aboutsummaryrefslogtreecommitdiff
path: root/sim/frv/profile-fr400.c
diff options
context:
space:
mode:
authorDave Brolley <brolley@redhat.com>2003-08-29 16:35:47 +0000
committerDave Brolley <brolley@redhat.com>2003-08-29 16:35:47 +0000
commitb34f6357d032f4b39f9c7adb1995956d04339461 (patch)
treea77b3c9a47df5e56dc9fc85d3a2792b12cb436e8 /sim/frv/profile-fr400.c
parent60fac5b81a94dedf1997344af7a998e9ea611e55 (diff)
downloadgdb-b34f6357d032f4b39f9c7adb1995956d04339461.zip
gdb-b34f6357d032f4b39f9c7adb1995956d04339461.tar.gz
gdb-b34f6357d032f4b39f9c7adb1995956d04339461.tar.bz2
New simulator for Fujitsu frv contributed by Red Hat.
Diffstat (limited to 'sim/frv/profile-fr400.c')
-rw-r--r--sim/frv/profile-fr400.c2175
1 files changed, 2175 insertions, 0 deletions
diff --git a/sim/frv/profile-fr400.c b/sim/frv/profile-fr400.c
new file mode 100644
index 0000000..9baddd1
--- /dev/null
+++ b/sim/frv/profile-fr400.c
@@ -0,0 +1,2175 @@
+/* frv simulator fr400 dependent profiling code.
+
+ Copyright (C) 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat
+
+This file is part of the GNU simulators.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along
+with this program; if not, write to the Free Software Foundation, Inc.,
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+*/
+#define WANT_CPU
+#define WANT_CPU_FRVBF
+
+#include "sim-main.h"
+#include "bfd.h"
+
+#if WITH_PROFILE_MODEL_P
+
+#include "profile.h"
+#include "profile-fr400.h"
+
+/* These functions get and set flags representing the use of
+ registers/resources. */
+static void set_use_not_fp_load (SIM_CPU *, INT);
+static void set_use_not_media_p4 (SIM_CPU *, INT);
+static void set_use_not_media_p6 (SIM_CPU *, INT);
+
+static void set_acc_use_not_media_p2 (SIM_CPU *, INT);
+static void set_acc_use_not_media_p4 (SIM_CPU *, INT);
+
+void
+fr400_reset_gr_flags (SIM_CPU *cpu, INT fr)
+{
+ set_use_not_gr_complex (cpu, fr);
+}
+
+void
+fr400_reset_fr_flags (SIM_CPU *cpu, INT fr)
+{
+ set_use_not_fp_load (cpu, fr);
+ set_use_not_media_p4 (cpu, fr);
+ set_use_not_media_p6 (cpu, fr);
+}
+
+void
+fr400_reset_acc_flags (SIM_CPU *cpu, INT acc)
+{
+ set_acc_use_not_media_p2 (cpu, acc);
+ set_acc_use_not_media_p4 (cpu, acc);
+}
+
+static void
+set_use_is_fp_load (SIM_CPU *cpu, INT fr, INT fr_double)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ {
+ fr400_reset_fr_flags (cpu, fr);
+ d->cur_fp_load |= (((DI)1) << fr);
+ }
+ if (fr_double != -1)
+ {
+ fr400_reset_fr_flags (cpu, fr_double);
+ d->cur_fp_load |= (((DI)1) << fr_double);
+ if (fr_double < 63)
+ {
+ fr400_reset_fr_flags (cpu, fr_double + 1);
+ d->cur_fp_load |= (((DI)1) << (fr_double + 1));
+ }
+ }
+
+}
+
+static void
+set_use_not_fp_load (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ d->cur_fp_load &= ~(((DI)1) << fr);
+}
+
+static int
+use_is_fp_load (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ return (d->prev_fp_load >> fr) & 1;
+ return 0;
+}
+
+static void
+set_acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ {
+ fr400_reset_acc_flags (cpu, acc);
+ d->cur_acc_p2 |= (((DI)1) << acc);
+ }
+}
+
+static void
+set_acc_use_not_media_p2 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ d->cur_acc_p2 &= ~(((DI)1) << acc);
+}
+
+static int
+acc_use_is_media_p2 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ return d->cur_acc_p2 & (((DI)1) << acc);
+ return 0;
+}
+
+static void
+set_use_is_media_p4 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ {
+ fr400_reset_fr_flags (cpu, fr);
+ d->cur_fr_p4 |= (((DI)1) << fr);
+ }
+}
+
+static void
+set_use_not_media_p4 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ d->cur_fr_p4 &= ~(((DI)1) << fr);
+}
+
+static int
+use_is_media_p4 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ return d->cur_fr_p4 & (((DI)1) << fr);
+ return 0;
+}
+
+static void
+set_acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ {
+ fr400_reset_acc_flags (cpu, acc);
+ d->cur_acc_p4 |= (((DI)1) << acc);
+ }
+}
+
+static void
+set_acc_use_not_media_p4 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ d->cur_acc_p4 &= ~(((DI)1) << acc);
+}
+
+static int
+acc_use_is_media_p4 (SIM_CPU *cpu, INT acc)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (acc != -1)
+ return d->cur_acc_p4 & (((DI)1) << acc);
+ return 0;
+}
+
+static void
+set_use_is_media_p6 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ {
+ fr400_reset_fr_flags (cpu, fr);
+ d->cur_fr_p6 |= (((DI)1) << fr);
+ }
+}
+
+static void
+set_use_not_media_p6 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ d->cur_fr_p6 &= ~(((DI)1) << fr);
+}
+
+static int
+use_is_media_p6 (SIM_CPU *cpu, INT fr)
+{
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ if (fr != -1)
+ return d->cur_fr_p6 & (((DI)1) << fr);
+ return 0;
+}
+
+/* Initialize cycle counting for an insn.
+ FIRST_P is non-zero if this is the first insn in a set of parallel
+ insns. */
+void
+fr400_model_insn_before (SIM_CPU *cpu, int first_p)
+{
+ if (first_p)
+ {
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->cur_gr_complex = ps->prev_gr_complex;
+ d->cur_fp_load = d->prev_fp_load;
+ d->cur_fr_p4 = d->prev_fr_p4;
+ d->cur_fr_p6 = d->prev_fr_p6;
+ d->cur_acc_p2 = d->prev_acc_p2;
+ d->cur_acc_p4 = d->prev_acc_p4;
+ }
+}
+
+/* Record the cycles computed for an insn.
+ LAST_P is non-zero if this is the last insn in a set of parallel insns,
+ and we update the total cycle count.
+ CYCLES is the cycle count of the insn. */
+void
+fr400_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
+{
+ if (last_p)
+ {
+ MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu);
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ ps->prev_gr_complex = ps->cur_gr_complex;
+ d->prev_fp_load = d->cur_fp_load;
+ d->prev_fr_p4 = d->cur_fr_p4;
+ d->prev_fr_p6 = d->cur_fr_p6;
+ d->prev_acc_p2 = d->cur_acc_p2;
+ d->prev_acc_p4 = d->cur_acc_p4;
+ }
+}
+
+int
+frvbf_model_fr400_u_exec (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced)
+{
+ return idesc->timing->units[unit_num].done;
+}
+
+int
+frvbf_model_fr400_u_integer (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk,
+ INT out_ICCi_1)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_integer (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, out_GRk, out_ICCi_1);
+}
+
+int
+frvbf_model_fr400_u_imul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_imul (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, out_GRk, out_ICCi_1);
+}
+
+int
+frvbf_model_fr400_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
+{
+ int cycles;
+ FRV_VLIW *vliw;
+ int slot;
+
+ /* icc0-icc4 are the upper 4 fields of the CCR. */
+ if (out_ICCi_1 >= 0)
+ out_ICCi_1 += 4;
+
+ vliw = CPU_VLIW (cpu);
+ slot = vliw->next_slot - 1;
+ slot = (*vliw->current_vliw)[slot] - UNIT_I0;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_GRi != out_GRk && in_GRi >= 0)
+ {
+ if (use_is_gr_complex (cpu, in_GRi))
+ decrease_GR_busy (cpu, in_GRi, 1);
+ }
+ if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0)
+ {
+ if (use_is_gr_complex (cpu, in_GRj))
+ decrease_GR_busy (cpu, in_GRj, 1);
+ }
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_GR (cpu, out_GRk);
+ vliw_wait_for_CCR (cpu, out_ICCi_1);
+ vliw_wait_for_idiv_resource (cpu, slot);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_GR (cpu, out_GRk);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* GRk has a latency of 19 cycles! */
+ cycles = idesc->timing->units[unit_num].done;
+ update_GR_latency (cpu, out_GRk, cycles + 19);
+ set_use_is_gr_complex (cpu, out_GRk);
+
+ /* ICCi_1 has a latency of 18 cycles. */
+ update_CCR_latency (cpu, out_ICCi_1, cycles + 18);
+
+ /* the idiv resource has a latency of 18 cycles! */
+ update_idiv_resource_latency (cpu, slot, cycles + 18);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_branch (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_ICCi_2, INT in_ICCi_3)
+{
+#define BRANCH_PREDICTED(ps) ((ps)->branch_hint & 2)
+ FRV_PROFILE_STATE *ps;
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* Modelling for this unit is the same as for fr500 in pass 1. */
+ return frvbf_model_fr500_u_branch (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, in_ICCi_2, in_ICCi_3);
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* Compute the branch penalty, based on the the prediction and the out
+ come. When counting branches taken or not taken, don't consider branches
+ after the first taken branch in a vliw insn. */
+ ps = CPU_PROFILE_STATE (cpu);
+ if (! ps->vliw_branch_taken)
+ {
+ int penalty;
+ /* (1 << 4): The pc is the 5th element in inputs, outputs.
+ ??? can be cleaned up */
+ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
+ int taken = (referenced & (1 << 4)) != 0;
+ if (taken)
+ {
+ ++PROFILE_MODEL_TAKEN_COUNT (p);
+ ps->vliw_branch_taken = 1;
+ if (BRANCH_PREDICTED (ps))
+ penalty = 1;
+ else
+ penalty = 3;
+ }
+ else
+ {
+ ++PROFILE_MODEL_UNTAKEN_COUNT (p);
+ if (BRANCH_PREDICTED (ps))
+ penalty = 3;
+ else
+ penalty = 0;
+ }
+ if (penalty > 0)
+ {
+ /* Additional 1 cycle penalty if the branch address is not 8 byte
+ aligned. */
+ if (ps->branch_address & 7)
+ ++penalty;
+ update_branch_penalty (cpu, penalty);
+ PROFILE_MODEL_CTI_STALL_CYCLES (p) += penalty;
+ }
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_trap (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_ICCi_2, INT in_FCCi_2)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_trap (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, in_ICCi_2, in_FCCi_2);
+}
+
+int
+frvbf_model_fr400_u_check (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ICCi_3, INT in_FCCi_3)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
+ in_ICCi_3, in_FCCi_3);
+}
+
+int
+frvbf_model_fr400_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT out_GRkhi, INT out_GRklo)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_set_hilo (cpu, idesc, unit_num, referenced,
+ out_GRkhi, out_GRklo);
+}
+
+int
+frvbf_model_fr400_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT out_GRk, INT out_GRdoublek)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_gr_load (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, out_GRk, out_GRdoublek);
+}
+
+int
+frvbf_model_fr400_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_GRk, INT in_GRdoublek)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, in_GRk, in_GRdoublek);
+}
+
+int
+frvbf_model_fr400_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT out_FRk, INT out_FRdoublek)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* Pass 1 is the same as for fr500. */
+ return frvbf_model_fr500_u_fr_load (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, out_FRk,
+ out_FRdoublek);
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The latency of FRk for a load will depend on how long it takes to retrieve
+ the the data from the cache or memory. */
+ update_FR_latency_for_load (cpu, out_FRk, cycles);
+ update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);
+
+ set_use_is_fp_load (cpu, out_FRk, out_FRdoublek);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj,
+ INT in_FRk, INT in_FRdoublek)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_GRi >= 0)
+ {
+ if (use_is_gr_complex (cpu, in_GRi))
+ decrease_GR_busy (cpu, in_GRi, 1);
+ }
+ if (in_GRj != in_GRi && in_GRj >= 0)
+ {
+ if (use_is_gr_complex (cpu, in_GRj))
+ decrease_GR_busy (cpu, in_GRj, 1);
+ }
+ if (in_FRk >= 0)
+ {
+ if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
+ decrease_FR_busy (cpu, in_FRk, 1);
+ else
+ enforce_full_fr_latency (cpu, in_FRk);
+ }
+ vliw_wait_for_GR (cpu, in_GRi);
+ vliw_wait_for_GR (cpu, in_GRj);
+ vliw_wait_for_FR (cpu, in_FRk);
+ vliw_wait_for_FRdouble (cpu, in_FRdoublek);
+ handle_resource_wait (cpu);
+ load_wait_for_GR (cpu, in_GRi);
+ load_wait_for_GR (cpu, in_GRj);
+ load_wait_for_FR (cpu, in_FRk);
+ load_wait_for_FRdouble (cpu, in_FRdoublek);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ cycles = idesc->timing->units[unit_num].done;
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_swap (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj, INT out_GRk)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_swap (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj, out_GRk);
+}
+
+int
+frvbf_model_fr400_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRk, INT out_GRj)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* The entire VLIW insn must wait if there is a dependency on a register
+ which is not ready yet.
+ The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRk >= 0)
+ {
+ if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk))
+ decrease_FR_busy (cpu, in_FRk, 1);
+ else
+ enforce_full_fr_latency (cpu, in_FRk);
+ }
+ vliw_wait_for_FR (cpu, in_FRk);
+ vliw_wait_for_GR (cpu, out_GRj);
+ handle_resource_wait (cpu);
+ load_wait_for_FR (cpu, in_FRk);
+ load_wait_for_GR (cpu, out_GRj);
+ trace_vliw_wait_cycles (cpu);
+ return 0;
+ }
+
+ /* The latency of GRj is 2 cycles. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_GR_latency (cpu, out_GRj, cycles + 2);
+ set_use_is_gr_complex (cpu, out_GRj);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_spr, INT out_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
+ in_spr, out_GRj);
+}
+
+int
+frvbf_model_fr400_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRj, INT out_FRk)
+{
+ int cycles;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ {
+ /* Pass 1 is the same as for fr500. */
+ frvbf_model_fr500_u_gr2fr (cpu, idesc, unit_num, referenced,
+ in_GRj, out_FRk);
+ }
+
+ /* The latency of FRk is 1 cycles. */
+ cycles = idesc->timing->units[unit_num].done;
+ update_FR_latency (cpu, out_FRk, cycles + 1);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRj, INT out_spr)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_gr2spr (cpu, idesc, unit_num, referenced,
+ in_GRj, out_spr);
+}
+
+/* Top up the post-processing time of the given FR by the given number of
+ cycles. */
+static void
+update_FR_ptime (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ /* If a load is pending on this register, then add the cycles to
+ the post processing time for this register. Otherwise apply it
+ directly to the latency of the register. */
+ if (! load_pending_for_register (cpu, out_FR, 1, REGTYPE_FR))
+ {
+ int *fr = ps->fr_latency;
+ fr[out_FR] += cycles;
+ }
+ else
+ ps->fr_ptime[out_FR] += cycles;
+ }
+}
+
+static void
+update_FRdouble_ptime (SIM_CPU *cpu, INT out_FR, int cycles)
+{
+ if (out_FR >= 0)
+ {
+ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu);
+ /* If a load is pending on this register, then add the cycles to
+ the post processing time for this register. Otherwise apply it
+ directly to the latency of the register. */
+ if (! load_pending_for_register (cpu, out_FR, 2, REGTYPE_FR))
+ {
+ int *fr = ps->fr_latency;
+ fr[out_FR] += cycles;
+ if (out_FR < 63)
+ fr[out_FR + 1] += cycles;
+ }
+ else
+ {
+ /* On the fr400, loads are available to media insns one cycle early,
+ so knock one cycle off the post processing time to account for
+ this. */
+ ps->fr_ptime[out_FR] += cycles - 1;
+ if (out_FR < 63)
+ ps->fr_ptime[out_FR + 1] += cycles - 1;
+ }
+ }
+}
+
+int
+frvbf_model_fr400_u_media_1 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ const CGEN_INSN *insn;
+ int busy_adjustment[] = {0, 0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ insn = idesc->idata;
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRi >= 0)
+ {
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ }
+ if (in_FRj >= 0 && in_FRj != in_FRi)
+ {
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ if (in_FRi >= 0)
+ fr[in_FRi] += busy_adjustment[0];
+ if (in_FRj >= 0)
+ fr[in_FRj] += busy_adjustment[1];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing has no latency. */
+ if (out_FRk >= 0)
+ {
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 0);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_1_quad (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FRk)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT dual_FRk;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ dual_FRk = DUAL_REG (out_FRk);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRi);
+ if (in_FRj != in_FRi)
+ {
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[2] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
+ {
+ busy_adjustment[3] = 1;
+ decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRj);
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ fr[in_FRi] += busy_adjustment[0];
+ if (dual_FRi >= 0)
+ fr[dual_FRi] += busy_adjustment[1];
+ fr[in_FRj] += busy_adjustment[2];
+ if (dual_FRj >= 0)
+ fr[dual_FRj] += busy_adjustment[3];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+
+ /* Once initiated, post-processing has no latency. */
+ update_FR_ptime (cpu, out_FRk, 0);
+
+ if (dual_FRk >= 0)
+ {
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FR_ptime (cpu, dual_FRk, 0);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_hilo (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT out_FRkhi, INT out_FRklo)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, out_FRkhi);
+ post_wait_for_FR (cpu, out_FRklo);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing has no latency. */
+ if (out_FRkhi >= 0)
+ {
+ update_FR_latency (cpu, out_FRkhi, ps->post_wait);
+ update_FR_ptime (cpu, out_FRkhi, 0);
+ }
+ if (out_FRklo >= 0)
+ {
+ update_FR_latency (cpu, out_FRklo, ps->post_wait);
+ update_FR_ptime (cpu, out_FRklo, 0);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_ACC40Sk, INT out_ACC40Uk)
+{
+ int cycles;
+ INT dual_ACC40Sk;
+ INT dual_ACC40Uk;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
+ int *fr;
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
+ dual_ACC40Uk = DUAL_REG (out_ACC40Uk);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRi >= 0)
+ {
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ }
+ if (in_FRj >= 0 && in_FRj != in_FRi)
+ {
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ }
+ if (out_ACC40Sk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[2] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
+ }
+ }
+ if (dual_ACC40Sk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, dual_ACC40Sk))
+ {
+ busy_adjustment[3] = 1;
+ decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]);
+ }
+ }
+ if (out_ACC40Uk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
+ {
+ busy_adjustment[4] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
+ }
+ }
+ if (dual_ACC40Uk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, dual_ACC40Uk))
+ {
+ busy_adjustment[5] = 1;
+ decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]);
+ }
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, dual_ACC40Sk);
+ post_wait_for_ACC (cpu, out_ACC40Uk);
+ post_wait_for_ACC (cpu, dual_ACC40Uk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ acc = ps->acc_busy;
+ fr[in_FRi] += busy_adjustment[0];
+ fr[in_FRj] += busy_adjustment[1];
+ if (out_ACC40Sk >= 0)
+ acc[out_ACC40Sk] += busy_adjustment[2];
+ if (dual_ACC40Sk >= 0)
+ acc[dual_ACC40Sk] += busy_adjustment[3];
+ if (out_ACC40Uk >= 0)
+ acc[out_ACC40Uk] += busy_adjustment[4];
+ if (dual_ACC40Uk >= 0)
+ acc[dual_ACC40Uk] += busy_adjustment[5];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycles. */
+ if (out_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+ }
+ if (dual_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, dual_ACC40Sk);
+ }
+ if (out_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
+ }
+ if (dual_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, dual_ACC40Uk);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2_quad (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_ACC40Sk, INT out_ACC40Uk)
+{
+ int cycles;
+ INT dual_FRi;
+ INT dual_FRj;
+ INT ACC40Sk_1;
+ INT ACC40Sk_2;
+ INT ACC40Sk_3;
+ INT ACC40Uk_1;
+ INT ACC40Uk_2;
+ INT ACC40Uk_3;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0};
+ int *fr;
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ dual_FRi = DUAL_REG (in_FRi);
+ dual_FRj = DUAL_REG (in_FRj);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+ ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
+ ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
+ ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
+ ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
+ ACC40Uk_3 = DUAL_REG (ACC40Uk_2);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRi);
+ if (in_FRj != in_FRi)
+ {
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[2] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj))
+ {
+ busy_adjustment[3] = 1;
+ decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRj);
+ }
+ if (out_ACC40Sk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[4] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
+ }
+ if (ACC40Sk_1 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
+ {
+ busy_adjustment[5] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
+ }
+ }
+ if (ACC40Sk_2 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
+ {
+ busy_adjustment[6] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
+ }
+ }
+ if (ACC40Sk_3 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
+ {
+ busy_adjustment[7] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
+ }
+ }
+ }
+ else if (out_ACC40Uk >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Uk))
+ {
+ busy_adjustment[4] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]);
+ }
+ if (ACC40Uk_1 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Uk_1))
+ {
+ busy_adjustment[5] = 1;
+ decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]);
+ }
+ }
+ if (ACC40Uk_2 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Uk_2))
+ {
+ busy_adjustment[6] = 1;
+ decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]);
+ }
+ }
+ if (ACC40Uk_3 >= 0)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Uk_3))
+ {
+ busy_adjustment[7] = 1;
+ decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]);
+ }
+ }
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+ post_wait_for_ACC (cpu, ACC40Sk_2);
+ post_wait_for_ACC (cpu, ACC40Sk_3);
+ post_wait_for_ACC (cpu, out_ACC40Uk);
+ post_wait_for_ACC (cpu, ACC40Uk_1);
+ post_wait_for_ACC (cpu, ACC40Uk_2);
+ post_wait_for_ACC (cpu, ACC40Uk_3);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ acc = ps->acc_busy;
+ fr[in_FRi] += busy_adjustment[0];
+ if (dual_FRi >= 0)
+ fr[dual_FRi] += busy_adjustment[1];
+ fr[in_FRj] += busy_adjustment[2];
+ if (dual_FRj > 0)
+ fr[dual_FRj] += busy_adjustment[3];
+ if (out_ACC40Sk >= 0)
+ {
+ acc[out_ACC40Sk] += busy_adjustment[4];
+ if (ACC40Sk_1 >= 0)
+ acc[ACC40Sk_1] += busy_adjustment[5];
+ if (ACC40Sk_2 >= 0)
+ acc[ACC40Sk_2] += busy_adjustment[6];
+ if (ACC40Sk_3 >= 0)
+ acc[ACC40Sk_3] += busy_adjustment[7];
+ }
+ else if (out_ACC40Uk >= 0)
+ {
+ acc[out_ACC40Uk] += busy_adjustment[4];
+ if (ACC40Uk_1 >= 0)
+ acc[ACC40Uk_1] += busy_adjustment[5];
+ if (ACC40Uk_2 >= 0)
+ acc[ACC40Uk_2] += busy_adjustment[6];
+ if (ACC40Uk_3 >= 0)
+ acc[ACC40Uk_3] += busy_adjustment[7];
+ }
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
+ }
+ if (ACC40Sk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
+ }
+ if (ACC40Sk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
+ }
+ }
+ else if (out_ACC40Uk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, out_ACC40Uk);
+ if (ACC40Uk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Uk_1);
+ }
+ if (ACC40Uk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Uk_2);
+ }
+ if (ACC40Uk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);
+
+ set_acc_use_is_media_p2 (cpu, ACC40Uk_3);
+ }
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2_acc (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0};
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (acc_use_is_media_p2 (cpu, in_ACC40Si))
+ {
+ busy_adjustment[0] = 1;
+ decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
+ }
+ if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
+ {
+ busy_adjustment[1] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
+ }
+ if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
+ && acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[2] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
+ }
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+
+ /* Restore the busy cycles of the registers we used. */
+ acc = ps->acc_busy;
+ acc[in_ACC40Si] += busy_adjustment[0];
+ if (ACC40Si_1 >= 0)
+ acc[ACC40Si_1] += busy_adjustment[1];
+ acc[out_ACC40Sk] += busy_adjustment[2];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Si_2;
+ INT ACC40Si_3;
+ INT ACC40Sk_1;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0, 0, 0};
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Si_2 = DUAL_REG (ACC40Si_1);
+ ACC40Si_3 = DUAL_REG (ACC40Si_2);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (acc_use_is_media_p2 (cpu, in_ACC40Si))
+ {
+ busy_adjustment[0] = 1;
+ decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
+ }
+ if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
+ {
+ busy_adjustment[1] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
+ }
+ if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
+ {
+ busy_adjustment[2] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
+ }
+ if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
+ {
+ busy_adjustment[3] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
+ }
+ if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
+ && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[4] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
+ }
+ }
+ if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
+ && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
+ {
+ busy_adjustment[5] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
+ }
+ }
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, ACC40Si_2);
+ post_wait_for_ACC (cpu, ACC40Si_3);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+
+ /* Restore the busy cycles of the registers we used. */
+ acc = ps->acc_busy;
+ acc[in_ACC40Si] += busy_adjustment[0];
+ if (ACC40Si_1 >= 0)
+ acc[ACC40Si_1] += busy_adjustment[1];
+ if (ACC40Si_2 >= 0)
+ acc[ACC40Si_2] += busy_adjustment[2];
+ if (ACC40Si_3 >= 0)
+ acc[ACC40Si_3] += busy_adjustment[3];
+ acc[out_ACC40Sk] += busy_adjustment[4];
+ if (ACC40Sk_1 >= 0)
+ acc[ACC40Sk_1] += busy_adjustment[5];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2_add_sub (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Sk_1;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0};
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (acc_use_is_media_p2 (cpu, in_ACC40Si))
+ {
+ busy_adjustment[0] = 1;
+ decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
+ }
+ if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
+ {
+ busy_adjustment[1] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
+ }
+ if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[2] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]);
+ }
+ }
+ if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
+ {
+ busy_adjustment[3] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[3]);
+ }
+ }
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+
+ /* Restore the busy cycles of the registers we used. */
+ acc = ps->acc_busy;
+ acc[in_ACC40Si] += busy_adjustment[0];
+ if (ACC40Si_1 >= 0)
+ acc[ACC40Si_1] += busy_adjustment[1];
+ acc[out_ACC40Sk] += busy_adjustment[2];
+ if (ACC40Sk_1 >= 0)
+ acc[ACC40Sk_1] += busy_adjustment[3];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_2_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_ACC40Sk)
+{
+ int cycles;
+ INT ACC40Si_1;
+ INT ACC40Si_2;
+ INT ACC40Si_3;
+ INT ACC40Sk_1;
+ INT ACC40Sk_2;
+ INT ACC40Sk_3;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0, 0};
+ int *acc;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ ACC40Si_2 = DUAL_REG (ACC40Si_1);
+ ACC40Si_3 = DUAL_REG (ACC40Si_2);
+ ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
+ ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
+ ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
+
+ ps = CPU_PROFILE_STATE (cpu);
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (acc_use_is_media_p2 (cpu, in_ACC40Si))
+ {
+ busy_adjustment[0] = 1;
+ decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]);
+ }
+ if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1))
+ {
+ busy_adjustment[1] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]);
+ }
+ if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2))
+ {
+ busy_adjustment[2] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]);
+ }
+ if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3))
+ {
+ busy_adjustment[3] = 1;
+ decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]);
+ }
+ if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1
+ && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, out_ACC40Sk))
+ {
+ busy_adjustment[4] = 1;
+ decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]);
+ }
+ }
+ if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1
+ && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_1))
+ {
+ busy_adjustment[5] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]);
+ }
+ }
+ if (ACC40Sk_2 != in_ACC40Si && ACC40Sk_2 != ACC40Si_1
+ && ACC40Sk_2 != ACC40Si_2 && ACC40Sk_2 != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_2))
+ {
+ busy_adjustment[6] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]);
+ }
+ }
+ if (ACC40Sk_3 != in_ACC40Si && ACC40Sk_3 != ACC40Si_1
+ && ACC40Sk_3 != ACC40Si_2 && ACC40Sk_3 != ACC40Si_3)
+ {
+ if (acc_use_is_media_p2 (cpu, ACC40Sk_3))
+ {
+ busy_adjustment[7] = 1;
+ decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]);
+ }
+ }
+
+ /* The post processing must wait if there is a dependency on a register
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_ACC (cpu, ACC40Si_2);
+ post_wait_for_ACC (cpu, ACC40Si_3);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_ACC (cpu, ACC40Sk_1);
+ post_wait_for_ACC (cpu, ACC40Sk_2);
+ post_wait_for_ACC (cpu, ACC40Sk_3);
+
+ /* Restore the busy cycles of the registers we used. */
+ acc = ps->acc_busy;
+ acc[in_ACC40Si] += busy_adjustment[0];
+ if (ACC40Si_1 >= 0)
+ acc[ACC40Si_1] += busy_adjustment[1];
+ if (ACC40Si_2 >= 0)
+ acc[ACC40Si_2] += busy_adjustment[2];
+ if (ACC40Si_3 >= 0)
+ acc[ACC40Si_3] += busy_adjustment[3];
+ acc[out_ACC40Sk] += busy_adjustment[4];
+ if (ACC40Sk_1 >= 0)
+ acc[ACC40Sk_1] += busy_adjustment[5];
+ if (ACC40Sk_2 >= 0)
+ acc[ACC40Sk_2] += busy_adjustment[6];
+ if (ACC40Sk_3 >= 0)
+ acc[ACC40Sk_3] += busy_adjustment[7];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, out_ACC40Sk);
+ if (ACC40Sk_1 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_1);
+ }
+ if (ACC40Sk_2 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_2);
+ }
+ if (ACC40Sk_3 >= 0)
+ {
+ update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
+ set_acc_use_is_media_p2 (cpu, ACC40Sk_3);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_3 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FRk)
+{
+ /* Modelling is the same as media unit 1. */
+ return frvbf_model_fr400_u_media_1 (cpu, idesc, unit_num, referenced,
+ in_FRi, in_FRj, out_FRk);
+}
+
+int
+frvbf_model_fr400_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT out_FRk)
+{
+ int cycles;
+ INT dual_FRi;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ dual_FRi = DUAL_REG (in_FRi);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRi);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, dual_FRi);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ fr[in_FRi] += busy_adjustment[0];
+ if (dual_FRi >= 0)
+ fr[dual_FRi] += busy_adjustment[1];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+
+ /* Once initiated, post-processing has no latency. */
+ update_FR_ptime (cpu, out_FRk, 0);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_3_quad (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT in_FRj,
+ INT out_FRk)
+{
+ /* Modelling is the same as media unit 1. */
+ return frvbf_model_fr400_u_media_1_quad (cpu, idesc, unit_num, referenced,
+ in_FRi, in_FRj, out_FRk);
+}
+
+int
+frvbf_model_fr400_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT in_FRj,
+ INT out_ACC40Sk, INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ const CGEN_INSN *insn;
+ int busy_adjustment[] = {0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ insn = idesc->idata;
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRj >= 0)
+ {
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, out_ACC40Sk);
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_FRk >= 0)
+ {
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ /* Mark this use of the register as media unit 4. */
+ set_use_is_media_p4 (cpu, out_FRk);
+ }
+ else if (out_ACC40Sk >= 0)
+ {
+ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
+ update_ACC_ptime (cpu, out_ACC40Sk, 1);
+ /* Mark this use of the register as media unit 4. */
+ set_acc_use_is_media_p4 (cpu, out_ACC40Sk);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_4_accg (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACCGi, INT in_FRinti,
+ INT out_ACCGk, INT out_FRintk)
+{
+ /* Modelling is the same as media-4 unit except use accumulator guards
+ as input instead of accumulators. */
+ return frvbf_model_fr400_u_media_4 (cpu, idesc, unit_num, referenced,
+ in_ACCGi, in_FRinti,
+ out_ACCGk, out_FRintk);
+}
+
+int
+frvbf_model_fr400_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_ACC40Si, INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ const CGEN_INSN *insn;
+ INT ACC40Si_1;
+ INT FRk_1;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ ACC40Si_1 = DUAL_REG (in_ACC40Si);
+ FRk_1 = DUAL_REG (out_FRk);
+
+ insn = idesc->idata;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_ACC (cpu, in_ACC40Si);
+ post_wait_for_ACC (cpu, ACC40Si_1);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, FRk_1);
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_FRk >= 0)
+ {
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+ /* Mark this use of the register as media unit 4. */
+ set_use_is_media_p4 (cpu, out_FRk);
+ }
+ if (FRk_1 >= 0)
+ {
+ update_FR_latency (cpu, FRk_1, ps->post_wait);
+ update_FR_ptime (cpu, FRk_1, 1);
+ /* Mark this use of the register as media unit 4. */
+ set_use_is_media_p4 (cpu, FRk_1);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_6 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi, INT out_FRk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ const CGEN_INSN *insn;
+ int busy_adjustment[] = {0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ ps = CPU_PROFILE_STATE (cpu);
+ insn = idesc->idata;
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRi >= 0)
+ {
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ if (in_FRi >= 0)
+ fr[in_FRi] += busy_adjustment[0];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing will take 1 cycle. */
+ if (out_FRk >= 0)
+ {
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 1);
+
+ /* Mark this use of the register as media unit 1. */
+ set_use_is_media_p6 (cpu, out_FRk);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_7 (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRinti, INT in_FRintj,
+ INT out_FCCk)
+{
+ int cycles;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps = CPU_PROFILE_STATE (cpu);
+
+ /* The latency of the registers may be less than previously recorded,
+ depending on how they were used previously.
+ See Table 13-8 in the LSI. */
+ if (in_FRinti >= 0)
+ {
+ if (use_is_fp_load (cpu, in_FRinti))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRinti, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRinti);
+ }
+ if (in_FRintj >= 0 && in_FRintj != in_FRinti)
+ {
+ if (use_is_fp_load (cpu, in_FRintj))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, in_FRintj, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRintj);
+ }
+
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRinti);
+ post_wait_for_FR (cpu, in_FRintj);
+ post_wait_for_CCR (cpu, out_FCCk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ if (in_FRinti >= 0)
+ fr[in_FRinti] += busy_adjustment[0];
+ if (in_FRintj >= 0)
+ fr[in_FRintj] += busy_adjustment[1];
+
+ /* The latency of FCCi_2 will be the latency of the other inputs plus 1
+ cycle. */
+ update_CCR_latency (cpu, out_FCCk, ps->post_wait + 1);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRi,
+ INT out_FRk)
+{
+ /* Insns using this unit are media-3 class insns, with a dual FRk output. */
+ int cycles;
+ INT dual_FRk;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 13-13 in the LSI. */
+ dual_FRk = DUAL_REG (out_FRk);
+ ps = CPU_PROFILE_STATE (cpu);
+ if (use_is_fp_load (cpu, in_FRi))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRi);
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRi);
+ post_wait_for_FR (cpu, out_FRk);
+ post_wait_for_FR (cpu, dual_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ fr[in_FRi] += busy_adjustment[0];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. Once initiated, post-processing has no latency. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+ update_FR_ptime (cpu, out_FRk, 0);
+
+ if (dual_FRk >= 0)
+ {
+ update_FR_latency (cpu, dual_FRk, ps->post_wait);
+ update_FR_ptime (cpu, dual_FRk, 0);
+ }
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_FRj,
+ INT out_FRk)
+{
+ /* Insns using this unit are media-3 class insns, with a dual FRj input. */
+ int cycles;
+ INT dual_FRj;
+ FRV_PROFILE_STATE *ps;
+ int busy_adjustment[] = {0, 0};
+ int *fr;
+
+ if (model_insn == FRV_INSN_MODEL_PASS_1)
+ return 0;
+
+ /* The preprocessing can execute right away. */
+ cycles = idesc->timing->units[unit_num].done;
+
+ /* If the previous use of the registers was a media op,
+ then their latency will be less than previously recorded.
+ See Table 13-13 in the LSI. */
+ dual_FRj = DUAL_REG (in_FRj);
+ ps = CPU_PROFILE_STATE (cpu);
+ if (use_is_fp_load (cpu, in_FRj))
+ {
+ busy_adjustment[0] = 1;
+ decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]);
+ }
+ else
+ enforce_full_fr_latency (cpu, in_FRj);
+ if (dual_FRj >= 0)
+ {
+ if (use_is_fp_load (cpu, dual_FRj))
+ {
+ busy_adjustment[1] = 1;
+ decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]);
+ }
+ else
+ enforce_full_fr_latency (cpu, dual_FRj);
+ }
+
+ /* The post processing must wait if there is a dependency on a FR
+ which is not ready yet. */
+ ps->post_wait = cycles;
+ post_wait_for_FR (cpu, in_FRj);
+ post_wait_for_FR (cpu, dual_FRj);
+ post_wait_for_FR (cpu, out_FRk);
+
+ /* Restore the busy cycles of the registers we used. */
+ fr = ps->fr_busy;
+ fr[in_FRj] += busy_adjustment[0];
+ if (dual_FRj >= 0)
+ fr[dual_FRj] += busy_adjustment[1];
+
+ /* The latency of the output register will be at least the latency of the
+ other inputs. */
+ update_FR_latency (cpu, out_FRk, ps->post_wait);
+
+ /* Once initiated, post-processing has no latency. */
+ update_FR_ptime (cpu, out_FRk, 0);
+
+ return cycles;
+}
+
+int
+frvbf_model_fr400_u_ici (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_ici (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_dci (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_dci (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_dcf (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_icpl (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_dcpl (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_icul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_icul (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced,
+ INT in_GRi, INT in_GRj)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_dcul (cpu, idesc, unit_num, referenced,
+ in_GRi, in_GRj);
+}
+
+int
+frvbf_model_fr400_u_barrier (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_barrier (cpu, idesc, unit_num, referenced);
+}
+
+int
+frvbf_model_fr400_u_membar (SIM_CPU *cpu, const IDESC *idesc,
+ int unit_num, int referenced)
+{
+ /* Modelling for this unit is the same as for fr500. */
+ return frvbf_model_fr500_u_membar (cpu, idesc, unit_num, referenced);
+}
+
+#endif /* WITH_PROFILE_MODEL_P */