = sizeof(struct relocation_info);
+#endif /* OBJ_COFF */
+
+#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
+#ifdef __STDC__
+
+static void emit_machine_reloc(fixS *fixP, relax_addressT segment_address_in_file);
+
+#else /* __STDC__ */
+
+static void emit_machine_reloc();
+
+#endif /* __STDC__ */
+
+void (*md_emit_relocations)() = emit_machine_reloc;
+#endif /* OBJ_AOUT or OBJ_BOUT */
+
+ /***************************
+ * Local i80960 routines *
+ ************************** */
+
+static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
+static char * brlab_next(); /* Return next branch local label */
+ void brtab_emit(); /* Emit br-predict instrumentation table */
+static void cobr_fmt(); /* Generate COBR instruction */
+static void ctrl_fmt(); /* Generate CTRL instruction */
+static char * emit(); /* Emit (internally) binary */
+static int get_args(); /* Break arguments out of comma-separated list */
+static void get_cdisp(); /* Handle COBR or CTRL displacement */
+static char * get_ispec(); /* Find index specification string */
+static int get_regnum(); /* Translate text to register number */
+static int i_scan(); /* Lexical scan of instruction source */
+static void mem_fmt(); /* Generate MEMA or MEMB instruction */
+static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
+static segT parse_expr(); /* Parse an expression */
+static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
+static void parse_memop(); /* Parse a memory operand */
+static void parse_po(); /* Parse machine-dependent pseudo-op */
+static void parse_regop(); /* Parse a register operand */
+static void reg_fmt(); /* Generate a REG format instruction */
+ void reloc_callj(); /* Relocate a 'callj' instruction */
+static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
+static void s_leafproc(); /* Process '.leafproc' pseudo-op */
+static void s_sysproc(); /* Process '.sysproc' pseudo-op */
+static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
+static void syntax(); /* Give syntax error */
+static int targ_has_sfr(); /* Target chip supports spec-func register? */
+static int targ_has_iclass();/* Target chip supports instruction set? */
+/* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
+
+/* See md_parse_option() for meanings of these options */
+static char norelax = 0; /* True if -norelax switch seen */
+static char instrument_branches = 0; /* True if -b switch seen */
+
+/* Characters that always start a comment.
+ * If the pre-processor is disabled, these aren't very useful.
+ */
+char comment_chars[] = "#";
+
+/* Characters that only start a comment at the beginning of
+ * a line. If the line seems to have the form '# 123 filename'
+ * .line and .file directives will appear in the pre-processed output.
+ *
+ * Note that input_file.c hand checks for '#' at the beginning of the
+ * first line of the input file. This is because the compiler outputs
+ * #NO_APP at the beginning of its output.
+ */
+
+/* Also note that comments started like this one will always work. */
+
+char line_comment_chars[] = "";
+
+/* Chars that can be used to separate mant from exp in floating point nums */
+char EXP_CHARS[] = "eE";
+
+/* Chars that mean this number is a floating point constant,
+ * as in 0f12.456 or 0d1.2345e12
+ */
+char FLT_CHARS[] = "fFdDtT";
+
+
+/* Table used by base assembler to relax addresses based on varying length
+ * instructions. The fields are:
+ * 1) most positive reach of this state,
+ * 2) most negative reach of this state,
+ * 3) how many bytes this mode will add to the size of the current frag
+ * 4) which index into the table to try if we can't fit into this one.
+ *
+ * For i80960, the only application is the (de-)optimization of cobr
+ * instructions into separate compare and branch instructions when a 13-bit
+ * displacement won't hack it.
+ */
+const relax_typeS
+md_relax_table[] = {
+ {0, 0, 0,0}, /* State 0 => no more relaxation possible */
+ {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
+ {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
+};
+
+
+/* These are the machine dependent pseudo-ops.
+ *
+ * This table describes all the machine specific pseudo-ops the assembler
+ * has to support. The fields are:
+ * pseudo-op name without dot
+ * function to call to execute this pseudo-op
+ * integer arg to pass to the function
+ */
+#define S_LEAFPROC 1
+#define S_SYSPROC 2
+
+const pseudo_typeS
+md_pseudo_table[] = {
+
+ { "bss", s_lcomm, 1 },
+ { "extended", float_cons, 't' },
+ { "leafproc", parse_po, S_LEAFPROC },
+ { "sysproc", parse_po, S_SYSPROC },
+
+ { "word", cons, 4 },
+ { "quad", big_cons, 16 },
+
+ { 0, 0, 0 }
+};
+
+/* Macros to extract info from an 'expressionS' structure 'e' */
+#define adds(e) e.X_add_symbol
+#define subs(e) e.X_subtract_symbol
+#define offs(e) e.X_add_number
+#define segs(e) e.X_seg
+
+
+/* Branch-prediction bits for CTRL/COBR format opcodes */
+#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
+#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
+#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
+
+
+/* Some instruction opcodes that we need explicitly */
+#define BE 0x12000000
+#define BG 0x11000000
+#define BGE 0x13000000
+#define BL 0x14000000
+#define BLE 0x16000000
+#define BNE 0x15000000
+#define BNO 0x10000000
+#define BO 0x17000000
+#define CHKBIT 0x5a002700
+#define CMPI 0x5a002080
+#define CMPO 0x5a002000
+
+#define B 0x08000000
+#define BAL 0x0b000000
+#define CALL 0x09000000
+#define CALLS 0x66003800
+#define RET 0x0a000000
+
+
+/* These masks are used to build up a set of MEMB mode bits. */
+#define A_BIT 0x0400
+#define I_BIT 0x0800
+#define MEMB_BIT 0x1000
+#define D_BIT 0x2000
+
+
+/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
+#define MEMA_ABASE 0x2000
+
+/* Info from which a MEMA or MEMB format instruction can be generated */
+typedef struct {
+ long opcode; /* (First) 32 bits of instruction */
+ int disp; /* 0-(none), 12- or, 32-bit displacement needed */
+ char *e; /* The expression in the source instruction from
+ * which the displacement should be determined
+ */
+} memS;
+
+
+/* The two pieces of info we need to generate a register operand */
+struct regop {
+ int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
+ int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
+ int n; /* Register number or literal value */
+};
+
+
+/* Number and assembler mnemonic for all registers that can appear in operands */
+static struct {
+ char *reg_name;
+ int reg_num;
+} regnames[] = {
+ { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
+ { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
+ { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
+ { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
+ { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
+ { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
+ { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
+ { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
+
+ /* Numbers for special-function registers are for assembler internal
+ * use only: they are scaled back to range [0-31] for binary output.
+ */
+# define SF0 32
+
+ { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
+ { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
+ { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
+ { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
+ { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
+ { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
+ { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
+ { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
+
+ /* Numbers for floating point registers are for assembler internal use
+ * only: they are scaled back to [0-3] for binary output.
+ */
+# define FP0 64
+
+ { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
+
+ { NULL, 0 }, /* END OF LIST */
+};
+
+#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
+#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
+#define IS_FP_REG(n) ((n) >= FP0)
+
+/* Number and assembler mnemonic for all registers that can appear as 'abase'
+ * (indirect addressing) registers.
+ */
+static struct {
+ char *areg_name;
+ int areg_num;
+} aregs[] = {
+ { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
+ { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
+ { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
+ { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
+ { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
+ { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
+ { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
+ { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
+
+# define IPREL 32
+ /* for assembler internal use only: this number never appears in binary
+ * output.
+ */
+ { "(ip)", IPREL },
+
+ { NULL, 0 }, /* END OF LIST */
+};
+
+
+/* Hash tables */
+static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
+static struct hash_control *reg_hash = NULL; /* Register name hash table */
+static struct hash_control *areg_hash = NULL; /* Abase register hash table */
+
+
+/* Architecture for which we are assembling */
+#define ARCH_ANY 0 /* Default: no architecture checking done */
+#define ARCH_KA 1
+#define ARCH_KB 2
+#define ARCH_MC 3
+#define ARCH_CA 4
+int architecture = ARCH_ANY; /* Architecture requested on invocation line */
+int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
+ * for which we've actually assembled
+ * instructions.
+ */
+
+
+/* BRANCH-PREDICTION INSTRUMENTATION
+ *
+ * The following supports generation of branch-prediction instrumentation
+ * (turned on by -b switch). The instrumentation collects counts
+ * of branches taken/not-taken for later input to a utility that will
+ * set the branch prediction bits of the instructions in accordance with
+ * the behavior observed. (Note that the KX series does not have
+ * brach-prediction.)
+ *
+ * The instrumentation consists of:
+ *
+ * (1) before and after each conditional branch, a call to an external
+ * routine that increments and steps over an inline counter. The
+ * counter itself, initialized to 0, immediately follows the call
+ * instruction. For each branch, the counter following the branch
+ * is the number of times the branch was not taken, and the difference
+ * between the counters is the number of times it was taken. An
+ * example of an instrumented conditional branch:
+ *
+ * call BR_CNT_FUNC
+ * .word 0
+ * LBRANCH23: be label
+ * call BR_CNT_FUNC
+ * .word 0
+ *
+ * (2) a table of pointers to the instrumented branches, so that an
+ * external postprocessing routine can locate all of the counters.
+ * the table begins with a 2-word header: a pointer to the next in
+ * a linked list of such tables (initialized to 0); and a count
+ * of the number of entries in the table (exclusive of the header.
+ *
+ * Note that input source code is expected to already contain calls
+ * an external routine that will link the branch local table into a
+ * list of such tables.
+ */
+
+static int br_cnt = 0; /* Number of branches instrumented so far.
+ * Also used to generate unique local labels
+ * for each instrumented branch
+ */
+
+#define BR_LABEL_BASE "LBRANCH"
+ /* Basename of local labels on instrumented
+ * branches, to avoid conflict with compiler-
+ * generated local labels.
+ */
+
+#define BR_CNT_FUNC "__inc_branch"
+ /* Name of the external routine that will
+ * increment (and step over) an inline counter.
+ */
+
+#define BR_TAB_NAME "__BRANCH_TABLE__"
+ /* Name of the table of pointers to branches.
+ * A local (i.e., non-external) symbol.
+ */
+
+/*****************************************************************************
+ * md_begin: One-time initialization.
+ *
+ * Set up hash tables.
+ *
+ **************************************************************************** */
+void
+md_begin()
+{
+ int i; /* Loop counter */
+ const struct i960_opcode *oP; /* Pointer into opcode table */
+ char *retval; /* Value returned by hash functions */
+
+ if (((op_hash = hash_new()) == 0)
+ || ((reg_hash = hash_new()) == 0)
+ || ((areg_hash = hash_new()) == 0)) {
+ as_fatal("virtual memory exceeded");
+ }
+
+ retval = ""; /* For some reason, the base assembler uses an empty
+ * string for "no error message", instead of a NULL
+ * pointer.
+ */
+
+ for (oP=i960_opcodes; oP->name && !*retval; oP++) {
+ retval = hash_insert(op_hash, oP->name, oP);
+ }
+
+ for (i=0; regnames[i].reg_name && !*retval; i++) {
+ retval = hash_insert(reg_hash, regnames[i].reg_name,
+ &regnames[i].reg_num);
+ }
+
+ for (i=0; aregs[i].areg_name && !*retval; i++){
+ retval = hash_insert(areg_hash, aregs[i].areg_name,
+ &aregs[i].areg_num);
+ }
+
+ if (*retval) {
+ as_fatal("Hashing returned \"%s\".", retval);
+ }
+} /* md_begin() */
+
+/*****************************************************************************
+ * md_end: One-time final cleanup
+ *
+ * None necessary
+ *
+ **************************************************************************** */
+void
+md_end()
+{
+}
+
+/*****************************************************************************
+ * md_assemble: Assemble an instruction
+ *
+ * Assumptions about the passed-in text:
+ * - all comments, labels removed
+ * - text is an instruction
+ * - all white space compressed to single blanks
+ * - all character constants have been replaced with decimal
+ *
+ **************************************************************************** */
+void
+md_assemble(textP)
+ char *textP; /* Source text of instruction */
+{
+ char *args[4]; /* Parsed instruction text, containing NO whitespace:
+ * arg[0]->opcode mnemonic
+ * arg[1-3]->operands, with char constants
+ * replaced by decimal numbers
+ */
+ int n_ops; /* Number of instruction operands */
+
+ struct i960_opcode *oP;
+ /* Pointer to instruction description */
+ int branch_predict;
+ /* TRUE iff opcode mnemonic included branch-prediction
+ * suffix (".f" or ".t")
+ */
+ long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
+ * into instruction opcode of CTRL/COBR format
+ * instructions.
+ */
+ int n; /* Offset of last character in opcode mnemonic */
+
+ static const char bp_error_msg[] = "branch prediction invalid on this opcode";
+
+
+ /* Parse instruction into opcode and operands */
+ bzero(args, sizeof(args));
+ n_ops = i_scan(textP, args);
+ if (n_ops == -1){
+ return; /* Error message already issued */
+ }
+
+ /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
+ if (!strcmp(args[0],"ldconst")){
+ n_ops = parse_ldconst(args);
+ if (n_ops == -1){
+ return;
+ }
+ }
+
+ /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
+ n = strlen(args[0]) - 1;
+ branch_predict = 0;
+ bp_bits = 0;
+ if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
+ /* We could check here to see if the target architecture
+ * supports branch prediction, but why bother? The bit
+ * will just be ignored by processors that don't use it.
+ */
+ branch_predict = 1;
+ bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
+ args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
+ }
+
+ /* Look up opcode mnemonic in table and check number of operands.
+ * Check that opcode is legal for the target architecture.
+ * If all looks good, assemble instruction.
+ */
+ oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
+ if (!oP || !targ_has_iclass(oP->iclass)) {
+ as_bad("invalid opcode, \"%s\".", args[0]);
+
+ } else if (n_ops != oP->num_ops) {
+ as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
+
+ } else {
+ switch (oP->format){
+ case FBRA:
+ case CTRL:
+ ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
+ if (oP->format == FBRA){
+ /* Now generate a 'bno' to same arg */
+ ctrl_fmt(args[1], BNO | bp_bits, 1);
+ }
+ break;
+ case COBR:
+ case COJ:
+ cobr_fmt(args, oP->opcode | bp_bits, oP);
+ break;
+ case REG:
+ if (branch_predict){
+ as_warn(bp_error_msg);
+ }
+ reg_fmt(args, oP);
+ break;
+ case MEM1:
+ case MEM2:
+ case MEM4:
+ case MEM8:
+ case MEM12:
+ case MEM16:
+ if (branch_predict){
+ as_warn(bp_error_msg);
+ }
+ mem_fmt(args, oP);
+ break;
+ case CALLJ:
+ if (branch_predict){
+ as_warn(bp_error_msg);
+ }
+ /* Output opcode & set up "fixup" (relocation);
+ * flag relocation as 'callj' type.
+ */
+ know(oP->num_ops == 1);
+ get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
+ break;
+ default:
+ BAD_CASE(oP->format);
+ break;
+ }
+ }
+} /* md_assemble() */
+
+/*****************************************************************************
+ * md_number_to_chars: convert a number to target byte order
+ *
+ **************************************************************************** */
+void
+md_number_to_chars(buf, value, n)
+ char *buf; /* Put output here */
+ long value; /* The integer to be converted */
+ int n; /* Number of bytes to output (significant bytes
+ * in 'value')
+ */
+{
+ while (n--){
+ *buf++ = value;
+ value >>= 8;
+ }
+
+ /* XXX line number probably botched for this warning message. */
+ if (value != 0 && value != -1){
+ as_bad("Displacement too long for instruction field length.");
+ }
+} /* md_number_to_chars() */
+
+/*****************************************************************************
+ * md_chars_to_number: convert from target byte order to host byte order.
+ *
+ **************************************************************************** */
+int
+md_chars_to_number(val, n)
+ unsigned char *val; /* Value in target byte order */
+ int n; /* Number of bytes in the input */
+{
+ int retval;
+
+ for (retval=0; n--;){
+ retval <<= 8;
+ retval |= val[n];
+ }
+ return retval;
+}
+
+
+#define MAX_LITTLENUMS 6
+#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
+
+/*****************************************************************************
+ * md_atof: convert ascii to floating point
+ *
+ * Turn a string at input_line_pointer into a floating point constant of type
+ * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
+ * emitted is returned at 'sizeP'. An error message is returned, or a pointer
+ * to an empty message if OK.
+ *
+ * Note we call the i386 floating point routine, rather than complicating
+ * things with more files or symbolic links.
+ *
+ **************************************************************************** */
+char * md_atof(type, litP, sizeP)
+int type;
+char *litP;
+int *sizeP;
+{
+ LITTLENUM_TYPE words[MAX_LITTLENUMS];
+ LITTLENUM_TYPE *wordP;
+ int prec;
+ char *t;
+ char *atof_ieee();
+
+ switch(type) {
+ case 'f':
+ case 'F':
+ prec = 2;
+ break;
+
+ case 'd':
+ case 'D':
+ prec = 4;
+ break;
+
+ case 't':
+ case 'T':
+ prec = 5;
+ type = 'x'; /* That's what atof_ieee() understands */
+ break;
+
+ default:
+ *sizeP=0;
+ return "Bad call to md_atof()";
+ }
+
+ t = atof_ieee(input_line_pointer, type, words);
+ if (t){
+ input_line_pointer = t;
+ }
+
+ *sizeP = prec * LNUM_SIZE;
+
+ /* Output the LITTLENUMs in REVERSE order in accord with i80960
+ * word-order. (Dunno why atof_ieee doesn't do it in the right
+ * order in the first place -- probably because it's a hack of
+ * atof_m68k.)
+ */
+
+ for(wordP = words + prec - 1; prec--;){
+ md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
+ litP += sizeof(LITTLENUM_TYPE);
+ }
+
+ return ""; /* Someone should teach Dean about null pointers */
+}
+
+
+/*****************************************************************************
+ * md_number_to_imm
+ *
+ **************************************************************************** */
+void
+md_number_to_imm(buf, val, n)
+ char *buf;
+ long val;
+ int n;
+{
+ md_number_to_chars(buf, val, n);
+}
+
+
+/*****************************************************************************
+ * md_number_to_disp
+ *
+ **************************************************************************** */
+void
+md_number_to_disp(buf, val, n)
+ char *buf;
+ long val;
+ int n;
+{
+ md_number_to_chars(buf, val, n);
+}
+
+/*****************************************************************************
+ * md_number_to_field:
+ *
+ * Stick a value (an address fixup) into a bit field of
+ * previously-generated instruction.
+ *
+ **************************************************************************** */
+void
+md_number_to_field(instrP, val, bfixP)
+ char *instrP; /* Pointer to instruction to be fixed */
+ long val; /* Address fixup value */
+ bit_fixS *bfixP; /* Description of bit field to be fixed up */
+{
+ int numbits; /* Length of bit field to be fixed */
+ long instr; /* 32-bit instruction to be fixed-up */
+ long sign; /* 0 or -1, according to sign bit of 'val' */
+
+ /* Convert instruction back to host byte order
+ */
+ instr = md_chars_to_number(instrP, 4);
+
+ /* Surprise! -- we stored the number of bits
+ * to be modified rather than a pointer to a structure.
+ */
+ numbits = (int)bfixP;
+ if (numbits == 1){
+ /* This is a no-op, stuck here by reloc_callj() */
+ return;
+ }
+
+ know ((numbits==13) || (numbits==24));
+
+ /* Propagate sign bit of 'val' for the given number of bits.
+ * Result should be all 0 or all 1
+ */
+ sign = val >> ((int)numbits - 1);
+ if (((val < 0) && (sign != -1))
+ || ((val > 0) && (sign != 0))){
+ as_bad("Fixup of %d too large for field width of %d",
+ val, numbits);
+ } else {
+ /* Put bit field into instruction and write back in target
+ * byte order.
+ */
+ val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
+ instr |= val;
+ md_number_to_chars(instrP, instr, 4);
+ }
+} /* md_number_to_field() */
+
+
+/*****************************************************************************
+ * md_parse_option
+ * Invocation line includes a switch not recognized by the base assembler.
+ * See if it's a processor-specific option. For the 960, these are:
+ *
+ * -norelax:
+ * Conditional branch instructions that require displacements
+ * greater than 13 bits (or that have external targets) should
+ * generate errors. The default is to replace each such
+ * instruction with the corresponding compare (or chkbit) and
+ * branch instructions. Note that the Intel "j" cobr directives
+ * are ALWAYS "de-optimized" in this way when necessary,
+ * regardless of the setting of this option.
+ *
+ * -b:
+ * Add code to collect information about branches taken, for
+ * later optimization of branch prediction bits by a separate
+ * tool. COBR and CNTL format instructions have branch
+ * prediction bits (in the CX architecture); if "BR" represents
+ * an instruction in one of these classes, the following rep-
+ * resents the code generated by the assembler:
+ *
+ * call <increment routine>
+ * .word 0 # pre-counter
+ * Label: BR
+ * call <increment routine>
+ * .word 0 # post-counter
+ *
+ * A table of all such "Labels" is also generated.
+ *
+ *
+ * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
+ * Select the 80960 architecture. Instructions or features not
+ * supported by the selected architecture cause fatal errors.
+ * The default is to generate code for any instruction or feature
+ * that is supported by SOME version of the 960 (even if this
+ * means mixing architectures!).
+ *
+ **************************************************************************** */
+int
+md_parse_option(argP, cntP, vecP)
+ char **argP;
+ int *cntP;
+ char ***vecP;
+{
+ char *p;
+ struct tabentry { char *flag; int arch; };
+ static struct tabentry arch_tab[] = {
+ "KA", ARCH_KA,
+ "KB", ARCH_KB,
+ "SA", ARCH_KA, /* Synonym for KA */
+ "SB", ARCH_KB, /* Synonym for KB */
+ "KC", ARCH_MC, /* Synonym for MC */
+ "MC", ARCH_MC,
+ "CA", ARCH_CA,
+ NULL, 0
+ };
+ struct tabentry *tp;
+
+ if (!strcmp(*argP,"norelax")){
+ norelax = 1;
+
+ } else if (**argP == 'b'){
+ instrument_branches = 1;
+
+ } else if (**argP == 'A'){
+ p = (*argP) + 1;
+
+ for (tp = arch_tab; tp->flag != NULL; tp++){
+ if (!strcmp(p,tp->flag)){
+ break;
+ }
+ }
+
+ if (tp->flag == NULL){
+ as_bad("unknown architecture: %s", p);
+ } else {
+ architecture = tp->arch;
+ }
+ } else {
+ /* Unknown option */
+ (*argP)++;
+ return 0;
+ }
+ **argP = '\0'; /* Done parsing this switch */
+ return 1;
+}
+
+/*****************************************************************************
+ * md_convert_frag:
+ * Called by base assembler after address relaxation is finished: modify
+ * variable fragments according to how much relaxation was done.
+ *
+ * If the fragment substate is still 1, a 13-bit displacement was enough
+ * to reach the symbol in question. Set up an address fixup, but otherwise
+ * leave the cobr instruction alone.
+ *
+ * If the fragment substate is 2, a 13-bit displacement was not enough.
+ * Replace the cobr with a two instructions (a compare and a branch).
+ *
+ **************************************************************************** */
+void
+md_convert_frag(fragP)
+ fragS * fragP;
+{
+ fixS *fixP; /* Structure describing needed address fix */
+
+ switch (fragP->fr_subtype){
+ case 1:
+ /* LEAVE SINGLE COBR INSTRUCTION */
+ fixP = fix_new(fragP,
+ fragP->fr_opcode-fragP->fr_literal,
+ 4,
+ fragP->fr_symbol,
+ 0,
+ fragP->fr_offset,
+ 1,
+ 0);
+
+ fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
+ break;
+ case 2:
+ /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
+ relax_cobr(fragP);
+ break;
+ default:
+ BAD_CASE(fragP->fr_subtype);
+ break;
+ }
+}
+
+/*****************************************************************************
+ * md_estimate_size_before_relax: How much does it look like *fragP will grow?
+ *
+ * Called by base assembler just before address relaxation.
+ * Return the amount by which the fragment will grow.
+ *
+ * Any symbol that is now undefined will not become defined; cobr's
+ * based on undefined symbols will have to be replaced with a compare
+ * instruction and a branch instruction, and the code fragment will grow
+ * by 4 bytes.
+ *
+ **************************************************************************** */
+int
+md_estimate_size_before_relax(fragP, segment_type)
+ register fragS *fragP;
+ register segT segment_type;
+{
+ /* If symbol is undefined in this segment, go to "relaxed" state
+ * (compare and branch instructions instead of cobr) right now.
+ */
+ if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
+ relax_cobr(fragP);
+ return 4;
+ }
+ return 0;
+} /* md_estimate_size_before_relax() */
+
+
+/*****************************************************************************
+ * md_ri_to_chars:
+ * This routine exists in order to overcome machine byte-order problems
+ * when dealing with bit-field entries in the relocation_info struct.
+ *
+ * But relocation info will be used on the host machine only (only
+ * executable code is actually downloaded to the i80960). Therefore,
+ * we leave it in host byte order.
+ *
+ **************************************************************************** */
+void md_ri_to_chars(the_bytes, ri)
+char *the_bytes;
+struct reloc_info_generic *ri;
+{
+ struct relocation_info br;
+
+ (void) bzero(&br, sizeof(br));
+
+ br.r_address = ri->r_address;
+ br.r_index = ri->r_index;
+ br.r_pcrel = ri->r_pcrel;
+ br.r_length = ri->r_length;
+ br.r_extern = ri->r_extern;
+ br.r_bsr = ri->r_bsr;
+ br.r_disp = ri->r_disp;
+ br.r_callj = ri->r_callj;
+
+ *((struct relocation_info *) the_bytes) = br;
+} /* md_ri_to_chars() */
+
+
+#ifndef WORKING_DOT_WORD
+
+int md_short_jump_size = 0;
+int md_long_jump_size = 0;
+
+void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
+char *ptr;
+long from_addr;
+long to_addr;
+fragS *frag;
+symbolS *to_symbol;
+{
+ abort();
+}
+
+void
+md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
+ char *ptr;
+ long from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ abort();
+}
+#endif
+
+ /*************************************************************
+ * *
+ * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
+ * *
+ ************************************************************ */
+
+
+
+/*****************************************************************************
+ * brcnt_emit: Emit code to increment inline branch counter.
+ *
+ * See the comments above the declaration of 'br_cnt' for details on
+ * branch-prediction instrumentation.
+ **************************************************************************** */
+static void
+brcnt_emit()
+{
+ ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
+ emit(0); /* Emit inline counter to be incremented */
+}
+
+/*****************************************************************************
+ * brlab_next: generate the next branch local label
+ *
+ * See the comments above the declaration of 'br_cnt' for details on
+ * branch-prediction instrumentation.
+ **************************************************************************** */
+static char *
+brlab_next()
+{
+ static char buf[20];
+
+ sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
+ return buf;
+}
+
+/*****************************************************************************
+ * brtab_emit: generate the fetch-prediction branch table.
+ *
+ * See the comments above the declaration of 'br_cnt' for details on
+ * branch-prediction instrumentation.
+ *
+ * The code emitted here would be functionally equivalent to the following
+ * example assembler source.
+ *
+ * .data
+ * .align 2
+ * BR_TAB_NAME:
+ * .word 0 # link to next table
+ * .word 3 # length of table
+ * .word LBRANCH0 # 1st entry in table proper
+ * .word LBRANCH1
+ * .word LBRANCH2
+ ***************************************************************************** */
+void
+brtab_emit()
+{
+ int i;
+ char buf[20];
+ char *p; /* Where the binary was output to */
+ fixS *fixP; /*->description of deferred address fixup */
+
+ if (!instrument_branches){
+ return;
+ }
+
+ subseg_new(SEG_DATA,0); /* .data */
+ frag_align(2,0); /* .align 2 */
+ record_alignment(now_seg,2);
+ colon(BR_TAB_NAME); /* BR_TAB_NAME: */
+ emit(0); /* .word 0 #link to next table */
+ emit(br_cnt); /* .word n #length of table */
+
+ for (i=0; i<br_cnt; i++){
+ sprintf(buf, "%s%d", BR_LABEL_BASE, i);
+ p = emit(0);
+ fixP = fix_new(frag_now,
+ p - frag_now->fr_literal,
+ 4,
+ symbol_find(buf),
+ 0,
+ 0,
+ 0,
+ 0);
+ fixP->fx_im_disp = 2; /* 32-bit displacement fix */
+ }
+}
+
+/*****************************************************************************
+ * cobr_fmt: generate a COBR-format instruction
+ *
+ **************************************************************************** */
+static
+void
+cobr_fmt(arg, opcode, oP)
+ char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
+ long opcode; /* Opcode, with branch-prediction bits already set
+ * if necessary.
+ */
+ struct i960_opcode *oP;
+ /*->description of instruction */
+{
+ long instr; /* 32-bit instruction */
+ struct regop regop; /* Description of register operand */
+ int n; /* Number of operands */
+ int var_frag; /* 1 if varying length code fragment should
+ * be emitted; 0 if an address fix
+ * should be emitted.
+ */
+
+ instr = opcode;
+ n = oP->num_ops;
+
+ if (n >= 1) {
+ /* First operand (if any) of a COBR is always a register
+ * operand. Parse it.
+ */
+ parse_regop(&regop, arg[1], oP->operand[0]);
+ instr |= (regop.n << 19) | (regop.mode << 13);
+ }
+ if (n >= 2) {
+ /* Second operand (if any) of a COBR is always a register
+ * operand. Parse it.
+ */
+ parse_regop(&regop, arg[2], oP->operand[1]);
+ instr |= (regop.n << 14) | regop.special;
+ }
+
+
+ if (n < 3){
+ emit(instr);
+
+ } else {
+ if (instrument_branches){
+ brcnt_emit();
+ colon(brlab_next());
+ }
+
+ /* A third operand to a COBR is always a displacement.
+ * Parse it; if it's relaxable (a cobr "j" directive, or any
+ * cobr other than bbs/bbc when the "-norelax" option is not in
+ * use) set up a variable code fragment; otherwise set up an
+ * address fix.
+ */
+ var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
+ get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
+
+ if (instrument_branches){
+ brcnt_emit();
+ }
+ }
+} /* cobr_fmt() */
+
+
+/*****************************************************************************
+ * ctrl_fmt: generate a CTRL-format instruction
+ *
+ **************************************************************************** */
+static
+void
+ctrl_fmt(targP, opcode, num_ops)
+ char *targP; /* Pointer to text of lone operand (if any) */
+ long opcode; /* Template of instruction */
+ int num_ops; /* Number of operands */
+{
+ int instrument; /* TRUE iff we should add instrumentation to track
+ * how often the branch is taken
+ */
+
+
+ if (num_ops == 0){
+ emit(opcode); /* Output opcode */
+ } else {
+
+ instrument = instrument_branches && (opcode!=CALL)
+ && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
+
+ if (instrument){
+ brcnt_emit();
+ colon(brlab_next());
+ }
+
+ /* The operand MUST be an ip-relative displacment. Parse it
+ * and set up address fix for the instruction we just output.
+ */
+ get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
+
+ if (instrument){
+ brcnt_emit();
+ }
+ }
+
+}
+
+
+/*****************************************************************************
+ * emit: output instruction binary
+ *
+ * Output instruction binary, in target byte order, 4 bytes at a time.
+ * Return pointer to where it was placed.
+ *
+ **************************************************************************** */
+static
+char *
+emit(instr)
+ long instr; /* Word to be output, host byte order */
+{
+ char *toP; /* Where to output it */
+
+ toP = frag_more(4); /* Allocate storage */
+ md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
+ return toP;
+}
+
+
+/*****************************************************************************
+ * get_args: break individual arguments out of comma-separated list
+ *
+ * Input assumptions:
+ * - all comments and labels have been removed
+ * - all strings of whitespace have been collapsed to a single blank.
+ * - all character constants ('x') have been replaced with decimal
+ *
+ * Output:
+ * args[0] is untouched. args[1] points to first operand, etc. All args:
+ * - are NULL-terminated
+ * - contain no whitespace
+ *
+ * Return value:
+ * Number of operands (0,1,2, or 3) or -1 on error.
+ *
+ **************************************************************************** */
+static int get_args(p, args)
+ register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
+ char *args[]; /* Output arg: pointers to operands placed in args[1-3].
+ * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
+ */
+{
+ register int n; /* Number of operands */
+ register char *to;
+/* char buf[4]; */
+/* int len; */
+
+
+ /* Skip lead white space */
+ while (*p == ' '){
+ p++;
+ }
+
+ if (*p == '\0'){
+ return 0;
+ }
+
+ n = 1;
+ args[1] = p;
+
+ /* Squeze blanks out by moving non-blanks toward start of string.
+ * Isolate operands, whenever comma is found.
+ */
+ to = p;
+ while (*p != '\0'){
+
+ if (*p == ' '){
+ p++;
+
+ } else if (*p == ','){
+
+ /* Start of operand */
+ if (n == 3){
+ as_bad("too many operands");
+ return -1;
+ }
+ *to++ = '\0'; /* Terminate argument */
+ args[++n] = to; /* Start next argument */
+ p++;
+
+ } else {
+ *to++ = *p++;
+ }
+ }
+ *to = '\0';
+ return n;
+}
+
+
+/*****************************************************************************
+ * get_cdisp: handle displacement for a COBR or CTRL instruction.
+ *
+ * Parse displacement for a COBR or CTRL instruction.
+ *
+ * If successful, output the instruction opcode and set up for it,
+ * depending on the arg 'var_frag', either:
+ * o an address fixup to be done when all symbol values are known, or
+ * o a varying length code fragment, with address fixup info. This
+ * will be done for cobr instructions that may have to be relaxed
+ * in to compare/branch instructions (8 bytes) if the final address
+ * displacement is greater than 13 bits.
+ *
+ **************************************************************************** */
+static
+void
+get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
+ char *dispP; /*->displacement as specified in source instruction */
+ char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
+ long instr; /* Instruction needing the displacement */
+ int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
+ int var_frag; /* 1 if varying length code fragment should be emitted;
+ * 0 if an address fix should be emitted.
+ */
+ int callj; /* 1 if callj relocation should be done; else 0 */
+{
+ expressionS e; /* Parsed expression */
+ fixS *fixP; /* Structure describing needed address fix */
+ char *outP; /* Where instruction binary is output to */
+
+ fixP = NULL;
+
+ switch (parse_expr(dispP,&e)) {
+
+ case SEG_GOOF:
+ as_bad("expression syntax error");
+ break;
+
+ case SEG_TEXT:
+ case SEG_UNKNOWN:
+ if (var_frag) {
+ outP = frag_more(8); /* Allocate worst-case storage */
+ md_number_to_chars(outP, instr, 4);
+ frag_variant(rs_machine_dependent, 4, 4, 1,
+ adds(e), offs(e), outP, 0, 0);
+ } else {
+ /* Set up a new fix structure, so address can be updated
+ * when all symbol values are known.
+ */
+ outP = emit(instr);
+ fixP = fix_new(frag_now,
+ outP - frag_now->fr_literal,
+ 4,
+ adds(e),
+ 0,
+ offs(e),
+ 1,
+ 0);
+
+ fixP->fx_callj = callj;
+
+ /* We want to modify a bit field when the address is
+ * known. But we don't need all the garbage in the
+ * bit_fix structure. So we're going to lie and store
+ * the number of bits affected instead of a pointer.
+ */
+ fixP->fx_bit_fixP = (bit_fixS *) numbits;
+ }
+ break;
+
+ case SEG_DATA:
+ case SEG_BSS:
+ as_bad("attempt to branch into different segment");
+ break;
+
+ default:
+ as_bad("target of %s instruction must be a label", ifmtP);
+ break;
+ }
+}
+
+
+/*****************************************************************************
+ * get_ispec: parse a memory operand for an index specification
+ *
+ * Here, an "index specification" is taken to be anything surrounded
+ * by square brackets and NOT followed by anything else.
+ *
+ * If it's found, detach it from the input string, remove the surrounding
+ * square brackets, and return a pointer to it. Otherwise, return NULL.
+ *
+ **************************************************************************** */
+static
+char *
+get_ispec(textP)
+ char *textP; /*->memory operand from source instruction, no white space */
+{
+ char *start; /*->start of index specification */
+ char *end; /*->end of index specification */
+
+ /* Find opening square bracket, if any
+ */
+ start = index(textP, '[');
+
+ if (start != NULL){
+
+ /* Eliminate '[', detach from rest of operand */
+ *start++ = '\0';
+
+ end = index(start, ']');
+
+ if (end == NULL){
+ as_bad("unmatched '['");
+
+ } else {
+ /* Eliminate ']' and make sure it was the last thing
+ * in the string.
+ */
+ *end = '\0';
+ if (*(end+1) != '\0'){
+ as_bad("garbage after index spec ignored");
+ }
+ }
+ }
+ return start;
+}
+
+/*****************************************************************************
+ * get_regnum:
+ *
+ * Look up a (suspected) register name in the register table and return the
+ * associated register number (or -1 if not found).
+ *
+ **************************************************************************** */
+static
+int
+get_regnum(regname)
+ char *regname; /* Suspected register name */
+{
+ int *rP;
+
+ rP = (int *) hash_find(reg_hash, regname);
+ return (rP == NULL) ? -1 : *rP;
+}
+
+
+/*****************************************************************************
+ * i_scan: perform lexical scan of ascii assembler instruction.
+ *
+ * Input assumptions:
+ * - input string is an i80960 instruction (not a pseudo-op)
+ * - all comments and labels have been removed
+ * - all strings of whitespace have been collapsed to a single blank.
+ *
+ * Output:
+ * args[0] points to opcode, other entries point to operands. All strings:
+ * - are NULL-terminated
+ * - contain no whitespace
+ * - have character constants ('x') replaced with a decimal number
+ *
+ * Return value:
+ * Number of operands (0,1,2, or 3) or -1 on error.
+ *
+ **************************************************************************** */
+static int i_scan(iP, args)
+ register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
+ char *args[]; /* Output arg: pointers to opcode and operands placed
+ * here. MUST ACCOMMODATE 4 ENTRIES.
+ */
+{
+
+ /* Isolate opcode */
+ if (*(iP) == ' ') {
+ iP++;
+ } /* Skip lead space, if any */
+ args[0] = iP;
+ for (; *iP != ' '; iP++) {
+ if (*iP == '\0') {
+ /* There are no operands */
+ if (args[0] == iP) {
+ /* We never moved: there was no opcode either! */
+ as_bad("missing opcode");
+ return -1;
+ }
+ return 0;
+ }
+ }
+ *iP++ = '\0'; /* Terminate opcode */
+ return(get_args(iP, args));
+} /* i_scan() */
+
+
+/*****************************************************************************
+ * mem_fmt: generate a MEMA- or MEMB-format instruction
+ *
+ **************************************************************************** */
+static void mem_fmt(args, oP)
+ char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
+ struct i960_opcode *oP; /* Pointer to description of instruction */
+{
+ int i; /* Loop counter */
+ struct regop regop; /* Description of register operand */
+ char opdesc; /* Operand descriptor byte */
+ memS instr; /* Description of binary to be output */
+ char *outP; /* Where the binary was output to */
+ expressionS expr; /* Parsed expression */
+ fixS *fixP; /*->description of deferred address fixup */
+
+ bzero(&instr, sizeof(memS));
+ instr.opcode = oP->opcode;
+
+ /* Process operands. */
+ for (i = 1; i <= oP->num_ops; i++){
+ opdesc = oP->operand[i-1];
+
+ if (MEMOP(opdesc)){
+ parse_memop(&instr, args[i], oP->format);
+ } else {
+ parse_regop(&regop, args[i], opdesc);
+ instr.opcode |= regop.n << 19;
+ }
+ }
+
+ /* Output opcode */
+ outP = emit(instr.opcode);
+
+ if (instr.disp == 0){
+ return;
+ }
+
+ /* Parse and process the displacement */
+ switch (parse_expr(instr.e,&expr)){
+
+ case SEG_GOOF:
+ as_bad("expression syntax error");
+ break;
+
+ case SEG_ABSOLUTE:
+ if (instr.disp == 32){
+ (void) emit(offs(expr)); /* Output displacement */
+ } else {
+ /* 12-bit displacement */
+ if (offs(expr) & ~0xfff){
+ /* Won't fit in 12 bits: convert already-output
+ * instruction to MEMB format, output
+ * displacement.
+ */
+ mema_to_memb(outP);
+ (void) emit(offs(expr));
+ } else {
+ /* WILL fit in 12 bits: OR into opcode and
+ * overwrite the binary we already put out
+ */
+ instr.opcode |= offs(expr);
+ md_number_to_chars(outP, instr.opcode, 4);
+ }
+ }
+ break;
+
+ case SEG_DIFFERENCE:
+ case SEG_TEXT:
+ case SEG_DATA:
+ case SEG_BSS:
+ case SEG_UNKNOWN:
+ if (instr.disp == 12){
+ /* Displacement is dependent on a symbol, whose value
+ * may change at link time. We HAVE to reserve 32 bits.
+ * Convert already-output opcode to MEMB format.
+ */
+ mema_to_memb(outP);
+ }
+
+ /* Output 0 displacement and set up address fixup for when
+ * this symbol's value becomes known.
+ */
+ outP = emit((long) 0);
+ fixP = fix_new(frag_now,
+ outP - frag_now->fr_literal,
+ 4,
+ adds(expr),
+ subs(expr),
+ offs(expr),
+ 0,
+ 0);
+ fixP->fx_im_disp = 2; /* 32-bit displacement fix */
+ break;
+
+ default:
+ BAD_CASE(segs(expr));
+ break;
+ }
+} /* memfmt() */
+
+
+/*****************************************************************************
+ * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
+ *
+ * There are 2 possible MEMA formats:
+ * - displacement only
+ * - displacement + abase
+ *
+ * They are distinguished by the setting of the MEMA_ABASE bit.
+ *
+ **************************************************************************** */
+static void mema_to_memb(opcodeP)
+ char *opcodeP; /* Where to find the opcode, in target byte order */
+{
+ long opcode; /* Opcode in host byte order */
+ long mode; /* Mode bits for MEMB instruction */
+
+ opcode = md_chars_to_number(opcodeP, 4);
+ know(!(opcode & MEMB_BIT));
+
+ mode = MEMB_BIT | D_BIT;
+ if (opcode & MEMA_ABASE){
+ mode |= A_BIT;
+ }
+
+ opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
+ opcode |= mode; /* Set MEMB mode bits */
+
+ md_number_to_chars(opcodeP, opcode, 4);
+} /* mema_to_memb() */
+
+
+/*****************************************************************************
+ * parse_expr: parse an expression
+ *
+ * Use base assembler's expression parser to parse an expression.
+ * It, unfortunately, runs off a global which we have to save/restore
+ * in order to make it work for us.
+ *
+ * An empty expression string is treated as an absolute 0.
+ *
+ * Return "segment" to which the expression evaluates.
+ * Return SEG_GOOF regardless of expression evaluation if entire input
+ * string is not consumed in the evaluation -- tolerate no dangling junk!
+ *
+ **************************************************************************** */
+static
+segT
+parse_expr(textP, expP)
+ char *textP; /* Text of expression to be parsed */
+ expressionS *expP; /* Where to put the results of parsing */
+{
+ char *save_in; /* Save global here */
+ segT seg; /* Segment to which expression evaluates */
+ symbolS *symP;
+
+ know(textP);
+
+ if (*textP == '\0') {
+ /* Treat empty string as absolute 0 */
+ expP->X_add_symbol = expP->X_subtract_symbol = NULL;
+ expP->X_add_number = 0;
+ seg = expP->X_seg = SEG_ABSOLUTE;
+
+ } else {
+ save_in = input_line_pointer; /* Save global */
+ input_line_pointer = textP; /* Make parser work for us */
+
+ seg = expression(expP);
+ if (input_line_pointer - textP != strlen(textP)) {
+ /* Did not consume all of the input */
+ seg = SEG_GOOF;
+ }
+ symP = expP->X_add_symbol;
+ if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
+ /* Register name in an expression */
+ seg = SEG_GOOF;
+ }
+
+ input_line_pointer = save_in; /* Restore global */
+ }
+ return seg;
+}
+
+
+/*****************************************************************************
+ * parse_ldcont:
+ * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
+ * i80960 instruction.
+ *
+ * Assumes the input consists of:
+ * arg[0] opcode mnemonic ('ldconst')
+ * arg[1] first operand (constant)
+ * arg[2] name of register to be loaded
+ *
+ * Replaces opcode and/or operands as appropriate.
+ *
+ * Returns the new number of arguments, or -1 on failure.
+ *
+ **************************************************************************** */
+static
+int
+parse_ldconst(arg)
+ char *arg[]; /* See above */
+{
+ int n; /* Constant to be loaded */
+ int shift; /* Shift count for "shlo" instruction */
+ static char buf[5]; /* Literal for first operand */
+ static char buf2[5]; /* Literal for second operand */
+ expressionS e; /* Parsed expression */
+
+
+ arg[3] = NULL; /* So we can tell at the end if it got used or not */
+
+ switch(parse_expr(arg[1],&e)){
+
+ case SEG_TEXT:
+ case SEG_DATA:
+ case SEG_BSS:
+ case SEG_UNKNOWN:
+ case SEG_DIFFERENCE:
+ /* We're dependent on one or more symbols -- use "lda" */
+ arg[0] = "lda";
+ break;
+
+ case SEG_ABSOLUTE:
+ /* Try the following mappings:
+ * ldconst 0,<reg> ->mov 0,<reg>
+ * ldconst 31,<reg> ->mov 31,<reg>
+ * ldconst 32,<reg> ->addo 1,31,<reg>
+ * ldconst 62,<reg> ->addo 31,31,<reg>
+ * ldconst 64,<reg> ->shlo 8,3,<reg>
+ * ldconst -1,<reg> ->subo 1,0,<reg>
+ * ldconst -31,<reg>->subo 31,0,<reg>
+ *
+ * anthing else becomes:
+ * lda xxx,<reg>
+ */
+ n = offs(e);
+ if ((0 <= n) && (n <= 31)){
+ arg[0] = "mov";
+
+ } else if ((-31 <= n) && (n <= -1)){
+ arg[0] = "subo";
+ arg[3] = arg[2];
+ sprintf(buf, "%d", -n);
+ arg[1] = buf;
+ arg[2] = "0";
+
+ } else if ((32 <= n) && (n <= 62)){
+ arg[0] = "addo";
+ arg[3] = arg[2];
+ arg[1] = "31";
+ sprintf(buf, "%d", n-31);
+ arg[2] = buf;
+
+ } else if ((shift = shift_ok(n)) != 0){
+ arg[0] = "shlo";
+ arg[3] = arg[2];
+ sprintf(buf, "%d", shift);
+ arg[1] = buf;
+ sprintf(buf2, "%d", n >> shift);
+ arg[2] = buf2;
+
+ } else {
+ arg[0] = "lda";
+ }
+ break;
+
+ default:
+ as_bad("invalid constant");
+ return -1;
+ break;
+ }
+ return (arg[3] == 0) ? 2: 3;
+}
+
+/*****************************************************************************
+ * parse_memop: parse a memory operand
+ *
+ * This routine is based on the observation that the 4 mode bits of the
+ * MEMB format, taken individually, have fairly consistent meaning:
+ *
+ * M3 (bit 13): 1 if displacement is present (D_BIT)
+ * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
+ * M1 (bit 11): 1 if index is present (I_BIT)
+ * M0 (bit 10): 1 if abase is present (A_BIT)
+ *
+ * So we parse the memory operand and set bits in the mode as we find
+ * things. Then at the end, if we go to MEMB format, we need only set
+ * the MEMB bit (M2) and our mode is built for us.
+ *
+ * Unfortunately, I said "fairly consistent". The exceptions:
+ *
+ * DBIA
+ * 0100 Would seem illegal, but means "abase-only".
+ *
+ * 0101 Would seem to mean "abase-only" -- it means IP-relative.
+ * Must be converted to 0100.
+ *
+ * 0110 Would seem to mean "index-only", but is reserved.
+ * We turn on the D bit and provide a 0 displacement.
+ *
+ * The other thing to observe is that we parse from the right, peeling
+ * things * off as we go: first any index spec, then any abase, then
+ * the displacement.
+ *
+ **************************************************************************** */
+static
+void
+parse_memop(memP, argP, optype)
+ memS *memP; /* Where to put the results */
+ char *argP; /* Text of the operand to be parsed */
+ int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
+{
+ char *indexP; /* Pointer to index specification with "[]" removed */
+ char *p; /* Temp char pointer */
+ char iprel_flag;/* True if this is an IP-relative operand */
+ int regnum; /* Register number */
+ int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
+ * to internal format (0,1,2,3,4 respectively).
+ */
+ int mode; /* MEMB mode bits */
+ int *intP; /* Pointer to register number */
+
+ /* The following table contains the default scale factors for each
+ * type of memory instruction. It is accessed using (optype-MEM1)
+ * as an index -- thus it assumes the 'optype' constants are assigned
+ * consecutive values, in the order they appear in this table
+ */
+ static int def_scale[] = {
+ 1, /* MEM1 */
+ 2, /* MEM2 */
+ 4, /* MEM4 */
+ 8, /* MEM8 */
+ -1, /* MEM12 -- no valid default */
+ 16 /* MEM16 */
+ };
+
+
+ iprel_flag = mode = 0;
+
+ /* Any index present? */
+ indexP = get_ispec(argP);
+ if (indexP) {
+ p = strchr(indexP, '*');
+ if (p == NULL) {
+ /* No explicit scale -- use default for this
+ *instruction type.
+ */
+ scale = def_scale[ optype - MEM1 ];
+ } else {
+ *p++ = '\0'; /* Eliminate '*' */
+
+ /* Now indexP->a '\0'-terminated register name,
+ * and p->a scale factor.
+ */
+
+ if (!strcmp(p,"16")){
+ scale = 16;
+ } else if (strchr("1248",*p) && (p[1] == '\0')){
+ scale = *p - '0';
+ } else {
+ scale = -1;
+ }
+ }
+
+ regnum = get_regnum(indexP); /* Get index reg. # */
+ if (!IS_RG_REG(regnum)){
+ as_bad("invalid index register");
+ return;
+ }
+
+ /* Convert scale to its binary encoding */
+ switch (scale){
+ case 1: scale = 0 << 7; break;
+ case 2: scale = 1 << 7; break;
+ case 4: scale = 2 << 7; break;
+ case 8: scale = 3 << 7; break;
+ case 16: scale = 4 << 7; break;
+ default: as_bad("invalid scale factor"); return;
+ };
+
+ memP->opcode |= scale | regnum; /* Set index bits in opcode */
+ mode |= I_BIT; /* Found a valid index spec */
+ }
+
+ /* Any abase (Register Indirect) specification present? */
+ if ((p = strrchr(argP,'(')) != NULL) {
+ /* "(" is there -- does it start a legal abase spec?
+ * (If not it could be part of a displacement expression.)
+ */
+ intP = (int *) hash_find(areg_hash, p);
+ if (intP != NULL){
+ /* Got an abase here */
+ regnum = *intP;
+ *p = '\0'; /* discard register spec */
+ if (regnum == IPREL){
+ /* We have to specialcase ip-rel mode */
+ iprel_flag = 1;
+ } else {
+ memP->opcode |= regnum << 14;
+ mode |= A_BIT;
+ }
+ }
+ }
+
+ /* Any expression present? */
+ memP->e = argP;
+ if (*argP != '\0'){
+ mode |= D_BIT;
+ }
+
+ /* Special-case ip-relative addressing */
+ if (iprel_flag){
+ if (mode & I_BIT){
+ syntax();
+ } else {
+ memP->opcode |= 5 << 10; /* IP-relative mode */
+ memP->disp = 32;
+ }
+ return;
+ }
+
+ /* Handle all other modes */
+ switch (mode){
+ case D_BIT | A_BIT:
+ /* Go with MEMA instruction format for now (grow to MEMB later
+ * if 12 bits is not enough for the displacement).
+ * MEMA format has a single mode bit: set it to indicate
+ * that abase is present.
+ */
+ memP->opcode |= MEMA_ABASE;
+ memP->disp = 12;
+ break;
+
+ case D_BIT:
+ /* Go with MEMA instruction format for now (grow to MEMB later
+ * if 12 bits is not enough for the displacement).
+ */
+ memP->disp = 12;
+ break;
+
+ case A_BIT:
+ /* For some reason, the bit string for this mode is not
+ * consistent: it should be 0 (exclusive of the MEMB bit),
+ * so we set it "by hand" here.
+ */
+ memP->opcode |= MEMB_BIT;
+ break;
+
+ case A_BIT | I_BIT:
+ /* set MEMB bit in mode, and OR in mode bits */
+ memP->opcode |= mode | MEMB_BIT;
+ break;
+
+ case I_BIT:
+ /* Treat missing displacement as displacement of 0 */
+ mode |= D_BIT;
+ /***********************
+ * Fall into next case *
+ ********************** */
+ case D_BIT | A_BIT | I_BIT:
+ case D_BIT | I_BIT:
+ /* set MEMB bit in mode, and OR in mode bits */
+ memP->opcode |= mode | MEMB_BIT;
+ memP->disp = 32;
+ break;
+
+ default:
+ syntax();
+ break;
+ }
+}
+
+/*****************************************************************************
+ * parse_po: parse machine-dependent pseudo-op
+ *
+ * This is a top-level routine for machine-dependent pseudo-ops. It slurps
+ * up the rest of the input line, breaks out the individual arguments,
+ * and dispatches them to the correct handler.
+ **************************************************************************** */
+static
+void
+parse_po(po_num)
+ int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
+{
+ char *args[4]; /* Pointers operands, with no embedded whitespace.
+ * arg[0] unused.
+ * arg[1-3]->operands
+ */
+ int n_ops; /* Number of operands */
+ char *p; /* Pointer to beginning of unparsed argument string */
+ char eol; /* Character that indicated end of line */
+
+ extern char is_end_of_line[];
+
+ /* Advance input pointer to end of line. */
+ p = input_line_pointer;
+ while (!is_end_of_line[ *input_line_pointer ]){
+ input_line_pointer++;
+ }
+ eol = *input_line_pointer; /* Save end-of-line char */
+ *input_line_pointer = '\0'; /* Terminate argument list */
+
+ /* Parse out operands */
+ n_ops = get_args(p, args);
+ if (n_ops == -1){
+ return;
+ }
+
+ /* Dispatch to correct handler */
+ switch(po_num){
+ case S_SYSPROC: s_sysproc(n_ops, args); break;
+ case S_LEAFPROC: s_leafproc(n_ops, args); break;
+ default: BAD_CASE(po_num); break;
+ }
+
+ /* Restore eol, so line numbers get updated correctly. Base assembler
+ * assumes we leave input pointer pointing at char following the eol.
+ */
+ *input_line_pointer++ = eol;
+}
+
+/*****************************************************************************
+ * parse_regop: parse a register operand.
+ *
+ * In case of illegal operand, issue a message and return some valid
+ * information so instruction processing can continue.
+ **************************************************************************** */
+static
+void
+parse_regop(regopP, optext, opdesc)
+ struct regop *regopP; /* Where to put description of register operand */
+ char *optext; /* Text of operand */
+ char opdesc; /* Descriptor byte: what's legal for this operand */
+{
+ int n; /* Register number */
+ expressionS e; /* Parsed expression */
+
+ /* See if operand is a register */
+ n = get_regnum(optext);
+ if (n >= 0){
+ if (IS_RG_REG(n)){
+ /* global or local register */
+ if (!REG_ALIGN(opdesc,n)){
+ as_bad("unaligned register");
+ }
+ regopP->n = n;
+ regopP->mode = 0;
+ regopP->special = 0;
+ return;
+ } else if (IS_FP_REG(n) && FP_OK(opdesc)){
+ /* Floating point register, and it's allowed */
+ regopP->n = n - FP0;
+ regopP->mode = 1;
+ regopP->special = 0;
+ return;
+ } else if (IS_SF_REG(n) && SFR_OK(opdesc)){
+ /* Special-function register, and it's allowed */
+ regopP->n = n - SF0;
+ regopP->mode = 0;
+ regopP->special = 1;
+ if (!targ_has_sfr(regopP->n)){
+ as_bad("no such sfr in this architecture");
+ }
+ return;
+ }
+ } else if (LIT_OK(opdesc)){
+ /*
+ * How about a literal?
+ */
+ regopP->mode = 1;
+ regopP->special = 0;
+ if (FP_OK(opdesc)){ /* floating point literal acceptable */
+ /* Skip over 0f, 0d, or 0e prefix */
+ if ( (optext[0] == '0')
+ && (optext[1] >= 'd')
+ && (optext[1] <= 'f') ){
+ optext += 2;
+ }
+
+ if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
+ regopP->n = 0x10;
+ return;
+ }
+ if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
+ regopP->n = 0x16;
+ return;
+ }
+
+ } else { /* fixed point literal acceptable */
+ if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
+ || (offs(e) < 0) || (offs(e) > 31)){
+ as_bad("illegal literal");
+ offs(e) = 0;
+ }
+ regopP->n = offs(e);
+ return;
+ }
+ }
+
+ /* Nothing worked */
+ syntax();
+ regopP->mode = 0; /* Register r0 is always a good one */
+ regopP->n = 0;
+ regopP->special = 0;
+} /* parse_regop() */
+
+/*****************************************************************************
+ * reg_fmt: generate a REG-format instruction
+ *
+ **************************************************************************** */
+static void reg_fmt(args, oP)
+ char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
+ struct i960_opcode *oP; /* Pointer to description of instruction */
+{
+ long instr; /* Binary to be output */
+ struct regop regop; /* Description of register operand */
+ int n_ops; /* Number of operands */
+
+
+ instr = oP->opcode;
+ n_ops = oP->num_ops;
+
+ if (n_ops >= 1){
+ parse_regop(&regop, args[1], oP->operand[0]);
+
+ if ((n_ops == 1) && !(instr & M3)){
+ /* 1-operand instruction in which the dst field should
+ * be used (instead of src1).
+ */
+ regop.n <<= 19;
+ if (regop.special){
+ regop.mode = regop.special;
+ }
+ regop.mode <<= 13;
+ regop.special = 0;
+ } else {
+ /* regop.n goes in bit 0, needs no shifting */
+ regop.mode <<= 11;
+ regop.special <<= 5;
+ }
+ instr |= regop.n | regop.mode | regop.special;
+ }
+
+ if (n_ops >= 2) {
+ parse_regop(&regop, args[2], oP->operand[1]);
+
+ if ((n_ops == 2) && !(instr & M3)){
+ /* 2-operand instruction in which the dst field should
+ * be used instead of src2).
+ */
+ regop.n <<= 19;
+ if (regop.special){
+ regop.mode = regop.special;
+ }
+ regop.mode <<= 13;
+ regop.special = 0;
+ } else {
+ regop.n <<= 14;
+ regop.mode <<= 12;
+ regop.special <<= 6;
+ }
+ instr |= regop.n | regop.mode | regop.special;
+ }
+ if (n_ops == 3){
+ parse_regop(&regop, args[3], oP->operand[2]);
+ if (regop.special){
+ regop.mode = regop.special;
+ }
+ instr |= (regop.n <<= 19) | (regop.mode <<= 13);
+ }
+ emit(instr);
+}
+
+
+/*****************************************************************************
+ * relax_cobr:
+ * Replace cobr instruction in a code fragment with equivalent branch and
+ * compare instructions, so it can reach beyond a 13-bit displacement.
+ * Set up an address fix/relocation for the new branch instruction.
+ *
+ **************************************************************************** */
+
+/* This "conditional jump" table maps cobr instructions into equivalent
+ * compare and branch opcodes.
+ */
+static
+struct {
+ long compare;
+ long branch;
+} coj[] = { /* COBR OPCODE: */
+ CHKBIT, BNO, /* 0x30 - bbc */
+ CMPO, BG, /* 0x31 - cmpobg */
+ CMPO, BE, /* 0x32 - cmpobe */
+ CMPO, BGE, /* 0x33 - cmpobge */
+ CMPO, BL, /* 0x34 - cmpobl */
+ CMPO, BNE, /* 0x35 - cmpobne */
+ CMPO, BLE, /* 0x36 - cmpoble */
+ CHKBIT, BO, /* 0x37 - bbs */
+ CMPI, BNO, /* 0x38 - cmpibno */
+ CMPI, BG, /* 0x39 - cmpibg */
+ CMPI, BE, /* 0x3a - cmpibe */
+ CMPI, BGE, /* 0x3b - cmpibge */
+ CMPI, BL, /* 0x3c - cmpibl */
+ CMPI, BNE, /* 0x3d - cmpibne */
+ CMPI, BLE, /* 0x3e - cmpible */
+ CMPI, BO, /* 0x3f - cmpibo */
+};
+
+static
+void
+relax_cobr(fragP)
+ register fragS *fragP; /* fragP->fr_opcode is assumed to point to
+ * the cobr instruction, which comes at the
+ * end of the code fragment.
+ */
+{
+ int opcode, src1, src2, m1, s2;
+ /* Bit fields from cobr instruction */
+ long bp_bits; /* Branch prediction bits from cobr instruction */
+ long instr; /* A single i960 instruction */
+ char *iP; /*->instruction to be replaced */
+ fixS *fixP; /* Relocation that can be done at assembly time */
+
+ /* PICK UP & PARSE COBR INSTRUCTION */
+ iP = fragP->fr_opcode;
+ instr = md_chars_to_number(iP, 4);
+ opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
+ src1 = (instr >> 19) & 0x1f;
+ m1 = (instr >> 13) & 1;
+ s2 = instr & 1;
+ src2 = (instr >> 14) & 0x1f;
+ bp_bits= instr & BP_MASK;
+
+ /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
+ instr = coj[opcode].compare
+ | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
+ md_number_to_chars(iP, instr, 4);
+
+ /* OUTPUT BRANCH INSTRUCTION */
+ md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
+
+ /* SET UP ADDRESS FIXUP/RELOCATION */
+ fixP = fix_new(fragP,
+ iP+4 - fragP->fr_literal,
+ 4,
+ fragP->fr_symbol,
+ 0,
+ fragP->fr_offset,
+ 1,
+ 0);
+
+ fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
+
+ fragP->fr_fix += 4;
+ frag_wane(fragP);
+}
+
+
+/*****************************************************************************
+ * reloc_callj: Relocate a 'callj' instruction
+ *
+ * This is a "non-(GNU)-standard" machine-dependent hook. The base
+ * assembler calls it when it decides it can relocate an address at
+ * assembly time instead of emitting a relocation directive.
+ *
+ * Check to see if the relocation involves a 'callj' instruction to a:
+ * sysproc: Replace the default 'call' instruction with a 'calls'
+ * leafproc: Replace the default 'call' instruction with a 'bal'.
+ * other proc: Do nothing.
+ *
+ * See b.out.h for details on the 'n_other' field in a symbol structure.
+ *
+ * IMPORTANT!:
+ * Assumes the caller has already figured out, in the case of a leafproc,
+ * to use the 'bal' entry point, and has substituted that symbol into the
+ * passed fixup structure.
+ *
+ **************************************************************************** */
+void reloc_callj(fixP)
+fixS *fixP; /* Relocation that can be done at assembly time */
+{
+ char *where; /*->the binary for the instruction being relocated */
+
+ if (!fixP->fx_callj) {
+ return;
+ } /* This wasn't a callj instruction in the first place */
+
+ where = fixP->fx_frag->fr_literal + fixP->fx_where;
+
+ if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
+ /* Symbol is a .sysproc: replace 'call' with 'calls'.
+ * System procedure number is (other-1).
+ */
+ md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
+
+ /* Nothing else needs to be done for this instruction.
+ * Make sure 'md_number_to_field()' will perform a no-op.
+ */
+ fixP->fx_bit_fixP = (bit_fixS *) 1;
+
+ } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
+ /* Should not happen: see block comment above */
+ as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
+
+ } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
+ /* Replace 'call' with 'bal'; both instructions have
+ * the same format, so calling code should complete
+ * relocation as if nothing happened here.
+ */
+ md_number_to_chars(where, BAL, 4);
+ } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
+ as_bad("Looks like a proc, but can't tell what kind.\n");
+ } /* switch on proc type */
+
+ /* else Symbol is neither a sysproc nor a leafproc */
+
+ return;
+} /* reloc_callj() */
+
+
+/*****************************************************************************
+ * s_leafproc: process .leafproc pseudo-op
+ *
+ * .leafproc takes two arguments, the second one is optional:
+ * arg[1]: name of 'call' entry point to leaf procedure
+ * arg[2]: name of 'bal' entry point to leaf procedure
+ *
+ * If the two arguments are identical, or if the second one is missing,
+ * the first argument is taken to be the 'bal' entry point.
+ *
+ * If there are 2 distinct arguments, we must make sure that the 'bal'
+ * entry point immediately follows the 'call' entry point in the linked
+ * list of symbols.
+ *
+ **************************************************************************** */
+static void s_leafproc(n_ops, args)
+int n_ops; /* Number of operands */
+char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
+{
+ symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
+ symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
+
+ if ((n_ops != 1) && (n_ops != 2)) {
+ as_bad("should have 1 or 2 operands");
+ return;
+ } /* Check number of arguments */
+
+ /* Find or create symbol for 'call' entry point. */
+ callP = symbol_find_or_make(args[1]);
+
+ if (TC_S_IS_CALLNAME(callP)) {
+ as_warn("Redefining leafproc %s", S_GET_NAME(callP));
+ } /* is leafproc */
+
+ /* If that was the only argument, use it as the 'bal' entry point.
+ * Otherwise, mark it as the 'call' entry point and find or create
+ * another symbol for the 'bal' entry point.
+ */
+ if ((n_ops == 1) || !strcmp(args[1],args[2])) {
+ TC_S_FORCE_TO_BALNAME(callP);
+
+ } else {
+ TC_S_FORCE_TO_CALLNAME(callP);
+
+ balP = symbol_find_or_make(args[2]);
+ if (TC_S_IS_CALLNAME(balP)) {
+ as_warn("Redefining leafproc %s", S_GET_NAME(balP));
+ }
+ TC_S_FORCE_TO_BALNAME(balP);
+
+ tc_set_bal_of_call(callP, balP);
+ } /* if only one arg, or the args are the same */
+
+ return;
+} /* s_leafproc() */
+
+
+/*
+ * s_sysproc: process .sysproc pseudo-op
+ *
+ * .sysproc takes two arguments:
+ * arg[1]: name of entry point to system procedure
+ * arg[2]: 'entry_num' (index) of system procedure in the range
+ * [0,31] inclusive.
+ *
+ * For [ab].out, we store the 'entrynum' in the 'n_other' field of
+ * the symbol. Since that entry is normally 0, we bias 'entrynum'
+ * by adding 1 to it. It must be unbiased before it is used.
+ */
+static void s_sysproc(n_ops, args)
+int n_ops; /* Number of operands */
+char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
+{
+ expressionS exp;
+ symbolS *symP;
+
+ if (n_ops != 2) {
+ as_bad("should have two operands");
+ return;
+ } /* bad arg count */
+
+ /* Parse "entry_num" argument and check it for validity. */
+ if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
+ || (offs(exp) < 0)
+ || (offs(exp) > 31)) {
+ as_bad("'entry_num' must be absolute number in [0,31]");
+ return;
+ }
+
+ /* Find/make symbol and stick entry number (biased by +1) into it */
+ symP = symbol_find_or_make(args[1]);
+
+ if (TC_S_IS_SYSPROC(symP)) {
+ as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
+ } /* redefining */
+
+ TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
+ TC_S_FORCE_TO_SYSPROC(symP);
+
+ return;
+} /* s_sysproc() */
+
+
+/*****************************************************************************
+ * shift_ok:
+ * Determine if a "shlo" instruction can be used to implement a "ldconst".
+ * This means that some number X < 32 can be shifted left to produce the
+ * constant of interest.
+ *
+ * Return the shift count, or 0 if we can't do it.
+ * Caller calculates X by shifting original constant right 'shift' places.
+ *
+ **************************************************************************** */
+static
+int
+shift_ok(n)
+ int n; /* The constant of interest */
+{
+ int shift; /* The shift count */
+
+ if (n <= 0){
+ /* Can't do it for negative numbers */
+ return 0;
+ }
+
+ /* Shift 'n' right until a 1 is about to be lost */
+ for (shift = 0; (n & 1) == 0; shift++){
+ n >>= 1;
+ }
+
+ if (n >= 32){
+ return 0;
+ }
+ return shift;
+}
+
+
+/*****************************************************************************
+ * syntax: issue syntax error
+ *
+ **************************************************************************** */
+static void syntax() {
+ as_bad("syntax error");
+} /* syntax() */
+
+
+/*****************************************************************************
+ * targ_has_sfr:
+ * Return TRUE iff the target architecture supports the specified
+ * special-function register (sfr).
+ *
+ **************************************************************************** */
+static
+int
+targ_has_sfr(n)
+ int n; /* Number (0-31) of sfr */
+{
+ switch (architecture){
+ case ARCH_KA:
+ case ARCH_KB:
+ case ARCH_MC:
+ return 0;
+ case ARCH_CA:
+ default:
+ return ((0<=n) && (n<=2));
+ }
+}
+
+
+/*****************************************************************************
+ * targ_has_iclass:
+ * Return TRUE iff the target architecture supports the indicated
+ * class of instructions.
+ *
+ **************************************************************************** */
+static
+int
+targ_has_iclass(ic)
+ int ic; /* Instruction class; one of:
+ * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
+ */
+{
+ iclasses_seen |= ic;
+ switch (architecture){
+ case ARCH_KA: return ic & (I_BASE | I_KX);
+ case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
+ case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
+ case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
+ default:
+ if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
+ && (iclasses_seen & I_CX)){
+ as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
+ iclasses_seen &= ~ic;
+ }
+ return 1;
+ }
+}
+
+
+/* Parse an operand that is machine-specific.
+ We just return without modifying the expression if we have nothing
+ to do. */
+
+/* ARGSUSED */
+void
+md_operand (expressionP)
+ expressionS *expressionP;
+{
+}
+
+/* We have no need to default values of symbols. */
+
+/* ARGSUSED */
+symbolS *md_undefined_symbol(name)
+char *name;
+{
+ return 0;
+} /* md_undefined_symbol() */
+
+/* Exactly what point is a PC-relative offset relative TO?
+ On the i960, they're relative to the address of the instruction,
+ which we have set up as the address of the fixup too. */
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return fixP->fx_where + fixP->fx_frag->fr_address;
+}
+
+void
+md_apply_fix(fixP, val)
+ fixS *fixP;
+ long val;
+{
+ char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
+
+ if (!fixP->fx_bit_fixP) {
+
+ switch (fixP->fx_im_disp) {
+ case 0:
+ fixP->fx_addnumber = val;
+ md_number_to_imm(place, val, fixP->fx_size, fixP);
+ break;
+ case 1:
+ md_number_to_disp(place,
+ fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
+ fixP->fx_size);
+ break;
+ case 2: /* fix requested for .long .word etc */
+ md_number_to_chars(place, val, fixP->fx_size);
+ break;
+ default:
+ as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
+ } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
+ } else {
+ md_number_to_field(place, val, fixP->fx_bit_fixP);
+ }
+
+ return;
+} /* md_apply_fix() */
+
+#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
+/*
+ * emit_relocations()
+ *
+ * Crawl along a fixS chain. Emit the segment's relocations.
+ */
+static void
+emit_machine_reloc (fixP, segment_address_in_file)
+ register fixS * fixP; /* Fixup chain for this segment. */
+ relax_addressT segment_address_in_file;
+{
+ struct reloc_info_generic ri;
+ register symbolS * symbolP;
+
+ /* JF this is for paranoia */
+ bzero((char *)&ri,sizeof(ri));
+ for (; fixP; fixP = fixP->fx_next)
+ {
+ if ((symbolP = fixP->fx_addsy) != 0)
+ {
+ /* These two 'cuz of NS32K */
+ ri . r_bsr = fixP->fx_bsr;
+ ri . r_disp = fixP->fx_im_disp;
+
+ ri . r_callj = fixP->fx_callj;
+
+ ri . r_length = nbytes_r_length [fixP->fx_size];
+ ri . r_pcrel = fixP->fx_pcrel;
+ ri . r_address = fixP->fx_frag->fr_address
+ + fixP->fx_where
+ - segment_address_in_file;
+ if (!S_IS_DEFINED(symbolP))
+ {
+ ri . r_extern = 1;
+ ri . r_symbolnum = symbolP->sy_number;
+ }
+ else
+ {
+ ri . r_extern = 0;
+ ri . r_symbolnum = S_GET_TYPE(symbolP);
+ }
+
+ /* Output the relocation information in machine-dependent form. */
+ md_ri_to_chars(next_object_file_charP, &ri);
+ next_object_file_charP += sizeof(struct relocation_info);
+ }
+ }
+
+} /* emit_machine_reloc() */
+#endif /* OBJ_AOUT or OBJ_BOUT */
+
+/* Align an address by rounding it up to the specified boundary.
+ */
+long md_section_align(seg, addr)
+segT seg;
+long addr; /* Address to be rounded up */
+{
+ return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
+} /* md_section_align() */
+
+#ifdef OBJ_COFF
+void tc_headers_hook(headers)
+object_headers *headers;
+{
+ unsigned short arch_flag = 0;
+
+ if (iclasses_seen == I_BASE){
+ headers->filehdr.f_flags |= F_I960CORE;
+ } else if (iclasses_seen & I_CX){
+ headers->filehdr.f_flags |= F_I960CA;
+ } else if (iclasses_seen & I_MIL){
+ headers->filehdr.f_flags |= F_I960MC;
+ } else if (iclasses_seen & (I_DEC|I_FP)){
+ headers->filehdr.f_flags |= F_I960KB;
+ } else {
+ headers->filehdr.f_flags |= F_I960KA;
+ } /* set arch flag */
+
+ if (flagseen['R']) {
+ headers->filehdr.f_magic = I960RWMAGIC;
+ headers->aouthdr.magic = OMAGIC;
+ } else {
+ headers->filehdr.f_magic = I960ROMAGIC;
+ headers->aouthdr.magic = NMAGIC;
+ } /* set magic numbers */
+
+ return;
+} /* tc_headers_hook() */
+#endif /* OBJ_COFF */
+
+/*
+ * Things going on here:
+ *
+ * For bout, We need to assure a couple of simplifying
+ * assumptions about leafprocs for the linker: the leafproc
+ * entry symbols will be defined in the same assembly in
+ * which they're declared with the '.leafproc' directive;
+ * and if a leafproc has both 'call' and 'bal' entry points
+ * they are both global or both local.
+ *
+ * For coff, the call symbol has a second aux entry that
+ * contains the bal entry point. The bal symbol becomes a
+ * label.
+ *
+ * For coff representation, the call symbol has a second aux entry that
+ * contains the bal entry point. The bal symbol becomes a label.
+ *
+ */
+
+void tc_crawl_symbol_chain(headers)
+object_headers *headers;
+{
+ symbolS *symbolP;
+
+ for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
+#ifdef OBJ_COFF
+ if (TC_S_IS_SYSPROC(symbolP)) {
+ /* second aux entry already contains the sysproc number */
+ S_SET_NUMBER_AUXILIARY(symbolP, 2);
+ S_SET_STORAGE_CLASS(symbolP, C_SCALL);
+ S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
+ continue;
+ } /* rewrite sysproc */
+#endif /* OBJ_COFF */
+
+ if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
+ continue;
+ } /* Not a leafproc symbol */
+
+ if (!S_IS_DEFINED(symbolP)) {
+ as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
+ } /* undefined leaf */
+
+ if (TC_S_IS_CALLNAME(symbolP)) {
+ symbolS *balP = tc_get_bal_of_call(symbolP);
+ if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
+ S_SET_EXTERNAL(symbolP);
+ S_SET_EXTERNAL(balP);
+ as_warn("Warning: making leafproc entries %s and %s both global\n",
+ S_GET_NAME(symbolP), S_GET_NAME(balP));
+ } /* externality mismatch */
+ } /* if callname */
+ } /* walk the symbol chain */
+
+ return;
+} /* tc_crawl_symbol_chain() */
+
+/*
+ * For aout or bout, the bal immediately follows the call.
+ *
+ * For coff, we cheat and store a pointer to the bal symbol
+ * in the second aux entry of the call.
+ */
+
+void tc_set_bal_of_call(callP, balP)
+symbolS *callP;
+symbolS *balP;
+{
+ know(TC_S_IS_CALLNAME(callP));
+ know(TC_S_IS_BALNAME(balP));
+
+#ifdef OBJ_COFF
+
+ callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
+ S_SET_NUMBER_AUXILIARY(callP,2);
+
+#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
+
+ /* If the 'bal' entry doesn't immediately follow the 'call'
+ * symbol, unlink it from the symbol list and re-insert it.
+ */
+ if (symbol_next(callP) != balP) {
+ symbol_remove(balP, &symbol_rootP, &symbol_lastP);
+ symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
+ } /* if not in order */
+
+#else
+ (as yet unwritten.);
+#endif /* switch on OBJ_FORMAT */
+
+ return;
+} /* tc_set_bal_of_call() */
+
+char *_tc_get_bal_of_call(callP)
+symbolS *callP;
+{
+ symbolS *retval;
+
+ know(TC_S_IS_CALLNAME(callP));
+
+#ifdef OBJ_COFF
+ retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
+#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
+ retval = symbol_next(callP);
+#else
+ (as yet unwritten.);
+#endif /* switch on OBJ_FORMAT */
+
+ know(TC_S_IS_BALNAME(retval));
+ return((char *) retval);
+} /* _tc_get_bal_of_call() */
+
+void tc_coff_symbol_emit_hook(symbolP)
+symbolS *symbolP;
+{
+ if (TC_S_IS_CALLNAME(symbolP)) {
+#ifdef OBJ_COFF
+ symbolS *balP = tc_get_bal_of_call(symbolP);
+
+ /* second aux entry contains the bal entry point */
+/* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
+ symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
+ S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
+ S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
+ /* fix up the bal symbol */
+ S_SET_STORAGE_CLASS(balP, C_LABEL);
+#endif /* OBJ_COFF */
+ } /* only on calls */
+
+ return;
+} /* tc_coff_symbol_emit_hook() */
+
+/*
+ * Local Variables:
+ * comment-column: 0
+ * fill-column: 131
+ * End:
+ */
+
+/* end of i960.c */