diff options
-rw-r--r-- | gdb/ChangeLog | 5 | ||||
-rw-r--r-- | gdb/testsuite/ChangeLog | 5 | ||||
-rw-r--r-- | gdb/testsuite/gdb.fortran/intvar-dynamic-types.exp | 97 | ||||
-rw-r--r-- | gdb/testsuite/gdb.fortran/intvar-dynamic-types.f90 | 32 | ||||
-rw-r--r-- | gdb/value.c | 37 |
5 files changed, 174 insertions, 2 deletions
diff --git a/gdb/ChangeLog b/gdb/ChangeLog index 32ece30..216057a 100644 --- a/gdb/ChangeLog +++ b/gdb/ChangeLog @@ -1,3 +1,8 @@ +2021-01-08 Andrew Burgess <andrew.burgess@embecosm.com> + + * value.c (set_value_component_location): Adjust the VALUE_LVAL + for internalvar components that have a dynamic location. + 2021-01-08 Tom de Vries <tdevries@suse.de> PR gdb/26881 diff --git a/gdb/testsuite/ChangeLog b/gdb/testsuite/ChangeLog index 5ed3e54..c539057 100644 --- a/gdb/testsuite/ChangeLog +++ b/gdb/testsuite/ChangeLog @@ -1,5 +1,10 @@ 2021-01-08 Andrew Burgess <andrew.burgess@embecosm.com> + * gdb.fortran/intvar-dynamic-types.exp: New file. + * gdb.fortran/intvar-dynamic-types.f90: New file. + +2021-01-08 Andrew Burgess <andrew.burgess@embecosm.com> + * gdb.fortran/intvar-array.exp: New file. * gdb.fortran/intvar-array.f90: New file. diff --git a/gdb/testsuite/gdb.fortran/intvar-dynamic-types.exp b/gdb/testsuite/gdb.fortran/intvar-dynamic-types.exp new file mode 100644 index 0000000..16dc603 --- /dev/null +++ b/gdb/testsuite/gdb.fortran/intvar-dynamic-types.exp @@ -0,0 +1,97 @@ +# Copyright 2020-2021 Free Software Foundation, Inc. +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. + +# Places a value with components that have dynamic type into a GDB +# user variable, and then prints the user variable. + +standard_testfile ".f90" +load_lib "fortran.exp" + +if { [prepare_for_testing ${testfile}.exp ${testfile} ${srcfile} \ + {debug f90 quiet}] } { + return -1 +} + +if ![fortran_runto_main] { + untested "could not run to main" + return -1 +} + +gdb_breakpoint [gdb_get_line_number "Break here"] +gdb_continue_to_breakpoint "Break here" + +gdb_test_no_output "set \$a=some_var" "set \$a internal variable" + +foreach var { "\$a" "some_var" } { + with_test_prefix "print $var" { + gdb_test "print $var" \ + " = \\( array_one = \\(\\(1, 1\\) \\(1, 1\\) \\(1, 1\\)\\), a_field = 5, array_two = \\(\\(2, 2, 2\\) \\(2, 2, 2\\)\\) \\)" \ + "print full contents" + + gdb_test "print $var%array_one" \ + " = \\(\\(1, 1\\) \\(1, 1\\) \\(1, 1\\)\\)" \ + "print array_one field" + + gdb_test "print $var%a_field" \ + " = 5" \ + "print a_field field" + + gdb_test "print $var%array_two" \ + " = \\(\\(2, 2, 2\\) \\(2, 2, 2\\)\\)" \ + "print array_two field" + } +} + +# Create new user variables for the fields of some_var, and show that +# modifying these variables does not change the original value from +# the program. +gdb_test_no_output "set \$b = some_var%array_one" +gdb_test_no_output "set \$c = some_var%array_two" +gdb_test "print \$b" \ + " = \\(\\(1, 1\\) \\(1, 1\\) \\(1, 1\\)\\)" +gdb_test "print \$c" \ + " = \\(\\(2, 2, 2\\) \\(2, 2, 2\\)\\)" +gdb_test_no_output "set \$b(2,2) = 3" +gdb_test_no_output "set \$c(3,1) = 4" +gdb_test "print \$b" \ + " = \\(\\(1, 1\\) \\(1, 3\\) \\(1, 1\\)\\)" \ + "print \$b after a change" +gdb_test "print \$c" \ + " = \\(\\(2, 2, 4\\) \\(2, 2, 2\\)\\)" \ + "print \$c after a change" +gdb_test "print some_var%array_one" \ + " = \\(\\(1, 1\\) \\(1, 1\\) \\(1, 1\\)\\)" +gdb_test "print some_var%array_two" \ + " = \\(\\(2, 2, 2\\) \\(2, 2, 2\\)\\)" + +# Now modify the user variable '$a', which is a copy of 'some_var', +# and then check how this change is reflected in the original +# 'some_var', and the user variable $a. +# +# When we change 'a_field' which is a non-dynamic field within the +# user variable, the change is only visible within the user variable. +# +# In contrast, when we change 'array_one' and 'array_two', which are +# both fields of dynanic type, then the change is visible in both the +# user variable and the original program variable 'some_var'. This +# makes sense if you consider the dynamic type as if it was a C +# pointer with automatic indirection. +gdb_test_no_output "set \$a%a_field = 3" +gdb_test_no_output "set \$a%array_one(2,2) = 3" +gdb_test_no_output "set \$a%array_two(3,1) = 4" +gdb_test "print \$a" \ + " = \\( array_one = \\(\\(1, 1\\) \\(1, 3\\) \\(1, 1\\)\\), a_field = 3, array_two = \\(\\(2, 2, 4\\) \\(2, 2, 2\\)\\) \\)" +gdb_test "print some_var" \ + " = \\( array_one = \\(\\(1, 1\\) \\(1, 3\\) \\(1, 1\\)\\), a_field = 5, array_two = \\(\\(2, 2, 4\\) \\(2, 2, 2\\)\\) \\)" diff --git a/gdb/testsuite/gdb.fortran/intvar-dynamic-types.f90 b/gdb/testsuite/gdb.fortran/intvar-dynamic-types.f90 new file mode 100644 index 0000000..ef51a32 --- /dev/null +++ b/gdb/testsuite/gdb.fortran/intvar-dynamic-types.f90 @@ -0,0 +1,32 @@ +! Copyright 2020-2021 Free Software Foundation, Inc. +! +! This program is free software; you can redistribute it and/or modify +! it under the terms of the GNU General Public License as published by +! the Free Software Foundation; either version 3 of the License, or +! (at your option) any later version. +! +! This program is distributed in the hope that it will be useful, +! but WITHOUT ANY WARRANTY; without even the implied warranty of +! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +! GNU General Public License for more details. +! +! You should have received a copy of the GNU General Public License +! along with this program. If not, see <http://www.gnu.org/licenses/>. + +program internal_var_test + type :: some_type + integer, allocatable :: array_one (:,:) + integer :: a_field + integer, allocatable :: array_two (:,:) + end type some_type + + type(some_type) :: some_var + + allocate (some_var%array_one (2,3)) + allocate (some_var%array_two (3,2)) + some_var%array_one (:,:) = 1 + some_var%a_field = 5 + some_var%array_two (:,:) = 2 + deallocate (some_var%array_one) ! Break here. + deallocate (some_var%array_two) +end program internal_var_test diff --git a/gdb/value.c b/gdb/value.c index a20ae5a..c84698d 100644 --- a/gdb/value.c +++ b/gdb/value.c @@ -1784,12 +1784,45 @@ set_value_component_location (struct value *component, component->location.computed.closure = funcs->copy_closure (whole); } - /* If type has a dynamic resolved location property - update it's value address. */ + /* If the WHOLE value has a dynamically resolved location property then + update the address of the COMPONENT. */ type = value_type (whole); if (NULL != TYPE_DATA_LOCATION (type) && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); + + /* Similarly, if the COMPONENT value has a dynamically resolved location + property then update its address. */ + type = value_type (component); + if (NULL != TYPE_DATA_LOCATION (type) + && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) + { + /* If the COMPONENT has a dynamic location, and is an + lval_internalvar_component, then we change it to a lval_memory. + + Usually a component of an internalvar is created non-lazy, and has + its content immediately copied from the parent internalvar. + However, for components with a dynamic location, the content of + the component is not contained within the parent, but is instead + accessed indirectly. Further, the component will be created as a + lazy value. + + By changing the type of the component to lval_memory we ensure + that value_fetch_lazy can successfully load the component. + + This solution isn't ideal, but a real fix would require values to + carry around both the parent value contents, and the contents of + any dynamic fields within the parent. This is a substantial + change to how values work in GDB. */ + if (VALUE_LVAL (component) == lval_internalvar_component) + { + gdb_assert (value_lazy (component)); + VALUE_LVAL (component) = lval_memory; + } + else + gdb_assert (VALUE_LVAL (component) == lval_memory); + set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); + } } /* Access to the value history. */ |