aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i960.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/config/tc-i960.c')
-rw-r--r--gas/config/tc-i960.c2761
1 files changed, 0 insertions, 2761 deletions
diff --git a/gas/config/tc-i960.c b/gas/config/tc-i960.c
deleted file mode 100644
index a551376..0000000
--- a/gas/config/tc-i960.c
+++ /dev/null
@@ -1,2761 +0,0 @@
-/* i960.c - All the i80960-specific stuff
- Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
-
-This file is part of GAS.
-
-GAS is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GAS is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GAS; see the file COPYING. If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-/* $Id$ */
-
-/* See comment on md_parse_option for 80960-specific invocation options. */
-
-/******************************************************************************
- * i80690 NOTE!!!:
- * Header, symbol, and relocation info will be used on the host machine
- * only -- only executable code is actually downloaded to the i80960.
- * Therefore, leave all such information in host byte order.
- *
- * (That's a slight lie -- we DO download some header information, but
- * the downloader converts the file format and corrects the byte-ordering
- * of the relevant fields while doing so.)
- *
- ***************************************************************************** */
-
-/* There are 4 different lengths of (potentially) symbol-based displacements
- * in the 80960 instruction set, each of which could require address fix-ups
- * and (in the case of external symbols) emission of relocation directives:
- *
- * 32-bit (MEMB)
- * This is a standard length for the base assembler and requires no
- * special action.
- *
- * 13-bit (COBR)
- * This is a non-standard length, but the base assembler has a hook for
- * bit field address fixups: the fixS structure can point to a descriptor
- * of the field, in which case our md_number_to_field() routine gets called
- * to process it.
- *
- * I made the hook a little cleaner by having fix_new() (in the base
- * assembler) return a pointer to the fixS in question. And I made it a
- * little simpler by storing the field size (in this case 13) instead of
- * of a pointer to another structure: 80960 displacements are ALWAYS
- * stored in the low-order bits of a 4-byte word.
- *
- * Since the target of a COBR cannot be external, no relocation directives
- * for this size displacement have to be generated. But the base assembler
- * had to be modified to issue error messages if the symbol did turn out
- * to be external.
- *
- * 24-bit (CTRL)
- * Fixups are handled as for the 13-bit case (except that 24 is stored
- * in the fixS).
- *
- * The relocation directive generated is the same as that for the 32-bit
- * displacement, except that it's PC-relative (the 32-bit displacement
- * never is). The i80960 version of the linker needs a mod to
- * distinguish and handle the 24-bit case.
- *
- * 12-bit (MEMA)
- * MEMA formats are always promoted to MEMB (32-bit) if the displacement
- * is based on a symbol, because it could be relocated at link time.
- * The only time we use the 12-bit format is if an absolute value of
- * less than 4096 is specified, in which case we need neither a fixup nor
- * a relocation directive.
- */
-
-#include <stdio.h>
-#include <ctype.h>
-
-#include "as.h"
-
-#include "obstack.h"
-
-#include "i960-opcode.h"
-
-extern char *input_line_pointer;
-extern struct hash_control *po_hash;
-extern char *next_object_file_charP;
-
-#ifdef OBJ_COFF
-int md_reloc_size = sizeof(struct reloc);
-#else /* OBJ_COFF */
-int md_reloc_size = sizeof(struct relocation_info);
-#endif /* OBJ_COFF */
-
- /***************************
- * Local i80960 routines *
- ************************** */
-
-static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
-static char * brlab_next(); /* Return next branch local label */
- void brtab_emit(); /* Emit br-predict instrumentation table */
-static void cobr_fmt(); /* Generate COBR instruction */
-static void ctrl_fmt(); /* Generate CTRL instruction */
-static char * emit(); /* Emit (internally) binary */
-static int get_args(); /* Break arguments out of comma-separated list */
-static void get_cdisp(); /* Handle COBR or CTRL displacement */
-static char * get_ispec(); /* Find index specification string */
-static int get_regnum(); /* Translate text to register number */
-static int i_scan(); /* Lexical scan of instruction source */
-static void mem_fmt(); /* Generate MEMA or MEMB instruction */
-static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
-static segT parse_expr(); /* Parse an expression */
-static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
-static void parse_memop(); /* Parse a memory operand */
-static void parse_po(); /* Parse machine-dependent pseudo-op */
-static void parse_regop(); /* Parse a register operand */
-static void reg_fmt(); /* Generate a REG format instruction */
- void reloc_callj(); /* Relocate a 'callj' instruction */
-static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
-static void s_leafproc(); /* Process '.leafproc' pseudo-op */
-static void s_sysproc(); /* Process '.sysproc' pseudo-op */
-static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
-static void syntax(); /* Give syntax error */
-static int targ_has_sfr(); /* Target chip supports spec-func register? */
-static int targ_has_iclass();/* Target chip supports instruction set? */
-/* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
-
-/* See md_parse_option() for meanings of these options */
-static char norelax = 0; /* True if -norelax switch seen */
-static char instrument_branches = 0; /* True if -b switch seen */
-
-/* Characters that always start a comment.
- * If the pre-processor is disabled, these aren't very useful.
- */
-char comment_chars[] = "#";
-
-/* Characters that only start a comment at the beginning of
- * a line. If the line seems to have the form '# 123 filename'
- * .line and .file directives will appear in the pre-processed output.
- *
- * Note that input_file.c hand checks for '#' at the beginning of the
- * first line of the input file. This is because the compiler outputs
- * #NO_APP at the beginning of its output.
- */
-
-/* Also note that comments started like this one will always work. */
-
-char line_comment_chars[] = "";
-
-/* Chars that can be used to separate mant from exp in floating point nums */
-char EXP_CHARS[] = "eE";
-
-/* Chars that mean this number is a floating point constant,
- * as in 0f12.456 or 0d1.2345e12
- */
-char FLT_CHARS[] = "fFdDtT";
-
-
-/* Table used by base assembler to relax addresses based on varying length
- * instructions. The fields are:
- * 1) most positive reach of this state,
- * 2) most negative reach of this state,
- * 3) how many bytes this mode will add to the size of the current frag
- * 4) which index into the table to try if we can't fit into this one.
- *
- * For i80960, the only application is the (de-)optimization of cobr
- * instructions into separate compare and branch instructions when a 13-bit
- * displacement won't hack it.
- */
-const relax_typeS
-md_relax_table[] = {
- {0, 0, 0,0}, /* State 0 => no more relaxation possible */
- {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
- {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
-};
-
-
-/* These are the machine dependent pseudo-ops.
- *
- * This table describes all the machine specific pseudo-ops the assembler
- * has to support. The fields are:
- * pseudo-op name without dot
- * function to call to execute this pseudo-op
- * integer arg to pass to the function
- */
-#define S_LEAFPROC 1
-#define S_SYSPROC 2
-
-const pseudo_typeS
-md_pseudo_table[] = {
-
- { "bss", s_lcomm, 1 },
- { "extended", float_cons, 't' },
- { "leafproc", parse_po, S_LEAFPROC },
- { "sysproc", parse_po, S_SYSPROC },
-
- { "word", cons, 4 },
- { "quad", big_cons, 16 },
-
- { 0, 0, 0 }
-};
-
-/* Macros to extract info from an 'expressionS' structure 'e' */
-#define adds(e) e.X_add_symbol
-#define subs(e) e.X_subtract_symbol
-#define offs(e) e.X_add_number
-#define segs(e) e.X_seg
-
-
-/* Branch-prediction bits for CTRL/COBR format opcodes */
-#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
-#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
-#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
-
-
-/* Some instruction opcodes that we need explicitly */
-#define BE 0x12000000
-#define BG 0x11000000
-#define BGE 0x13000000
-#define BL 0x14000000
-#define BLE 0x16000000
-#define BNE 0x15000000
-#define BNO 0x10000000
-#define BO 0x17000000
-#define CHKBIT 0x5a002700
-#define CMPI 0x5a002080
-#define CMPO 0x5a002000
-
-#define B 0x08000000
-#define BAL 0x0b000000
-#define CALL 0x09000000
-#define CALLS 0x66003800
-#define RET 0x0a000000
-
-
-/* These masks are used to build up a set of MEMB mode bits. */
-#define A_BIT 0x0400
-#define I_BIT 0x0800
-#define MEMB_BIT 0x1000
-#define D_BIT 0x2000
-
-
-/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
-#define MEMA_ABASE 0x2000
-
-/* Info from which a MEMA or MEMB format instruction can be generated */
-typedef struct {
- long opcode; /* (First) 32 bits of instruction */
- int disp; /* 0-(none), 12- or, 32-bit displacement needed */
- char *e; /* The expression in the source instruction from
- * which the displacement should be determined
- */
-} memS;
-
-
-/* The two pieces of info we need to generate a register operand */
-struct regop {
- int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
- int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
- int n; /* Register number or literal value */
-};
-
-
-/* Number and assembler mnemonic for all registers that can appear in operands */
-static struct {
- char *reg_name;
- int reg_num;
-} regnames[] = {
- { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
- { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
- { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
- { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
- { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
- { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
- { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
- { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
-
- /* Numbers for special-function registers are for assembler internal
- * use only: they are scaled back to range [0-31] for binary output.
- */
-# define SF0 32
-
- { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
- { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
- { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
- { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
- { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
- { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
- { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
- { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
-
- /* Numbers for floating point registers are for assembler internal use
- * only: they are scaled back to [0-3] for binary output.
- */
-# define FP0 64
-
- { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
-
- { NULL, 0 }, /* END OF LIST */
-};
-
-#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
-#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
-#define IS_FP_REG(n) ((n) >= FP0)
-
-/* Number and assembler mnemonic for all registers that can appear as 'abase'
- * (indirect addressing) registers.
- */
-static struct {
- char *areg_name;
- int areg_num;
-} aregs[] = {
- { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
- { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
- { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
- { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
- { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
- { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
- { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
- { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
-
-# define IPREL 32
- /* for assembler internal use only: this number never appears in binary
- * output.
- */
- { "(ip)", IPREL },
-
- { NULL, 0 }, /* END OF LIST */
-};
-
-
-/* Hash tables */
-static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
-static struct hash_control *reg_hash = NULL; /* Register name hash table */
-static struct hash_control *areg_hash = NULL; /* Abase register hash table */
-
-
-/* Architecture for which we are assembling */
-#define ARCH_ANY 0 /* Default: no architecture checking done */
-#define ARCH_KA 1
-#define ARCH_KB 2
-#define ARCH_MC 3
-#define ARCH_CA 4
-int architecture = ARCH_ANY; /* Architecture requested on invocation line */
-int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
- * for which we've actually assembled
- * instructions.
- */
-
-
-/* BRANCH-PREDICTION INSTRUMENTATION
- *
- * The following supports generation of branch-prediction instrumentation
- * (turned on by -b switch). The instrumentation collects counts
- * of branches taken/not-taken for later input to a utility that will
- * set the branch prediction bits of the instructions in accordance with
- * the behavior observed. (Note that the KX series does not have
- * brach-prediction.)
- *
- * The instrumentation consists of:
- *
- * (1) before and after each conditional branch, a call to an external
- * routine that increments and steps over an inline counter. The
- * counter itself, initialized to 0, immediately follows the call
- * instruction. For each branch, the counter following the branch
- * is the number of times the branch was not taken, and the difference
- * between the counters is the number of times it was taken. An
- * example of an instrumented conditional branch:
- *
- * call BR_CNT_FUNC
- * .word 0
- * LBRANCH23: be label
- * call BR_CNT_FUNC
- * .word 0
- *
- * (2) a table of pointers to the instrumented branches, so that an
- * external postprocessing routine can locate all of the counters.
- * the table begins with a 2-word header: a pointer to the next in
- * a linked list of such tables (initialized to 0); and a count
- * of the number of entries in the table (exclusive of the header.
- *
- * Note that input source code is expected to already contain calls
- * an external routine that will link the branch local table into a
- * list of such tables.
- */
-
-static int br_cnt = 0; /* Number of branches instrumented so far.
- * Also used to generate unique local labels
- * for each instrumented branch
- */
-
-#define BR_LABEL_BASE "LBRANCH"
- /* Basename of local labels on instrumented
- * branches, to avoid conflict with compiler-
- * generated local labels.
- */
-
-#define BR_CNT_FUNC "__inc_branch"
- /* Name of the external routine that will
- * increment (and step over) an inline counter.
- */
-
-#define BR_TAB_NAME "__BRANCH_TABLE__"
- /* Name of the table of pointers to branches.
- * A local (i.e., non-external) symbol.
- */
-
-/*****************************************************************************
- * md_begin: One-time initialization.
- *
- * Set up hash tables.
- *
- **************************************************************************** */
-void
-md_begin()
-{
- int i; /* Loop counter */
- const struct i960_opcode *oP; /* Pointer into opcode table */
- char *retval; /* Value returned by hash functions */
-
- if (((op_hash = hash_new()) == 0)
- || ((reg_hash = hash_new()) == 0)
- || ((areg_hash = hash_new()) == 0)) {
- as_fatal("virtual memory exceeded");
- }
-
- retval = ""; /* For some reason, the base assembler uses an empty
- * string for "no error message", instead of a NULL
- * pointer.
- */
-
- for (oP=i960_opcodes; oP->name && !*retval; oP++) {
- retval = hash_insert(op_hash, oP->name, oP);
- }
-
- for (i=0; regnames[i].reg_name && !*retval; i++) {
- retval = hash_insert(reg_hash, regnames[i].reg_name,
- &regnames[i].reg_num);
- }
-
- for (i=0; aregs[i].areg_name && !*retval; i++){
- retval = hash_insert(areg_hash, aregs[i].areg_name,
- &aregs[i].areg_num);
- }
-
- if (*retval) {
- as_fatal("Hashing returned \"%s\".", retval);
- }
-} /* md_begin() */
-
-/*****************************************************************************
- * md_end: One-time final cleanup
- *
- * None necessary
- *
- **************************************************************************** */
-void
-md_end()
-{
-}
-
-/*****************************************************************************
- * md_assemble: Assemble an instruction
- *
- * Assumptions about the passed-in text:
- * - all comments, labels removed
- * - text is an instruction
- * - all white space compressed to single blanks
- * - all character constants have been replaced with decimal
- *
- **************************************************************************** */
-void
-md_assemble(textP)
- char *textP; /* Source text of instruction */
-{
- char *args[4]; /* Parsed instruction text, containing NO whitespace:
- * arg[0]->opcode mnemonic
- * arg[1-3]->operands, with char constants
- * replaced by decimal numbers
- */
- int n_ops; /* Number of instruction operands */
-
- struct i960_opcode *oP;
- /* Pointer to instruction description */
- int branch_predict;
- /* TRUE iff opcode mnemonic included branch-prediction
- * suffix (".f" or ".t")
- */
- long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
- * into instruction opcode of CTRL/COBR format
- * instructions.
- */
- int n; /* Offset of last character in opcode mnemonic */
-
- static const char bp_error_msg[] = "branch prediction invalid on this opcode";
-
-
- /* Parse instruction into opcode and operands */
- bzero(args, sizeof(args));
- n_ops = i_scan(textP, args);
- if (n_ops == -1){
- return; /* Error message already issued */
- }
-
- /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
- if (!strcmp(args[0],"ldconst")){
- n_ops = parse_ldconst(args);
- if (n_ops == -1){
- return;
- }
- }
-
- /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
- n = strlen(args[0]) - 1;
- branch_predict = 0;
- bp_bits = 0;
- if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
- /* We could check here to see if the target architecture
- * supports branch prediction, but why bother? The bit
- * will just be ignored by processors that don't use it.
- */
- branch_predict = 1;
- bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
- args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
- }
-
- /* Look up opcode mnemonic in table and check number of operands.
- * Check that opcode is legal for the target architecture.
- * If all looks good, assemble instruction.
- */
- oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
- if (!oP || !targ_has_iclass(oP->iclass)) {
- as_bad("invalid opcode, \"%s\".", args[0]);
-
- } else if (n_ops != oP->num_ops) {
- as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
-
- } else {
- switch (oP->format){
- case FBRA:
- case CTRL:
- ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
- if (oP->format == FBRA){
- /* Now generate a 'bno' to same arg */
- ctrl_fmt(args[1], BNO | bp_bits, 1);
- }
- break;
- case COBR:
- case COJ:
- cobr_fmt(args, oP->opcode | bp_bits, oP);
- break;
- case REG:
- if (branch_predict){
- as_warn(bp_error_msg);
- }
- reg_fmt(args, oP);
- break;
- case MEM1:
- case MEM2:
- case MEM4:
- case MEM8:
- case MEM12:
- case MEM16:
- if (branch_predict){
- as_warn(bp_error_msg);
- }
- mem_fmt(args, oP);
- break;
- case CALLJ:
- if (branch_predict){
- as_warn(bp_error_msg);
- }
- /* Output opcode & set up "fixup" (relocation);
- * flag relocation as 'callj' type.
- */
- know(oP->num_ops == 1);
- get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
- break;
- default:
- BAD_CASE(oP->format);
- break;
- }
- }
-} /* md_assemble() */
-
-/*****************************************************************************
- * md_number_to_chars: convert a number to target byte order
- *
- **************************************************************************** */
-void
-md_number_to_chars(buf, value, n)
- char *buf; /* Put output here */
- long value; /* The integer to be converted */
- int n; /* Number of bytes to output (significant bytes
- * in 'value')
- */
-{
- while (n--){
- *buf++ = value;
- value >>= 8;
- }
-
- /* XXX line number probably botched for this warning message. */
- if (value != 0 && value != -1){
- as_bad("Displacement too long for instruction field length.");
- }
-
- return;
-} /* md_number_to_chars() */
-
-/*****************************************************************************
- * md_chars_to_number: convert from target byte order to host byte order.
- *
- **************************************************************************** */
-int
-md_chars_to_number(val, n)
- unsigned char *val; /* Value in target byte order */
- int n; /* Number of bytes in the input */
-{
- int retval;
-
- for (retval=0; n--;){
- retval <<= 8;
- retval |= val[n];
- }
- return retval;
-}
-
-
-#define MAX_LITTLENUMS 6
-#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
-
-/*****************************************************************************
- * md_atof: convert ascii to floating point
- *
- * Turn a string at input_line_pointer into a floating point constant of type
- * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
- * emitted is returned at 'sizeP'. An error message is returned, or a pointer
- * to an empty message if OK.
- *
- * Note we call the i386 floating point routine, rather than complicating
- * things with more files or symbolic links.
- *
- **************************************************************************** */
-char * md_atof(type, litP, sizeP)
-int type;
-char *litP;
-int *sizeP;
-{
- LITTLENUM_TYPE words[MAX_LITTLENUMS];
- LITTLENUM_TYPE *wordP;
- int prec;
- char *t;
- char *atof_ieee();
-
- switch(type) {
- case 'f':
- case 'F':
- prec = 2;
- break;
-
- case 'd':
- case 'D':
- prec = 4;
- break;
-
- case 't':
- case 'T':
- prec = 5;
- type = 'x'; /* That's what atof_ieee() understands */
- break;
-
- default:
- *sizeP=0;
- return "Bad call to md_atof()";
- }
-
- t = atof_ieee(input_line_pointer, type, words);
- if (t){
- input_line_pointer = t;
- }
-
- *sizeP = prec * LNUM_SIZE;
-
- /* Output the LITTLENUMs in REVERSE order in accord with i80960
- * word-order. (Dunno why atof_ieee doesn't do it in the right
- * order in the first place -- probably because it's a hack of
- * atof_m68k.)
- */
-
- for(wordP = words + prec - 1; prec--;){
- md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
- litP += sizeof(LITTLENUM_TYPE);
- }
-
- return ""; /* Someone should teach Dean about null pointers */
-}
-
-
-/*****************************************************************************
- * md_number_to_imm
- *
- **************************************************************************** */
-void
-md_number_to_imm(buf, val, n)
- char *buf;
- long val;
- int n;
-{
- md_number_to_chars(buf, val, n);
-}
-
-
-/*****************************************************************************
- * md_number_to_disp
- *
- **************************************************************************** */
-void
-md_number_to_disp(buf, val, n)
- char *buf;
- long val;
- int n;
-{
- md_number_to_chars(buf, val, n);
-}
-
-/*****************************************************************************
- * md_number_to_field:
- *
- * Stick a value (an address fixup) into a bit field of
- * previously-generated instruction.
- *
- **************************************************************************** */
-void
-md_number_to_field(instrP, val, bfixP)
- char *instrP; /* Pointer to instruction to be fixed */
- long val; /* Address fixup value */
- bit_fixS *bfixP; /* Description of bit field to be fixed up */
-{
- int numbits; /* Length of bit field to be fixed */
- long instr; /* 32-bit instruction to be fixed-up */
- long sign; /* 0 or -1, according to sign bit of 'val' */
-
- /* Convert instruction back to host byte order
- */
- instr = md_chars_to_number(instrP, 4);
-
- /* Surprise! -- we stored the number of bits
- * to be modified rather than a pointer to a structure.
- */
- numbits = (int)bfixP;
- if (numbits == 1){
- /* This is a no-op, stuck here by reloc_callj() */
- return;
- }
-
- know ((numbits==13) || (numbits==24));
-
- /* Propagate sign bit of 'val' for the given number of bits.
- * Result should be all 0 or all 1
- */
- sign = val >> ((int)numbits - 1);
- if (((val < 0) && (sign != -1))
- || ((val > 0) && (sign != 0))){
- as_bad("Fixup of %d too large for field width of %d",
- val, numbits);
- } else {
- /* Put bit field into instruction and write back in target
- * byte order.
- */
- val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
- instr |= val;
- md_number_to_chars(instrP, instr, 4);
- }
-} /* md_number_to_field() */
-
-
-/*****************************************************************************
- * md_parse_option
- * Invocation line includes a switch not recognized by the base assembler.
- * See if it's a processor-specific option. For the 960, these are:
- *
- * -norelax:
- * Conditional branch instructions that require displacements
- * greater than 13 bits (or that have external targets) should
- * generate errors. The default is to replace each such
- * instruction with the corresponding compare (or chkbit) and
- * branch instructions. Note that the Intel "j" cobr directives
- * are ALWAYS "de-optimized" in this way when necessary,
- * regardless of the setting of this option.
- *
- * -b:
- * Add code to collect information about branches taken, for
- * later optimization of branch prediction bits by a separate
- * tool. COBR and CNTL format instructions have branch
- * prediction bits (in the CX architecture); if "BR" represents
- * an instruction in one of these classes, the following rep-
- * resents the code generated by the assembler:
- *
- * call <increment routine>
- * .word 0 # pre-counter
- * Label: BR
- * call <increment routine>
- * .word 0 # post-counter
- *
- * A table of all such "Labels" is also generated.
- *
- *
- * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
- * Select the 80960 architecture. Instructions or features not
- * supported by the selected architecture cause fatal errors.
- * The default is to generate code for any instruction or feature
- * that is supported by SOME version of the 960 (even if this
- * means mixing architectures!).
- *
- **************************************************************************** */
-int
-md_parse_option(argP, cntP, vecP)
- char **argP;
- int *cntP;
- char ***vecP;
-{
- char *p;
- struct tabentry { char *flag; int arch; };
- static struct tabentry arch_tab[] = {
- "KA", ARCH_KA,
- "KB", ARCH_KB,
- "SA", ARCH_KA, /* Synonym for KA */
- "SB", ARCH_KB, /* Synonym for KB */
- "KC", ARCH_MC, /* Synonym for MC */
- "MC", ARCH_MC,
- "CA", ARCH_CA,
- NULL, 0
- };
- struct tabentry *tp;
-
- if (!strcmp(*argP,"norelax")){
- norelax = 1;
-
- } else if (**argP == 'b'){
- instrument_branches = 1;
-
- } else if (**argP == 'A'){
- p = (*argP) + 1;
-
- for (tp = arch_tab; tp->flag != NULL; tp++){
- if (!strcmp(p,tp->flag)){
- break;
- }
- }
-
- if (tp->flag == NULL){
- as_bad("unknown architecture: %s", p);
- } else {
- architecture = tp->arch;
- }
- } else {
- /* Unknown option */
- (*argP)++;
- return 0;
- }
- **argP = '\0'; /* Done parsing this switch */
- return 1;
-}
-
-/*****************************************************************************
- * md_convert_frag:
- * Called by base assembler after address relaxation is finished: modify
- * variable fragments according to how much relaxation was done.
- *
- * If the fragment substate is still 1, a 13-bit displacement was enough
- * to reach the symbol in question. Set up an address fixup, but otherwise
- * leave the cobr instruction alone.
- *
- * If the fragment substate is 2, a 13-bit displacement was not enough.
- * Replace the cobr with a two instructions (a compare and a branch).
- *
- **************************************************************************** */
-void
-md_convert_frag(headers, fragP)
-object_headers *headers;
- fragS * fragP;
-{
- fixS *fixP; /* Structure describing needed address fix */
-
- switch (fragP->fr_subtype){
- case 1:
- /* LEAVE SINGLE COBR INSTRUCTION */
- fixP = fix_new(fragP,
- fragP->fr_opcode-fragP->fr_literal,
- 4,
- fragP->fr_symbol,
- 0,
- fragP->fr_offset,
- 1,
- 0);
-
- fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
- break;
- case 2:
- /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
- relax_cobr(fragP);
- break;
- default:
- BAD_CASE(fragP->fr_subtype);
- break;
- }
-}
-
-/*****************************************************************************
- * md_estimate_size_before_relax: How much does it look like *fragP will grow?
- *
- * Called by base assembler just before address relaxation.
- * Return the amount by which the fragment will grow.
- *
- * Any symbol that is now undefined will not become defined; cobr's
- * based on undefined symbols will have to be replaced with a compare
- * instruction and a branch instruction, and the code fragment will grow
- * by 4 bytes.
- *
- **************************************************************************** */
-int
-md_estimate_size_before_relax(fragP, segment_type)
- register fragS *fragP;
- register segT segment_type;
-{
- /* If symbol is undefined in this segment, go to "relaxed" state
- * (compare and branch instructions instead of cobr) right now.
- */
- if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
- relax_cobr(fragP);
- return 4;
- }
- return 0;
-} /* md_estimate_size_before_relax() */
-
-
-/*****************************************************************************
- * md_ri_to_chars:
- * This routine exists in order to overcome machine byte-order problems
- * when dealing with bit-field entries in the relocation_info struct.
- *
- * But relocation info will be used on the host machine only (only
- * executable code is actually downloaded to the i80960). Therefore,
- * we leave it in host byte order.
- *
- **************************************************************************** */
-void md_ri_to_chars(where, ri)
-char *where;
-struct relocation_info *ri;
-{
- *((struct relocation_info *) where) = *ri; /* structure assignment */
-} /* md_ri_to_chars() */
-
-#ifndef WORKING_DOT_WORD
-
-int md_short_jump_size = 0;
-int md_long_jump_size = 0;
-
-void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
-char *ptr;
-long from_addr;
-long to_addr;
-fragS *frag;
-symbolS *to_symbol;
-{
- abort();
-}
-
-void
-md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
- char *ptr;
- long from_addr, to_addr;
- fragS *frag;
- symbolS *to_symbol;
-{
- abort();
-}
-#endif
-
- /*************************************************************
- * *
- * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
- * *
- ************************************************************ */
-
-
-
-/*****************************************************************************
- * brcnt_emit: Emit code to increment inline branch counter.
- *
- * See the comments above the declaration of 'br_cnt' for details on
- * branch-prediction instrumentation.
- **************************************************************************** */
-static void
-brcnt_emit()
-{
- ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
- emit(0); /* Emit inline counter to be incremented */
-}
-
-/*****************************************************************************
- * brlab_next: generate the next branch local label
- *
- * See the comments above the declaration of 'br_cnt' for details on
- * branch-prediction instrumentation.
- **************************************************************************** */
-static char *
-brlab_next()
-{
- static char buf[20];
-
- sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
- return buf;
-}
-
-/*****************************************************************************
- * brtab_emit: generate the fetch-prediction branch table.
- *
- * See the comments above the declaration of 'br_cnt' for details on
- * branch-prediction instrumentation.
- *
- * The code emitted here would be functionally equivalent to the following
- * example assembler source.
- *
- * .data
- * .align 2
- * BR_TAB_NAME:
- * .word 0 # link to next table
- * .word 3 # length of table
- * .word LBRANCH0 # 1st entry in table proper
- * .word LBRANCH1
- * .word LBRANCH2
- ***************************************************************************** */
-void
-brtab_emit()
-{
- int i;
- char buf[20];
- char *p; /* Where the binary was output to */
- fixS *fixP; /*->description of deferred address fixup */
-
- if (!instrument_branches){
- return;
- }
-
- subseg_new(SEG_DATA,0); /* .data */
- frag_align(2,0); /* .align 2 */
- record_alignment(now_seg,2);
- colon(BR_TAB_NAME); /* BR_TAB_NAME: */
- emit(0); /* .word 0 #link to next table */
- emit(br_cnt); /* .word n #length of table */
-
- for (i=0; i<br_cnt; i++){
- sprintf(buf, "%s%d", BR_LABEL_BASE, i);
- p = emit(0);
- fixP = fix_new(frag_now,
- p - frag_now->fr_literal,
- 4,
- symbol_find(buf),
- 0,
- 0,
- 0,
- 0);
- fixP->fx_im_disp = 2; /* 32-bit displacement fix */
- }
-}
-
-/*****************************************************************************
- * cobr_fmt: generate a COBR-format instruction
- *
- **************************************************************************** */
-static
-void
-cobr_fmt(arg, opcode, oP)
- char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
- long opcode; /* Opcode, with branch-prediction bits already set
- * if necessary.
- */
- struct i960_opcode *oP;
- /*->description of instruction */
-{
- long instr; /* 32-bit instruction */
- struct regop regop; /* Description of register operand */
- int n; /* Number of operands */
- int var_frag; /* 1 if varying length code fragment should
- * be emitted; 0 if an address fix
- * should be emitted.
- */
-
- instr = opcode;
- n = oP->num_ops;
-
- if (n >= 1) {
- /* First operand (if any) of a COBR is always a register
- * operand. Parse it.
- */
- parse_regop(&regop, arg[1], oP->operand[0]);
- instr |= (regop.n << 19) | (regop.mode << 13);
- }
- if (n >= 2) {
- /* Second operand (if any) of a COBR is always a register
- * operand. Parse it.
- */
- parse_regop(&regop, arg[2], oP->operand[1]);
- instr |= (regop.n << 14) | regop.special;
- }
-
-
- if (n < 3){
- emit(instr);
-
- } else {
- if (instrument_branches){
- brcnt_emit();
- colon(brlab_next());
- }
-
- /* A third operand to a COBR is always a displacement.
- * Parse it; if it's relaxable (a cobr "j" directive, or any
- * cobr other than bbs/bbc when the "-norelax" option is not in
- * use) set up a variable code fragment; otherwise set up an
- * address fix.
- */
- var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
- get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
-
- if (instrument_branches){
- brcnt_emit();
- }
- }
-} /* cobr_fmt() */
-
-
-/*****************************************************************************
- * ctrl_fmt: generate a CTRL-format instruction
- *
- **************************************************************************** */
-static
-void
-ctrl_fmt(targP, opcode, num_ops)
- char *targP; /* Pointer to text of lone operand (if any) */
- long opcode; /* Template of instruction */
- int num_ops; /* Number of operands */
-{
- int instrument; /* TRUE iff we should add instrumentation to track
- * how often the branch is taken
- */
-
-
- if (num_ops == 0){
- emit(opcode); /* Output opcode */
- } else {
-
- instrument = instrument_branches && (opcode!=CALL)
- && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
-
- if (instrument){
- brcnt_emit();
- colon(brlab_next());
- }
-
- /* The operand MUST be an ip-relative displacment. Parse it
- * and set up address fix for the instruction we just output.
- */
- get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
-
- if (instrument){
- brcnt_emit();
- }
- }
-
-}
-
-
-/*****************************************************************************
- * emit: output instruction binary
- *
- * Output instruction binary, in target byte order, 4 bytes at a time.
- * Return pointer to where it was placed.
- *
- **************************************************************************** */
-static
-char *
-emit(instr)
- long instr; /* Word to be output, host byte order */
-{
- char *toP; /* Where to output it */
-
- toP = frag_more(4); /* Allocate storage */
- md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
- return toP;
-}
-
-
-/*****************************************************************************
- * get_args: break individual arguments out of comma-separated list
- *
- * Input assumptions:
- * - all comments and labels have been removed
- * - all strings of whitespace have been collapsed to a single blank.
- * - all character constants ('x') have been replaced with decimal
- *
- * Output:
- * args[0] is untouched. args[1] points to first operand, etc. All args:
- * - are NULL-terminated
- * - contain no whitespace
- *
- * Return value:
- * Number of operands (0,1,2, or 3) or -1 on error.
- *
- **************************************************************************** */
-static int get_args(p, args)
- register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
- char *args[]; /* Output arg: pointers to operands placed in args[1-3].
- * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
- */
-{
- register int n; /* Number of operands */
- register char *to;
-/* char buf[4]; */
-/* int len; */
-
-
- /* Skip lead white space */
- while (*p == ' '){
- p++;
- }
-
- if (*p == '\0'){
- return 0;
- }
-
- n = 1;
- args[1] = p;
-
- /* Squeze blanks out by moving non-blanks toward start of string.
- * Isolate operands, whenever comma is found.
- */
- to = p;
- while (*p != '\0'){
-
- if (*p == ' '){
- p++;
-
- } else if (*p == ','){
-
- /* Start of operand */
- if (n == 3){
- as_bad("too many operands");
- return -1;
- }
- *to++ = '\0'; /* Terminate argument */
- args[++n] = to; /* Start next argument */
- p++;
-
- } else {
- *to++ = *p++;
- }
- }
- *to = '\0';
- return n;
-}
-
-
-/*****************************************************************************
- * get_cdisp: handle displacement for a COBR or CTRL instruction.
- *
- * Parse displacement for a COBR or CTRL instruction.
- *
- * If successful, output the instruction opcode and set up for it,
- * depending on the arg 'var_frag', either:
- * o an address fixup to be done when all symbol values are known, or
- * o a varying length code fragment, with address fixup info. This
- * will be done for cobr instructions that may have to be relaxed
- * in to compare/branch instructions (8 bytes) if the final address
- * displacement is greater than 13 bits.
- *
- **************************************************************************** */
-static
-void
-get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
- char *dispP; /*->displacement as specified in source instruction */
- char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
- long instr; /* Instruction needing the displacement */
- int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
- int var_frag; /* 1 if varying length code fragment should be emitted;
- * 0 if an address fix should be emitted.
- */
- int callj; /* 1 if callj relocation should be done; else 0 */
-{
- expressionS e; /* Parsed expression */
- fixS *fixP; /* Structure describing needed address fix */
- char *outP; /* Where instruction binary is output to */
-
- fixP = NULL;
-
- switch (parse_expr(dispP,&e)) {
-
- case SEG_GOOF:
- as_bad("expression syntax error");
- break;
-
- case SEG_TEXT:
- case SEG_UNKNOWN:
- if (var_frag) {
- outP = frag_more(8); /* Allocate worst-case storage */
- md_number_to_chars(outP, instr, 4);
- frag_variant(rs_machine_dependent, 4, 4, 1,
- adds(e), offs(e), outP, 0, 0);
- } else {
- /* Set up a new fix structure, so address can be updated
- * when all symbol values are known.
- */
- outP = emit(instr);
- fixP = fix_new(frag_now,
- outP - frag_now->fr_literal,
- 4,
- adds(e),
- 0,
- offs(e),
- 1,
- 0);
-
- fixP->fx_callj = callj;
-
- /* We want to modify a bit field when the address is
- * known. But we don't need all the garbage in the
- * bit_fix structure. So we're going to lie and store
- * the number of bits affected instead of a pointer.
- */
- fixP->fx_bit_fixP = (bit_fixS *) numbits;
- }
- break;
-
- case SEG_DATA:
- case SEG_BSS:
- as_bad("attempt to branch into different segment");
- break;
-
- default:
- as_bad("target of %s instruction must be a label", ifmtP);
- break;
- }
-}
-
-
-/*****************************************************************************
- * get_ispec: parse a memory operand for an index specification
- *
- * Here, an "index specification" is taken to be anything surrounded
- * by square brackets and NOT followed by anything else.
- *
- * If it's found, detach it from the input string, remove the surrounding
- * square brackets, and return a pointer to it. Otherwise, return NULL.
- *
- **************************************************************************** */
-static
-char *
-get_ispec(textP)
- char *textP; /*->memory operand from source instruction, no white space */
-{
- char *start; /*->start of index specification */
- char *end; /*->end of index specification */
-
- /* Find opening square bracket, if any
- */
- start = strchr(textP, '[');
-
- if (start != NULL){
-
- /* Eliminate '[', detach from rest of operand */
- *start++ = '\0';
-
- end = strchr(start, ']');
-
- if (end == NULL){
- as_bad("unmatched '['");
-
- } else {
- /* Eliminate ']' and make sure it was the last thing
- * in the string.
- */
- *end = '\0';
- if (*(end+1) != '\0'){
- as_bad("garbage after index spec ignored");
- }
- }
- }
- return start;
-}
-
-/*****************************************************************************
- * get_regnum:
- *
- * Look up a (suspected) register name in the register table and return the
- * associated register number (or -1 if not found).
- *
- **************************************************************************** */
-static
-int
-get_regnum(regname)
- char *regname; /* Suspected register name */
-{
- int *rP;
-
- rP = (int *) hash_find(reg_hash, regname);
- return (rP == NULL) ? -1 : *rP;
-}
-
-
-/*****************************************************************************
- * i_scan: perform lexical scan of ascii assembler instruction.
- *
- * Input assumptions:
- * - input string is an i80960 instruction (not a pseudo-op)
- * - all comments and labels have been removed
- * - all strings of whitespace have been collapsed to a single blank.
- *
- * Output:
- * args[0] points to opcode, other entries point to operands. All strings:
- * - are NULL-terminated
- * - contain no whitespace
- * - have character constants ('x') replaced with a decimal number
- *
- * Return value:
- * Number of operands (0,1,2, or 3) or -1 on error.
- *
- **************************************************************************** */
-static int i_scan(iP, args)
- register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
- char *args[]; /* Output arg: pointers to opcode and operands placed
- * here. MUST ACCOMMODATE 4 ENTRIES.
- */
-{
-
- /* Isolate opcode */
- if (*(iP) == ' ') {
- iP++;
- } /* Skip lead space, if any */
- args[0] = iP;
- for (; *iP != ' '; iP++) {
- if (*iP == '\0') {
- /* There are no operands */
- if (args[0] == iP) {
- /* We never moved: there was no opcode either! */
- as_bad("missing opcode");
- return -1;
- }
- return 0;
- }
- }
- *iP++ = '\0'; /* Terminate opcode */
- return(get_args(iP, args));
-} /* i_scan() */
-
-
-/*****************************************************************************
- * mem_fmt: generate a MEMA- or MEMB-format instruction
- *
- **************************************************************************** */
-static void mem_fmt(args, oP)
- char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
- struct i960_opcode *oP; /* Pointer to description of instruction */
-{
- int i; /* Loop counter */
- struct regop regop; /* Description of register operand */
- char opdesc; /* Operand descriptor byte */
- memS instr; /* Description of binary to be output */
- char *outP; /* Where the binary was output to */
- expressionS expr; /* Parsed expression */
- fixS *fixP; /*->description of deferred address fixup */
-
- bzero(&instr, sizeof(memS));
- instr.opcode = oP->opcode;
-
- /* Process operands. */
- for (i = 1; i <= oP->num_ops; i++){
- opdesc = oP->operand[i-1];
-
- if (MEMOP(opdesc)){
- parse_memop(&instr, args[i], oP->format);
- } else {
- parse_regop(&regop, args[i], opdesc);
- instr.opcode |= regop.n << 19;
- }
- }
-
- /* Output opcode */
- outP = emit(instr.opcode);
-
- if (instr.disp == 0){
- return;
- }
-
- /* Parse and process the displacement */
- switch (parse_expr(instr.e,&expr)){
-
- case SEG_GOOF:
- as_bad("expression syntax error");
- break;
-
- case SEG_ABSOLUTE:
- if (instr.disp == 32){
- (void) emit(offs(expr)); /* Output displacement */
- } else {
- /* 12-bit displacement */
- if (offs(expr) & ~0xfff){
- /* Won't fit in 12 bits: convert already-output
- * instruction to MEMB format, output
- * displacement.
- */
- mema_to_memb(outP);
- (void) emit(offs(expr));
- } else {
- /* WILL fit in 12 bits: OR into opcode and
- * overwrite the binary we already put out
- */
- instr.opcode |= offs(expr);
- md_number_to_chars(outP, instr.opcode, 4);
- }
- }
- break;
-
- case SEG_DIFFERENCE:
- case SEG_TEXT:
- case SEG_DATA:
- case SEG_BSS:
- case SEG_UNKNOWN:
- if (instr.disp == 12){
- /* Displacement is dependent on a symbol, whose value
- * may change at link time. We HAVE to reserve 32 bits.
- * Convert already-output opcode to MEMB format.
- */
- mema_to_memb(outP);
- }
-
- /* Output 0 displacement and set up address fixup for when
- * this symbol's value becomes known.
- */
- outP = emit((long) 0);
- fixP = fix_new(frag_now,
- outP - frag_now->fr_literal,
- 4,
- adds(expr),
- subs(expr),
- offs(expr),
- 0,
- 0);
- fixP->fx_im_disp = 2; /* 32-bit displacement fix */
- break;
-
- default:
- BAD_CASE(segs(expr));
- break;
- }
-} /* memfmt() */
-
-
-/*****************************************************************************
- * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
- *
- * There are 2 possible MEMA formats:
- * - displacement only
- * - displacement + abase
- *
- * They are distinguished by the setting of the MEMA_ABASE bit.
- *
- **************************************************************************** */
-static void mema_to_memb(opcodeP)
- char *opcodeP; /* Where to find the opcode, in target byte order */
-{
- long opcode; /* Opcode in host byte order */
- long mode; /* Mode bits for MEMB instruction */
-
- opcode = md_chars_to_number(opcodeP, 4);
- know(!(opcode & MEMB_BIT));
-
- mode = MEMB_BIT | D_BIT;
- if (opcode & MEMA_ABASE){
- mode |= A_BIT;
- }
-
- opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
- opcode |= mode; /* Set MEMB mode bits */
-
- md_number_to_chars(opcodeP, opcode, 4);
-} /* mema_to_memb() */
-
-
-/*****************************************************************************
- * parse_expr: parse an expression
- *
- * Use base assembler's expression parser to parse an expression.
- * It, unfortunately, runs off a global which we have to save/restore
- * in order to make it work for us.
- *
- * An empty expression string is treated as an absolute 0.
- *
- * Return "segment" to which the expression evaluates.
- * Return SEG_GOOF regardless of expression evaluation if entire input
- * string is not consumed in the evaluation -- tolerate no dangling junk!
- *
- **************************************************************************** */
-static
-segT
-parse_expr(textP, expP)
- char *textP; /* Text of expression to be parsed */
- expressionS *expP; /* Where to put the results of parsing */
-{
- char *save_in; /* Save global here */
- segT seg; /* Segment to which expression evaluates */
- symbolS *symP;
-
- know(textP);
-
- if (*textP == '\0') {
- /* Treat empty string as absolute 0 */
- expP->X_add_symbol = expP->X_subtract_symbol = NULL;
- expP->X_add_number = 0;
- seg = expP->X_seg = SEG_ABSOLUTE;
-
- } else {
- save_in = input_line_pointer; /* Save global */
- input_line_pointer = textP; /* Make parser work for us */
-
- seg = expression(expP);
- if (input_line_pointer - textP != strlen(textP)) {
- /* Did not consume all of the input */
- seg = SEG_GOOF;
- }
- symP = expP->X_add_symbol;
- if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
- /* Register name in an expression */
- seg = SEG_GOOF;
- }
-
- input_line_pointer = save_in; /* Restore global */
- }
- return seg;
-}
-
-
-/*****************************************************************************
- * parse_ldcont:
- * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
- * i80960 instruction.
- *
- * Assumes the input consists of:
- * arg[0] opcode mnemonic ('ldconst')
- * arg[1] first operand (constant)
- * arg[2] name of register to be loaded
- *
- * Replaces opcode and/or operands as appropriate.
- *
- * Returns the new number of arguments, or -1 on failure.
- *
- **************************************************************************** */
-static
-int
-parse_ldconst(arg)
- char *arg[]; /* See above */
-{
- int n; /* Constant to be loaded */
- int shift; /* Shift count for "shlo" instruction */
- static char buf[5]; /* Literal for first operand */
- static char buf2[5]; /* Literal for second operand */
- expressionS e; /* Parsed expression */
-
-
- arg[3] = NULL; /* So we can tell at the end if it got used or not */
-
- switch(parse_expr(arg[1],&e)){
-
- case SEG_TEXT:
- case SEG_DATA:
- case SEG_BSS:
- case SEG_UNKNOWN:
- case SEG_DIFFERENCE:
- /* We're dependent on one or more symbols -- use "lda" */
- arg[0] = "lda";
- break;
-
- case SEG_ABSOLUTE:
- /* Try the following mappings:
- * ldconst 0,<reg> ->mov 0,<reg>
- * ldconst 31,<reg> ->mov 31,<reg>
- * ldconst 32,<reg> ->addo 1,31,<reg>
- * ldconst 62,<reg> ->addo 31,31,<reg>
- * ldconst 64,<reg> ->shlo 8,3,<reg>
- * ldconst -1,<reg> ->subo 1,0,<reg>
- * ldconst -31,<reg>->subo 31,0,<reg>
- *
- * anthing else becomes:
- * lda xxx,<reg>
- */
- n = offs(e);
- if ((0 <= n) && (n <= 31)){
- arg[0] = "mov";
-
- } else if ((-31 <= n) && (n <= -1)){
- arg[0] = "subo";
- arg[3] = arg[2];
- sprintf(buf, "%d", -n);
- arg[1] = buf;
- arg[2] = "0";
-
- } else if ((32 <= n) && (n <= 62)){
- arg[0] = "addo";
- arg[3] = arg[2];
- arg[1] = "31";
- sprintf(buf, "%d", n-31);
- arg[2] = buf;
-
- } else if ((shift = shift_ok(n)) != 0){
- arg[0] = "shlo";
- arg[3] = arg[2];
- sprintf(buf, "%d", shift);
- arg[1] = buf;
- sprintf(buf2, "%d", n >> shift);
- arg[2] = buf2;
-
- } else {
- arg[0] = "lda";
- }
- break;
-
- default:
- as_bad("invalid constant");
- return -1;
- break;
- }
- return (arg[3] == 0) ? 2: 3;
-}
-
-/*****************************************************************************
- * parse_memop: parse a memory operand
- *
- * This routine is based on the observation that the 4 mode bits of the
- * MEMB format, taken individually, have fairly consistent meaning:
- *
- * M3 (bit 13): 1 if displacement is present (D_BIT)
- * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
- * M1 (bit 11): 1 if index is present (I_BIT)
- * M0 (bit 10): 1 if abase is present (A_BIT)
- *
- * So we parse the memory operand and set bits in the mode as we find
- * things. Then at the end, if we go to MEMB format, we need only set
- * the MEMB bit (M2) and our mode is built for us.
- *
- * Unfortunately, I said "fairly consistent". The exceptions:
- *
- * DBIA
- * 0100 Would seem illegal, but means "abase-only".
- *
- * 0101 Would seem to mean "abase-only" -- it means IP-relative.
- * Must be converted to 0100.
- *
- * 0110 Would seem to mean "index-only", but is reserved.
- * We turn on the D bit and provide a 0 displacement.
- *
- * The other thing to observe is that we parse from the right, peeling
- * things * off as we go: first any index spec, then any abase, then
- * the displacement.
- *
- **************************************************************************** */
-static
-void
-parse_memop(memP, argP, optype)
- memS *memP; /* Where to put the results */
- char *argP; /* Text of the operand to be parsed */
- int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
-{
- char *indexP; /* Pointer to index specification with "[]" removed */
- char *p; /* Temp char pointer */
- char iprel_flag;/* True if this is an IP-relative operand */
- int regnum; /* Register number */
- int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
- * to internal format (0,1,2,3,4 respectively).
- */
- int mode; /* MEMB mode bits */
- int *intP; /* Pointer to register number */
-
- /* The following table contains the default scale factors for each
- * type of memory instruction. It is accessed using (optype-MEM1)
- * as an index -- thus it assumes the 'optype' constants are assigned
- * consecutive values, in the order they appear in this table
- */
- static int def_scale[] = {
- 1, /* MEM1 */
- 2, /* MEM2 */
- 4, /* MEM4 */
- 8, /* MEM8 */
- -1, /* MEM12 -- no valid default */
- 16 /* MEM16 */
- };
-
-
- iprel_flag = mode = 0;
-
- /* Any index present? */
- indexP = get_ispec(argP);
- if (indexP) {
- p = strchr(indexP, '*');
- if (p == NULL) {
- /* No explicit scale -- use default for this
- *instruction type.
- */
- scale = def_scale[ optype - MEM1 ];
- } else {
- *p++ = '\0'; /* Eliminate '*' */
-
- /* Now indexP->a '\0'-terminated register name,
- * and p->a scale factor.
- */
-
- if (!strcmp(p,"16")){
- scale = 16;
- } else if (strchr("1248",*p) && (p[1] == '\0')){
- scale = *p - '0';
- } else {
- scale = -1;
- }
- }
-
- regnum = get_regnum(indexP); /* Get index reg. # */
- if (!IS_RG_REG(regnum)){
- as_bad("invalid index register");
- return;
- }
-
- /* Convert scale to its binary encoding */
- switch (scale){
- case 1: scale = 0 << 7; break;
- case 2: scale = 1 << 7; break;
- case 4: scale = 2 << 7; break;
- case 8: scale = 3 << 7; break;
- case 16: scale = 4 << 7; break;
- default: as_bad("invalid scale factor"); return;
- };
-
- memP->opcode |= scale | regnum; /* Set index bits in opcode */
- mode |= I_BIT; /* Found a valid index spec */
- }
-
- /* Any abase (Register Indirect) specification present? */
- if ((p = strrchr(argP,'(')) != NULL) {
- /* "(" is there -- does it start a legal abase spec?
- * (If not it could be part of a displacement expression.)
- */
- intP = (int *) hash_find(areg_hash, p);
- if (intP != NULL){
- /* Got an abase here */
- regnum = *intP;
- *p = '\0'; /* discard register spec */
- if (regnum == IPREL){
- /* We have to specialcase ip-rel mode */
- iprel_flag = 1;
- } else {
- memP->opcode |= regnum << 14;
- mode |= A_BIT;
- }
- }
- }
-
- /* Any expression present? */
- memP->e = argP;
- if (*argP != '\0'){
- mode |= D_BIT;
- }
-
- /* Special-case ip-relative addressing */
- if (iprel_flag){
- if (mode & I_BIT){
- syntax();
- } else {
- memP->opcode |= 5 << 10; /* IP-relative mode */
- memP->disp = 32;
- }
- return;
- }
-
- /* Handle all other modes */
- switch (mode){
- case D_BIT | A_BIT:
- /* Go with MEMA instruction format for now (grow to MEMB later
- * if 12 bits is not enough for the displacement).
- * MEMA format has a single mode bit: set it to indicate
- * that abase is present.
- */
- memP->opcode |= MEMA_ABASE;
- memP->disp = 12;
- break;
-
- case D_BIT:
- /* Go with MEMA instruction format for now (grow to MEMB later
- * if 12 bits is not enough for the displacement).
- */
- memP->disp = 12;
- break;
-
- case A_BIT:
- /* For some reason, the bit string for this mode is not
- * consistent: it should be 0 (exclusive of the MEMB bit),
- * so we set it "by hand" here.
- */
- memP->opcode |= MEMB_BIT;
- break;
-
- case A_BIT | I_BIT:
- /* set MEMB bit in mode, and OR in mode bits */
- memP->opcode |= mode | MEMB_BIT;
- break;
-
- case I_BIT:
- /* Treat missing displacement as displacement of 0 */
- mode |= D_BIT;
- /***********************
- * Fall into next case *
- ********************** */
- case D_BIT | A_BIT | I_BIT:
- case D_BIT | I_BIT:
- /* set MEMB bit in mode, and OR in mode bits */
- memP->opcode |= mode | MEMB_BIT;
- memP->disp = 32;
- break;
-
- default:
- syntax();
- break;
- }
-}
-
-/*****************************************************************************
- * parse_po: parse machine-dependent pseudo-op
- *
- * This is a top-level routine for machine-dependent pseudo-ops. It slurps
- * up the rest of the input line, breaks out the individual arguments,
- * and dispatches them to the correct handler.
- **************************************************************************** */
-static
-void
-parse_po(po_num)
- int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
-{
- char *args[4]; /* Pointers operands, with no embedded whitespace.
- * arg[0] unused.
- * arg[1-3]->operands
- */
- int n_ops; /* Number of operands */
- char *p; /* Pointer to beginning of unparsed argument string */
- char eol; /* Character that indicated end of line */
-
- extern char is_end_of_line[];
-
- /* Advance input pointer to end of line. */
- p = input_line_pointer;
- while (!is_end_of_line[ *input_line_pointer ]){
- input_line_pointer++;
- }
- eol = *input_line_pointer; /* Save end-of-line char */
- *input_line_pointer = '\0'; /* Terminate argument list */
-
- /* Parse out operands */
- n_ops = get_args(p, args);
- if (n_ops == -1){
- return;
- }
-
- /* Dispatch to correct handler */
- switch(po_num){
- case S_SYSPROC: s_sysproc(n_ops, args); break;
- case S_LEAFPROC: s_leafproc(n_ops, args); break;
- default: BAD_CASE(po_num); break;
- }
-
- /* Restore eol, so line numbers get updated correctly. Base assembler
- * assumes we leave input pointer pointing at char following the eol.
- */
- *input_line_pointer++ = eol;
-}
-
-/*****************************************************************************
- * parse_regop: parse a register operand.
- *
- * In case of illegal operand, issue a message and return some valid
- * information so instruction processing can continue.
- **************************************************************************** */
-static
-void
-parse_regop(regopP, optext, opdesc)
- struct regop *regopP; /* Where to put description of register operand */
- char *optext; /* Text of operand */
- char opdesc; /* Descriptor byte: what's legal for this operand */
-{
- int n; /* Register number */
- expressionS e; /* Parsed expression */
-
- /* See if operand is a register */
- n = get_regnum(optext);
- if (n >= 0){
- if (IS_RG_REG(n)){
- /* global or local register */
- if (!REG_ALIGN(opdesc,n)){
- as_bad("unaligned register");
- }
- regopP->n = n;
- regopP->mode = 0;
- regopP->special = 0;
- return;
- } else if (IS_FP_REG(n) && FP_OK(opdesc)){
- /* Floating point register, and it's allowed */
- regopP->n = n - FP0;
- regopP->mode = 1;
- regopP->special = 0;
- return;
- } else if (IS_SF_REG(n) && SFR_OK(opdesc)){
- /* Special-function register, and it's allowed */
- regopP->n = n - SF0;
- regopP->mode = 0;
- regopP->special = 1;
- if (!targ_has_sfr(regopP->n)){
- as_bad("no such sfr in this architecture");
- }
- return;
- }
- } else if (LIT_OK(opdesc)){
- /*
- * How about a literal?
- */
- regopP->mode = 1;
- regopP->special = 0;
- if (FP_OK(opdesc)){ /* floating point literal acceptable */
- /* Skip over 0f, 0d, or 0e prefix */
- if ( (optext[0] == '0')
- && (optext[1] >= 'd')
- && (optext[1] <= 'f') ){
- optext += 2;
- }
-
- if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
- regopP->n = 0x10;
- return;
- }
- if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
- regopP->n = 0x16;
- return;
- }
-
- } else { /* fixed point literal acceptable */
- if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
- || (offs(e) < 0) || (offs(e) > 31)){
- as_bad("illegal literal");
- offs(e) = 0;
- }
- regopP->n = offs(e);
- return;
- }
- }
-
- /* Nothing worked */
- syntax();
- regopP->mode = 0; /* Register r0 is always a good one */
- regopP->n = 0;
- regopP->special = 0;
-} /* parse_regop() */
-
-/*****************************************************************************
- * reg_fmt: generate a REG-format instruction
- *
- **************************************************************************** */
-static void reg_fmt(args, oP)
- char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
- struct i960_opcode *oP; /* Pointer to description of instruction */
-{
- long instr; /* Binary to be output */
- struct regop regop; /* Description of register operand */
- int n_ops; /* Number of operands */
-
-
- instr = oP->opcode;
- n_ops = oP->num_ops;
-
- if (n_ops >= 1){
- parse_regop(&regop, args[1], oP->operand[0]);
-
- if ((n_ops == 1) && !(instr & M3)){
- /* 1-operand instruction in which the dst field should
- * be used (instead of src1).
- */
- regop.n <<= 19;
- if (regop.special){
- regop.mode = regop.special;
- }
- regop.mode <<= 13;
- regop.special = 0;
- } else {
- /* regop.n goes in bit 0, needs no shifting */
- regop.mode <<= 11;
- regop.special <<= 5;
- }
- instr |= regop.n | regop.mode | regop.special;
- }
-
- if (n_ops >= 2) {
- parse_regop(&regop, args[2], oP->operand[1]);
-
- if ((n_ops == 2) && !(instr & M3)){
- /* 2-operand instruction in which the dst field should
- * be used instead of src2).
- */
- regop.n <<= 19;
- if (regop.special){
- regop.mode = regop.special;
- }
- regop.mode <<= 13;
- regop.special = 0;
- } else {
- regop.n <<= 14;
- regop.mode <<= 12;
- regop.special <<= 6;
- }
- instr |= regop.n | regop.mode | regop.special;
- }
- if (n_ops == 3){
- parse_regop(&regop, args[3], oP->operand[2]);
- if (regop.special){
- regop.mode = regop.special;
- }
- instr |= (regop.n <<= 19) | (regop.mode <<= 13);
- }
- emit(instr);
-}
-
-
-/*****************************************************************************
- * relax_cobr:
- * Replace cobr instruction in a code fragment with equivalent branch and
- * compare instructions, so it can reach beyond a 13-bit displacement.
- * Set up an address fix/relocation for the new branch instruction.
- *
- **************************************************************************** */
-
-/* This "conditional jump" table maps cobr instructions into equivalent
- * compare and branch opcodes.
- */
-static
-struct {
- long compare;
- long branch;
-} coj[] = { /* COBR OPCODE: */
- CHKBIT, BNO, /* 0x30 - bbc */
- CMPO, BG, /* 0x31 - cmpobg */
- CMPO, BE, /* 0x32 - cmpobe */
- CMPO, BGE, /* 0x33 - cmpobge */
- CMPO, BL, /* 0x34 - cmpobl */
- CMPO, BNE, /* 0x35 - cmpobne */
- CMPO, BLE, /* 0x36 - cmpoble */
- CHKBIT, BO, /* 0x37 - bbs */
- CMPI, BNO, /* 0x38 - cmpibno */
- CMPI, BG, /* 0x39 - cmpibg */
- CMPI, BE, /* 0x3a - cmpibe */
- CMPI, BGE, /* 0x3b - cmpibge */
- CMPI, BL, /* 0x3c - cmpibl */
- CMPI, BNE, /* 0x3d - cmpibne */
- CMPI, BLE, /* 0x3e - cmpible */
- CMPI, BO, /* 0x3f - cmpibo */
-};
-
-static
-void
-relax_cobr(fragP)
- register fragS *fragP; /* fragP->fr_opcode is assumed to point to
- * the cobr instruction, which comes at the
- * end of the code fragment.
- */
-{
- int opcode, src1, src2, m1, s2;
- /* Bit fields from cobr instruction */
- long bp_bits; /* Branch prediction bits from cobr instruction */
- long instr; /* A single i960 instruction */
- char *iP; /*->instruction to be replaced */
- fixS *fixP; /* Relocation that can be done at assembly time */
-
- /* PICK UP & PARSE COBR INSTRUCTION */
- iP = fragP->fr_opcode;
- instr = md_chars_to_number(iP, 4);
- opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
- src1 = (instr >> 19) & 0x1f;
- m1 = (instr >> 13) & 1;
- s2 = instr & 1;
- src2 = (instr >> 14) & 0x1f;
- bp_bits= instr & BP_MASK;
-
- /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
- instr = coj[opcode].compare
- | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
- md_number_to_chars(iP, instr, 4);
-
- /* OUTPUT BRANCH INSTRUCTION */
- md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
-
- /* SET UP ADDRESS FIXUP/RELOCATION */
- fixP = fix_new(fragP,
- iP+4 - fragP->fr_literal,
- 4,
- fragP->fr_symbol,
- 0,
- fragP->fr_offset,
- 1,
- 0);
-
- fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
-
- fragP->fr_fix += 4;
- frag_wane(fragP);
-}
-
-
-/*****************************************************************************
- * reloc_callj: Relocate a 'callj' instruction
- *
- * This is a "non-(GNU)-standard" machine-dependent hook. The base
- * assembler calls it when it decides it can relocate an address at
- * assembly time instead of emitting a relocation directive.
- *
- * Check to see if the relocation involves a 'callj' instruction to a:
- * sysproc: Replace the default 'call' instruction with a 'calls'
- * leafproc: Replace the default 'call' instruction with a 'bal'.
- * other proc: Do nothing.
- *
- * See b.out.h for details on the 'n_other' field in a symbol structure.
- *
- * IMPORTANT!:
- * Assumes the caller has already figured out, in the case of a leafproc,
- * to use the 'bal' entry point, and has substituted that symbol into the
- * passed fixup structure.
- *
- **************************************************************************** */
-void reloc_callj(fixP)
-fixS *fixP; /* Relocation that can be done at assembly time */
-{
- char *where; /*->the binary for the instruction being relocated */
-
- if (!fixP->fx_callj) {
- return;
- } /* This wasn't a callj instruction in the first place */
-
- where = fixP->fx_frag->fr_literal + fixP->fx_where;
-
- if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
- /* Symbol is a .sysproc: replace 'call' with 'calls'.
- * System procedure number is (other-1).
- */
- md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
-
- /* Nothing else needs to be done for this instruction.
- * Make sure 'md_number_to_field()' will perform a no-op.
- */
- fixP->fx_bit_fixP = (bit_fixS *) 1;
-
- } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
- /* Should not happen: see block comment above */
- as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
-
- } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
- /* Replace 'call' with 'bal'; both instructions have
- * the same format, so calling code should complete
- * relocation as if nothing happened here.
- */
- md_number_to_chars(where, BAL, 4);
- } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
- as_bad("Looks like a proc, but can't tell what kind.\n");
- } /* switch on proc type */
-
- /* else Symbol is neither a sysproc nor a leafproc */
-
- return;
-} /* reloc_callj() */
-
-
-/*****************************************************************************
- * s_leafproc: process .leafproc pseudo-op
- *
- * .leafproc takes two arguments, the second one is optional:
- * arg[1]: name of 'call' entry point to leaf procedure
- * arg[2]: name of 'bal' entry point to leaf procedure
- *
- * If the two arguments are identical, or if the second one is missing,
- * the first argument is taken to be the 'bal' entry point.
- *
- * If there are 2 distinct arguments, we must make sure that the 'bal'
- * entry point immediately follows the 'call' entry point in the linked
- * list of symbols.
- *
- **************************************************************************** */
-static void s_leafproc(n_ops, args)
-int n_ops; /* Number of operands */
-char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
-{
- symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
- symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
-
- if ((n_ops != 1) && (n_ops != 2)) {
- as_bad("should have 1 or 2 operands");
- return;
- } /* Check number of arguments */
-
- /* Find or create symbol for 'call' entry point. */
- callP = symbol_find_or_make(args[1]);
-
- if (TC_S_IS_CALLNAME(callP)) {
- as_warn("Redefining leafproc %s", S_GET_NAME(callP));
- } /* is leafproc */
-
- /* If that was the only argument, use it as the 'bal' entry point.
- * Otherwise, mark it as the 'call' entry point and find or create
- * another symbol for the 'bal' entry point.
- */
- if ((n_ops == 1) || !strcmp(args[1],args[2])) {
- TC_S_FORCE_TO_BALNAME(callP);
-
- } else {
- TC_S_FORCE_TO_CALLNAME(callP);
-
- balP = symbol_find_or_make(args[2]);
- if (TC_S_IS_CALLNAME(balP)) {
- as_warn("Redefining leafproc %s", S_GET_NAME(balP));
- }
- TC_S_FORCE_TO_BALNAME(balP);
-
- tc_set_bal_of_call(callP, balP);
- } /* if only one arg, or the args are the same */
-
- return;
-} /* s_leafproc() */
-
-
-/*
- * s_sysproc: process .sysproc pseudo-op
- *
- * .sysproc takes two arguments:
- * arg[1]: name of entry point to system procedure
- * arg[2]: 'entry_num' (index) of system procedure in the range
- * [0,31] inclusive.
- *
- * For [ab].out, we store the 'entrynum' in the 'n_other' field of
- * the symbol. Since that entry is normally 0, we bias 'entrynum'
- * by adding 1 to it. It must be unbiased before it is used.
- */
-static void s_sysproc(n_ops, args)
-int n_ops; /* Number of operands */
-char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
-{
- expressionS exp;
- symbolS *symP;
-
- if (n_ops != 2) {
- as_bad("should have two operands");
- return;
- } /* bad arg count */
-
- /* Parse "entry_num" argument and check it for validity. */
- if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
- || (offs(exp) < 0)
- || (offs(exp) > 31)) {
- as_bad("'entry_num' must be absolute number in [0,31]");
- return;
- }
-
- /* Find/make symbol and stick entry number (biased by +1) into it */
- symP = symbol_find_or_make(args[1]);
-
- if (TC_S_IS_SYSPROC(symP)) {
- as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
- } /* redefining */
-
- TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
- TC_S_FORCE_TO_SYSPROC(symP);
-
- return;
-} /* s_sysproc() */
-
-
-/*****************************************************************************
- * shift_ok:
- * Determine if a "shlo" instruction can be used to implement a "ldconst".
- * This means that some number X < 32 can be shifted left to produce the
- * constant of interest.
- *
- * Return the shift count, or 0 if we can't do it.
- * Caller calculates X by shifting original constant right 'shift' places.
- *
- **************************************************************************** */
-static
-int
-shift_ok(n)
- int n; /* The constant of interest */
-{
- int shift; /* The shift count */
-
- if (n <= 0){
- /* Can't do it for negative numbers */
- return 0;
- }
-
- /* Shift 'n' right until a 1 is about to be lost */
- for (shift = 0; (n & 1) == 0; shift++){
- n >>= 1;
- }
-
- if (n >= 32){
- return 0;
- }
- return shift;
-}
-
-
-/*****************************************************************************
- * syntax: issue syntax error
- *
- **************************************************************************** */
-static void syntax() {
- as_bad("syntax error");
-} /* syntax() */
-
-
-/*****************************************************************************
- * targ_has_sfr:
- * Return TRUE iff the target architecture supports the specified
- * special-function register (sfr).
- *
- **************************************************************************** */
-static
-int
-targ_has_sfr(n)
- int n; /* Number (0-31) of sfr */
-{
- switch (architecture){
- case ARCH_KA:
- case ARCH_KB:
- case ARCH_MC:
- return 0;
- case ARCH_CA:
- default:
- return ((0<=n) && (n<=2));
- }
-}
-
-
-/*****************************************************************************
- * targ_has_iclass:
- * Return TRUE iff the target architecture supports the indicated
- * class of instructions.
- *
- **************************************************************************** */
-static
-int
-targ_has_iclass(ic)
- int ic; /* Instruction class; one of:
- * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
- */
-{
- iclasses_seen |= ic;
- switch (architecture){
- case ARCH_KA: return ic & (I_BASE | I_KX);
- case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
- case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
- case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
- default:
- if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
- && (iclasses_seen & I_CX)){
- as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
- iclasses_seen &= ~ic;
- }
- return 1;
- }
-}
-
-
-/* Parse an operand that is machine-specific.
- We just return without modifying the expression if we have nothing
- to do. */
-
-/* ARGSUSED */
-void
-md_operand (expressionP)
- expressionS *expressionP;
-{
-}
-
-/* We have no need to default values of symbols. */
-
-/* ARGSUSED */
-symbolS *md_undefined_symbol(name)
-char *name;
-{
- return 0;
-} /* md_undefined_symbol() */
-
-/* Exactly what point is a PC-relative offset relative TO?
- On the i960, they're relative to the address of the instruction,
- which we have set up as the address of the fixup too. */
-long
-md_pcrel_from (fixP)
- fixS *fixP;
-{
- return fixP->fx_where + fixP->fx_frag->fr_address;
-}
-
-void
-md_apply_fix(fixP, val)
- fixS *fixP;
- long val;
-{
- char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
-
- if (!fixP->fx_bit_fixP) {
-
- switch (fixP->fx_im_disp) {
- case 0:
- fixP->fx_addnumber = val;
- md_number_to_imm(place, val, fixP->fx_size, fixP);
- break;
- case 1:
- md_number_to_disp(place,
- fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
- fixP->fx_size);
- break;
- case 2: /* fix requested for .long .word etc */
- md_number_to_chars(place, val, fixP->fx_size);
- break;
- default:
- as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
- } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
- } else {
- md_number_to_field(place, val, fixP->fx_bit_fixP);
- }
-
- return;
-} /* md_apply_fix() */
-
-#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
-void tc_bout_fix_to_chars(where, fixP, segment_address_in_file)
-char *where;
-fixS *fixP;
-relax_addressT segment_address_in_file;
-{
- static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
- struct relocation_info ri;
- symbolS *symbolP;
-
- /* JF this is for paranoia */
- bzero((char *)&ri, sizeof(ri));
-
- know((symbolP = fixP->fx_addsy) != 0);
-
- /* These two 'cuz of NS32K */
- ri.r_callj = fixP->fx_callj;
-
- ri.r_length = nbytes_r_length[fixP->fx_size];
- ri.r_pcrel = fixP->fx_pcrel;
- ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
-
- if (!S_IS_DEFINED(symbolP)) {
- ri.r_extern = 1;
- ri.r_index = symbolP->sy_number;
- } else {
- ri.r_extern = 0;
- ri.r_index = S_GET_TYPE(symbolP);
- }
-
- /* Output the relocation information in machine-dependent form. */
- md_ri_to_chars(where, &ri);
-
- return;
-} /* tc_bout_fix_to_chars() */
-
-#endif /* OBJ_AOUT or OBJ_BOUT */
-
-/* Align an address by rounding it up to the specified boundary.
- */
-long md_section_align(seg, addr)
-segT seg;
-long addr; /* Address to be rounded up */
-{
- return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
-} /* md_section_align() */
-
-#ifdef OBJ_COFF
-void tc_headers_hook(headers)
-object_headers *headers;
-{
- unsigned short arch_flag = 0;
-
- if (iclasses_seen == I_BASE){
- headers->filehdr.f_flags |= F_I960CORE;
- } else if (iclasses_seen & I_CX){
- headers->filehdr.f_flags |= F_I960CA;
- } else if (iclasses_seen & I_MIL){
- headers->filehdr.f_flags |= F_I960MC;
- } else if (iclasses_seen & (I_DEC|I_FP)){
- headers->filehdr.f_flags |= F_I960KB;
- } else {
- headers->filehdr.f_flags |= F_I960KA;
- } /* set arch flag */
-
- if (flagseen['R']) {
- headers->filehdr.f_magic = I960RWMAGIC;
- headers->aouthdr.magic = OMAGIC;
- } else {
- headers->filehdr.f_magic = I960ROMAGIC;
- headers->aouthdr.magic = NMAGIC;
- } /* set magic numbers */
-
- return;
-} /* tc_headers_hook() */
-#endif /* OBJ_COFF */
-
-/*
- * Things going on here:
- *
- * For bout, We need to assure a couple of simplifying
- * assumptions about leafprocs for the linker: the leafproc
- * entry symbols will be defined in the same assembly in
- * which they're declared with the '.leafproc' directive;
- * and if a leafproc has both 'call' and 'bal' entry points
- * they are both global or both local.
- *
- * For coff, the call symbol has a second aux entry that
- * contains the bal entry point. The bal symbol becomes a
- * label.
- *
- * For coff representation, the call symbol has a second aux entry that
- * contains the bal entry point. The bal symbol becomes a label.
- *
- */
-
-void tc_crawl_symbol_chain(headers)
-object_headers *headers;
-{
- symbolS *symbolP;
-
- for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
-#ifdef OBJ_COFF
- if (TC_S_IS_SYSPROC(symbolP)) {
- /* second aux entry already contains the sysproc number */
- S_SET_NUMBER_AUXILIARY(symbolP, 2);
- S_SET_STORAGE_CLASS(symbolP, C_SCALL);
- S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
- continue;
- } /* rewrite sysproc */
-#endif /* OBJ_COFF */
-
- if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
- continue;
- } /* Not a leafproc symbol */
-
- if (!S_IS_DEFINED(symbolP)) {
- as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
- } /* undefined leaf */
-
- if (TC_S_IS_CALLNAME(symbolP)) {
- symbolS *balP = tc_get_bal_of_call(symbolP);
- if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
- S_SET_EXTERNAL(symbolP);
- S_SET_EXTERNAL(balP);
- as_warn("Warning: making leafproc entries %s and %s both global\n",
- S_GET_NAME(symbolP), S_GET_NAME(balP));
- } /* externality mismatch */
- } /* if callname */
- } /* walk the symbol chain */
-
- return;
-} /* tc_crawl_symbol_chain() */
-
-/*
- * For aout or bout, the bal immediately follows the call.
- *
- * For coff, we cheat and store a pointer to the bal symbol
- * in the second aux entry of the call.
- */
-
-void tc_set_bal_of_call(callP, balP)
-symbolS *callP;
-symbolS *balP;
-{
- know(TC_S_IS_CALLNAME(callP));
- know(TC_S_IS_BALNAME(balP));
-
-#ifdef OBJ_COFF
-
- callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
- S_SET_NUMBER_AUXILIARY(callP,2);
-
-#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
-
- /* If the 'bal' entry doesn't immediately follow the 'call'
- * symbol, unlink it from the symbol list and re-insert it.
- */
- if (symbol_next(callP) != balP) {
- symbol_remove(balP, &symbol_rootP, &symbol_lastP);
- symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
- } /* if not in order */
-
-#else
- (as yet unwritten.);
-#endif /* switch on OBJ_FORMAT */
-
- return;
-} /* tc_set_bal_of_call() */
-
-char *_tc_get_bal_of_call(callP)
-symbolS *callP;
-{
- symbolS *retval;
-
- know(TC_S_IS_CALLNAME(callP));
-
-#ifdef OBJ_COFF
- retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
-#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
- retval = symbol_next(callP);
-#else
- (as yet unwritten.);
-#endif /* switch on OBJ_FORMAT */
-
- know(TC_S_IS_BALNAME(retval));
- return((char *) retval);
-} /* _tc_get_bal_of_call() */
-
-void tc_coff_symbol_emit_hook(symbolP)
-symbolS *symbolP;
-{
- if (TC_S_IS_CALLNAME(symbolP)) {
-#ifdef OBJ_COFF
- symbolS *balP = tc_get_bal_of_call(symbolP);
-
- /* second aux entry contains the bal entry point */
-/* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
- symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
- S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
- S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
- /* fix up the bal symbol */
- S_SET_STORAGE_CLASS(balP, C_LABEL);
-#endif /* OBJ_COFF */
- } /* only on calls */
-
- return;
-} /* tc_coff_symbol_emit_hook() */
-
-/*
- * Local Variables:
- * comment-column: 0
- * fill-column: 131
- * End:
- */
-
-/* end of i960.c */