aboutsummaryrefslogtreecommitdiff
path: root/sim/frv/profile.c
diff options
context:
space:
mode:
authorDave Brolley <brolley@redhat.com>2003-08-29 16:35:47 +0000
committerDave Brolley <brolley@redhat.com>2003-08-29 16:35:47 +0000
commitb34f6357d032f4b39f9c7adb1995956d04339461 (patch)
treea77b3c9a47df5e56dc9fc85d3a2792b12cb436e8 /sim/frv/profile.c
parent60fac5b81a94dedf1997344af7a998e9ea611e55 (diff)
downloadgdb-b34f6357d032f4b39f9c7adb1995956d04339461.zip
gdb-b34f6357d032f4b39f9c7adb1995956d04339461.tar.gz
gdb-b34f6357d032f4b39f9c7adb1995956d04339461.tar.bz2
New simulator for Fujitsu frv contributed by Red Hat.
Diffstat (limited to 'sim/frv/profile.c')
-rw-r--r--sim/frv/profile.c1807
1 files changed, 1807 insertions, 0 deletions
diff --git a/sim/frv/profile.c b/sim/frv/profile.c
new file mode 100644
index 0000000..1a59e4a
--- /dev/null
+++ b/sim/frv/profile.c
@@ -0,0 +1,1807 @@
+/* frv simulator machine independent profiling code.
+
+ Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat
+
+This file is part of the GNU simulators.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along
+with this program; if not, write to the Free Software Foundation, Inc.,
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+*/
+#define WANT_CPU
+#define WANT_CPU_FRVBF
+
+#include "sim-main.h"
+#include "bfd.h"
+
+#if WITH_PROFILE_MODEL_P
+
+#include "profile.h"
+#include "profile-fr400.h"
+#include "profile-fr500.h"
+
+static void
+reset_gr_flags (SIM_CPU *cpu, INT gr)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
+ fr400_reset_gr_flags (cpu, gr);
+ /* Other machines have no gr flags right now. */
+}
+
+static void
+reset_fr_flags (SIM_CPU *cpu, INT fr)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
+ fr400_reset_fr_flags (cpu, fr);
+ else if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr500)
+ fr500_reset_fr_flags (cpu, fr);
+}
+
+static void
+reset_acc_flags (SIM_CPU *cpu, INT acc)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
+ fr400_reset_acc_flags (cpu, acc);
+ /* Other machines have no acc flags right now. */
+}
+
+static void
+reset_cc_flags (SIM_CPU *cpu, INT cc)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr500)
+ fr500_reset_cc_flags (cpu, cc);
+ /* Other machines have no cc flags. */
+}
+
+void
+set_use_is_gr_complex (SIM_CPU *cpu, INT gr)
+{
+ if (gr != -1)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ reset_gr_flags (cpu, gr);
+ ps->cur_gr_complex |= (((DI)1) << gr);
+ }
+}
+
+void
+set_use_not_gr_complex (SIM_CPU *cpu, INT gr)
+{
+ if (gr != -1)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->cur_gr_complex &= ~(((DI)1) << gr);
+ }
+}
+
+int
+use_is_gr_complex (SIM_CPU *cpu, INT gr)
+{
+ if (gr != -1)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ return ps->cur_gr_complex & (((DI)1) << gr);
+ }
+ return 0;
+}
+
+/* Globals flag indicates whether this insn is being modeled. */
+enum FRV_INSN_MODELING model_insn = FRV_INSN_NO_MODELING;
+
+/* static buffer for the name of the currently most restrictive hazard. */
+static char hazard_name[100] = "";
+
+/* Print information about the wait applied to an entire VLIW insn. */
+FRV_INSN_FETCH_BUFFER frv_insn_fetch_buffer[]
+= {
+ {1, NO_REQNO}, {1, NO_REQNO} /* init with impossible address. */
+};
+
+enum cache_request
+{
+ cache_load,
+ cache_invalidate,
+ cache_flush,
+ cache_preload,
+ cache_unlock
+};
+
+/* A queue of load requests from the data cache. Use to keep track of loads
+ which are still pending. */
+/* TODO -- some of these are mutually exclusive and can use a union. */
+typedef struct
+{
+ FRV_CACHE *cache;
+ unsigned reqno;
+ SI address;
+ int length;
+ int is_signed;
+ int regnum;
+ int cycles;
+ int regtype;
+ int lock;
+ int all;
+ int slot;
+ int active;
+ enum cache_request request;
+} CACHE_QUEUE_ELEMENT;
+
+#define CACHE_QUEUE_SIZE 64 /* TODO -- make queue dynamic */
+struct
+{
+ unsigned reqno;
+ int ix;
+ CACHE_QUEUE_ELEMENT q[CACHE_QUEUE_SIZE];
+} cache_queue = {0, 0};
+
+/* Queue a request for a load from the cache. The load will be queued as
+ 'inactive' and will be requested after the given number
+ of cycles have passed from the point the load is activated. */
+void
+request_cache_load (SIM_CPU *cpu, INT regnum, int regtype, int cycles)
+{
+ CACHE_QUEUE_ELEMENT *q;
+ FRV_VLIW *vliw;
+ int slot;
+
+ /* For a conditional load which was not executed, CPU_LOAD_LENGTH will be
+ zero. */
+ if (CPU_LOAD_LENGTH (cpu) == 0)
+ return;
+
+ if (cache_queue.ix >= CACHE_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ q = & cache_queue.q[cache_queue.ix];
+ ++cache_queue.ix;
+
+ q->reqno = cache_queue.reqno++;
+ q->request = cache_load;
+ q->cache = CPU_DATA_CACHE (cpu);
+ q->address = CPU_LOAD_ADDRESS (cpu);
+ q->length = CPU_LOAD_LENGTH (cpu);
+ q->is_signed = CPU_LOAD_SIGNED (cpu);
+ q->regnum = regnum;
+ q->regtype = regtype;
+ q->cycles = cycles;
+ q->active = 0;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ q->slot = (*vliw->current_vliw)[slot];
+
+ CPU_LOAD_LENGTH (cpu) = 0;
+}
+
+/* Queue a request to flush the cache. The request will be queued as
+ 'inactive' and will be requested after the given number
+ of cycles have passed from the point the request is activated. */
+void
+request_cache_flush (SIM_CPU *cpu, FRV_CACHE *cache, int cycles)
+{
+ CACHE_QUEUE_ELEMENT *q;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (cache_queue.ix >= CACHE_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ q = & cache_queue.q[cache_queue.ix];
+ ++cache_queue.ix;
+
+ q->reqno = cache_queue.reqno++;
+ q->request = cache_flush;
+ q->cache = cache;
+ q->address = CPU_LOAD_ADDRESS (cpu);
+ q->all = CPU_PROFILE_STATE (cpu)->all_cache_entries;
+ q->cycles = cycles;
+ q->active = 0;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ q->slot = (*vliw->current_vliw)[slot];
+}
+
+/* Queue a request to invalidate the cache. The request will be queued as
+ 'inactive' and will be requested after the given number
+ of cycles have passed from the point the request is activated. */
+void
+request_cache_invalidate (SIM_CPU *cpu, FRV_CACHE *cache, int cycles)
+{
+ CACHE_QUEUE_ELEMENT *q;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (cache_queue.ix >= CACHE_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ q = & cache_queue.q[cache_queue.ix];
+ ++cache_queue.ix;
+
+ q->reqno = cache_queue.reqno++;
+ q->request = cache_invalidate;
+ q->cache = cache;
+ q->address = CPU_LOAD_ADDRESS (cpu);
+ q->all = CPU_PROFILE_STATE (cpu)->all_cache_entries;
+ q->cycles = cycles;
+ q->active = 0;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ q->slot = (*vliw->current_vliw)[slot];
+}
+
+/* Queue a request to preload the cache. The request will be queued as
+ 'inactive' and will be requested after the given number
+ of cycles have passed from the point the request is activated. */
+void
+request_cache_preload (SIM_CPU *cpu, FRV_CACHE *cache, int cycles)
+{
+ CACHE_QUEUE_ELEMENT *q;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (cache_queue.ix >= CACHE_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ q = & cache_queue.q[cache_queue.ix];
+ ++cache_queue.ix;
+
+ q->reqno = cache_queue.reqno++;
+ q->request = cache_preload;
+ q->cache = cache;
+ q->address = CPU_LOAD_ADDRESS (cpu);
+ q->length = CPU_LOAD_LENGTH (cpu);
+ q->lock = CPU_LOAD_LOCK (cpu);
+ q->cycles = cycles;
+ q->active = 0;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ q->slot = (*vliw->current_vliw)[slot];
+
+ CPU_LOAD_LENGTH (cpu) = 0;
+}
+
+/* Queue a request to unlock the cache. The request will be queued as
+ 'inactive' and will be requested after the given number
+ of cycles have passed from the point the request is activated. */
+void
+request_cache_unlock (SIM_CPU *cpu, FRV_CACHE *cache, int cycles)
+{
+ CACHE_QUEUE_ELEMENT *q;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (cache_queue.ix >= CACHE_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ q = & cache_queue.q[cache_queue.ix];
+ ++cache_queue.ix;
+
+ q->reqno = cache_queue.reqno++;
+ q->request = cache_unlock;
+ q->cache = cache;
+ q->address = CPU_LOAD_ADDRESS (cpu);
+ q->cycles = cycles;
+ q->active = 0;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ q->slot = (*vliw->current_vliw)[slot];
+}
+
+static void
+submit_cache_request (CACHE_QUEUE_ELEMENT *q)
+{
+ switch (q->request)
+ {
+ case cache_load:
+ frv_cache_request_load (q->cache, q->reqno, q->address, q->slot);
+ break;
+ case cache_flush:
+ frv_cache_request_invalidate (q->cache, q->reqno, q->address, q->slot,
+ q->all, 1/*flush*/);
+ break;
+ case cache_invalidate:
+ frv_cache_request_invalidate (q->cache, q->reqno, q->address, q->slot,
+ q->all, 0/*flush*/);
+ break;
+ case cache_preload:
+ frv_cache_request_preload (q->cache, q->address, q->slot,
+ q->length, q->lock);
+ break;
+ case cache_unlock:
+ frv_cache_request_unlock (q->cache, q->address, q->slot);
+ break;
+ default:
+ abort ();
+ }
+}
+
+/* Activate all inactive load requests. */
+static void
+activate_cache_requests (SIM_CPU *cpu)
+{
+ int i;
+ for (i = 0; i < cache_queue.ix; ++i)
+ {
+ CACHE_QUEUE_ELEMENT *q = & cache_queue.q[i];
+ if (! q->active)
+ {
+ q->active = 1;
+ /* Submit the request now if the cycle count is zero. */
+ if (q->cycles == 0)
+ submit_cache_request (q);
+ }
+ }
+}
+
+/* Check to see if a load is pending which affects the given register(s).
+ */
+int
+load_pending_for_register (SIM_CPU *cpu, int regnum, int words, int regtype)
+{
+ int i;
+ for (i = 0; i < cache_queue.ix; ++i)
+ {
+ CACHE_QUEUE_ELEMENT *q = & cache_queue.q[i];
+
+ /* Must be the same kind of register. */
+ if (! q->active || q->request != cache_load || q->regtype != regtype)
+ continue;
+
+ /* If the registers numbers are equal, then we have a match. */
+ if (q->regnum == regnum)
+ return 1; /* load pending */
+
+ /* Check for overlap of a load with a multi-word register. */
+ if (regnum < q->regnum)
+ {
+ if (regnum + words > q->regnum)
+ return 1;
+ }
+ /* Check for overlap of a multi-word load with the register. */
+ else
+ {
+ int data_words = (q->length + sizeof (SI) - 1) / sizeof (SI);
+ if (q->regnum + data_words > regnum)
+ return 1;
+ }
+ }
+
+ return 0; /* no load pending */
+}
+
+/* Check to see if a cache flush pending which affects the given address. */
+static int
+flush_pending_for_address (SIM_CPU *cpu, SI address)
+{
+ int line_mask = ~(CPU_DATA_CACHE (cpu)->line_size - 1);
+ int i;
+ for (i = 0; i < cache_queue.ix; ++i)
+ {
+ CACHE_QUEUE_ELEMENT *q = & cache_queue.q[i];
+
+ /* Must be the same kind of request and active. */
+ if (! q->active || q->request != cache_flush)
+ continue;
+
+ /* If the addresses are equal, then we have a match. */
+ if ((q->address & line_mask) == (address & line_mask))
+ return 1; /* flush pending */
+ }
+
+ return 0; /* no flush pending */
+}
+
+static void
+remove_cache_queue_element (SIM_CPU *cpu, int i)
+{
+ /* If we are removing the load of a FR register, then remember which one(s).
+ */
+ CACHE_QUEUE_ELEMENT q = cache_queue.q[i];
+
+ for (--cache_queue.ix; i < cache_queue.ix; ++i)
+ cache_queue.q[i] = cache_queue.q[i + 1];
+
+ /* If we removed a load of a FR register, check to see if any other loads
+ of that register is still queued. If not, then apply the queued post
+ processing time of that register to its latency. Also apply
+ 1 extra cycle of latency to the register since it was a floating point
+ load. */
+ if (q.request == cache_load && q.regtype != REGTYPE_NONE)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int data_words = (q.length + sizeof (SI) - 1) / sizeof (SI);
+ int j;
+ for (j = 0; j < data_words; ++j)
+ {
+ int regnum = q.regnum + j;
+ if (! load_pending_for_register (cpu, regnum, 1, q.regtype))
+ {
+ if (q.regtype == REGTYPE_FR)
+ {
+ int *fr = ps->fr_busy;
+ fr[regnum] += 1 + ps->fr_ptime[regnum];
+ ps->fr_ptime[regnum] = 0;
+ }
+ }
+ }
+ }
+}
+
+/* Copy data from the cache buffer to the target register(s). */
+static void
+copy_load_data (SIM_CPU *current_cpu, FRV_CACHE *cache, int slot,
+ CACHE_QUEUE_ELEMENT *q)
+{
+ switch (q->length)
+ {
+ case 1:
+ if (q->regtype == REGTYPE_FR)
+ {
+ if (q->is_signed)
+ {
+ QI value = CACHE_RETURN_DATA (cache, slot, q->address, QI, 1);
+ SET_H_FR (q->regnum, value);
+ }
+ else
+ {
+ UQI value = CACHE_RETURN_DATA (cache, slot, q->address, UQI, 1);
+ SET_H_FR (q->regnum, value);
+ }
+ }
+ else
+ {
+ if (q->is_signed)
+ {
+ QI value = CACHE_RETURN_DATA (cache, slot, q->address, QI, 1);
+ SET_H_GR (q->regnum, value);
+ }
+ else
+ {
+ UQI value = CACHE_RETURN_DATA (cache, slot, q->address, UQI, 1);
+ SET_H_GR (q->regnum, value);
+ }
+ }
+ break;
+ case 2:
+ if (q->regtype == REGTYPE_FR)
+ {
+ if (q->is_signed)
+ {
+ HI value = CACHE_RETURN_DATA (cache, slot, q->address, HI, 2);
+ SET_H_FR (q->regnum, value);
+ }
+ else
+ {
+ UHI value = CACHE_RETURN_DATA (cache, slot, q->address, UHI, 2);
+ SET_H_FR (q->regnum, value);
+ }
+ }
+ else
+ {
+ if (q->is_signed)
+ {
+ HI value = CACHE_RETURN_DATA (cache, slot, q->address, HI, 2);
+ SET_H_GR (q->regnum, value);
+ }
+ else
+ {
+ UHI value = CACHE_RETURN_DATA (cache, slot, q->address, UHI, 2);
+ SET_H_GR (q->regnum, value);
+ }
+ }
+ break;
+ case 4:
+ if (q->regtype == REGTYPE_FR)
+ {
+ SET_H_FR (q->regnum,
+ CACHE_RETURN_DATA (cache, slot, q->address, SF, 4));
+ }
+ else
+ {
+ SET_H_GR (q->regnum,
+ CACHE_RETURN_DATA (cache, slot, q->address, SI, 4));
+ }
+ break;
+ case 8:
+ if (q->regtype == REGTYPE_FR)
+ {
+ SET_H_FR_DOUBLE (q->regnum,
+ CACHE_RETURN_DATA (cache, slot, q->address, DF, 8));
+ }
+ else
+ {
+ SET_H_GR_DOUBLE (q->regnum,
+ CACHE_RETURN_DATA (cache, slot, q->address, DI, 8));
+ }
+ break;
+ case 16:
+ if (q->regtype == REGTYPE_FR)
+ frvbf_h_fr_quad_set_handler (current_cpu, q->regnum,
+ CACHE_RETURN_DATA_ADDRESS (cache, slot,
+ q->address,
+ 16));
+ else
+ frvbf_h_gr_quad_set_handler (current_cpu, q->regnum,
+ CACHE_RETURN_DATA_ADDRESS (cache, slot,
+ q->address,
+ 16));
+ break;
+ default:
+ abort ();
+ }
+}
+
+static int
+request_complete (SIM_CPU *cpu, CACHE_QUEUE_ELEMENT *q)
+{
+ FRV_CACHE* cache;
+ if (! q->active || q->cycles > 0)
+ return 0;
+
+ cache = CPU_DATA_CACHE (cpu);
+ switch (q->request)
+ {
+ case cache_load:
+ /* For loads, we must wait until the data is returned from the cache. */
+ if (frv_cache_data_in_buffer (cache, 0, q->address, q->reqno))
+ {
+ copy_load_data (cpu, cache, 0, q);
+ return 1;
+ }
+ if (frv_cache_data_in_buffer (cache, 1, q->address, q->reqno))
+ {
+ copy_load_data (cpu, cache, 1, q);
+ return 1;
+ }
+ break;
+
+ case cache_flush:
+ /* We must wait until the data is flushed. */
+ if (frv_cache_data_flushed (cache, 0, q->address, q->reqno))
+ return 1;
+ if (frv_cache_data_flushed (cache, 1, q->address, q->reqno))
+ return 1;
+ break;
+
+ default:
+ /* All other requests are complete once they've been made. */
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Run the insn and data caches through the given number of cycles, taking
+ note of load requests which are fullfilled as a result. */
+static void
+run_caches (SIM_CPU *cpu, int cycles)
+{
+ FRV_CACHE* data_cache = CPU_DATA_CACHE (cpu);
+ FRV_CACHE* insn_cache = CPU_INSN_CACHE (cpu);
+ int i;
+ /* For each cycle, run the caches, noting which requests have been fullfilled
+ and submitting new requests on their designated cycles. */
+ for (i = 0; i < cycles; ++i)
+ {
+ int j;
+ /* Run the caches through 1 cycle. */
+ frv_cache_run (data_cache, 1);
+ frv_cache_run (insn_cache, 1);
+
+ /* Note whether prefetched insn data has been loaded yet. */
+ for (j = LS; j < FRV_CACHE_PIPELINES; ++j)
+ {
+ if (frv_insn_fetch_buffer[j].reqno != NO_REQNO
+ && frv_cache_data_in_buffer (insn_cache, j,
+ frv_insn_fetch_buffer[j].address,
+ frv_insn_fetch_buffer[j].reqno))
+ frv_insn_fetch_buffer[j].reqno = NO_REQNO;
+ }
+
+ /* Check to see which requests have been satisfied and which should
+ be submitted now. */
+ for (j = 0; j < cache_queue.ix; ++j)
+ {
+ CACHE_QUEUE_ELEMENT *q = & cache_queue.q[j];
+ if (! q->active)
+ continue;
+
+ /* If a load has been satisfied, complete the operation and remove it
+ from the queue. */
+ if (request_complete (cpu, q))
+ {
+ remove_cache_queue_element (cpu, j);
+ --j;
+ continue;
+ }
+
+ /* Decrease the cycle count of each queued request.
+ Submit a request for each queued request whose cycle count has
+ become zero. */
+ --q->cycles;
+ if (q->cycles == 0)
+ submit_cache_request (q);
+ }
+ }
+}
+
+static void
+apply_latency_adjustments (SIM_CPU *cpu)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int i;
+ /* update the latencies of the registers. */
+ int *fr = ps->fr_busy;
+ int *acc = ps->acc_busy;
+ for (i = 0; i < 64; ++i)
+ {
+ if (ps->fr_busy_adjust[i] > 0)
+ *fr -= ps->fr_busy_adjust[i]; /* OK if it goes negative. */
+ if (ps->acc_busy_adjust[i] > 0)
+ *acc -= ps->acc_busy_adjust[i]; /* OK if it goes negative. */
+ ++fr;
+ ++acc;
+ }
+}
+
+/* Account for the number of cycles which have just passed in the latency of
+ various system elements. Works for negative cycles too so that latency
+ can be extended in the case of insn fetch latency.
+ If negative or zero, then no adjustment is necessary. */
+static void
+update_latencies (SIM_CPU *cpu, int cycles)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int i;
+ /* update the latencies of the registers. */
+ int *fdiv;
+ int *fsqrt;
+ int *idiv;
+ int *ccr;
+ int *gr = ps->gr_busy;
+ int *fr = ps->fr_busy;
+ int *acc = ps->acc_busy;
+ /* This loop handles GR, FR and ACC registers. */
+ for (i = 0; i < 64; ++i)
+ {
+ if (*gr <= cycles)
+ {
+ *gr = 0;
+ reset_gr_flags (cpu, i);
+ }
+ else
+ *gr -= cycles;
+ /* If the busy drops to 0, then mark the register as
+ "not in use". */
+ if (*fr <= cycles)
+ {
+ int *fr_lat = ps->fr_latency + i;
+ *fr = 0;
+ ps->fr_busy_adjust[i] = 0;
+ /* Only clear flags if this register has no target latency. */
+ if (*fr_lat == 0)
+ reset_fr_flags (cpu, i);
+ }
+ else
+ *fr -= cycles;
+ /* If the busy drops to 0, then mark the register as
+ "not in use". */
+ if (*acc <= cycles)
+ {
+ int *acc_lat = ps->acc_latency + i;
+ *acc = 0;
+ ps->acc_busy_adjust[i] = 0;
+ /* Only clear flags if this register has no target latency. */
+ if (*acc_lat == 0)
+ reset_acc_flags (cpu, i);
+ }
+ else
+ *acc -= cycles;
+ ++gr;
+ ++fr;
+ ++acc;
+ }
+ /* This loop handles CCR registers. */
+ ccr = ps->ccr_busy;
+ for (i = 0; i < 8; ++i)
+ {
+ if (*ccr <= cycles)
+ {
+ *ccr = 0;
+ reset_cc_flags (cpu, i);
+ }
+ else
+ *ccr -= cycles;
+ ++ccr;
+ }
+ /* This loop handles resources. */
+ idiv = ps->idiv_busy;
+ fdiv = ps->fdiv_busy;
+ fsqrt = ps->fsqrt_busy;
+ for (i = 0; i < 2; ++i)
+ {
+ *idiv = (*idiv <= cycles) ? 0 : (*idiv - cycles);
+ *fdiv = (*fdiv <= cycles) ? 0 : (*fdiv - cycles);
+ *fsqrt = (*fsqrt <= cycles) ? 0 : (*fsqrt - cycles);
+ ++idiv;
+ ++fdiv;
+ ++fsqrt;
+ }
+}
+
+/* Print information about the wait for the given number of cycles. */
+void
+frv_model_trace_wait_cycles (SIM_CPU *cpu, int cycles, const char *hazard_name)
+{
+ if (TRACE_INSN_P (cpu) && cycles > 0)
+ {
+ SIM_DESC sd = CPU_STATE (cpu);
+ trace_printf (sd, cpu, "**** %s wait %d cycles ***\n",
+ hazard_name, cycles);
+ }
+}
+
+void
+trace_vliw_wait_cycles (SIM_CPU *cpu)
+{
+ if (TRACE_INSN_P (cpu))
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ frv_model_trace_wait_cycles (cpu, ps->vliw_wait, hazard_name);
+ }
+}
+
+/* Wait for the given number of cycles. */
+void
+frv_model_advance_cycles (SIM_CPU *cpu, int cycles)
+{
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+ update_latencies (cpu, cycles);
+ run_caches (cpu, cycles);
+ PROFILE_MODEL_TOTAL_CYCLES (p) += cycles;
+}
+
+void
+handle_resource_wait (SIM_CPU *cpu)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ if (ps->vliw_wait != 0)
+ frv_model_advance_cycles (cpu, ps->vliw_wait);
+ if (ps->vliw_load_stall > ps->vliw_wait)
+ ps->vliw_load_stall -= ps->vliw_wait;
+ else
+ ps->vliw_load_stall = 0;
+}
+
+/* Account for the number of cycles until these resources will be available
+ again. */
+static void
+update_target_latencies (SIM_CPU *cpu)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int i;
+ /* update the latencies of the registers. */
+ int *ccr_lat;
+ int *gr_lat = ps->gr_latency;
+ int *fr_lat = ps->fr_latency;
+ int *acc_lat = ps->acc_latency;
+ int *ccr;
+ int *gr = ps->gr_busy;
+ int *fr = ps->fr_busy;
+ int *acc = ps->acc_busy;
+ /* This loop handles GR, FR and ACC registers. */
+ for (i = 0; i < 64; ++i)
+ {
+ if (*gr_lat)
+ {
+ *gr = *gr_lat;
+ *gr_lat = 0;
+ }
+ if (*fr_lat)
+ {
+ *fr = *fr_lat;
+ *fr_lat = 0;
+ }
+ if (*acc_lat)
+ {
+ *acc = *acc_lat;
+ *acc_lat = 0;
+ }
+ ++gr; ++gr_lat;
+ ++fr; ++fr_lat;
+ ++acc; ++acc_lat;
+ }
+ /* This loop handles CCR registers. */
+ ccr = ps->ccr_busy;
+ ccr_lat = ps->ccr_latency;
+ for (i = 0; i < 8; ++i)
+ {
+ if (*ccr_lat)
+ {
+ *ccr = *ccr_lat;
+ *ccr_lat = 0;
+ }
+ ++ccr; ++ccr_lat;
+ }
+}
+
+/* Run the caches until all pending cache flushes are complete. */
+static void
+wait_for_flush (SIM_CPU *cpu)
+{
+ SI address = CPU_LOAD_ADDRESS (cpu);
+ int wait = 0;
+ while (flush_pending_for_address (cpu, address))
+ {
+ frv_model_advance_cycles (cpu, 1);
+ ++wait;
+ }
+ if (TRACE_INSN_P (cpu) && wait)
+ {
+ sprintf (hazard_name, "Data cache flush address %p:", address);
+ frv_model_trace_wait_cycles (cpu, wait, hazard_name);
+ }
+}
+
+/* Initialize cycle counting for an insn.
+ FIRST_P is non-zero if this is the first insn in a set of parallel
+ insns. */
+void
+frvbf_model_insn_before (SIM_CPU *cpu, int first_p)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+
+ ps->vliw_wait = 0;
+ ps->post_wait = 0;
+ memset (ps->fr_busy_adjust, 0, sizeof (ps->fr_busy_adjust));
+ memset (ps->acc_busy_adjust, 0, sizeof (ps->acc_busy_adjust));
+
+ if (first_p)
+ {
+ ps->vliw_insns++;
+ ps->vliw_cycles = 0;
+ ps->vliw_branch_taken = 0;
+ ps->vliw_load_stall = 0;
+ }
+
+ switch (STATE_ARCHITECTURE (sd)->mach)
+ {
+ case bfd_mach_fr400:
+ fr400_model_insn_before (cpu, first_p);
+ break;
+ case bfd_mach_fr500:
+ fr500_model_insn_before (cpu, first_p);
+ break;
+ default:
+ break;
+ }
+
+ if (first_p)
+ wait_for_flush (cpu);
+}
+
+/* Record the cycles computed for an insn.
+ LAST_P is non-zero if this is the last insn in a set of parallel insns,
+ and we update the total cycle count.
+ CYCLES is the cycle count of the insn. */
+
+void
+frvbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
+{
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ SIM_DESC sd = CPU_STATE (cpu);
+
+ PROFILE_MODEL_CUR_INSN_CYCLES (p) = cycles;
+
+ /* The number of cycles for a VLIW insn is the maximum number of cycles
+ used by any individual insn within it. */
+ if (cycles > ps->vliw_cycles)
+ ps->vliw_cycles = cycles;
+
+ if (last_p)
+ {
+ /* This is the last insn in a VLIW insn. */
+ struct frv_interrupt_timer *timer = & frv_interrupt_state.timer;
+
+ activate_cache_requests (cpu); /* before advancing cycles. */
+ apply_latency_adjustments (cpu); /* must go first. */
+ update_target_latencies (cpu); /* must go next. */
+ frv_model_advance_cycles (cpu, ps->vliw_cycles);
+
+ PROFILE_MODEL_LOAD_STALL_CYCLES (p) += ps->vliw_load_stall;
+
+ /* Check the interrupt timer. cycles contains the total cycle count. */
+ if (timer->enabled)
+ {
+ cycles = PROFILE_MODEL_TOTAL_CYCLES (p);
+ if (timer->current % timer->value
+ + (cycles - timer->current) >= timer->value)
+ frv_queue_external_interrupt (cpu, timer->interrupt);
+ timer->current = cycles;
+ }
+
+ ps->past_first_p = 0; /* Next one will be the first in a new VLIW. */
+ ps->branch_address = -1;
+ }
+ else
+ ps->past_first_p = 1;
+
+ switch (STATE_ARCHITECTURE (sd)->mach)
+ {
+ case bfd_mach_fr400:
+ fr400_model_insn_after (cpu, last_p, cycles);
+ break;
+ case bfd_mach_fr500:
+ fr500_model_insn_after (cpu, last_p, cycles);
+ break;
+ default:
+ break;
+ }
+}
+
+USI
+frvbf_model_branch (SIM_CPU *current_cpu, PCADDR target, int hint)
+{
+ /* Record the hint and branch address for use in profiling. */
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
+ ps->branch_hint = hint;
+ ps->branch_address = target;
+}
+
+/* Top up the latency of the given GR by the given number of cycles. */
+void
+update_GR_latency (SIM_CPU *cpu, INT out_GR, int cycles)
+{
+ if (out_GR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_latency;
+ if (gr[out_GR] < cycles)
+ gr[out_GR] = cycles;
+ }
+}
+
+void
+decrease_GR_busy (SIM_CPU *cpu, INT in_GR, int cycles)
+{
+ if (in_GR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_busy;
+ gr[in_GR] -= cycles;
+ }
+}
+
+/* Top up the latency of the given double GR by the number of cycles. */
+void
+update_GRdouble_latency (SIM_CPU *cpu, INT out_GR, int cycles)
+{
+ if (out_GR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_latency;
+ if (gr[out_GR] < cycles)
+ gr[out_GR] = cycles;
+ if (out_GR < 63 && gr[out_GR + 1] < cycles)
+ gr[out_GR + 1] = cycles;
+ }
+}
+
+void
+update_GR_latency_for_load (SIM_CPU *cpu, INT out_GR, int cycles)
+{
+ if (out_GR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_latency;
+
+ /* The latency of the GR will be at least the number of cycles used
+ by the insn. */
+ if (gr[out_GR] < cycles)
+ gr[out_GR] = cycles;
+
+ /* The latency will also depend on how long it takes to retrieve the
+ data from the cache or memory. Assume that the load is issued
+ after the last cycle of the insn. */
+ request_cache_load (cpu, out_GR, REGTYPE_NONE, cycles);
+ }
+}
+
+void
+update_GRdouble_latency_for_load (SIM_CPU *cpu, INT out_GR, int cycles)
+{
+ if (out_GR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_latency;
+
+ /* The latency of the GR will be at least the number of cycles used
+ by the insn. */
+ if (gr[out_GR] < cycles)
+ gr[out_GR] = cycles;
+ if (out_GR < 63 && gr[out_GR + 1] < cycles)
+ gr[out_GR + 1] = cycles;
+
+ /* The latency will also depend on how long it takes to retrieve the
+ data from the cache or memory. Assume that the load is issued
+ after the last cycle of the insn. */
+ request_cache_load (cpu, out_GR, REGTYPE_NONE, cycles);
+ }
+}
+
+void
+update_GR_latency_for_swap (SIM_CPU *cpu, INT out_GR, int cycles)
+{
+ update_GR_latency_for_load (cpu, out_GR, cycles);
+}
+
+/* Top up the latency of the given FR by the given number of cycles. */
+void
+update_FR_latency (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_latency;
+ if (fr[out_FR] < cycles)
+ fr[out_FR] = cycles;
+ }
+}
+
+/* Top up the latency of the given double FR by the number of cycles. */
+void
+update_FRdouble_latency (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_latency;
+ if (fr[out_FR] < cycles)
+ fr[out_FR] = cycles;
+ if (out_FR < 63 && fr[out_FR + 1] < cycles)
+ fr[out_FR + 1] = cycles;
+ }
+}
+
+void
+update_FR_latency_for_load (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_latency;
+
+ /* The latency of the FR will be at least the number of cycles used
+ by the insn. */
+ if (fr[out_FR] < cycles)
+ fr[out_FR] = cycles;
+
+ /* The latency will also depend on how long it takes to retrieve the
+ data from the cache or memory. Assume that the load is issued
+ after the last cycle of the insn. */
+ request_cache_load (cpu, out_FR, REGTYPE_FR, cycles);
+ }
+}
+
+void
+update_FRdouble_latency_for_load (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_latency;
+
+ /* The latency of the FR will be at least the number of cycles used
+ by the insn. */
+ if (fr[out_FR] < cycles)
+ fr[out_FR] = cycles;
+ if (out_FR < 63 && fr[out_FR + 1] < cycles)
+ fr[out_FR + 1] = cycles;
+
+ /* The latency will also depend on how long it takes to retrieve the
+ data from the cache or memory. Assume that the load is issued
+ after the last cycle of the insn. */
+ request_cache_load (cpu, out_FR, REGTYPE_FR, cycles);
+ }
+}
+
+/* Top up the post-processing time of the given FR by the given number of
+ cycles. */
+void
+update_ACC_ptime (SIM_CPU *cpu, INT out_ACC, int cycles)
+{
+ if (out_ACC >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ /* No load can be pending on this register. Apply the cycles
+ directly to the latency of the register. */
+ int *acc = ps->acc_latency;
+ acc[out_ACC] += cycles;
+ }
+}
+
+void
+decrease_ACC_busy (SIM_CPU *cpu, INT out_ACC, int cycles)
+{
+ if (out_ACC >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *acc = ps->acc_busy;
+ acc[out_ACC] -= cycles;
+ if (ps->acc_busy_adjust[out_ACC] >= 0
+ && cycles > ps->acc_busy_adjust[out_ACC])
+ ps->acc_busy_adjust[out_ACC] = cycles;
+ }
+}
+
+void
+decrease_FR_busy (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+ fr[out_FR] -= cycles;
+ if (ps->fr_busy_adjust[out_FR] >= 0
+ && cycles > ps->fr_busy_adjust[out_FR])
+ ps->fr_busy_adjust[out_FR] = cycles;
+ }
+}
+
+void
+increase_FR_busy (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+ fr[out_FR] += cycles;
+ }
+}
+
+/* Top up the latency of the given ACC by the given number of cycles. */
+void
+update_ACC_latency (SIM_CPU *cpu, INT out_ACC, int cycles)
+{
+ if (out_ACC >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *acc = ps->acc_latency;
+ if (acc[out_ACC] < cycles)
+ acc[out_ACC] = cycles;
+ }
+}
+
+/* Top up the latency of the given CCR by the given number of cycles. */
+void
+update_CCR_latency (SIM_CPU *cpu, INT out_CCR, int cycles)
+{
+ if (out_CCR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *ccr = ps->ccr_latency;
+ if (ccr[out_CCR] < cycles)
+ ccr[out_CCR] = cycles;
+ }
+}
+
+/* Top up the latency of the given integer division resource by the given
+ number of cycles. */
+void
+update_idiv_resource_latency (SIM_CPU *cpu, INT in_resource, int cycles)
+{
+ /* operate directly on the busy cycles since each resource can only
+ be used once in a VLIW insn. */
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->idiv_busy;
+ r[in_resource] = cycles;
+}
+
+/* Set the latency of the given resource to the given number of cycles. */
+void
+update_fdiv_resource_latency (SIM_CPU *cpu, INT in_resource, int cycles)
+{
+ /* operate directly on the busy cycles since each resource can only
+ be used once in a VLIW insn. */
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->fdiv_busy;
+ r[in_resource] = cycles;
+}
+
+/* Set the latency of the given resource to the given number of cycles. */
+void
+update_fsqrt_resource_latency (SIM_CPU *cpu, INT in_resource, int cycles)
+{
+ /* operate directly on the busy cycles since each resource can only
+ be used once in a VLIW insn. */
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->fsqrt_busy;
+ r[in_resource] = cycles;
+}
+
+/* Set the branch penalty to the given number of cycles. */
+void
+update_branch_penalty (SIM_CPU *cpu, int cycles)
+{
+ /* operate directly on the busy cycles since only one branch can occur
+ in a VLIW insn. */
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->branch_penalty = cycles;
+}
+
+/* Check the availability of the given GR register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_GR (SIM_CPU *cpu, INT in_GR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_GR >= 0 && gr[in_GR] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for gr%d:", in_GR);
+ ps->vliw_wait = gr[in_GR];
+ }
+}
+
+/* Check the availability of the given GR register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_GRdouble (SIM_CPU *cpu, INT in_GR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *gr = ps->gr_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_GR >= 0)
+ {
+ if (gr[in_GR] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for gr%d:", in_GR);
+ ps->vliw_wait = gr[in_GR];
+ }
+ if (in_GR < 63 && gr[in_GR + 1] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for gr%d:", in_GR + 1);
+ ps->vliw_wait = gr[in_GR + 1];
+ }
+ }
+}
+
+/* Check the availability of the given FR register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_FR (SIM_CPU *cpu, INT in_FR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_FR >= 0 && fr[in_FR] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ ps->vliw_wait = fr[in_FR];
+ }
+}
+
+/* Check the availability of the given GR register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_FRdouble (SIM_CPU *cpu, INT in_FR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_FR >= 0)
+ {
+ if (fr[in_FR] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ ps->vliw_wait = fr[in_FR];
+ }
+ if (in_FR < 63 && fr[in_FR + 1] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR + 1);
+ ps->vliw_wait = fr[in_FR + 1];
+ }
+ }
+}
+
+/* Check the availability of the given CCR register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_CCR (SIM_CPU *cpu, INT in_CCR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *ccr = ps->ccr_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_CCR >= 0 && ccr[in_CCR] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ {
+ if (in_CCR > 3)
+ sprintf (hazard_name, "Data hazard for icc%d:", in_CCR-4);
+ else
+ sprintf (hazard_name, "Data hazard for fcc%d:", in_CCR);
+ }
+ ps->vliw_wait = ccr[in_CCR];
+ }
+}
+
+/* Check the availability of the given ACC register and update the number
+ of cycles the current VLIW insn must wait until it is available. */
+void
+vliw_wait_for_ACC (SIM_CPU *cpu, INT in_ACC)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *acc = ps->acc_busy;
+ /* If the latency of the register is greater than the current wait
+ then update the current wait. */
+ if (in_ACC >= 0 && acc[in_ACC] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for acc%d:", in_ACC);
+ ps->vliw_wait = acc[in_ACC];
+ }
+}
+
+/* Check the availability of the given integer division resource and update
+ the number of cycles the current VLIW insn must wait until it is available.
+*/
+void
+vliw_wait_for_idiv_resource (SIM_CPU *cpu, INT in_resource)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->idiv_busy;
+ /* If the latency of the resource is greater than the current wait
+ then update the current wait. */
+ if (r[in_resource] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ {
+ sprintf (hazard_name, "Resource hazard for integer division in slot I%d:", in_resource);
+ }
+ ps->vliw_wait = r[in_resource];
+ }
+}
+
+/* Check the availability of the given float division resource and update
+ the number of cycles the current VLIW insn must wait until it is available.
+*/
+void
+vliw_wait_for_fdiv_resource (SIM_CPU *cpu, INT in_resource)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->fdiv_busy;
+ /* If the latency of the resource is greater than the current wait
+ then update the current wait. */
+ if (r[in_resource] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ {
+ sprintf (hazard_name, "Resource hazard for integer division in slot I%d:", in_resource);
+ }
+ ps->vliw_wait = r[in_resource];
+ }
+}
+
+/* Check the availability of the given float square root resource and update
+ the number of cycles the current VLIW insn must wait until it is available.
+*/
+void
+vliw_wait_for_fsqrt_resource (SIM_CPU *cpu, INT in_resource)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *r = ps->fsqrt_busy;
+ /* If the latency of the resource is greater than the current wait
+ then update the current wait. */
+ if (r[in_resource] > ps->vliw_wait)
+ {
+ if (TRACE_INSN_P (cpu))
+ {
+ sprintf (hazard_name, "Resource hazard for integer division in slot I%d:", in_resource);
+ }
+ ps->vliw_wait = r[in_resource];
+ }
+}
+
+/* Run the caches until all requests for the given register(s) are satisfied. */
+void
+load_wait_for_GR (SIM_CPU *cpu, INT in_GR)
+{
+ if (in_GR >= 0)
+ {
+ int wait = 0;
+ while (load_pending_for_register (cpu, in_GR, 1/*words*/, REGTYPE_NONE))
+ {
+ frv_model_advance_cycles (cpu, 1);
+ ++wait;
+ }
+ if (wait)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->vliw_wait += wait;
+ ps->vliw_load_stall += wait;
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for gr%d:", in_GR);
+ }
+ }
+}
+
+void
+load_wait_for_FR (SIM_CPU *cpu, INT in_FR)
+{
+ if (in_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr;
+ int wait = 0;
+ while (load_pending_for_register (cpu, in_FR, 1/*words*/, REGTYPE_FR))
+ {
+ frv_model_advance_cycles (cpu, 1);
+ ++wait;
+ }
+ /* Post processing time may have been added to the register's
+ latency after the loads were processed. Account for that too.
+ */
+ fr = ps->fr_busy;
+ if (fr[in_FR])
+ {
+ wait += fr[in_FR];
+ frv_model_advance_cycles (cpu, fr[in_FR]);
+ }
+ /* Update the vliw_wait with the number of cycles we waited for the
+ load and any post-processing. */
+ if (wait)
+ {
+ ps->vliw_wait += wait;
+ ps->vliw_load_stall += wait;
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ }
+ }
+}
+
+void
+load_wait_for_GRdouble (SIM_CPU *cpu, INT in_GR)
+{
+ if (in_GR >= 0)
+ {
+ int wait = 0;
+ while (load_pending_for_register (cpu, in_GR, 2/*words*/, REGTYPE_NONE))
+ {
+ frv_model_advance_cycles (cpu, 1);
+ ++wait;
+ }
+ if (wait)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->vliw_wait += wait;
+ ps->vliw_load_stall += wait;
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for gr%d:", in_GR);
+ }
+ }
+}
+
+void
+load_wait_for_FRdouble (SIM_CPU *cpu, INT in_FR)
+{
+ if (in_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr;
+ int wait = 0;
+ while (load_pending_for_register (cpu, in_FR, 2/*words*/, REGTYPE_FR))
+ {
+ frv_model_advance_cycles (cpu, 1);
+ ++wait;
+ }
+ /* Post processing time may have been added to the registers'
+ latencies after the loads were processed. Account for that too.
+ */
+ fr = ps->fr_busy;
+ if (fr[in_FR])
+ {
+ wait += fr[in_FR];
+ frv_model_advance_cycles (cpu, fr[in_FR]);
+ }
+ if (in_FR < 63)
+ {
+ if (fr[in_FR + 1])
+ {
+ wait += fr[in_FR + 1];
+ frv_model_advance_cycles (cpu, fr[in_FR + 1]);
+ }
+ }
+ /* Update the vliw_wait with the number of cycles we waited for the
+ load and any post-processing. */
+ if (wait)
+ {
+ ps->vliw_wait += wait;
+ ps->vliw_load_stall += wait;
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ }
+ }
+}
+
+void
+enforce_full_fr_latency (SIM_CPU *cpu, INT in_FR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->fr_busy_adjust [in_FR] = -1;
+}
+
+/* Calculate how long the post processing for a floating point insn must
+ wait for resources to become available. */
+int
+post_wait_for_FR (SIM_CPU *cpu, INT in_FR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+
+ if (in_FR >= 0 && fr[in_FR] > ps->post_wait)
+ {
+ ps->post_wait = fr[in_FR];
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ }
+}
+
+/* Calculate how long the post processing for a floating point insn must
+ wait for resources to become available. */
+int
+post_wait_for_FRdouble (SIM_CPU *cpu, INT in_FR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fr = ps->fr_busy;
+
+ if (in_FR >= 0)
+ {
+ if (fr[in_FR] > ps->post_wait)
+ {
+ ps->post_wait = fr[in_FR];
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR);
+ }
+ if (in_FR < 63 && fr[in_FR + 1] > ps->post_wait)
+ {
+ ps->post_wait = fr[in_FR + 1];
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for fr%d:", in_FR + 1);
+ }
+ }
+}
+
+int
+post_wait_for_ACC (SIM_CPU *cpu, INT in_ACC)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *acc = ps->acc_busy;
+
+ if (in_ACC >= 0 && acc[in_ACC] > ps->post_wait)
+ {
+ ps->post_wait = acc[in_ACC];
+ if (TRACE_INSN_P (cpu))
+ sprintf (hazard_name, "Data hazard for acc%d:", in_ACC);
+ }
+}
+
+int
+post_wait_for_CCR (SIM_CPU *cpu, INT in_CCR)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *ccr = ps->ccr_busy;
+
+ if (in_CCR >= 0 && ccr[in_CCR] > ps->post_wait)
+ {
+ ps->post_wait = ccr[in_CCR];
+ if (TRACE_INSN_P (cpu))
+ {
+ if (in_CCR > 3)
+ sprintf (hazard_name, "Data hazard for icc%d:", in_CCR - 4);
+ else
+ sprintf (hazard_name, "Data hazard for fcc%d:", in_CCR);
+ }
+ }
+}
+
+int
+post_wait_for_fdiv (SIM_CPU *cpu, INT slot)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fdiv = ps->fdiv_busy;
+
+ /* Multiple floating point divisions in the same slot need only wait 1
+ extra cycle. */
+ if (fdiv[slot] > 0 && 1 > ps->post_wait)
+ {
+ ps->post_wait = 1;
+ if (TRACE_INSN_P (cpu))
+ {
+ sprintf (hazard_name, "Resource hazard for floating point division in slot F%d:", slot);
+ }
+ }
+}
+
+int
+post_wait_for_fsqrt (SIM_CPU *cpu, INT slot)
+{
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ int *fsqrt = ps->fsqrt_busy;
+
+ /* Multiple floating point square roots in the same slot need only wait 1
+ extra cycle. */
+ if (fsqrt[slot] > 0 && 1 > ps->post_wait)
+ {
+ ps->post_wait = 1;
+ if (TRACE_INSN_P (cpu))
+ {
+ sprintf (hazard_name, "Resource hazard for square root in slot F%d:", slot);
+ }
+ }
+}
+
+/* Print cpu-specific profile information. */
+#define COMMAS(n) sim_add_commas (comma_buf, sizeof (comma_buf), (n))
+
+static void
+print_cache (SIM_CPU *cpu, FRV_CACHE *cache, const char *cache_name)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+
+ if (cache != NULL)
+ {
+ char comma_buf[20];
+ unsigned accesses;
+
+ sim_io_printf (sd, " %s Cache\n\n", cache_name);
+ accesses = cache->statistics.accesses;
+ sim_io_printf (sd, " Total accesses: %s\n", COMMAS (accesses));
+ if (accesses != 0)
+ {
+ float rate;
+ unsigned hits = cache->statistics.hits;
+ sim_io_printf (sd, " Hits: %s\n", COMMAS (hits));
+ rate = (float)hits / accesses;
+ sim_io_printf (sd, " Hit rate: %.2f%%\n", rate * 100);
+ }
+ }
+ else
+ sim_io_printf (sd, " Model %s has no %s cache\n",
+ MODEL_NAME (CPU_MODEL (cpu)), cache_name);
+
+ sim_io_printf (sd, "\n");
+}
+
+static char *
+slot_names[] =
+{
+ "none",
+ "I0", "I1", "I01",
+ "FM1", "FM1", "FM01",
+ "B0", "B1", "B01",
+ "C"
+};
+
+static void
+print_parallel (SIM_CPU *cpu, int verbose)
+{
+ SIM_DESC sd = CPU_STATE (cpu);
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ unsigned total, vliw;
+ char comma_buf[20];
+ float average;
+
+ sim_io_printf (sd, "Model %s Parallelization\n\n",
+ MODEL_NAME (CPU_MODEL (cpu)));
+
+ total = PROFILE_TOTAL_INSN_COUNT (p);
+ sim_io_printf (sd, " Total instructions: %s\n", COMMAS (total));
+ vliw = ps->vliw_insns;
+ sim_io_printf (sd, " VLIW instructions: %s\n", COMMAS (vliw));
+ average = (float)total / vliw;
+ sim_io_printf (sd, " Average VLIW length: %.2f\n", average);
+ average = (float)PROFILE_MODEL_TOTAL_CYCLES (p) / vliw;
+ sim_io_printf (sd, " Cycles per VLIW instruction: %.2f\n", average);
+ average = (float)total / PROFILE_MODEL_TOTAL_CYCLES (p);
+ sim_io_printf (sd, " Instructions per cycle: %.2f\n", average);
+
+ if (verbose)
+ {
+ int i;
+ int max_val = 0;
+ int max_name_len = 0;
+ for (i = UNIT_NIL + 1; i < UNIT_NUM_UNITS; ++i)
+ {
+ int len;
+ if (INSNS_IN_SLOT (i) > max_val)
+ max_val = INSNS_IN_SLOT (i);
+ len = strlen (slot_names[i]);
+ if (len > max_name_len)
+ max_name_len = len;
+ }
+ if (max_val > 0)
+ {
+ sim_io_printf (sd, "\n");
+ sim_io_printf (sd, " Instructions per slot:\n");
+ sim_io_printf (sd, "\n");
+ for (i = UNIT_NIL + 1; i < UNIT_NUM_UNITS; ++i)
+ {
+ if (INSNS_IN_SLOT (i) != 0)
+ {
+ sim_io_printf (sd, " %*s: %*s: ",
+ max_name_len, slot_names[i],
+ max_val < 10000 ? 5 : 10,
+ COMMAS (INSNS_IN_SLOT (i)));
+ sim_profile_print_bar (sd, PROFILE_HISTOGRAM_WIDTH,
+ INSNS_IN_SLOT (i),
+ max_val);
+ sim_io_printf (sd, "\n");
+ }
+ }
+ } /* details to print */
+ } /* verbose */
+
+ sim_io_printf (sd, "\n");
+}
+
+void
+frv_profile_info (SIM_CPU *cpu, int verbose)
+{
+ /* FIXME: Need to add smp support. */
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+
+#if WITH_PROFILE_PARALLEL_P
+ if (PROFILE_FLAGS (p) [PROFILE_PARALLEL_IDX])
+ print_parallel (cpu, verbose);
+#endif
+
+#if WITH_PROFILE_CACHE_P
+ if (PROFILE_FLAGS (p) [PROFILE_CACHE_IDX])
+ {
+ SIM_DESC sd = CPU_STATE (cpu);
+ sim_io_printf (sd, "Model %s Cache Statistics\n\n",
+ MODEL_NAME (CPU_MODEL (cpu)));
+ print_cache (cpu, CPU_INSN_CACHE (cpu), "Instruction");
+ print_cache (cpu, CPU_DATA_CACHE (cpu), "Data");
+ }
+#endif /* WITH_PROFILE_CACHE_P */
+}
+
+/* A hack to get registers referenced for profiling. */
+SI frv_ref_SI (SI ref) {return ref;}
+#endif /* WITH_PROFILE_MODEL_P */