aboutsummaryrefslogtreecommitdiff
path: root/sim/frv/profile-fr550.c
diff options
context:
space:
mode:
authorDave Brolley <brolley@redhat.com>2003-10-08 18:19:33 +0000
committerDave Brolley <brolley@redhat.com>2003-10-08 18:19:33 +0000
commite930b1f54ff2768c5818eb0a450b1d98d46d273d (patch)
treebeff79b0fd16e78faffe78489d34d064d5618b43 /sim/frv/profile-fr550.c
parent7c3f9ad027b9ec2906f3367ca7be18e5fb8f6893 (diff)
downloadgdb-e930b1f54ff2768c5818eb0a450b1d98d46d273d.zip
gdb-e930b1f54ff2768c5818eb0a450b1d98d46d273d.tar.gz
gdb-e930b1f54ff2768c5818eb0a450b1d98d46d273d.tar.bz2
2003-10-06 Dave Brolley <brolley@redhat.com>
* profile-fr550.[ch]: New files. * configure.in: Move frv handling to alphabetically correct placement. * Makefile.in: Add fr550 support. * frv-sim.h,frv.c,interrups.c,memory.c,mloop.in,pipeline.c, profile.[ch],registers.c,traps.c: Add fr550 support. * arch.c,arch.h,cpu.c,cpu.h,cpuall.h,model.h,decode.c,decode.h,sem.c: Regenerate.
Diffstat (limited to 'sim/frv/profile-fr550.c')
-rw-r--r--sim/frv/profile-fr550.c2664
1 files changed, 2664 insertions, 0 deletions
diff --git a/sim/frv/profile-fr550.c b/sim/frv/profile-fr550.c
new file mode 100644
index 0000000..c92cf97
--- /dev/null
+++ b/sim/frv/profile-fr550.c
@@ -0,0 +1,2664 @@
+/* frv simulator fr550 dependent profiling code.
+
+ Copyright (C) 2003 Free Software Foundation, Inc.
+ Contributed by Red Hat
+
+This file is part of the GNU simulators.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along
+with this program; if not, write to the Free Software Foundation, Inc.,
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+*/
+#define WANT_CPU
+#define WANT_CPU_FRVBF
+
+#include "sim-main.h"
+#include "bfd.h"
+
+#if WITH_PROFILE_MODEL_P
+
+#include "profile.h"
+#include "profile-fr550.h"
+
+/* Initialize cycle counting for an insn.
+ FIRST_P is non-zero if this is the first insn in a set of parallel
+ insns. */
+void
+fr550_model_insn_before (SIM_CPU *cpu, int first_p)
+{
+ if (first_p)
+ {
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_fr_load = d->prev_fr_load;
+ d->cur_fr_complex_1 = d->prev_fr_complex_1;
+ d->cur_fr_complex_2 = d->prev_fr_complex_2;
+ d->cur_ccr_complex = d->prev_ccr_complex;
+ d->cur_acc_mmac = d->prev_acc_mmac;
+ }
+}
+
+/* Record the cycles computed for an insn.
+ LAST_P is non-zero if this is the last insn in a set of parallel insns,
+ and we update the total cycle count.
+ CYCLES is the cycle count of the insn. */
+void
+fr550_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
+{
+ if (last_p)
+ {
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->prev_fr_load = d->cur_fr_load;
+ d->prev_fr_complex_1 = d->cur_fr_complex_1;
+ d->prev_fr_complex_2 = d->cur_fr_complex_2;
+ d->prev_ccr_complex = d->cur_ccr_complex;
+ d->prev_acc_mmac = d->cur_acc_mmac;
+ }
+}
+
+static void fr550_reset_fr_flags (SIM_CPU *cpu, INT fr);
+static void fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr);
+static void fr550_reset_acc_flags (SIM_CPU *cpu, INT acc);
+
+static void
+set_use_is_fr_load (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ fr550_reset_fr_flags (cpu, (fr));
+ d->cur_fr_load |= (((DI)1) << (fr));
+}
+
+static void
+set_use_not_fr_load (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_fr_load &= ~(((DI)1) << (fr));
+}
+
+static int
+use_is_fr_load (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ return d->prev_fr_load & (((DI)1) << (fr));
+}
+
+static void
+set_use_is_fr_complex_1 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ fr550_reset_fr_flags (cpu, (fr));
+ d->cur_fr_complex_1 |= (((DI)1) << (fr));
+}
+
+static void
+set_use_not_fr_complex_1 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_fr_complex_1 &= ~(((DI)1) << (fr));
+}
+
+static int
+use_is_fr_complex_1 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ return d->prev_fr_complex_1 & (((DI)1) << (fr));
+}
+
+static void
+set_use_is_fr_complex_2 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ fr550_reset_fr_flags (cpu, (fr));
+ d->cur_fr_complex_2 |= (((DI)1) << (fr));
+}
+
+static void
+set_use_not_fr_complex_2 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_fr_complex_2 &= ~(((DI)1) << (fr));
+}
+
+static int
+use_is_fr_complex_2 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ return d->prev_fr_complex_2 & (((DI)1) << (fr));
+}
+
+static void
+set_use_is_ccr_complex (SIM_CPU *cpu, INT ccr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ fr550_reset_ccr_flags (cpu, (ccr));
+ d->cur_ccr_complex |= (((SI)1) << (ccr));
+}
+
+static void
+set_use_not_ccr_complex (SIM_CPU *cpu, INT ccr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_ccr_complex &= ~(((SI)1) << (ccr));
+}
+
+static int
+use_is_ccr_complex (SIM_CPU *cpu, INT ccr)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ return d->prev_ccr_complex & (((SI)1) << (ccr));
+}
+
+static void
+set_use_is_acc_mmac (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ fr550_reset_acc_flags (cpu, (acc));
+ d->cur_acc_mmac |= (((DI)1) << (acc));
+}
+
+static void
+set_use_not_acc_mmac (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ d->cur_acc_mmac &= ~(((DI)1) << (acc));
+}
+
+static int
+use_is_acc_mmac (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
+ return d->prev_acc_mmac & (((DI)1) << (acc));
+}
+
+static void
+fr550_reset_fr_flags (SIM_CPU *cpu, INT fr)
+{
+ set_use_not_fr_load (cpu, fr);
+ set_use_not_fr_complex_1 (cpu, fr);
+ set_use_not_fr_complex_2 (cpu, fr);
+}
+
+static void
+fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr)
+{
+ set_use_not_ccr_complex (cpu, ccr);
+}
+
+static void
+fr550_reset_acc_flags (SIM_CPU *cpu, INT acc)
+{
+ set_use_not_acc_mmac (cpu, acc);
+}
+
+/* Detect overlap between two register ranges. Works if one of the registers
+ is -1 with width 1 (i.e. undefined), but not both. */
+#define REG_OVERLAP(r1, w1, r2, w2) ( \
+ (r1) + (w1) - 1 >= (r2) && (r2) + (w2) - 1 >= (r1) \
+)
+
+/* Latency of floating point registers may be less than recorded when followed
+ by another floating point insn. */
+static void
+adjust_float_register_busy (SIM_CPU *cpu,
+ INT in_FRi, int iwidth,
+ INT in_FRj, int jwidth,
+ INT out_FRk, int kwidth)
+{
+ int i;
+ /* The latency of FRk may be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ if (in_FRi >= 0)
+ {
+ for (i = 0; i < iwidth; ++i)
+ {
+ if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth))
+ if (use_is_fr_load (cpu, in_FRi + i))
+ decrease_FR_busy (cpu, in_FRi + i, 1);
+ else
+ enforce_full_fr_latency (cpu, in_FRi + i);
+ }
+ }
+
+ if (in_FRj >= 0)
+ {
+ for (i = 0; i < jwidth; ++i)
+ {
+ if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth))
+ if (use_is_fr_load (cpu, in_FRj + i))
+ decrease_FR_busy (cpu, in_FRj + i, 1);
+ else
+ enforce_full_fr_latency (cpu, in_FRj + i);
+ }
+ }
+
+ if (out_FRk >= 0)
+ {
+ for (i = 0; i < kwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
+ {
+ if (use_is_fr_complex_1 (cpu, out_FRk + i))
+ decrease_FR_busy (cpu, out_FRk + i, 1);
+ else if (use_is_fr_complex_2 (cpu, out_FRk + i))
+ decrease_FR_busy (cpu, out_FRk + i, 2);
+ else
+ enforce_full_fr_latency (cpu, out_FRk + i);
+ }
+ }
+ }
+}
+
+static void
+restore_float_register_busy (SIM_CPU *cpu,
+ INT in_FRi, int iwidth,
+ INT in_FRj, int jwidth,
+ INT out_FRk, int kwidth)
+{
+ int i;
+ /* The latency of FRk may be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ if (in_FRi >= 0)
+ {
+ for (i = 0; i < iwidth; ++i)
+ {
+ if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth))
+ if (use_is_fr_load (cpu, in_FRi + i))
+ increase_FR_busy (cpu, in_FRi + i, 1);
+ }
+ }
+
+ if (in_FRj >= 0)
+ {
+ for (i = 0; i < jwidth; ++i)
+ {
+ if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth))
+ if (use_is_fr_load (cpu, in_FRj + i))
+ increase_FR_busy (cpu, in_FRj + i, 1);
+ }
+ }
+
+ if (out_FRk >= 0)
+ {
+ for (i = 0; i < kwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
+ {
+ if (use_is_fr_complex_1 (cpu, out_FRk + i))
+ increase_FR_busy (cpu, out_FRk + i, 1);
+ else if (use_is_fr_complex_2 (cpu, out_FRk + i))
+ increase_FR_busy (cpu, out_FRk + i, 2);
+ }
+ }
+ }
+}
+
+/* Latency of floating point registers may be less than recorded when used in a
+ media insns and followed by another media insn. */
+static void
+adjust_float_register_busy_for_media (SIM_CPU *cpu,
+ INT in_FRi, int iwidth,
+ INT in_FRj, int jwidth,
+ INT out_FRk, int kwidth)
+{
+ int i;
+ /* The latency of FRk may be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ if (out_FRk >= 0)
+ {
+ for (i = 0; i < kwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
+ {
+ if (use_is_fr_complex_1 (cpu, out_FRk + i))
+ decrease_FR_busy (cpu, out_FRk + i, 1);
+ else
+ enforce_full_fr_latency (cpu, out_FRk + i);
+ }
+ }
+ }
+}
+
+static void
+restore_float_register_busy_for_media (SIM_CPU *cpu,
+ INT in_FRi, int iwidth,
+ INT in_FRj, int jwidth,
+ INT out_FRk, int kwidth)
+{
+ int i;
+ if (out_FRk >= 0)
+ {
+ for (i = 0; i < kwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
+ && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
+ {
+ if (use_is_fr_complex_1 (cpu, out_FRk + i))
+ increase_FR_busy (cpu, out_FRk + i, 1);
+ }
+ }
+ }
+}
+
+/* Latency of accumulator registers may be less than recorded when used in a
+ media insns and followed by another media insn. */
+static void
+adjust_acc_busy_for_mmac (SIM_CPU *cpu,
+ INT in_ACC, int inwidth,
+ INT out_ACC, int outwidth)
+{
+ int i;
+ /* The latency of an accumulator may be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ if (in_ACC >= 0)
+ {
+ for (i = 0; i < inwidth; ++i)
+ {
+ if (use_is_acc_mmac (cpu, in_ACC + i))
+ decrease_ACC_busy (cpu, in_ACC + i, 1);
+ else
+ enforce_full_acc_latency (cpu, in_ACC + i);
+ }
+ }
+ if (out_ACC >= 0)
+ {
+ for (i = 0; i < outwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth))
+ {
+ if (use_is_acc_mmac (cpu, out_ACC + i))
+ decrease_ACC_busy (cpu, out_ACC + i, 1);
+ else
+ enforce_full_acc_latency (cpu, out_ACC + i);
+ }
+ }
+ }
+}
+
+static void
+restore_acc_busy_for_mmac (SIM_CPU *cpu,
+ INT in_ACC, int inwidth,
+ INT out_ACC, int outwidth)
+{
+ int i;
+ if (in_ACC >= 0)
+ {
+ for (i = 0; i < inwidth; ++i)
+ {
+ if (use_is_acc_mmac (cpu, in_ACC + i))
+ increase_ACC_busy (cpu, in_ACC + i, 1);
+ }
+ }
+ if (out_ACC >= 0)
+ {
+ for (i = 0; i < outwidth; ++i)
+ {
+ if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth))
+ {
+ if (use_is_acc_mmac (cpu, out_ACC + i))
+ increase_ACC_busy (cpu, out_ACC + i, 1);
+ }
+ }
+ }
+}
+
+int
+frvbf_model_fr550_u_exec (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced)
+{
+ return idesc->timing->units[unit_num].done;
+}
+
+int
+frvbf_model_fr550_u_integer (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk,
+ INT out_ICCi_1)
+{
+ int cycles;
+
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (out_ICCi_1 >= 0)
+ out_ICCi_1 += 4;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, out_GRk);
+ vliw_wait_for_CCR (cpu, out_ICCi_1);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, out_GRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ fr550_reset_ccr_flags (cpu, out_ICCi_1);
+
+ /* GRk is available immediately to the next VLIW insn as is ICCi_1. */
+ cycles = idesc->timing->units[unit_num].done;
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_imul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
+{
+ int cycles;
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (out_ICCi_1 >= 0)
+ out_ICCi_1 += 4;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GRdouble (cpu, out_GRk);
+ vliw_wait_for_CCR (cpu, out_ICCi_1);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GRdouble (cpu, out_GRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* GRk has a latency of 1 cycles. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_GRdouble_latency (cpu, out_GRk, cycles + 1);
+
+ /* ICCi_1 has a latency of 1 cycle. */
+ update_CCR_latency (cpu, out_ICCi_1, cycles + 1);
+
+ fr550_reset_ccr_flags (cpu, out_ICCi_1);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
+{
+ int cycles;
+ FRV_VLIW *vliw;
+ int slot;
+
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (out_ICCi_1 >= 0)
+ out_ICCi_1 += 4;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_I0;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, out_GRk);
+ vliw_wait_for_CCR (cpu, out_ICCi_1);
+ vliw_wait_for_idiv_resource (cpu, slot);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, out_GRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* GRk has a latency of 18 cycles! */
+ cycles = idesc->timing->units[unit_num].done;
+ update_GR_latency (cpu, out_GRk, cycles + 18);
+
+ /* ICCi_1 has a latency of 18 cycles. */
+ update_CCR_latency (cpu, out_ICCi_1, cycles + 18);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* GNER has a latency of 18 cycles. */
+ update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 18);
+ }
+
+ /* the idiv resource has a latency of 18 cycles! */
+ update_idiv_resource_latency (cpu, slot, cycles + 18);
+
+ fr550_reset_ccr_flags (cpu, out_ICCi_1);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_branch (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_ICCi_2, INT in_FCCi_2)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (in_ICCi_2 >= 0)
+ in_ICCi_2 += 4;
+
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_CCR (cpu, in_ICCi_2);
+ vliw_wait_for_CCR (cpu, in_FCCi_2);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* When counting branches taken or not taken, don't consider branches after
+ the first taken branch in a vliw insn. */
+ ps = CPU_PROFILE_STATE (cpu);
+ if (! ps->vliw_branch_taken)
+ {
+ /* (1 << 4): The pc is the 5th element in inputs, outputs.
+ ??? can be cleaned up */
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+ int taken = (referenced & (1 << 4)) != 0;
+ if (taken)
+ {
+ ++PROFILE_MODEL_TAKEN_COUNT (p);
+ ps->vliw_branch_taken = 1;
+ }
+ else
+ ++PROFILE_MODEL_UNTAKEN_COUNT (p);
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_trap (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_ICCi_2, INT in_FCCi_2)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (in_ICCi_2 >= 0)
+ in_ICCi_2 += 4;
+
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_CCR (cpu, in_ICCi_2);
+ vliw_wait_for_CCR (cpu, in_FCCi_2);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_check (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ICCi_3, INT in_FCCi_3)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
+ in_ICCi_3, in_FCCi_3);
+}
+
+int
+frvbf_model_fr550_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT out_GRkhi, INT out_GRklo)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a GR
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, out_GRkhi);
+ vliw_wait_for_GR (cpu, out_GRklo);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, out_GRkhi);
+ load_wait_for_GR (cpu, out_GRklo);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* GRk is available immediately to the next VLIW insn. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT out_GRk, INT out_GRdoublek)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, out_GRk);
+ vliw_wait_for_GRdouble (cpu, out_GRdoublek);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, out_GRk);
+ load_wait_for_GRdouble (cpu, out_GRdoublek);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The latency of GRk for a load will depend on how long it takes to retrieve
+ the the data from the cache or memory. */
+ update_GR_latency_for_load (cpu, out_GRk, cycles);
+ update_GRdouble_latency_for_load (cpu, out_GRdoublek, cycles);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* GNER has a latency of 2 cycles. */
+ update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 2);
+ update_SPR_latency (cpu, GNER_FOR_GR (out_GRdoublek), cycles + 2);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_GRk, INT in_GRdoublek)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, in_GRk);
+ vliw_wait_for_GRdouble (cpu, in_GRdoublek);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, in_GRk);
+ load_wait_for_GRdouble (cpu, in_GRdoublek);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The target register is available immediately. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT out_FRk, INT out_FRdoublek)
+{
+ int cycles;
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1);
+ adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRdoublek, 2);
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_FR (cpu, out_FRk);
+ vliw_wait_for_FRdouble (cpu, out_FRdoublek);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
+ }
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_FR (cpu, out_FRk);
+ load_wait_for_FRdouble (cpu, out_FRdoublek);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The latency of FRk for a load will depend on how long it takes to retrieve
+ the the data from the cache or memory. */
+ update_FR_latency_for_load (cpu, out_FRk, cycles);
+ update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* FNER has a latency of 3 cycles. */
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), cycles + 3);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), cycles + 3);
+ }
+
+ if (out_FRk >= 0)
+ set_use_is_fr_load (cpu, out_FRk);
+ if (out_FRdoublek >= 0)
+ {
+ set_use_is_fr_load (cpu, out_FRdoublek);
+ set_use_is_fr_load (cpu, out_FRdoublek + 1);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_FRk, INT in_FRdoublek)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1);
+ adjust_float_register_busy (cpu, in_FRdoublek, 2, -1, 1, -1, 1);
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_FR (cpu, in_FRk);
+ vliw_wait_for_FRdouble (cpu, in_FRdoublek);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_FR (cpu, in_FRk);
+ load_wait_for_FRdouble (cpu, in_FRdoublek);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The target register is available immediately. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_ici (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_invalidate (cpu, CPU_INSN_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_dci (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_flush (cpu, CPU_DATA_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_preload (cpu, CPU_INSN_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_preload (cpu, CPU_DATA_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_icul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_unlock (cpu, CPU_INSN_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+ request_cache_unlock (cpu, CPU_DATA_CACHE (cpu), cycles);
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_arith (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT in_FRdoublei, INT in_FRdoublej,
+ INT out_FRk, INT out_FRdoublek)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+ adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2);
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FRdouble (cpu, in_FRdoublei);
+ post_wait_for_FRdouble (cpu, in_FRdoublej);
+ post_wait_for_FRdouble (cpu, out_FRdoublek);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
+ }
+ restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+ restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2);
+
+ /* The latency of FRk will be at least the latency of the other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
+ }
+
+ /* Once initiated, post-processing will take 2 cycles. */
+ update_FR_ptime (cpu, out_FRk, 2);
+ update_FRdouble_ptime (cpu, out_FRdoublek, 2);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2);
+ }
+
+ /* Mark this use of the register as a floating point op. */
+ if (out_FRk >= 0)
+ set_use_is_fr_complex_2 (cpu, out_FRk);
+ if (out_FRdoublek >= 0)
+ {
+ set_use_is_fr_complex_2 (cpu, out_FRdoublek);
+ if (out_FRdoublek < 63)
+ set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1);
+ }
+
+ /* the media point unit resource has a latency of 4 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 4);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_dual_arith (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT in_FRdoublei, INT in_FRdoublej,
+ INT out_FRk, INT out_FRdoublek)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT dual_FRk;
+ INT dual_FRdoublei;
+ INT dual_FRdoublej;
+ INT dual_FRdoublek;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ dual_FRk = DUAL_REG (out_FRk);
+ dual_FRdoublei = DUAL_DOUBLE (in_FRdoublei);
+ dual_FRdoublej = DUAL_DOUBLE (in_FRdoublej);
+ dual_FRdoublek = DUAL_DOUBLE (out_FRdoublek);
+
+ adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
+ adjust_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4);
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_FR (cpu, dual_FRk);
+ post_wait_for_FRdouble (cpu, in_FRdoublei);
+ post_wait_for_FRdouble (cpu, in_FRdoublej);
+ post_wait_for_FRdouble (cpu, out_FRdoublek);
+ post_wait_for_FRdouble (cpu, dual_FRdoublei);
+ post_wait_for_FRdouble (cpu, dual_FRdoublej);
+ post_wait_for_FRdouble (cpu, dual_FRdoublek);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRdoublek));
+ }
+ restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
+ restore_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4);
+
+ /* The latency of FRk will be at least the latency of the other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
+ update_FRdouble_latency (cpu, dual_FRdoublek, ps->post_wait);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (dual_FRk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (dual_FRdoublek), ps->post_wait);
+ }
+
+ /* Once initiated, post-processing will take 3 cycles. */
+ update_FR_ptime (cpu, out_FRk, 3);
+ update_FR_ptime (cpu, dual_FRk, 3);
+ update_FRdouble_ptime (cpu, out_FRdoublek, 3);
+ update_FRdouble_ptime (cpu, dual_FRdoublek, 3);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3);
+ update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRk), 3);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3);
+ update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRdoublek), 3);
+ }
+
+ /* Mark this use of the register as a floating point op. */
+ if (out_FRk >= 0)
+ fr550_reset_fr_flags (cpu, out_FRk);
+ if (dual_FRk >= 0)
+ fr550_reset_fr_flags (cpu, dual_FRk);
+ if (out_FRdoublek >= 0)
+ {
+ fr550_reset_fr_flags (cpu, out_FRdoublek);
+ if (out_FRdoublek < 63)
+ fr550_reset_fr_flags (cpu, out_FRdoublek + 1);
+ }
+ if (dual_FRdoublek >= 0)
+ {
+ fr550_reset_fr_flags (cpu, dual_FRdoublek);
+ if (dual_FRdoublek < 63)
+ fr550_reset_fr_flags (cpu, dual_FRdoublek + 1);
+ }
+
+ /* the media point unit resource has a latency of 5 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 5);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_div (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj, INT out_FRk)
+{
+ int cycles;
+ FRV_VLIW *vliw;
+ int slot;
+ FRV_PROFILE_STATE *ps;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_fdiv (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+
+ /* The latency of FRk will be at least the latency of the other inputs. */
+ /* Once initiated, post-processing will take 9 cycles. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 9);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* FNER has a latency of 9 cycles. */
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 9);
+ }
+
+ /* The latency of the fdiv unit will be at least the latency of the other
+ inputs. Once initiated, post-processing will take 9 cycles. */
+ update_fdiv_resource_latency (cpu, slot, ps->post_wait + 9);
+
+ /* the media point unit resource has a latency of 11 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 11);
+
+ fr550_reset_fr_flags (cpu, out_FRk);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_sqrt (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRj, INT in_FRdoublej,
+ INT out_FRk, INT out_FRdoublek)
+{
+ int cycles;
+ FRV_VLIW *vliw;
+ int slot;
+ FRV_PROFILE_STATE *ps;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+ adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_fsqrt (cpu, slot);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FRdouble (cpu, in_FRdoublej);
+ post_wait_for_FRdouble (cpu, out_FRdoublek);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
+ }
+ restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+ restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
+
+ /* The latency of FRk will be at least the latency of the other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* FNER has a latency of 14 cycles. */
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
+ }
+
+ /* Once initiated, post-processing will take 14 cycles. */
+ update_FR_ptime (cpu, out_FRk, 14);
+ update_FRdouble_ptime (cpu, out_FRdoublek, 14);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ /* FNER has a latency of 14 cycles. */
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 14);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 14);
+ }
+
+ /* The latency of the sqrt unit will be the latency of the other
+ inputs plus 14 cycles. */
+ update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14);
+
+ fr550_reset_fr_flags (cpu, out_FRk);
+ if (out_FRdoublek != -1)
+ {
+ fr550_reset_fr_flags (cpu, out_FRdoublek);
+ fr550_reset_fr_flags (cpu, out_FRdoublek + 1);
+ }
+
+ /* the media point unit resource has a latency of 16 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 16);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_compare (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT in_FRdoublei, INT in_FRdoublej,
+ INT out_FCCi_2)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1);
+ adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1);
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FRdouble (cpu, in_FRdoublei);
+ post_wait_for_FRdouble (cpu, in_FRdoublej);
+ post_wait_for_CCR (cpu, out_FCCi_2);
+ restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1);
+ restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1);
+
+ /* The latency of FCCi_2 will be the latency of the other inputs plus 2
+ cycles. */
+ update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 2);
+
+ /* the media point unit resource has a latency of 4 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 4);
+
+ set_use_is_ccr_complex (cpu, out_FCCi_2);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_dual_compare (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FCCi_2)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT dual_FCCi_2;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ dual_FCCi_2 = out_FCCi_2 + 1;
+ adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_CCR (cpu, out_FCCi_2);
+ post_wait_for_CCR (cpu, dual_FCCi_2);
+ restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
+
+ /* The latency of FCCi_2 will be the latency of the other inputs plus 3
+ cycles. */
+ update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3);
+ update_CCR_latency (cpu, dual_FCCi_2, ps->post_wait + 3);
+
+ set_use_is_ccr_complex (cpu, out_FCCi_2);
+ if (dual_FCCi_2 >= 0)
+ set_use_is_ccr_complex (cpu, dual_FCCi_2);
+
+ /* the media point unit resource has a latency of 5 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 5);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_float_convert (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRj, INT in_FRintj, INT in_FRdoublej,
+ INT out_FRk, INT out_FRintk,
+ INT out_FRdoublek)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+ adjust_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1);
+ adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_float (cpu, slot);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, in_FRintj);
+ post_wait_for_FRdouble (cpu, in_FRdoublej);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, out_FRintk);
+ post_wait_for_FRdouble (cpu, out_FRdoublek);
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRintk));
+ post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
+ }
+ restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+ restore_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1);
+ restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
+
+ /* The latency of FRk will be at least the latency of the other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_latency (cpu, out_FRintk, ps->post_wait);
+ update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRintk), ps->post_wait);
+ update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
+ }
+
+ /* Once initiated, post-processing will take 2 cycles. */
+ update_FR_ptime (cpu, out_FRk, 2);
+ update_FR_ptime (cpu, out_FRintk, 2);
+ update_FRdouble_ptime (cpu, out_FRdoublek, 2);
+
+ if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
+ {
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRintk), 2);
+ update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2);
+ }
+
+ /* Mark this use of the register as a floating point op. */
+ if (out_FRk >= 0)
+ set_use_is_fr_complex_2 (cpu, out_FRk);
+ if (out_FRintk >= 0)
+ set_use_is_fr_complex_2 (cpu, out_FRintk);
+ if (out_FRdoublek >= 0)
+ {
+ set_use_is_fr_complex_2 (cpu, out_FRdoublek);
+ set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1);
+ }
+
+ /* the media point unit resource has a latency of 4 cycles */
+ update_media_resource_latency (cpu, slot, cycles + 4);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_spr, INT out_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
+ in_spr, out_GRj);
+}
+
+int
+frvbf_model_fr550_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRj, INT out_spr)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_SPR (cpu, out_spr);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+#if 0
+ /* The latency of spr is ? cycles. */
+ update_SPR_latency (cpu, out_spr, cycles + ?);
+#endif
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRj, INT out_FRk)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_FR (cpu, out_FRk);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_FR (cpu, out_FRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The latency of FRk is 1 cycles. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_FR_latency (cpu, out_FRk, cycles + 1);
+
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_swap (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet. */
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, out_GRk);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, out_GRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The latency of GRk will depend on how long it takes to swap
+ the the data from the cache or memory. */
+ update_GR_latency_for_swap (cpu, out_GRk, cycles);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_fr2fr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRj, INT out_FRk)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+ vliw_wait_for_FR (cpu, in_FRj);
+ vliw_wait_for_FR (cpu, out_FRk);
+ handle_resource_wait (cpu);
+ load_wait_for_FR (cpu, in_FRj);
+ load_wait_for_FR (cpu, out_FRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The latency of FRj is 2 cycles. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_FR_latency (cpu, out_FRk, cycles + 2);
+
+ set_use_is_fr_complex_2 (cpu, out_FRk);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRk, INT out_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1);
+ vliw_wait_for_FR (cpu, in_FRk);
+ vliw_wait_for_GR (cpu, out_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_FR (cpu, in_FRk);
+ load_wait_for_GR (cpu, out_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The latency of GRj is 1 cycle. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_GR_latency (cpu, out_GRj, cycles + 1);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_clrgr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRk)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_clrgr (cpu, idesc, unit_num, referenced, in_GRk);
+}
+
+int
+frvbf_model_fr550_u_clrfr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRk)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_clrfr (cpu, idesc, unit_num, referenced, in_FRk);
+}
+
+int
+frvbf_model_fr550_u_commit (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRk, INT in_FRk)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_commit (cpu, idesc, unit_num, referenced,
+ in_GRk, in_FRk);
+}
+
+int
+frvbf_model_fr550_u_media (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj, INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency may be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
+
+ /* The latency of tht output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_FRk >= 0)
+ {
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ /* Mark this use of the register as a media op. */
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_quad (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FRk)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT dual_FRk;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ dual_FRk = DUAL_REG (out_FRk);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing take 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+
+ if (dual_FRk >= 0)
+ {
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FR_ptime (cpu, dual_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, dual_FRk);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT out_FRk)
+{
+ int cycles;
+ INT dual_FRk;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ dual_FRk = DUAL_REG (out_FRk);
+ adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+
+ if (dual_FRk >= 0)
+ {
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FR_ptime (cpu, dual_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, dual_FRk);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT out_FRk)
+{
+ int cycles;
+ INT dual_FRi;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ dual_FRi = DUAL_REG (in_FRi);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing takes 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_3_acc (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRj, INT in_ACC40Si,
+ INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
+
+ /* The latency of tht output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_3_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ INT ACC40Si_1;
+ INT dual_FRk;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ dual_FRk = DUAL_REG (out_FRk);
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, out_FRk);
+ if (dual_FRk >= 0)
+ {
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FR_ptime (cpu, dual_FRk, 1);
+ set_use_is_fr_complex_1 (cpu, dual_FRk);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_3_wtacc (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT out_ACC40Sk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
+ update_ACC_ptime (cpu, out_ACC40Sk, 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_3_mclracc (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+ int i;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+
+ /* If A was 1 and the accumulator was ACC0, then we must check all
+ accumulators. Otherwise just wait for the specified accumulator. */
+ if (ps->mclracc_A && ps->mclracc_acc == 0)
+ {
+ for (i = 0; i < 8; ++i)
+ post_wait_for_ACC (cpu, i);
+ }
+ else
+ post_wait_for_ACC (cpu, ps->mclracc_acc);
+
+ /* The latency of the output registers will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (ps->mclracc_A && ps->mclracc_acc == 0)
+ {
+ for (i = 0; i < 8; ++i)
+ {
+ update_ACC_latency (cpu, i, ps->post_wait);
+ update_ACC_ptime (cpu, i, 1);
+ set_use_is_acc_mmac (cpu, i);
+ }
+ }
+ else
+ {
+ update_ACC_latency (cpu, ps->mclracc_acc, ps->post_wait);
+ update_ACC_ptime (cpu, ps->mclracc_acc, 1);
+ set_use_is_acc_mmac (cpu, ps->mclracc_acc);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_set (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing takes 1 cycle. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ fr550_reset_acc_flags (cpu, out_FRk);
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_ACC40Sk, INT out_ACC40Uk)
+{
+ int cycles;
+ INT dual_ACC40Sk;
+ INT dual_ACC40Uk;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
+ dual_ACC40Uk = DUAL_REG (out_ACC40Uk);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2);
+ adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, dual_ACC40Sk);
+ post_wait_for_ACC (cpu, out_ACC40Uk);
+ post_wait_for_ACC (cpu, dual_ACC40Uk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2);
+ restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycles. */
+ if (out_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+ }
+ if (dual_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, dual_ACC40Sk);
+ }
+ if (out_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Uk);
+ }
+ if (dual_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, dual_ACC40Uk);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4_acc (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1);
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Si_2;
+ INT ACC40Si_3;
+ INT ACC40Sk_1;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Si_2 = DUAL_REG (ACC40Si_1);
+ ACC40Si_3 = DUAL_REG (ACC40Si_2);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2);
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, ACC40Si_2);
+ post_wait_for_ACC (cpu, ACC40Si_3);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, ACC40Sk_1);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4_add_sub (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Sk_1;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2);
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, ACC40Sk_1);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Si_2;
+ INT ACC40Si_3;
+ INT ACC40Sk_1;
+ INT ACC40Sk_2;
+ INT ACC40Sk_3;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Si_2 = DUAL_REG (ACC40Si_1);
+ ACC40Si_3 = DUAL_REG (ACC40Si_2);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+ ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
+ ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4);
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, ACC40Si_2);
+ post_wait_for_ACC (cpu, ACC40Si_3);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+ post_wait_for_ACC (cpu, ACC40Sk_2);
+ post_wait_for_ACC (cpu, ACC40Sk_3);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, ACC40Sk_1);
+ }
+ if (ACC40Sk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, ACC40Sk_2);
+ }
+ if (ACC40Sk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
+ set_use_is_acc_mmac (cpu, ACC40Sk_3);
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr550_u_media_4_quad (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_ACC40Sk, INT out_ACC40Uk)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT ACC40Sk_1;
+ INT ACC40Sk_2;
+ INT ACC40Sk_3;
+ INT ACC40Uk_1;
+ INT ACC40Uk_2;
+ INT ACC40Uk_3;
+ FRV_PROFILE_STATE *ps;
+ FRV_VLIW *vliw;
+ int slot;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+ ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
+ ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
+ ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
+ ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
+ ACC40Uk_3 = DUAL_REG (ACC40Uk_2);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 14-15 in the LSI. */
+ adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
+ adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4);
+ adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
+ post_wait_for_media (cpu, slot);
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+ post_wait_for_ACC (cpu, ACC40Sk_2);
+ post_wait_for_ACC (cpu, ACC40Sk_3);
+ post_wait_for_ACC (cpu, out_ACC40Uk);
+ post_wait_for_ACC (cpu, ACC40Uk_1);
+ post_wait_for_ACC (cpu, ACC40Uk_2);
+ post_wait_for_ACC (cpu, ACC40Uk_3);
+
+ /* Restore the busy cycles of the registers we used. */
+ restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
+ restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4);
+ restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Sk_1);
+ }
+ if (ACC40Sk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Sk_2);
+ }
+ if (ACC40Sk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Sk_3);
+ }
+ }
+ else if (out_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, out_ACC40Uk);
+ if (ACC40Uk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Uk_1);
+ }
+ if (ACC40Uk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Uk_2);
+ }
+ if (ACC40Uk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);
+
+ set_use_is_acc_mmac (cpu, ACC40Uk_3);
+ }
+ }
+
+ /* the floating point unit resource has a latency of 3 cycles */
+ update_float_resource_latency (cpu, slot, cycles + 3);
+
+ return cycles;
+}
+
+#endif /* WITH_PROFILE_MODEL_P */