aboutsummaryrefslogtreecommitdiff
path: root/sim/mips/interp.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /sim/mips/interp.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadgdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'sim/mips/interp.c')
-rw-r--r--sim/mips/interp.c3228
1 files changed, 3228 insertions, 0 deletions
diff --git a/sim/mips/interp.c b/sim/mips/interp.c
new file mode 100644
index 0000000..75bc54b
--- /dev/null
+++ b/sim/mips/interp.c
@@ -0,0 +1,3228 @@
+/*> interp.c <*/
+/* Simulator for the MIPS architecture.
+
+ This file is part of the MIPS sim
+
+ THIS SOFTWARE IS NOT COPYRIGHTED
+
+ Cygnus offers the following for use in the public domain. Cygnus
+ makes no warranty with regard to the software or it's performance
+ and the user accepts the software "AS IS" with all faults.
+
+ CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
+ THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+
+ $Revision$
+ $Date$
+
+NOTEs:
+
+The IDT monitor (found on the VR4300 board), seems to lie about
+register contents. It seems to treat the registers as sign-extended
+32-bit values. This cause *REAL* problems when single-stepping 64-bit
+code on the hardware.
+
+*/
+
+/* The TRACE manifests enable the provision of extra features. If they
+ are not defined then a simpler (quicker) simulator is constructed
+ without the required run-time checks, etc. */
+#if 1 /* 0 to allow user build selection, 1 to force inclusion */
+#define TRACE (1)
+#endif
+
+#include "bfd.h"
+#include "sim-main.h"
+#include "sim-utils.h"
+#include "sim-options.h"
+#include "sim-assert.h"
+#include "sim-hw.h"
+
+#include "itable.h"
+
+
+#include "config.h"
+
+#include <stdio.h>
+#include <stdarg.h>
+#include <ansidecl.h>
+#include <ctype.h>
+#include <limits.h>
+#include <math.h>
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+#ifdef HAVE_STRING_H
+#include <string.h>
+#else
+#ifdef HAVE_STRINGS_H
+#include <strings.h>
+#endif
+#endif
+
+#include "getopt.h"
+#include "libiberty.h"
+#include "bfd.h"
+#include "callback.h" /* GDB simulator callback interface */
+#include "remote-sim.h" /* GDB simulator interface */
+
+#include "sysdep.h"
+
+#ifndef PARAMS
+#define PARAMS(x)
+#endif
+
+char* pr_addr PARAMS ((SIM_ADDR addr));
+char* pr_uword64 PARAMS ((uword64 addr));
+
+
+/* Within interp.c we refer to the sim_state and sim_cpu directly. */
+#define CPU cpu
+#define SD sd
+
+
+/* The following reserved instruction value is used when a simulator
+ trap is required. NOTE: Care must be taken, since this value may be
+ used in later revisions of the MIPS ISA. */
+
+#define RSVD_INSTRUCTION (0x00000005)
+#define RSVD_INSTRUCTION_MASK (0xFC00003F)
+
+#define RSVD_INSTRUCTION_ARG_SHIFT 6
+#define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
+
+
+/* Bits in the Debug register */
+#define Debug_DBD 0x80000000 /* Debug Branch Delay */
+#define Debug_DM 0x40000000 /* Debug Mode */
+#define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
+
+/*---------------------------------------------------------------------------*/
+/*-- GDB simulator interface ------------------------------------------------*/
+/*---------------------------------------------------------------------------*/
+
+static void ColdReset PARAMS((SIM_DESC sd));
+
+/*---------------------------------------------------------------------------*/
+
+
+
+#define DELAYSLOT() {\
+ if (STATE & simDELAYSLOT)\
+ sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
+ STATE |= simDELAYSLOT;\
+ }
+
+#define JALDELAYSLOT() {\
+ DELAYSLOT ();\
+ STATE |= simJALDELAYSLOT;\
+ }
+
+#define NULLIFY() {\
+ STATE &= ~simDELAYSLOT;\
+ STATE |= simSKIPNEXT;\
+ }
+
+#define CANCELDELAYSLOT() {\
+ DSSTATE = 0;\
+ STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
+ }
+
+#define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
+#define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
+
+#define K0BASE (0x80000000)
+#define K0SIZE (0x20000000)
+#define K1BASE (0xA0000000)
+#define K1SIZE (0x20000000)
+#define MONITOR_BASE (0xBFC00000)
+#define MONITOR_SIZE (1 << 11)
+#define MEM_SIZE (2 << 20)
+
+
+#if defined(TRACE)
+static char *tracefile = "trace.din"; /* default filename for trace log */
+FILE *tracefh = NULL;
+static void open_trace PARAMS((SIM_DESC sd));
+#endif /* TRACE */
+
+static const char * get_insn_name (sim_cpu *, int);
+
+/* simulation target board. NULL=canonical */
+static char* board = NULL;
+
+
+static DECLARE_OPTION_HANDLER (mips_option_handler);
+
+enum {
+ OPTION_DINERO_TRACE = OPTION_START,
+ OPTION_DINERO_FILE,
+ OPTION_BOARD
+};
+
+
+static SIM_RC
+mips_option_handler (sd, cpu, opt, arg, is_command)
+ SIM_DESC sd;
+ sim_cpu *cpu;
+ int opt;
+ char *arg;
+ int is_command;
+{
+ int cpu_nr;
+ switch (opt)
+ {
+ case OPTION_DINERO_TRACE: /* ??? */
+#if defined(TRACE)
+ /* Eventually the simTRACE flag could be treated as a toggle, to
+ allow external control of the program points being traced
+ (i.e. only from main onwards, excluding the run-time setup,
+ etc.). */
+ for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
+ {
+ sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
+ if (arg == NULL)
+ STATE |= simTRACE;
+ else if (strcmp (arg, "yes") == 0)
+ STATE |= simTRACE;
+ else if (strcmp (arg, "no") == 0)
+ STATE &= ~simTRACE;
+ else if (strcmp (arg, "on") == 0)
+ STATE |= simTRACE;
+ else if (strcmp (arg, "off") == 0)
+ STATE &= ~simTRACE;
+ else
+ {
+ fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
+ return SIM_RC_FAIL;
+ }
+ }
+ return SIM_RC_OK;
+#else /* !TRACE */
+ fprintf(stderr,"\
+Simulator constructed without dinero tracing support (for performance).\n\
+Re-compile simulator with \"-DTRACE\" to enable this option.\n");
+ return SIM_RC_FAIL;
+#endif /* !TRACE */
+
+ case OPTION_DINERO_FILE:
+#if defined(TRACE)
+ if (optarg != NULL) {
+ char *tmp;
+ tmp = (char *)malloc(strlen(optarg) + 1);
+ if (tmp == NULL)
+ {
+ sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
+ return SIM_RC_FAIL;
+ }
+ else {
+ strcpy(tmp,optarg);
+ tracefile = tmp;
+ sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
+ }
+ }
+#endif /* TRACE */
+ return SIM_RC_OK;
+
+ case OPTION_BOARD:
+ {
+ if (arg)
+ {
+ board = zalloc(strlen(arg) + 1);
+ strcpy(board, arg);
+ }
+ return SIM_RC_OK;
+ }
+ }
+
+ return SIM_RC_OK;
+}
+
+
+static const OPTION mips_options[] =
+{
+ { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
+ '\0', "on|off", "Enable dinero tracing",
+ mips_option_handler },
+ { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
+ '\0', "FILE", "Write dinero trace to FILE",
+ mips_option_handler },
+ { {"board", required_argument, NULL, OPTION_BOARD},
+ '\0', "none" /* rely on compile-time string concatenation for other options */
+
+#define BOARD_JMR3904 "jmr3904"
+ "|" BOARD_JMR3904
+#define BOARD_JMR3904_PAL "jmr3904pal"
+ "|" BOARD_JMR3904_PAL
+#define BOARD_JMR3904_DEBUG "jmr3904debug"
+ "|" BOARD_JMR3904_DEBUG
+
+ , "Customize simulation for a particular board.", mips_option_handler },
+
+ { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
+};
+
+
+int interrupt_pending;
+
+void
+interrupt_event (SIM_DESC sd, void *data)
+{
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+ address_word cia = CIA_GET (cpu);
+ if (SR & status_IE)
+ {
+ interrupt_pending = 0;
+ SignalExceptionInterrupt (1); /* interrupt "1" */
+ }
+ else if (!interrupt_pending)
+ sim_events_schedule (sd, 1, interrupt_event, data);
+}
+
+
+/*---------------------------------------------------------------------------*/
+/*-- Device registration hook -----------------------------------------------*/
+/*---------------------------------------------------------------------------*/
+static void device_init(SIM_DESC sd) {
+#ifdef DEVICE_INIT
+ extern void register_devices(SIM_DESC);
+ register_devices(sd);
+#endif
+}
+
+/*---------------------------------------------------------------------------*/
+/*-- GDB simulator interface ------------------------------------------------*/
+/*---------------------------------------------------------------------------*/
+
+SIM_DESC
+sim_open (kind, cb, abfd, argv)
+ SIM_OPEN_KIND kind;
+ host_callback *cb;
+ struct _bfd *abfd;
+ char **argv;
+{
+ SIM_DESC sd = sim_state_alloc (kind, cb);
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+
+ SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
+
+ /* FIXME: watchpoints code shouldn't need this */
+ STATE_WATCHPOINTS (sd)->pc = &(PC);
+ STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
+ STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
+
+ /* Initialize the mechanism for doing insn profiling. */
+ CPU_INSN_NAME (cpu) = get_insn_name;
+ CPU_MAX_INSNS (cpu) = nr_itable_entries;
+
+ STATE = 0;
+
+ if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
+ return 0;
+ sim_add_option_table (sd, NULL, mips_options);
+
+
+ /* getopt will print the error message so we just have to exit if this fails.
+ FIXME: Hmmm... in the case of gdb we need getopt to call
+ print_filtered. */
+ if (sim_parse_args (sd, argv) != SIM_RC_OK)
+ {
+ /* Uninstall the modules to avoid memory leaks,
+ file descriptor leaks, etc. */
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ /* handle board-specific memory maps */
+ if (board == NULL)
+ {
+ /* Allocate core managed memory */
+
+ /* the monitor */
+ sim_do_commandf (sd, "memory region 0x%lx,0x%lx", MONITOR_BASE, MONITOR_SIZE);
+ /* For compatibility with the old code - under this (at level one)
+ are the kernel spaces K0 & K1. Both of these map to a single
+ smaller sub region */
+ sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
+ K1BASE, K0SIZE,
+ MEM_SIZE, /* actual size */
+ K0BASE);
+
+ device_init(sd);
+ }
+
+#if (WITH_HW)
+ if (board != NULL
+ && (strcmp(board, BOARD_JMR3904) == 0 ||
+ strcmp(board, BOARD_JMR3904_PAL) == 0 ||
+ strcmp(board, BOARD_JMR3904_DEBUG) == 0))
+ {
+ /* match VIRTUAL memory layout of JMR-TX3904 board */
+ int i;
+
+ /* --- environment --- */
+
+ STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
+
+ /* --- memory --- */
+
+ /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
+ 0x9FC00000,
+ 4 * 1024 * 1024, /* 4 MB */
+ 0xBFC00000);
+
+ /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
+ 0x80000000,
+ 4 * 1024 * 1024, /* 4 MB */
+ 0xA0000000);
+
+ /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
+ for (i=0; i<8; i++) /* 32 MB total */
+ {
+ unsigned size = 4 * 1024 * 1024; /* 4 MB */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
+ 0x88000000 + (i * size),
+ size,
+ 0xA8000000 + (i * size));
+ }
+
+ /* Dummy memory regions for unsimulated devices */
+
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE010, 0x00c); /* EBIF */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */
+ sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */
+
+ /* --- simulated devices --- */
+ sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
+ sim_hw_parse (sd, "/tx3904cpu");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
+ sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
+ {
+ /* FIXME: poking at dv-sockser internals, use tcp backend if
+ --sockser_addr option was given.*/
+ extern char* sockser_addr;
+ if(sockser_addr == NULL)
+ sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
+ else
+ sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
+ }
+ sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
+ sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
+
+ /* -- device connections --- */
+ sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
+ sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
+ sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
+ sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
+
+ /* add PAL timer & I/O module */
+ if(! strcmp(board, BOARD_JMR3904_PAL))
+ {
+ /* the device */
+ sim_hw_parse (sd, "/pal@0xffff0000");
+ sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
+
+ /* wire up interrupt ports to irc */
+ sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
+ sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
+ sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
+ }
+
+ if(! strcmp(board, BOARD_JMR3904_DEBUG))
+ {
+ /* -- DEBUG: glue interrupt generators --- */
+ sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
+ sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
+ }
+
+ device_init(sd);
+ }
+#endif
+
+
+ /* check for/establish the a reference program image */
+ if (sim_analyze_program (sd,
+ (STATE_PROG_ARGV (sd) != NULL
+ ? *STATE_PROG_ARGV (sd)
+ : NULL),
+ abfd) != SIM_RC_OK)
+ {
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ /* Configure/verify the target byte order and other runtime
+ configuration options */
+ if (sim_config (sd) != SIM_RC_OK)
+ {
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ if (sim_post_argv_init (sd) != SIM_RC_OK)
+ {
+ /* Uninstall the modules to avoid memory leaks,
+ file descriptor leaks, etc. */
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ /* verify assumptions the simulator made about the host type system.
+ This macro does not return if there is a problem */
+ SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
+ SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
+
+ /* This is NASTY, in that we are assuming the size of specific
+ registers: */
+ {
+ int rn;
+ for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
+ {
+ if (rn < 32)
+ cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
+ else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR)))
+ cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
+ else if ((rn >= 33) && (rn <= 37))
+ cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
+ else if ((rn == SRIDX)
+ || (rn == FCR0IDX)
+ || (rn == FCR31IDX)
+ || ((rn >= 72) && (rn <= 89)))
+ cpu->register_widths[rn] = 32;
+ else
+ cpu->register_widths[rn] = 0;
+ }
+
+
+ }
+
+#if defined(TRACE)
+ if (STATE & simTRACE)
+ open_trace(sd);
+#endif /* TRACE */
+
+ /* Write an abort sequence into the TRAP (common) exception vector
+ addresses. This is to catch code executing a TRAP (et.al.)
+ instruction without installing a trap handler. */
+ {
+ unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
+ HALT_INSTRUCTION /* BREAK */ };
+ H2T (halt[0]);
+ H2T (halt[1]);
+ sim_write (sd, 0x80000000, (char *) halt, sizeof (halt));
+ sim_write (sd, 0x80000180, (char *) halt, sizeof (halt));
+ sim_write (sd, 0x80000200, (char *) halt, sizeof (halt));
+ sim_write (sd, 0xBFC00200, (char *) halt, sizeof (halt));
+ sim_write (sd, 0xBFC00380, (char *) halt, sizeof (halt));
+ sim_write (sd, 0xBFC00400, (char *) halt, sizeof (halt));
+ }
+
+
+ /* Write the monitor trap address handlers into the monitor (eeprom)
+ address space. This can only be done once the target endianness
+ has been determined. */
+ {
+ unsigned loop;
+ /* Entry into the IDT monitor is via fixed address vectors, and
+ not using machine instructions. To avoid clashing with use of
+ the MIPS TRAP system, we place our own (simulator specific)
+ "undefined" instructions into the relevant vector slots. */
+ for (loop = 0; (loop < MONITOR_SIZE); loop += 4)
+ {
+ address_word vaddr = (MONITOR_BASE + loop);
+ unsigned32 insn = (RSVD_INSTRUCTION | (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK) << RSVD_INSTRUCTION_ARG_SHIFT));
+ H2T (insn);
+ sim_write (sd, vaddr, (char *)&insn, sizeof (insn));
+ }
+ /* The PMON monitor uses the same address space, but rather than
+ branching into it the address of a routine is loaded. We can
+ cheat for the moment, and direct the PMON routine to IDT style
+ instructions within the monitor space. This relies on the IDT
+ monitor not using the locations from 0xBFC00500 onwards as its
+ entry points.*/
+ for (loop = 0; (loop < 24); loop++)
+ {
+ address_word vaddr = (MONITOR_BASE + 0x500 + (loop * 4));
+ unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
+ switch (loop)
+ {
+ case 0: /* read */
+ value = 7;
+ break;
+ case 1: /* write */
+ value = 8;
+ break;
+ case 2: /* open */
+ value = 6;
+ break;
+ case 3: /* close */
+ value = 10;
+ break;
+ case 5: /* printf */
+ value = ((0x500 - 16) / 8); /* not an IDT reason code */
+ break;
+ case 8: /* cliexit */
+ value = 17;
+ break;
+ case 11: /* flush_cache */
+ value = 28;
+ break;
+ }
+ /* FIXME - should monitor_base be SIM_ADDR?? */
+ value = ((unsigned int)MONITOR_BASE + (value * 8));
+ H2T (value);
+ sim_write (sd, vaddr, (char *)&value, sizeof (value));
+
+ /* The LSI MiniRISC PMON has its vectors at 0x200, not 0x500. */
+ vaddr -= 0x300;
+ sim_write (sd, vaddr, (char *)&value, sizeof (value));
+ }
+ }
+
+
+
+ return sd;
+}
+
+#if defined(TRACE)
+static void
+open_trace(sd)
+ SIM_DESC sd;
+{
+ tracefh = fopen(tracefile,"wb+");
+ if (tracefh == NULL)
+ {
+ sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
+ tracefh = stderr;
+ }
+}
+#endif /* TRACE */
+
+/* Return name of an insn, used by insn profiling. */
+static const char *
+get_insn_name (sim_cpu *cpu, int i)
+{
+ return itable[i].name;
+}
+
+void
+sim_close (sd, quitting)
+ SIM_DESC sd;
+ int quitting;
+{
+#ifdef DEBUG
+ printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
+#endif
+
+
+ /* "quitting" is non-zero if we cannot hang on errors */
+
+ /* shut down modules */
+ sim_module_uninstall (sd);
+
+ /* Ensure that any resources allocated through the callback
+ mechanism are released: */
+ sim_io_shutdown (sd);
+
+#if defined(TRACE)
+ if (tracefh != NULL && tracefh != stderr)
+ fclose(tracefh);
+ tracefh = NULL;
+#endif /* TRACE */
+
+ /* FIXME - free SD */
+
+ return;
+}
+
+
+int
+sim_write (sd,addr,buffer,size)
+ SIM_DESC sd;
+ SIM_ADDR addr;
+ unsigned char *buffer;
+ int size;
+{
+ int index;
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+
+ /* Return the number of bytes written, or zero if error. */
+#ifdef DEBUG
+ sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
+#endif
+
+ /* We use raw read and write routines, since we do not want to count
+ the GDB memory accesses in our statistics gathering. */
+
+ for (index = 0; index < size; index++)
+ {
+ address_word vaddr = (address_word)addr + index;
+ address_word paddr;
+ int cca;
+ if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW))
+ break;
+ if (sim_core_write_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
+ break;
+ }
+
+ return(index);
+}
+
+int
+sim_read (sd,addr,buffer,size)
+ SIM_DESC sd;
+ SIM_ADDR addr;
+ unsigned char *buffer;
+ int size;
+{
+ int index;
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+
+ /* Return the number of bytes read, or zero if error. */
+#ifdef DEBUG
+ sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
+#endif /* DEBUG */
+
+ for (index = 0; (index < size); index++)
+ {
+ address_word vaddr = (address_word)addr + index;
+ address_word paddr;
+ int cca;
+ if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW))
+ break;
+ if (sim_core_read_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
+ break;
+ }
+
+ return(index);
+}
+
+int
+sim_store_register (sd,rn,memory,length)
+ SIM_DESC sd;
+ int rn;
+ unsigned char *memory;
+ int length;
+{
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+ /* NOTE: gdb (the client) stores registers in target byte order
+ while the simulator uses host byte order */
+#ifdef DEBUG
+ sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
+#endif /* DEBUG */
+
+ /* Unfortunately this suffers from the same problem as the register
+ numbering one. We need to know what the width of each logical
+ register number is for the architecture being simulated. */
+
+ if (cpu->register_widths[rn] == 0)
+ {
+ sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn);
+ return 0;
+ }
+
+
+
+ if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
+ {
+ if (cpu->register_widths[rn] == 32)
+ {
+ cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory);
+ return 4;
+ }
+ else
+ {
+ cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory);
+ return 8;
+ }
+ }
+
+ if (cpu->register_widths[rn] == 32)
+ {
+ cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
+ return 4;
+ }
+ else
+ {
+ cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
+ return 8;
+ }
+
+ return 0;
+}
+
+int
+sim_fetch_register (sd,rn,memory,length)
+ SIM_DESC sd;
+ int rn;
+ unsigned char *memory;
+ int length;
+{
+ sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
+ /* NOTE: gdb (the client) stores registers in target byte order
+ while the simulator uses host byte order */
+#ifdef DEBUG
+#if 0 /* FIXME: doesn't compile */
+ sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
+#endif
+#endif /* DEBUG */
+
+ if (cpu->register_widths[rn] == 0)
+ {
+ sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn);
+ return 0;
+ }
+
+
+
+ /* Any floating point register */
+ if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
+ {
+ if (cpu->register_widths[rn] == 32)
+ {
+ *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]);
+ return 4;
+ }
+ else
+ {
+ *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]);
+ return 8;
+ }
+ }
+
+ if (cpu->register_widths[rn] == 32)
+ {
+ *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
+ return 4;
+ }
+ else
+ {
+ *(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn]));
+ return 8;
+ }
+
+ return 0;
+}
+
+
+SIM_RC
+sim_create_inferior (sd, abfd, argv,env)
+ SIM_DESC sd;
+ struct _bfd *abfd;
+ char **argv;
+ char **env;
+{
+
+#ifdef DEBUG
+#if 0 /* FIXME: doesn't compile */
+ printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
+ pr_addr(PC));
+#endif
+#endif /* DEBUG */
+
+ ColdReset(sd);
+
+ if (abfd != NULL)
+ {
+ /* override PC value set by ColdReset () */
+ int cpu_nr;
+ for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
+ {
+ sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
+ CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
+ }
+ }
+
+#if 0 /* def DEBUG */
+ if (argv || env)
+ {
+ /* We should really place the argv slot values into the argument
+ registers, and onto the stack as required. However, this
+ assumes that we have a stack defined, which is not
+ necessarily true at the moment. */
+ char **cptr;
+ sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
+ for (cptr = argv; (cptr && *cptr); cptr++)
+ printf("DBG: arg \"%s\"\n",*cptr);
+ }
+#endif /* DEBUG */
+
+ return SIM_RC_OK;
+}
+
+void
+sim_do_command (sd,cmd)
+ SIM_DESC sd;
+ char *cmd;
+{
+ if (sim_args_command (sd, cmd) != SIM_RC_OK)
+ sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n",
+ cmd);
+}
+
+/*---------------------------------------------------------------------------*/
+/*-- Private simulator support interface ------------------------------------*/
+/*---------------------------------------------------------------------------*/
+
+/* Read a null terminated string from memory, return in a buffer */
+static char *
+fetch_str (SIM_DESC sd,
+ address_word addr)
+{
+ char *buf;
+ int nr = 0;
+ char null;
+ while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
+ nr++;
+ buf = NZALLOC (char, nr + 1);
+ sim_read (sd, addr, buf, nr);
+ return buf;
+}
+
+/* Simple monitor interface (currently setup for the IDT and PMON monitors) */
+void
+sim_monitor (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ unsigned int reason)
+{
+#ifdef DEBUG
+ printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
+#endif /* DEBUG */
+
+ /* The IDT monitor actually allows two instructions per vector
+ slot. However, the simulator currently causes a trap on each
+ individual instruction. We cheat, and lose the bottom bit. */
+ reason >>= 1;
+
+ /* The following callback functions are available, however the
+ monitor we are simulating does not make use of them: get_errno,
+ isatty, lseek, rename, system, time and unlink */
+ switch (reason)
+ {
+
+ case 6: /* int open(char *path,int flags) */
+ {
+ char *path = fetch_str (sd, A0);
+ V0 = sim_io_open (sd, path, (int)A1);
+ zfree (path);
+ break;
+ }
+
+ case 7: /* int read(int file,char *ptr,int len) */
+ {
+ int fd = A0;
+ int nr = A2;
+ char *buf = zalloc (nr);
+ V0 = sim_io_read (sd, fd, buf, nr);
+ sim_write (sd, A1, buf, nr);
+ zfree (buf);
+ }
+ break;
+
+ case 8: /* int write(int file,char *ptr,int len) */
+ {
+ int fd = A0;
+ int nr = A2;
+ char *buf = zalloc (nr);
+ sim_read (sd, A1, buf, nr);
+ V0 = sim_io_write (sd, fd, buf, nr);
+ zfree (buf);
+ break;
+ }
+
+ case 10: /* int close(int file) */
+ {
+ V0 = sim_io_close (sd, (int)A0);
+ break;
+ }
+
+ case 2: /* Densan monitor: char inbyte(int waitflag) */
+ {
+ if (A0 == 0) /* waitflag == NOWAIT */
+ V0 = (unsigned_word)-1;
+ }
+ /* Drop through to case 11 */
+
+ case 11: /* char inbyte(void) */
+ {
+ char tmp;
+ if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
+ {
+ sim_io_error(sd,"Invalid return from character read");
+ V0 = (unsigned_word)-1;
+ }
+ else
+ V0 = (unsigned_word)tmp;
+ break;
+ }
+
+ case 3: /* Densan monitor: void co(char chr) */
+ case 12: /* void outbyte(char chr) : write a byte to "stdout" */
+ {
+ char tmp = (char)(A0 & 0xFF);
+ sim_io_write_stdout (sd, &tmp, sizeof(char));
+ break;
+ }
+
+ case 17: /* void _exit() */
+ {
+ sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
+ sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
+ (unsigned int)(A0 & 0xFFFFFFFF));
+ break;
+ }
+
+ case 28 : /* PMON flush_cache */
+ break;
+
+ case 55: /* void get_mem_info(unsigned int *ptr) */
+ /* in: A0 = pointer to three word memory location */
+ /* out: [A0 + 0] = size */
+ /* [A0 + 4] = instruction cache size */
+ /* [A0 + 8] = data cache size */
+ {
+ unsigned_4 value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */;
+ unsigned_4 zero = 0;
+ H2T (value);
+ sim_write (sd, A0 + 0, (char *)&value, 4);
+ sim_write (sd, A0 + 4, (char *)&zero, 4);
+ sim_write (sd, A0 + 8, (char *)&zero, 4);
+ /* sim_io_eprintf (sd, "sim: get_mem_info() depreciated\n"); */
+ break;
+ }
+
+ case 158 : /* PMON printf */
+ /* in: A0 = pointer to format string */
+ /* A1 = optional argument 1 */
+ /* A2 = optional argument 2 */
+ /* A3 = optional argument 3 */
+ /* out: void */
+ /* The following is based on the PMON printf source */
+ {
+ address_word s = A0;
+ char c;
+ signed_word *ap = &A1; /* 1st argument */
+ /* This isn't the quickest way, since we call the host print
+ routine for every character almost. But it does avoid
+ having to allocate and manage a temporary string buffer. */
+ /* TODO: Include check that we only use three arguments (A1,
+ A2 and A3) */
+ while (sim_read (sd, s++, &c, 1) && c != '\0')
+ {
+ if (c == '%')
+ {
+ char tmp[40];
+ enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
+ int width = 0, trunc = 0, haddot = 0, longlong = 0;
+ while (sim_read (sd, s++, &c, 1) && c != '\0')
+ {
+ if (strchr ("dobxXulscefg%", c))
+ break;
+ else if (c == '-')
+ fmt = FMT_LJUST;
+ else if (c == '0')
+ fmt = FMT_RJUST0;
+ else if (c == '~')
+ fmt = FMT_CENTER;
+ else if (c == '*')
+ {
+ if (haddot)
+ trunc = (int)*ap++;
+ else
+ width = (int)*ap++;
+ }
+ else if (c >= '1' && c <= '9')
+ {
+ address_word t = s;
+ unsigned int n;
+ while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
+ tmp[s - t] = c;
+ tmp[s - t] = '\0';
+ n = (unsigned int)strtol(tmp,NULL,10);
+ if (haddot)
+ trunc = n;
+ else
+ width = n;
+ s--;
+ }
+ else if (c == '.')
+ haddot = 1;
+ }
+ switch (c)
+ {
+ case '%':
+ sim_io_printf (sd, "%%");
+ break;
+ case 's':
+ if ((int)*ap != 0)
+ {
+ address_word p = *ap++;
+ char ch;
+ while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
+ sim_io_printf(sd, "%c", ch);
+ }
+ else
+ sim_io_printf(sd,"(null)");
+ break;
+ case 'c':
+ sim_io_printf (sd, "%c", (int)*ap++);
+ break;
+ default:
+ if (c == 'l')
+ {
+ sim_read (sd, s++, &c, 1);
+ if (c == 'l')
+ {
+ longlong = 1;
+ sim_read (sd, s++, &c, 1);
+ }
+ }
+ if (strchr ("dobxXu", c))
+ {
+ word64 lv = (word64) *ap++;
+ if (c == 'b')
+ sim_io_printf(sd,"<binary not supported>");
+ else
+ {
+ sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
+ if (longlong)
+ sim_io_printf(sd, tmp, lv);
+ else
+ sim_io_printf(sd, tmp, (int)lv);
+ }
+ }
+ else if (strchr ("eEfgG", c))
+ {
+ double dbl = *(double*)(ap++);
+ sprintf (tmp, "%%%d.%d%c", width, trunc, c);
+ sim_io_printf (sd, tmp, dbl);
+ trunc = 0;
+ }
+ }
+ }
+ else
+ sim_io_printf(sd, "%c", c);
+ }
+ break;
+ }
+
+ default:
+ sim_io_error (sd, "TODO: sim_monitor(%d) : PC = 0x%s\n",
+ reason, pr_addr(cia));
+ break;
+ }
+ return;
+}
+
+/* Store a word into memory. */
+
+static void
+store_word (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ uword64 vaddr,
+ signed_word val)
+{
+ address_word paddr;
+ int uncached;
+
+ if ((vaddr & 3) != 0)
+ SignalExceptionAddressStore ();
+ else
+ {
+ if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
+ isTARGET, isREAL))
+ {
+ const uword64 mask = 7;
+ uword64 memval;
+ unsigned int byte;
+
+ paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
+ byte = (vaddr & mask) ^ (BigEndianCPU << 2);
+ memval = ((uword64) val) << (8 * byte);
+ StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
+ isREAL);
+ }
+ }
+}
+
+/* Load a word from memory. */
+
+static signed_word
+load_word (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ uword64 vaddr)
+{
+ if ((vaddr & 3) != 0)
+ {
+ SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal);
+ }
+ else
+ {
+ address_word paddr;
+ int uncached;
+
+ if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
+ isTARGET, isREAL))
+ {
+ const uword64 mask = 0x7;
+ const unsigned int reverse = ReverseEndian ? 1 : 0;
+ const unsigned int bigend = BigEndianCPU ? 1 : 0;
+ uword64 memval;
+ unsigned int byte;
+
+ paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
+ LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
+ isDATA, isREAL);
+ byte = (vaddr & mask) ^ (bigend << 2);
+ return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32);
+ }
+ }
+
+ return 0;
+}
+
+/* Simulate the mips16 entry and exit pseudo-instructions. These
+ would normally be handled by the reserved instruction exception
+ code, but for ease of simulation we just handle them directly. */
+
+static void
+mips16_entry (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ unsigned int insn)
+{
+ int aregs, sregs, rreg;
+
+#ifdef DEBUG
+ printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
+#endif /* DEBUG */
+
+ aregs = (insn & 0x700) >> 8;
+ sregs = (insn & 0x0c0) >> 6;
+ rreg = (insn & 0x020) >> 5;
+
+ /* This should be checked by the caller. */
+ if (sregs == 3)
+ abort ();
+
+ if (aregs < 5)
+ {
+ int i;
+ signed_word tsp;
+
+ /* This is the entry pseudo-instruction. */
+
+ for (i = 0; i < aregs; i++)
+ store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
+
+ tsp = SP;
+ SP -= 32;
+
+ if (rreg)
+ {
+ tsp -= 4;
+ store_word (SD, CPU, cia, (uword64) tsp, RA);
+ }
+
+ for (i = 0; i < sregs; i++)
+ {
+ tsp -= 4;
+ store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
+ }
+ }
+ else
+ {
+ int i;
+ signed_word tsp;
+
+ /* This is the exit pseudo-instruction. */
+
+ tsp = SP + 32;
+
+ if (rreg)
+ {
+ tsp -= 4;
+ RA = load_word (SD, CPU, cia, (uword64) tsp);
+ }
+
+ for (i = 0; i < sregs; i++)
+ {
+ tsp -= 4;
+ GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
+ }
+
+ SP += 32;
+
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+ if (aregs == 5)
+ {
+ FGR[0] = WORD64LO (GPR[4]);
+ FPR_STATE[0] = fmt_uninterpreted;
+ }
+ else if (aregs == 6)
+ {
+ FGR[0] = WORD64LO (GPR[5]);
+ FGR[1] = WORD64LO (GPR[4]);
+ FPR_STATE[0] = fmt_uninterpreted;
+ FPR_STATE[1] = fmt_uninterpreted;
+ }
+ }
+
+ PC = RA;
+ }
+
+}
+
+/*-- trace support ----------------------------------------------------------*/
+
+/* The TRACE support is provided (if required) in the memory accessing
+ routines. Since we are also providing the architecture specific
+ features, the architecture simulation code can also deal with
+ notifying the TRACE world of cache flushes, etc. Similarly we do
+ not need to provide profiling support in the simulator engine,
+ since we can sample in the instruction fetch control loop. By
+ defining the TRACE manifest, we add tracing as a run-time
+ option. */
+
+#if defined(TRACE)
+/* Tracing by default produces "din" format (as required by
+ dineroIII). Each line of such a trace file *MUST* have a din label
+ and address field. The rest of the line is ignored, so comments can
+ be included if desired. The first field is the label which must be
+ one of the following values:
+
+ 0 read data
+ 1 write data
+ 2 instruction fetch
+ 3 escape record (treated as unknown access type)
+ 4 escape record (causes cache flush)
+
+ The address field is a 32bit (lower-case) hexadecimal address
+ value. The address should *NOT* be preceded by "0x".
+
+ The size of the memory transfer is not important when dealing with
+ cache lines (as long as no more than a cache line can be
+ transferred in a single operation :-), however more information
+ could be given following the dineroIII requirement to allow more
+ complete memory and cache simulators to provide better
+ results. i.e. the University of Pisa has a cache simulator that can
+ also take bus size and speed as (variable) inputs to calculate
+ complete system performance (a much more useful ability when trying
+ to construct an end product, rather than a processor). They
+ currently have an ARM version of their tool called ChARM. */
+
+
+void
+dotrace (SIM_DESC sd,
+ sim_cpu *cpu,
+ FILE *tracefh,
+ int type,
+ SIM_ADDR address,
+ int width,
+ char *comment,...)
+{
+ if (STATE & simTRACE) {
+ va_list ap;
+ fprintf(tracefh,"%d %s ; width %d ; ",
+ type,
+ pr_addr(address),
+ width);
+ va_start(ap,comment);
+ vfprintf(tracefh,comment,ap);
+ va_end(ap);
+ fprintf(tracefh,"\n");
+ }
+ /* NOTE: Since the "din" format will only accept 32bit addresses, and
+ we may be generating 64bit ones, we should put the hi-32bits of the
+ address into the comment field. */
+
+ /* TODO: Provide a buffer for the trace lines. We can then avoid
+ performing writes until the buffer is filled, or the file is
+ being closed. */
+
+ /* NOTE: We could consider adding a comment field to the "din" file
+ produced using type 3 markers (unknown access). This would then
+ allow information about the program that the "din" is for, and
+ the MIPs world that was being simulated, to be placed into the
+ trace file. */
+
+ return;
+}
+#endif /* TRACE */
+
+/*---------------------------------------------------------------------------*/
+/*-- simulator engine -------------------------------------------------------*/
+/*---------------------------------------------------------------------------*/
+
+static void
+ColdReset (SIM_DESC sd)
+{
+ int cpu_nr;
+ for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
+ {
+ sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
+ /* RESET: Fixed PC address: */
+ PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
+ /* The reset vector address is in the unmapped, uncached memory space. */
+
+ SR &= ~(status_SR | status_TS | status_RP);
+ SR |= (status_ERL | status_BEV);
+
+ /* Cheat and allow access to the complete register set immediately */
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
+ && WITH_TARGET_WORD_BITSIZE == 64)
+ SR |= status_FR; /* 64bit registers */
+
+ /* Ensure that any instructions with pending register updates are
+ cleared: */
+ PENDING_INVALIDATE();
+
+ /* Initialise the FPU registers to the unknown state */
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+ int rn;
+ for (rn = 0; (rn < 32); rn++)
+ FPR_STATE[rn] = fmt_uninterpreted;
+ }
+
+ }
+}
+
+
+
+
+/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
+/* Signal an exception condition. This will result in an exception
+ that aborts the instruction. The instruction operation pseudocode
+ will never see a return from this function call. */
+
+void
+signal_exception (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int exception,...)
+{
+ /* int vector; */
+
+#ifdef DEBUG
+ sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
+#endif /* DEBUG */
+
+ /* Ensure that any active atomic read/modify/write operation will fail: */
+ LLBIT = 0;
+
+ /* Save registers before interrupt dispatching */
+#ifdef SIM_CPU_EXCEPTION_TRIGGER
+ SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia);
+#endif
+
+ switch (exception) {
+
+ case DebugBreakPoint :
+ if (! (Debug & Debug_DM))
+ {
+ if (INDELAYSLOT())
+ {
+ CANCELDELAYSLOT();
+
+ Debug |= Debug_DBD; /* signaled from within in delay slot */
+ DEPC = cia - 4; /* reference the branch instruction */
+ }
+ else
+ {
+ Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
+ DEPC = cia;
+ }
+
+ Debug |= Debug_DM; /* in debugging mode */
+ Debug |= Debug_DBp; /* raising a DBp exception */
+ PC = 0xBFC00200;
+ sim_engine_restart (SD, CPU, NULL, NULL_CIA);
+ }
+ break;
+
+ case ReservedInstruction :
+ {
+ va_list ap;
+ unsigned int instruction;
+ va_start(ap,exception);
+ instruction = va_arg(ap,unsigned int);
+ va_end(ap);
+ /* Provide simple monitor support using ReservedInstruction
+ exceptions. The following code simulates the fixed vector
+ entry points into the IDT monitor by causing a simulator
+ trap, performing the monitor operation, and returning to
+ the address held in the $ra register (standard PCS return
+ address). This means we only need to pre-load the vector
+ space with suitable instruction values. For systems were
+ actual trap instructions are used, we would not need to
+ perform this magic. */
+ if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
+ {
+ sim_monitor (SD, CPU, cia, ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
+ /* NOTE: This assumes that a branch-and-link style
+ instruction was used to enter the vector (which is the
+ case with the current IDT monitor). */
+ sim_engine_restart (SD, CPU, NULL, RA);
+ }
+ /* Look for the mips16 entry and exit instructions, and
+ simulate a handler for them. */
+ else if ((cia & 1) != 0
+ && (instruction & 0xf81f) == 0xe809
+ && (instruction & 0x0c0) != 0x0c0)
+ {
+ mips16_entry (SD, CPU, cia, instruction);
+ sim_engine_restart (sd, NULL, NULL, NULL_CIA);
+ }
+ /* else fall through to normal exception processing */
+ sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
+ }
+
+ default:
+ /* Store exception code into current exception id variable (used
+ by exit code): */
+
+ /* TODO: If not simulating exceptions then stop the simulator
+ execution. At the moment we always stop the simulation. */
+
+#ifdef SUBTARGET_R3900
+ /* update interrupt-related registers */
+
+ /* insert exception code in bits 6:2 */
+ CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
+ /* shift IE/KU history bits left */
+ SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
+
+ if (STATE & simDELAYSLOT)
+ {
+ STATE &= ~simDELAYSLOT;
+ CAUSE |= cause_BD;
+ EPC = (cia - 4); /* reference the branch instruction */
+ }
+ else
+ EPC = cia;
+
+ if (SR & status_BEV)
+ PC = (signed)0xBFC00000 + 0x180;
+ else
+ PC = (signed)0x80000000 + 0x080;
+#else
+ /* See figure 5-17 for an outline of the code below */
+ if (! (SR & status_EXL))
+ {
+ CAUSE = (exception << 2);
+ if (STATE & simDELAYSLOT)
+ {
+ STATE &= ~simDELAYSLOT;
+ CAUSE |= cause_BD;
+ EPC = (cia - 4); /* reference the branch instruction */
+ }
+ else
+ EPC = cia;
+ /* FIXME: TLB et.al. */
+ /* vector = 0x180; */
+ }
+ else
+ {
+ CAUSE = (exception << 2);
+ /* vector = 0x180; */
+ }
+ SR |= status_EXL;
+ /* Store exception code into current exception id variable (used
+ by exit code): */
+
+ if (SR & status_BEV)
+ PC = (signed)0xBFC00200 + 0x180;
+ else
+ PC = (signed)0x80000000 + 0x180;
+#endif
+
+ switch ((CAUSE >> 2) & 0x1F)
+ {
+ case Interrupt:
+ /* Interrupts arrive during event processing, no need to
+ restart */
+ return;
+
+ case NMIReset:
+ /* Ditto */
+#ifdef SUBTARGET_3900
+ /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
+ PC = (signed)0xBFC00000;
+#endif SUBTARGET_3900
+ return;
+
+ case TLBModification:
+ case TLBLoad:
+ case TLBStore:
+ case AddressLoad:
+ case AddressStore:
+ case InstructionFetch:
+ case DataReference:
+ /* The following is so that the simulator will continue from the
+ exception handler address. */
+ sim_engine_halt (SD, CPU, NULL, PC,
+ sim_stopped, SIM_SIGBUS);
+
+ case ReservedInstruction:
+ case CoProcessorUnusable:
+ PC = EPC;
+ sim_engine_halt (SD, CPU, NULL, PC,
+ sim_stopped, SIM_SIGILL);
+
+ case IntegerOverflow:
+ case FPE:
+ sim_engine_halt (SD, CPU, NULL, PC,
+ sim_stopped, SIM_SIGFPE);
+
+ case BreakPoint:
+ sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP);
+ break;
+
+ case SystemCall:
+ case Trap:
+ sim_engine_restart (SD, CPU, NULL, PC);
+ break;
+
+ case Watch:
+ PC = EPC;
+ sim_engine_halt (SD, CPU, NULL, PC,
+ sim_stopped, SIM_SIGTRAP);
+
+ default : /* Unknown internal exception */
+ PC = EPC;
+ sim_engine_halt (SD, CPU, NULL, PC,
+ sim_stopped, SIM_SIGABRT);
+
+ }
+
+ case SimulatorFault:
+ {
+ va_list ap;
+ char *msg;
+ va_start(ap,exception);
+ msg = va_arg(ap,char *);
+ va_end(ap);
+ sim_engine_abort (SD, CPU, NULL_CIA,
+ "FATAL: Simulator error \"%s\"\n",msg);
+ }
+ }
+
+ return;
+}
+
+
+
+#if defined(WARN_RESULT)
+/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
+/* This function indicates that the result of the operation is
+ undefined. However, this should not affect the instruction
+ stream. All that is meant to happen is that the destination
+ register is set to an undefined result. To keep the simulator
+ simple, we just don't bother updating the destination register, so
+ the overall result will be undefined. If desired we can stop the
+ simulator by raising a pseudo-exception. */
+#define UndefinedResult() undefined_result (sd,cia)
+static void
+undefined_result(sd,cia)
+ SIM_DESC sd;
+ address_word cia;
+{
+ sim_io_eprintf(sd,"UndefinedResult: PC = 0x%s\n",pr_addr(cia));
+#if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */
+ state |= simSTOP;
+#endif
+ return;
+}
+#endif /* WARN_RESULT */
+
+/*-- FPU support routines ---------------------------------------------------*/
+
+/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
+ formats conform to ANSI/IEEE Std 754-1985. */
+/* SINGLE precision floating:
+ * seeeeeeeefffffffffffffffffffffff
+ * s = 1bit = sign
+ * e = 8bits = exponent
+ * f = 23bits = fraction
+ */
+/* SINGLE precision fixed:
+ * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
+ * s = 1bit = sign
+ * i = 31bits = integer
+ */
+/* DOUBLE precision floating:
+ * seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
+ * s = 1bit = sign
+ * e = 11bits = exponent
+ * f = 52bits = fraction
+ */
+/* DOUBLE precision fixed:
+ * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
+ * s = 1bit = sign
+ * i = 63bits = integer
+ */
+
+/* Extract sign-bit: */
+#define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0)
+#define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0)
+/* Extract biased exponent: */
+#define FP_S_be(v) (((v) >> 23) & 0xFF)
+#define FP_D_be(v) (((v) >> 52) & 0x7FF)
+/* Extract unbiased Exponent: */
+#define FP_S_e(v) (FP_S_be(v) - 0x7F)
+#define FP_D_e(v) (FP_D_be(v) - 0x3FF)
+/* Extract complete fraction field: */
+#define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23))
+#define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52))
+/* Extract numbered fraction bit: */
+#define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
+#define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)
+
+/* Explicit QNaN values used when value required: */
+#define FPQNaN_SINGLE (0x7FBFFFFF)
+#define FPQNaN_WORD (0x7FFFFFFF)
+#define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
+#define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)
+
+/* Explicit Infinity values used when required: */
+#define FPINF_SINGLE (0x7F800000)
+#define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000)
+
+#define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
+#define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : (((v) == fmt_uninterpreted_32) ? "<uninterpreted_32>" : (((v) == fmt_uninterpreted_64) ? "<uninterpreted_64>" : "<format error>"))))))))
+
+uword64
+value_fpr (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int fpr,
+ FP_formats fmt)
+{
+ uword64 value = 0;
+ int err = 0;
+
+ /* Treat unused register values, as fixed-point 64bit values: */
+ if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
+#if 1
+ /* If request to read data as "uninterpreted", then use the current
+ encoding: */
+ fmt = FPR_STATE[fpr];
+#else
+ fmt = fmt_long;
+#endif
+
+ /* For values not yet accessed, set to the desired format: */
+ if (FPR_STATE[fpr] == fmt_uninterpreted) {
+ FPR_STATE[fpr] = fmt;
+#ifdef DEBUG
+ printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
+#endif /* DEBUG */
+ }
+ if (fmt != FPR_STATE[fpr]) {
+ sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia));
+ FPR_STATE[fpr] = fmt_unknown;
+ }
+
+ if (FPR_STATE[fpr] == fmt_unknown) {
+ /* Set QNaN value: */
+ switch (fmt) {
+ case fmt_single:
+ value = FPQNaN_SINGLE;
+ break;
+
+ case fmt_double:
+ value = FPQNaN_DOUBLE;
+ break;
+
+ case fmt_word:
+ value = FPQNaN_WORD;
+ break;
+
+ case fmt_long:
+ value = FPQNaN_LONG;
+ break;
+
+ default:
+ err = -1;
+ break;
+ }
+ } else if (SizeFGR() == 64) {
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ value = (FGR[fpr] & 0xFFFFFFFF);
+ break;
+
+ case fmt_uninterpreted:
+ case fmt_double:
+ case fmt_long:
+ value = FGR[fpr];
+ break;
+
+ default :
+ err = -1;
+ break;
+ }
+ } else {
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ value = (FGR[fpr] & 0xFFFFFFFF);
+ break;
+
+ case fmt_uninterpreted:
+ case fmt_double:
+ case fmt_long:
+ if ((fpr & 1) == 0) { /* even registers only */
+#ifdef DEBUG
+ printf("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
+ fpr+1, pr_uword64( (uword64) FGR[fpr+1] ),
+ fpr, pr_uword64( (uword64) FGR[fpr] ));
+#endif
+ value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
+ } else {
+ SignalException(ReservedInstruction,0);
+ }
+ break;
+
+ default :
+ err = -1;
+ break;
+ }
+ }
+
+ if (err)
+ SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()");
+
+#ifdef DEBUG
+ printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
+#endif /* DEBUG */
+
+ return(value);
+}
+
+void
+store_fpr (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int fpr,
+ FP_formats fmt,
+ uword64 value)
+{
+ int err = 0;
+
+#ifdef DEBUG
+ printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d,\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
+#endif /* DEBUG */
+
+ if (SizeFGR() == 64) {
+ switch (fmt) {
+ case fmt_uninterpreted_32:
+ fmt = fmt_uninterpreted;
+ case fmt_single :
+ case fmt_word :
+ FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ case fmt_uninterpreted_64:
+ fmt = fmt_uninterpreted;
+ case fmt_uninterpreted:
+ case fmt_double :
+ case fmt_long :
+ FGR[fpr] = value;
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ default :
+ FPR_STATE[fpr] = fmt_unknown;
+ err = -1;
+ break;
+ }
+ } else {
+ switch (fmt) {
+ case fmt_uninterpreted_32:
+ fmt = fmt_uninterpreted;
+ case fmt_single :
+ case fmt_word :
+ FGR[fpr] = (value & 0xFFFFFFFF);
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ case fmt_uninterpreted_64:
+ fmt = fmt_uninterpreted;
+ case fmt_uninterpreted:
+ case fmt_double :
+ case fmt_long :
+ if ((fpr & 1) == 0) { /* even register number only */
+ FGR[fpr+1] = (value >> 32);
+ FGR[fpr] = (value & 0xFFFFFFFF);
+ FPR_STATE[fpr + 1] = fmt;
+ FPR_STATE[fpr] = fmt;
+ } else {
+ FPR_STATE[fpr] = fmt_unknown;
+ FPR_STATE[fpr + 1] = fmt_unknown;
+ SignalException(ReservedInstruction,0);
+ }
+ break;
+
+ default :
+ FPR_STATE[fpr] = fmt_unknown;
+ err = -1;
+ break;
+ }
+ }
+#if defined(WARN_RESULT)
+ else
+ UndefinedResult();
+#endif /* WARN_RESULT */
+
+ if (err)
+ SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()");
+
+#ifdef DEBUG
+ printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_uword64(FGR[fpr]),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return;
+}
+
+int
+NaN(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ int boolean = 0;
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ {
+ sim_fpu wop;
+ sim_fpu_32to (&wop, op);
+ boolean = sim_fpu_is_nan (&wop);
+ break;
+ }
+ case fmt_double:
+ case fmt_long:
+ {
+ sim_fpu wop;
+ sim_fpu_64to (&wop, op);
+ boolean = sim_fpu_is_nan (&wop);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Infinity(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+#ifdef DEBUG
+ printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu_32to (&wop, op);
+ boolean = sim_fpu_is_infinity (&wop);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu_64to (&wop, op);
+ boolean = sim_fpu_is_infinity (&wop);
+ break;
+ }
+ default:
+ printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
+ break;
+ }
+
+#ifdef DEBUG
+ printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Less(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+ /* Argument checking already performed by the FPCOMPARE code */
+
+#ifdef DEBUG
+ printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ boolean = sim_fpu_is_lt (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ boolean = sim_fpu_is_lt (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Equal(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+ /* Argument checking already performed by the FPCOMPARE code */
+
+#ifdef DEBUG
+ printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ boolean = sim_fpu_is_eq (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ boolean = sim_fpu_is_eq (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+uword64
+AbsoluteValue(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ unsigned32 ans;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_abs (&wop, &wop);
+ sim_fpu_to32 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ unsigned64 ans;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_abs (&wop, &wop);
+ sim_fpu_to64 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ return(result);
+}
+
+uword64
+Negate(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ unsigned32 ans;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_neg (&wop, &wop);
+ sim_fpu_to32 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ unsigned64 ans;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_neg (&wop, &wop);
+ sim_fpu_to64 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ return(result);
+}
+
+uword64
+Add(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_add (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_add (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Sub(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_sub (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ }
+ break;
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_sub (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ }
+ break;
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Multiply(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_mul (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_mul (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Divide(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_div (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_div (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64 UNUSED
+Recip(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_inv (&ans, &wop);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_inv (&ans, &wop);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+SquareRoot(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_sqrt (&ans, &wop);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_sqrt (&ans, &wop);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+#if 0
+uword64
+Max (uword64 op1,
+ uword64 op2,
+ FP_formats fmt)
+{
+ int cmp;
+ unsigned64 result;
+
+#ifdef DEBUG
+ printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt)
+ {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ switch (cmp)
+ {
+ case SIM_FPU_IS_SNAN:
+ case SIM_FPU_IS_QNAN:
+ result = op1;
+ case SIM_FPU_IS_NINF:
+ case SIM_FPU_IS_NNUMBER:
+ case SIM_FPU_IS_NDENORM:
+ case SIM_FPU_IS_NZERO:
+ result = op2; /* op1 - op2 < 0 */
+ case SIM_FPU_IS_PINF:
+ case SIM_FPU_IS_PNUMBER:
+ case SIM_FPU_IS_PDENORM:
+ case SIM_FPU_IS_PZERO:
+ result = op1; /* op1 - op2 > 0 */
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+#endif
+
+#if 0
+uword64
+Min (uword64 op1,
+ uword64 op2,
+ FP_formats fmt)
+{
+ int cmp;
+ unsigned64 result;
+
+#ifdef DEBUG
+ printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt)
+ {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ switch (cmp)
+ {
+ case SIM_FPU_IS_SNAN:
+ case SIM_FPU_IS_QNAN:
+ result = op1;
+ case SIM_FPU_IS_NINF:
+ case SIM_FPU_IS_NNUMBER:
+ case SIM_FPU_IS_NDENORM:
+ case SIM_FPU_IS_NZERO:
+ result = op1; /* op1 - op2 < 0 */
+ case SIM_FPU_IS_PINF:
+ case SIM_FPU_IS_PNUMBER:
+ case SIM_FPU_IS_PDENORM:
+ case SIM_FPU_IS_PZERO:
+ result = op2; /* op1 - op2 > 0 */
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+#endif
+
+uword64
+convert (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int rm,
+ uword64 op,
+ FP_formats from,
+ FP_formats to)
+{
+ sim_fpu wop;
+ sim_fpu_round round;
+ unsigned32 result32;
+ unsigned64 result64;
+
+#ifdef DEBUG
+#if 0 /* FIXME: doesn't compile */
+ printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
+#endif
+#endif /* DEBUG */
+
+ switch (rm)
+ {
+ case FP_RM_NEAREST:
+ /* Round result to nearest representable value. When two
+ representable values are equally near, round to the value
+ that has a least significant bit of zero (i.e. is even). */
+ round = sim_fpu_round_near;
+ break;
+ case FP_RM_TOZERO:
+ /* Round result to the value closest to, and not greater in
+ magnitude than, the result. */
+ round = sim_fpu_round_zero;
+ break;
+ case FP_RM_TOPINF:
+ /* Round result to the value closest to, and not less than,
+ the result. */
+ round = sim_fpu_round_up;
+ break;
+
+ case FP_RM_TOMINF:
+ /* Round result to the value closest to, and not greater than,
+ the result. */
+ round = sim_fpu_round_down;
+ break;
+ default:
+ round = 0;
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ /* Convert the input to sim_fpu internal format */
+ switch (from)
+ {
+ case fmt_double:
+ sim_fpu_64to (&wop, op);
+ break;
+ case fmt_single:
+ sim_fpu_32to (&wop, op);
+ break;
+ case fmt_word:
+ sim_fpu_i32to (&wop, op, round);
+ break;
+ case fmt_long:
+ sim_fpu_i64to (&wop, op, round);
+ break;
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ /* Convert sim_fpu format into the output */
+ /* The value WOP is converted to the destination format, rounding
+ using mode RM. When the destination is a fixed-point format, then
+ a source value of Infinity, NaN or one which would round to an
+ integer outside the fixed point range then an IEEE Invalid
+ Operation condition is raised. */
+ switch (to)
+ {
+ case fmt_single:
+ sim_fpu_round_32 (&wop, round, 0);
+ sim_fpu_to32 (&result32, &wop);
+ result64 = result32;
+ break;
+ case fmt_double:
+ sim_fpu_round_64 (&wop, round, 0);
+ sim_fpu_to64 (&result64, &wop);
+ break;
+ case fmt_word:
+ sim_fpu_to32i (&result32, &wop, round);
+ result64 = result32;
+ break;
+ case fmt_long:
+ sim_fpu_to64i (&result64, &wop, round);
+ break;
+ default:
+ result64 = 0;
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to));
+#endif /* DEBUG */
+
+ return(result64);
+}
+
+
+/*-- co-processor support routines ------------------------------------------*/
+
+static int UNUSED
+CoProcPresent(unsigned int coproc_number)
+{
+ /* Return TRUE if simulator provides a model for the given co-processor number */
+ return(0);
+}
+
+void
+cop_lw (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int coproc_num,
+ int coproc_reg,
+ unsigned int memword)
+{
+ switch (coproc_num)
+ {
+ case 1:
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+#ifdef DEBUG
+ printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
+#endif
+ StoreFPR(coproc_reg,fmt_word,(uword64)memword);
+ FPR_STATE[coproc_reg] = fmt_uninterpreted;
+ break;
+ }
+
+ default:
+#if 0 /* this should be controlled by a configuration option */
+ sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
+#endif
+ break;
+ }
+
+ return;
+}
+
+void
+cop_ld (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int coproc_num,
+ int coproc_reg,
+ uword64 memword)
+{
+
+#ifdef DEBUG
+ printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia) );
+#endif
+
+ switch (coproc_num) {
+ case 1:
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+ StoreFPR(coproc_reg,fmt_uninterpreted,memword);
+ break;
+ }
+
+ default:
+#if 0 /* this message should be controlled by a configuration option */
+ sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
+#endif
+ break;
+ }
+
+ return;
+}
+
+
+
+
+unsigned int
+cop_sw (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int coproc_num,
+ int coproc_reg)
+{
+ unsigned int value = 0;
+
+ switch (coproc_num)
+ {
+ case 1:
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+ FP_formats hold;
+ hold = FPR_STATE[coproc_reg];
+ FPR_STATE[coproc_reg] = fmt_word;
+ value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
+ FPR_STATE[coproc_reg] = hold;
+ break;
+ }
+
+ default:
+#if 0 /* should be controlled by configuration option */
+ sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
+#endif
+ break;
+ }
+
+ return(value);
+}
+
+uword64
+cop_sd (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int coproc_num,
+ int coproc_reg)
+{
+ uword64 value = 0;
+ switch (coproc_num)
+ {
+ case 1:
+ if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
+ {
+ value = ValueFPR(coproc_reg,fmt_uninterpreted);
+ break;
+ }
+
+ default:
+#if 0 /* should be controlled by configuration option */
+ sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
+#endif
+ break;
+ }
+
+ return(value);
+}
+
+
+
+
+void
+decode_coproc (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ unsigned int instruction)
+{
+ int coprocnum = ((instruction >> 26) & 3);
+
+ switch (coprocnum)
+ {
+ case 0: /* standard CPU control and cache registers */
+ {
+ int code = ((instruction >> 21) & 0x1F);
+ int rt = ((instruction >> 16) & 0x1F);
+ int rd = ((instruction >> 11) & 0x1F);
+ int tail = instruction & 0x3ff;
+ /* R4000 Users Manual (second edition) lists the following CP0
+ instructions:
+ CODE><-RT><RD-><--TAIL--->
+ DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
+ DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
+ MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
+ MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
+ TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
+ TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
+ TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
+ TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
+ CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
+ ERET Exception return (VR4100 = 01000010000000000000000000011000)
+ */
+ if (((code == 0x00) || (code == 0x04)) && tail == 0)
+ {
+ /* M[TF]C0 - 32 bit word */
+
+ switch (rd) /* NOTEs: Standard CP0 registers */
+ {
+ /* 0 = Index R4000 VR4100 VR4300 */
+ /* 1 = Random R4000 VR4100 VR4300 */
+ /* 2 = EntryLo0 R4000 VR4100 VR4300 */
+ /* 3 = EntryLo1 R4000 VR4100 VR4300 */
+ /* 4 = Context R4000 VR4100 VR4300 */
+ /* 5 = PageMask R4000 VR4100 VR4300 */
+ /* 6 = Wired R4000 VR4100 VR4300 */
+ /* 8 = BadVAddr R4000 VR4100 VR4300 */
+ /* 9 = Count R4000 VR4100 VR4300 */
+ /* 10 = EntryHi R4000 VR4100 VR4300 */
+ /* 11 = Compare R4000 VR4100 VR4300 */
+ /* 12 = SR R4000 VR4100 VR4300 */
+#ifdef SUBTARGET_R3900
+ case 3:
+ /* 3 = Config R3900 */
+ case 7:
+ /* 7 = Cache R3900 */
+ case 15:
+ /* 15 = PRID R3900 */
+
+ /* ignore */
+ break;
+
+ case 8:
+ /* 8 = BadVAddr R4000 VR4100 VR4300 */
+ if (code == 0x00)
+ GPR[rt] = COP0_BADVADDR;
+ else
+ COP0_BADVADDR = GPR[rt];
+ break;
+
+#endif /* SUBTARGET_R3900 */
+ case 12:
+ if (code == 0x00)
+ GPR[rt] = SR;
+ else
+ SR = GPR[rt];
+ break;
+ /* 13 = Cause R4000 VR4100 VR4300 */
+ case 13:
+ if (code == 0x00)
+ GPR[rt] = CAUSE;
+ else
+ CAUSE = GPR[rt];
+ break;
+ /* 14 = EPC R4000 VR4100 VR4300 */
+ case 14:
+ if (code == 0x00)
+ GPR[rt] = (signed_word) (signed_address) EPC;
+ else
+ EPC = GPR[rt];
+ break;
+ /* 15 = PRId R4000 VR4100 VR4300 */
+#ifdef SUBTARGET_R3900
+ /* 16 = Debug */
+ case 16:
+ if (code == 0x00)
+ GPR[rt] = Debug;
+ else
+ Debug = GPR[rt];
+ break;
+#else
+ /* 16 = Config R4000 VR4100 VR4300 */
+ case 16:
+ if (code == 0x00)
+ GPR[rt] = C0_CONFIG;
+ else
+ C0_CONFIG = GPR[rt];
+ break;
+#endif
+#ifdef SUBTARGET_R3900
+ /* 17 = Debug */
+ case 17:
+ if (code == 0x00)
+ GPR[rt] = DEPC;
+ else
+ DEPC = GPR[rt];
+ break;
+#else
+ /* 17 = LLAddr R4000 VR4100 VR4300 */
+#endif
+ /* 18 = WatchLo R4000 VR4100 VR4300 */
+ /* 19 = WatchHi R4000 VR4100 VR4300 */
+ /* 20 = XContext R4000 VR4100 VR4300 */
+ /* 26 = PErr or ECC R4000 VR4100 VR4300 */
+ /* 27 = CacheErr R4000 VR4100 */
+ /* 28 = TagLo R4000 VR4100 VR4300 */
+ /* 29 = TagHi R4000 VR4100 VR4300 */
+ /* 30 = ErrorEPC R4000 VR4100 VR4300 */
+ GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
+ /* CPR[0,rd] = GPR[rt]; */
+ default:
+ if (code == 0x00)
+ GPR[rt] = (signed_word) (signed32) COP0_GPR[rd];
+ else
+ COP0_GPR[rd] = GPR[rt];
+#if 0
+ if (code == 0x00)
+ sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
+ else
+ sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
+#endif
+ }
+ }
+ else if (code == 0x10 && (tail & 0x3f) == 0x18)
+ {
+ /* ERET */
+ if (SR & status_ERL)
+ {
+ /* Oops, not yet available */
+ sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
+ PC = EPC;
+ SR &= ~status_ERL;
+ }
+ else
+ {
+ PC = EPC;
+ SR &= ~status_EXL;
+ }
+ }
+ else if (code == 0x10 && (tail & 0x3f) == 0x10)
+ {
+ /* RFE */
+#ifdef SUBTARGET_R3900
+ /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
+
+ /* shift IE/KU history bits right */
+ SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
+
+ /* TODO: CACHE register */
+#endif /* SUBTARGET_R3900 */
+ }
+ else if (code == 0x10 && (tail & 0x3f) == 0x1F)
+ {
+ /* DERET */
+ Debug &= ~Debug_DM;
+ DELAYSLOT();
+ DSPC = DEPC;
+ }
+ else
+ sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
+ /* TODO: When executing an ERET or RFE instruction we should
+ clear LLBIT, to ensure that any out-standing atomic
+ read/modify/write sequence fails. */
+ }
+ break;
+
+ case 2: /* co-processor 2 */
+ {
+ int handle = 0;
+
+
+ if(! handle)
+ {
+ sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
+ instruction,pr_addr(cia));
+ }
+ }
+ break;
+
+ case 1: /* should not occur (FPU co-processor) */
+ case 3: /* should not occur (FPU co-processor) */
+ SignalException(ReservedInstruction,instruction);
+ break;
+ }
+
+ return;
+}
+
+
+/* This code copied from gdb's utils.c. Would like to share this code,
+ but don't know of a common place where both could get to it. */
+
+/* Temporary storage using circular buffer */
+#define NUMCELLS 16
+#define CELLSIZE 32
+static char*
+get_cell (void)
+{
+ static char buf[NUMCELLS][CELLSIZE];
+ static int cell=0;
+ if (++cell>=NUMCELLS) cell=0;
+ return buf[cell];
+}
+
+/* Print routines to handle variable size regs, etc */
+
+/* Eliminate warning from compiler on 32-bit systems */
+static int thirty_two = 32;
+
+char*
+pr_addr(addr)
+ SIM_ADDR addr;
+{
+ char *paddr_str=get_cell();
+ switch (sizeof(addr))
+ {
+ case 8:
+ sprintf(paddr_str,"%08lx%08lx",
+ (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
+ break;
+ case 4:
+ sprintf(paddr_str,"%08lx",(unsigned long)addr);
+ break;
+ case 2:
+ sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
+ break;
+ default:
+ sprintf(paddr_str,"%x",addr);
+ }
+ return paddr_str;
+}
+
+char*
+pr_uword64(addr)
+ uword64 addr;
+{
+ char *paddr_str=get_cell();
+ sprintf(paddr_str,"%08lx%08lx",
+ (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
+ return paddr_str;
+}
+
+
+void
+mips_core_signal (SIM_DESC sd,
+ sim_cpu *cpu,
+ sim_cia cia,
+ unsigned map,
+ int nr_bytes,
+ address_word addr,
+ transfer_type transfer,
+ sim_core_signals sig)
+{
+ const char *copy = (transfer == read_transfer ? "read" : "write");
+ address_word ip = CIA_ADDR (cia);
+
+ switch (sig)
+ {
+ case sim_core_unmapped_signal:
+ sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
+ nr_bytes, copy,
+ (unsigned long) addr, (unsigned long) ip);
+ COP0_BADVADDR = addr;
+ SignalExceptionDataReference();
+ break;
+
+ case sim_core_unaligned_signal:
+ sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
+ nr_bytes, copy,
+ (unsigned long) addr, (unsigned long) ip);
+ COP0_BADVADDR = addr;
+ if(transfer == read_transfer)
+ SignalExceptionAddressLoad();
+ else
+ SignalExceptionAddressStore();
+ break;
+
+ default:
+ sim_engine_abort (sd, cpu, cia,
+ "mips_core_signal - internal error - bad switch");
+ }
+}
+
+
+void
+mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
+{
+ ASSERT(cpu != NULL);
+
+ if(cpu->exc_suspended > 0)
+ sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended);
+
+ PC = cia;
+ memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers));
+ cpu->exc_suspended = 0;
+}
+
+void
+mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
+{
+ ASSERT(cpu != NULL);
+
+ if(cpu->exc_suspended > 0)
+ sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
+ cpu->exc_suspended, exception);
+
+ memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers));
+ memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers));
+ cpu->exc_suspended = exception;
+}
+
+void
+mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
+{
+ ASSERT(cpu != NULL);
+
+ if(exception == 0 && cpu->exc_suspended > 0)
+ {
+ /* warn not for breakpoints */
+ if(cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP))
+ sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
+ cpu->exc_suspended);
+ }
+ else if(exception != 0 && cpu->exc_suspended > 0)
+ {
+ if(exception != cpu->exc_suspended)
+ sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
+ cpu->exc_suspended, exception);
+
+ memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers));
+ }
+ else if(exception != 0 && cpu->exc_suspended == 0)
+ {
+ sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
+ }
+ cpu->exc_suspended = 0;
+}
+
+
+/*---------------------------------------------------------------------------*/
+/*> EOF interp.c <*/