diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
commit | c906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch) | |
tree | a0015aa5cedc19ccbab307251353a41722a3ae13 /sim/erc32/exec.c | |
parent | cd946cff9ede3f30935803403f06f6ed30cad136 (diff) | |
download | gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2 |
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'sim/erc32/exec.c')
-rw-r--r-- | sim/erc32/exec.c | 2041 |
1 files changed, 2041 insertions, 0 deletions
diff --git a/sim/erc32/exec.c b/sim/erc32/exec.c new file mode 100644 index 0000000..5f1fc0c --- /dev/null +++ b/sim/erc32/exec.c @@ -0,0 +1,2041 @@ +/* + * This file is part of SIS. + * + * SIS, SPARC instruction simulator V1.8 Copyright (C) 1995 Jiri Gaisler, + * European Space Agency + * + * This program is free software; you can redistribute it and/or modify it under + * the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 675 + * Mass Ave, Cambridge, MA 02139, USA. + * + */ + +#include "sis.h" +#include "end.h" +#include <math.h> +#include <stdio.h> + +extern int32 sis_verbose, sparclite; +int ext_irl = 0; + +/* Load/store interlock delay */ +#define FLSTHOLD 1 + +/* Load delay (delete if unwanted - speeds up simulation) */ +#define LOAD_DEL 1 + +#define T_LD 2 +#define T_LDD 3 +#define T_ST 3 +#define T_STD 4 +#define T_LDST 4 +#define T_JMPL 2 +#define T_RETT 2 + +#define FSR_QNE 0x2000 +#define FP_EXE_MODE 0 +#define FP_EXC_PE 1 +#define FP_EXC_MODE 2 + +#define FBA 8 +#define FBN 0 +#define FBNE 1 +#define FBLG 2 +#define FBUL 3 +#define FBL 4 +#define FBUG 5 +#define FBG 6 +#define FBU 7 +#define FBA 8 +#define FBE 9 +#define FBUE 10 +#define FBGE 11 +#define FBUGE 12 +#define FBLE 13 +#define FBULE 14 +#define FBO 15 + +#define FCC_E 0 +#define FCC_L 1 +#define FCC_G 2 +#define FCC_U 3 + +#define PSR_ET 0x20 +#define PSR_EF 0x1000 +#define PSR_PS 0x40 +#define PSR_S 0x80 +#define PSR_N 0x0800000 +#define PSR_Z 0x0400000 +#define PSR_V 0x0200000 +#define PSR_C 0x0100000 +#define PSR_CC 0x0F00000 +#define PSR_CWP 0x7 +#define PSR_PIL 0x0f00 + +#define ICC_N (icc >> 3) +#define ICC_Z (icc >> 2) +#define ICC_V (icc >> 1) +#define ICC_C (icc) + +#define FP_PRES (sregs->fpu_pres) + +#define TRAP_IEXC 1 +#define TRAP_UNIMP 2 +#define TRAP_PRIVI 3 +#define TRAP_FPDIS 4 +#define TRAP_WOFL 5 +#define TRAP_WUFL 6 +#define TRAP_UNALI 7 +#define TRAP_FPEXC 8 +#define TRAP_DEXC 9 +#define TRAP_TAG 10 +#define TRAP_DIV0 0x2a + +#define FSR_TT 0x1C000 +#define FP_IEEE 0x04000 +#define FP_UNIMP 0x0C000 +#define FP_SEQ_ERR 0x10000 + +#define BICC_BN 0 +#define BICC_BE 1 +#define BICC_BLE 2 +#define BICC_BL 3 +#define BICC_BLEU 4 +#define BICC_BCS 5 +#define BICC_NEG 6 +#define BICC_BVS 7 +#define BICC_BA 8 +#define BICC_BNE 9 +#define BICC_BG 10 +#define BICC_BGE 11 +#define BICC_BGU 12 +#define BICC_BCC 13 +#define BICC_POS 14 +#define BICC_BVC 15 + +#define INST_SIMM13 0x1fff +#define INST_RS2 0x1f +#define INST_I 0x2000 +#define ADD 0x00 +#define ADDCC 0x10 +#define ADDX 0x08 +#define ADDXCC 0x18 +#define TADDCC 0x20 +#define TSUBCC 0x21 +#define TADDCCTV 0x22 +#define TSUBCCTV 0x23 +#define IAND 0x01 +#define IANDCC 0x11 +#define IANDN 0x05 +#define IANDNCC 0x15 +#define MULScc 0x24 +#define DIVScc 0x1D +#define SMUL 0x0B +#define SMULCC 0x1B +#define UMUL 0x0A +#define UMULCC 0x1A +#define SDIV 0x0F +#define SDIVCC 0x1F +#define UDIV 0x0E +#define UDIVCC 0x1E +#define IOR 0x02 +#define IORCC 0x12 +#define IORN 0x06 +#define IORNCC 0x16 +#define SLL 0x25 +#define SRA 0x27 +#define SRL 0x26 +#define SUB 0x04 +#define SUBCC 0x14 +#define SUBX 0x0C +#define SUBXCC 0x1C +#define IXNOR 0x07 +#define IXNORCC 0x17 +#define IXOR 0x03 +#define IXORCC 0x13 +#define SETHI 0x04 +#define BICC 0x02 +#define FPBCC 0x06 +#define RDY 0x28 +#define RDPSR 0x29 +#define RDWIM 0x2A +#define RDTBR 0x2B +#define SCAN 0x2C +#define WRY 0x30 +#define WRPSR 0x31 +#define WRWIM 0x32 +#define WRTBR 0x33 +#define JMPL 0x38 +#define RETT 0x39 +#define TICC 0x3A +#define SAVE 0x3C +#define RESTORE 0x3D +#define LDD 0x03 +#define LDDA 0x13 +#define LD 0x00 +#define LDA 0x10 +#define LDF 0x20 +#define LDDF 0x23 +#define LDSTUB 0x0D +#define LDSTUBA 0x1D +#define LDUB 0x01 +#define LDUBA 0x11 +#define LDSB 0x09 +#define LDSBA 0x19 +#define LDUH 0x02 +#define LDUHA 0x12 +#define LDSH 0x0A +#define LDSHA 0x1A +#define LDFSR 0x21 +#define ST 0x04 +#define STA 0x14 +#define STB 0x05 +#define STBA 0x15 +#define STD 0x07 +#define STDA 0x17 +#define STF 0x24 +#define STDFQ 0x26 +#define STDF 0x27 +#define STFSR 0x25 +#define STH 0x06 +#define STHA 0x16 +#define SWAP 0x0F +#define SWAPA 0x1F +#define FLUSH 0x3B + +#define SIGN_BIT 0x80000000 + +/* # of cycles overhead when a trap is taken */ +#define TRAP_C 3 + +/* Forward declarations */ + +static uint32 sub_cc PARAMS ((uint32 psr, int32 operand1, int32 operand2, + int32 result)); +static uint32 add_cc PARAMS ((uint32 psr, int32 operand1, int32 operand2, + int32 result)); +static void log_cc PARAMS ((int32 result, struct pstate *sregs)); +static int fpexec PARAMS ((uint32 op3, uint32 rd, uint32 rs1, uint32 rs2, + struct pstate *sregs)); +static int chk_asi PARAMS ((struct pstate *sregs, uint32 *asi, uint32 op3)); + + +extern struct estate ebase; +extern int32 nfp,ift; + +#ifdef ERRINJ +extern uint32 errtt, errftt; +#endif + +static uint32 +sub_cc(psr, operand1, operand2, result) + uint32 psr; + int32 operand1; + int32 operand2; + int32 result; +{ + psr = ((psr & ~PSR_N) | ((result >> 8) & PSR_N)); + if (result) + psr &= ~PSR_Z; + else + psr |= PSR_Z; + psr = (psr & ~PSR_V) | ((((operand1 & ~operand2 & ~result) | + (~operand1 & operand2 & result)) >> 10) & PSR_V); + psr = (psr & ~PSR_C) | ((((~operand1 & operand2) | + ((~operand1 | operand2) & result)) >> 11) & PSR_C); + return (psr); +} + +uint32 +add_cc(psr, operand1, operand2, result) + uint32 psr; + int32 operand1; + int32 operand2; + int32 result; +{ + psr = ((psr & ~PSR_N) | ((result >> 8) & PSR_N)); + if (result) + psr &= ~PSR_Z; + else + psr |= PSR_Z; + psr = (psr & ~PSR_V) | ((((operand1 & operand2 & ~result) | + (~operand1 & ~operand2 & result)) >> 10) & PSR_V); + psr = (psr & ~PSR_C) | ((((operand1 & operand2) | + ((operand1 | operand2) & ~result)) >> 11) & PSR_C); + return(psr); +} + +static void +log_cc(result, sregs) + int32 result; + struct pstate *sregs; +{ + sregs->psr &= ~(PSR_CC); /* Zero CC bits */ + sregs->psr = (sregs->psr | ((result >> 8) & PSR_N)); + if (result == 0) + sregs->psr |= PSR_Z; +} + +/* Add two unsigned 32-bit integers, and calculate the carry out. */ + +static uint32 +add32 (uint32 n1, uint32 n2, int *carry) +{ + uint32 result = n1 + n2; + + *carry = result < n1 || result < n1; + return(result); +} + +/* Multiply two 32-bit integers. */ + +static void +mul64 (uint32 n1, uint32 n2, uint32 *result_hi, uint32 *result_lo, int msigned) +{ + uint32 lo, mid1, mid2, hi, reg_lo, reg_hi; + int carry; + int sign = 0; + + /* If this is a signed multiply, calculate the sign of the result + and make the operands positive. */ + if (msigned) + { + sign = (n1 ^ n2) & SIGN_BIT; + if (n1 & SIGN_BIT) + n1 = -n1; + if (n2 & SIGN_BIT) + n2 = -n2; + + } + + /* We can split the 32x32 into four 16x16 operations. This ensures + that we do not lose precision on 32bit only hosts: */ + lo = ((n1 & 0xFFFF) * (n2 & 0xFFFF)); + mid1 = ((n1 & 0xFFFF) * ((n2 >> 16) & 0xFFFF)); + mid2 = (((n1 >> 16) & 0xFFFF) * (n2 & 0xFFFF)); + hi = (((n1 >> 16) & 0xFFFF) * ((n2 >> 16) & 0xFFFF)); + + /* We now need to add all of these results together, taking care + to propogate the carries from the additions: */ + reg_lo = add32 (lo, (mid1 << 16), &carry); + reg_hi = carry; + reg_lo = add32 (reg_lo, (mid2 << 16), &carry); + reg_hi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi); + + /* Negate result if necessary. */ + if (sign) + { + reg_hi = ~ reg_hi; + reg_lo = - reg_lo; + if (reg_lo == 0) + reg_hi++; + } + + *result_lo = reg_lo; + *result_hi = reg_hi; +} + + +/* Divide a 64-bit integer by a 32-bit integer. We cheat and assume + that the host compiler supports long long operations. */ + +static void +div64 (uint32 n1_hi, uint32 n1_low, uint32 n2, uint32 *result, int msigned) +{ + uint64 n1; + + n1 = ((uint64) n1_hi) << 32; + n1 |= ((uint64) n1_low) & 0xffffffff; + + if (msigned) + { + int64 n1_s = (int64) n1; + int32 n2_s = (int32) n2; + n1_s = n1_s / n2_s; + n1 = (uint64) n1_s; + } + else + n1 = n1 / n2; + + *result = (uint32) (n1 & 0xffffffff); +} + + +int +dispatch_instruction(sregs) + struct pstate *sregs; +{ + + uint32 cwp, op, op2, op3, asi, rd, cond, rs1, + rs2; + uint32 ldep, icc; + int32 operand1, operand2, *rdd, result, eicc, + new_cwp; + int32 pc, npc, data, address, ws, mexc, fcc; + int32 ddata[2]; + + sregs->ninst++; + cwp = ((sregs->psr & PSR_CWP) << 4); + op = sregs->inst >> 30; + pc = sregs->npc; + npc = sregs->npc + 4; + op3 = rd = rs1 = operand2 = eicc = 0; + rdd = 0; + if (op & 2) { + + op3 = (sregs->inst >> 19) & 0x3f; + rs1 = (sregs->inst >> 14) & 0x1f; + rd = (sregs->inst >> 25) & 0x1f; + +#ifdef LOAD_DEL + + /* Check if load dependecy is possible */ + if (ebase.simtime <= sregs->ildtime) + ldep = (((op3 & 0x38) != 0x28) && ((op3 & 0x3e) != 0x34) && (sregs->ildreg != 0)); + else + ldep = 0; + if (sregs->inst & INST_I) { + if (ldep && (sregs->ildreg == rs1)) + sregs->hold++; + operand2 = sregs->inst; + operand2 = ((operand2 << 19) >> 19); /* sign extend */ + } else { + rs2 = sregs->inst & INST_RS2; + if (rs2 > 7) + operand2 = sregs->r[(cwp + rs2) & 0x7f]; + else + operand2 = sregs->g[rs2]; + if (ldep && ((sregs->ildreg == rs1) || (sregs->ildreg == rs2))) + sregs->hold++; + } +#else + if (sregs->inst & INST_I) { + operand2 = sregs->inst; + operand2 = ((operand2 << 19) >> 19); /* sign extend */ + } else { + rs2 = sregs->inst & INST_RS2; + if (rs2 > 7) + operand2 = sregs->r[(cwp + rs2) & 0x7f]; + else + operand2 = sregs->g[rs2]; + } +#endif + + if (rd > 7) + rdd = &(sregs->r[(cwp + rd) & 0x7f]); + else + rdd = &(sregs->g[rd]); + if (rs1 > 7) + rs1 = sregs->r[(cwp + rs1) & 0x7f]; + else + rs1 = sregs->g[rs1]; + } + switch (op) { + case 0: + op2 = (sregs->inst >> 22) & 0x7; + switch (op2) { + case SETHI: + rd = (sregs->inst >> 25) & 0x1f; + if (rd > 7) + rdd = &(sregs->r[(cwp + rd) & 0x7f]); + else + rdd = &(sregs->g[rd]); + *rdd = sregs->inst << 10; + break; + case BICC: +#ifdef STAT + sregs->nbranch++; +#endif + icc = sregs->psr >> 20; + cond = ((sregs->inst >> 25) & 0x0f); + switch (cond) { + case BICC_BN: + eicc = 0; + break; + case BICC_BE: + eicc = ICC_Z; + break; + case BICC_BLE: + eicc = ICC_Z | (ICC_N ^ ICC_V); + break; + case BICC_BL: + eicc = (ICC_N ^ ICC_V); + break; + case BICC_BLEU: + eicc = ICC_C | ICC_Z; + break; + case BICC_BCS: + eicc = ICC_C; + break; + case BICC_NEG: + eicc = ICC_N; + break; + case BICC_BVS: + eicc = ICC_V; + break; + case BICC_BA: + eicc = 1; + if (sregs->inst & 0x20000000) + sregs->annul = 1; + break; + case BICC_BNE: + eicc = ~(ICC_Z); + break; + case BICC_BG: + eicc = ~(ICC_Z | (ICC_N ^ ICC_V)); + break; + case BICC_BGE: + eicc = ~(ICC_N ^ ICC_V); + break; + case BICC_BGU: + eicc = ~(ICC_C | ICC_Z); + break; + case BICC_BCC: + eicc = ~(ICC_C); + break; + case BICC_POS: + eicc = ~(ICC_N); + break; + case BICC_BVC: + eicc = ~(ICC_V); + break; + } + if (eicc & 1) { + operand1 = sregs->inst; + operand1 = ((operand1 << 10) >> 8); /* sign extend */ + npc = sregs->pc + operand1; + } else { + if (sregs->inst & 0x20000000) + sregs->annul = 1; + } + break; + case FPBCC: +#ifdef STAT + sregs->nbranch++; +#endif + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (ebase.simtime < sregs->ftime) { + sregs->ftime = ebase.simtime + sregs->hold; + } + cond = ((sregs->inst >> 25) & 0x0f); + fcc = (sregs->fsr >> 10) & 0x3; + switch (cond) { + case FBN: + eicc = 0; + break; + case FBNE: + eicc = (fcc != FCC_E); + break; + case FBLG: + eicc = (fcc == FCC_L) || (fcc == FCC_G); + break; + case FBUL: + eicc = (fcc == FCC_L) || (fcc == FCC_U); + break; + case FBL: + eicc = (fcc == FCC_L); + break; + case FBUG: + eicc = (fcc == FCC_G) || (fcc == FCC_U); + break; + case FBG: + eicc = (fcc == FCC_G); + break; + case FBU: + eicc = (fcc == FCC_U); + break; + case FBA: + eicc = 1; + if (sregs->inst & 0x20000000) + sregs->annul = 1; + break; + case FBE: + eicc = !(fcc != FCC_E); + break; + case FBUE: + eicc = !((fcc == FCC_L) || (fcc == FCC_G)); + break; + case FBGE: + eicc = !((fcc == FCC_L) || (fcc == FCC_U)); + break; + case FBUGE: + eicc = !(fcc == FCC_L); + break; + case FBLE: + eicc = !((fcc == FCC_G) || (fcc == FCC_U)); + break; + case FBULE: + eicc = !(fcc == FCC_G); + break; + case FBO: + eicc = !(fcc == FCC_U); + break; + } + if (eicc) { + operand1 = sregs->inst; + operand1 = ((operand1 << 10) >> 8); /* sign extend */ + npc = sregs->pc + operand1; + } else { + if (sregs->inst & 0x20000000) + sregs->annul = 1; + } + break; + + default: + sregs->trap = TRAP_UNIMP; + break; + } + break; + case 1: /* CALL */ +#ifdef STAT + sregs->nbranch++; +#endif + sregs->r[(cwp + 15) & 0x7f] = sregs->pc; + npc = sregs->pc + (sregs->inst << 2); + break; + + case 2: + if ((op3 >> 1) == 0x1a) { + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + } else { + rs1 = (sregs->inst >> 14) & 0x1f; + rs2 = sregs->inst & 0x1f; + sregs->trap = fpexec(op3, rd, rs1, rs2, sregs); + } + } else { + + switch (op3) { + case TICC: + icc = sregs->psr >> 20; + cond = ((sregs->inst >> 25) & 0x0f); + switch (cond) { + case BICC_BN: + eicc = 0; + break; + case BICC_BE: + eicc = ICC_Z; + break; + case BICC_BLE: + eicc = ICC_Z | (ICC_N ^ ICC_V); + break; + case BICC_BL: + eicc = (ICC_N ^ ICC_V); + break; + case BICC_BLEU: + eicc = ICC_C | ICC_Z; + break; + case BICC_BCS: + eicc = ICC_C; + break; + case BICC_NEG: + eicc = ICC_N; + break; + case BICC_BVS: + eicc = ICC_V; + break; + case BICC_BA: + eicc = 1; + break; + case BICC_BNE: + eicc = ~(ICC_Z); + break; + case BICC_BG: + eicc = ~(ICC_Z | (ICC_N ^ ICC_V)); + break; + case BICC_BGE: + eicc = ~(ICC_N ^ ICC_V); + break; + case BICC_BGU: + eicc = ~(ICC_C | ICC_Z); + break; + case BICC_BCC: + eicc = ~(ICC_C); + break; + case BICC_POS: + eicc = ~(ICC_N); + break; + case BICC_BVC: + eicc = ~(ICC_V); + break; + } + if (eicc & 1) { + sregs->trap = (0x80 | ((rs1 + operand2) & 0x7f)); + } + break; + + case MULScc: + operand1 = + (((sregs->psr & PSR_V) ^ ((sregs->psr & PSR_N) >> 2)) + << 10) | (rs1 >> 1); + if ((sregs->y & 1) == 0) + operand2 = 0; + *rdd = operand1 + operand2; + sregs->y = (rs1 << 31) | (sregs->y >> 1); + sregs->psr = add_cc(sregs->psr, operand1, operand2, *rdd); + break; + case DIVScc: + { + int sign; + uint32 result, remainder; + int c0, y31; + + if (!sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + + sign = ((sregs->psr & PSR_V) != 0) ^ ((sregs->psr & PSR_N) != 0); + + remainder = (sregs->y << 1) | (rs1 >> 31); + + /* If true sign is positive, calculate remainder - divisor. + Otherwise, calculate remainder + divisor. */ + if (sign == 0) + operand2 = ~operand2 + 1; + result = remainder + operand2; + + /* The SPARClite User's Manual is not clear on how + the "carry out" of the above ALU operation is to + be calculated. From trial and error tests + on the the chip itself, it appears that it is + a normal addition carry, and not a subtraction borrow, + even in cases where the divisor is subtracted + from the remainder. FIXME: get the true story + from Fujitsu. */ + c0 = result < (uint32) remainder + || result < (uint32) operand2; + + if (result & 0x80000000) + sregs->psr |= PSR_N; + else + sregs->psr &= ~PSR_N; + + y31 = (sregs->y & 0x80000000) == 0x80000000; + + if (result == 0 && sign == y31) + sregs->psr |= PSR_Z; + else + sregs->psr &= ~PSR_Z; + + sign = (sign && !y31) || (!c0 && (sign || !y31)); + + if (sign ^ (result >> 31)) + sregs->psr |= PSR_V; + else + sregs->psr &= ~PSR_V; + + if (!sign) + sregs->psr |= PSR_C; + else + sregs->psr &= ~PSR_C; + + sregs->y = result; + + if (rd != 0) + *rdd = (rs1 << 1) | !sign; + } + break; + case SMUL: + { + mul64 (rs1, operand2, &sregs->y, rdd, 1); + } + break; + case SMULCC: + { + uint32 result; + + mul64 (rs1, operand2, &sregs->y, &result, 1); + + if (result & 0x80000000) + sregs->psr |= PSR_N; + else + sregs->psr &= ~PSR_N; + + if (result == 0) + sregs->psr |= PSR_Z; + else + sregs->psr &= ~PSR_Z; + + *rdd = result; + } + break; + case UMUL: + { + mul64 (rs1, operand2, &sregs->y, rdd, 0); + } + break; + case UMULCC: + { + uint32 result; + + mul64 (rs1, operand2, &sregs->y, &result, 0); + + if (result & 0x80000000) + sregs->psr |= PSR_N; + else + sregs->psr &= ~PSR_N; + + if (result == 0) + sregs->psr |= PSR_Z; + else + sregs->psr &= ~PSR_Z; + + *rdd = result; + } + break; + case SDIV: + { + if (sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + + if (operand2 == 0) { + sregs->trap = TRAP_DIV0; + break; + } + + div64 (sregs->y, rs1, operand2, rdd, 1); + } + break; + case SDIVCC: + { + uint32 result; + + if (sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + + if (operand2 == 0) { + sregs->trap = TRAP_DIV0; + break; + } + + div64 (sregs->y, rs1, operand2, &result, 1); + + if (result & 0x80000000) + sregs->psr |= PSR_N; + else + sregs->psr &= ~PSR_N; + + if (result == 0) + sregs->psr |= PSR_Z; + else + sregs->psr &= ~PSR_Z; + + /* FIXME: should set overflow flag correctly. */ + sregs->psr &= ~(PSR_C | PSR_V); + + *rdd = result; + } + break; + case UDIV: + { + if (sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + + if (operand2 == 0) { + sregs->trap = TRAP_DIV0; + break; + } + + div64 (sregs->y, rs1, operand2, rdd, 0); + } + break; + case UDIVCC: + { + uint32 result; + + if (sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + + if (operand2 == 0) { + sregs->trap = TRAP_DIV0; + break; + } + + div64 (sregs->y, rs1, operand2, &result, 0); + + if (result & 0x80000000) + sregs->psr |= PSR_N; + else + sregs->psr &= ~PSR_N; + + if (result == 0) + sregs->psr |= PSR_Z; + else + sregs->psr &= ~PSR_Z; + + /* FIXME: should set overflow flag correctly. */ + sregs->psr &= ~(PSR_C | PSR_V); + + *rdd = result; + } + break; + case IXNOR: + *rdd = rs1 ^ ~operand2; + break; + case IXNORCC: + *rdd = rs1 ^ ~operand2; + log_cc(*rdd, sregs); + break; + case IXOR: + *rdd = rs1 ^ operand2; + break; + case IXORCC: + *rdd = rs1 ^ operand2; + log_cc(*rdd, sregs); + break; + case IOR: + *rdd = rs1 | operand2; + break; + case IORCC: + *rdd = rs1 | operand2; + log_cc(*rdd, sregs); + break; + case IORN: + *rdd = rs1 | ~operand2; + break; + case IORNCC: + *rdd = rs1 | ~operand2; + log_cc(*rdd, sregs); + break; + case IANDNCC: + *rdd = rs1 & ~operand2; + log_cc(*rdd, sregs); + break; + case IANDN: + *rdd = rs1 & ~operand2; + break; + case IAND: + *rdd = rs1 & operand2; + break; + case IANDCC: + *rdd = rs1 & operand2; + log_cc(*rdd, sregs); + break; + case SUB: + *rdd = rs1 - operand2; + break; + case SUBCC: + *rdd = rs1 - operand2; + sregs->psr = sub_cc(sregs->psr, rs1, operand2, *rdd); + break; + case SUBX: + *rdd = rs1 - operand2 - ((sregs->psr >> 20) & 1); + break; + case SUBXCC: + *rdd = rs1 - operand2 - ((sregs->psr >> 20) & 1); + sregs->psr = sub_cc(sregs->psr, rs1, operand2, *rdd); + break; + case ADD: + *rdd = rs1 + operand2; + break; + case ADDCC: + *rdd = rs1 + operand2; + sregs->psr = add_cc(sregs->psr, rs1, operand2, *rdd); + break; + case ADDX: + *rdd = rs1 + operand2 + ((sregs->psr >> 20) & 1); + break; + case ADDXCC: + *rdd = rs1 + operand2 + ((sregs->psr >> 20) & 1); + sregs->psr = add_cc(sregs->psr, rs1, operand2, *rdd); + break; + case TADDCC: + *rdd = rs1 + operand2; + sregs->psr = add_cc(sregs->psr, rs1, operand2, *rdd); + if ((rs1 | operand2) & 0x3) + sregs->psr |= PSR_V; + break; + case TSUBCC: + *rdd = rs1 - operand2; + sregs->psr = sub_cc (sregs->psr, rs1, operand2, *rdd); + if ((rs1 | operand2) & 0x3) + sregs->psr |= PSR_V; + break; + case TADDCCTV: + *rdd = rs1 + operand2; + result = add_cc(0, rs1, operand2, *rdd); + if ((rs1 | operand2) & 0x3) + result |= PSR_V; + if (result & PSR_V) { + sregs->trap = TRAP_TAG; + } else { + sregs->psr = (sregs->psr & ~PSR_CC) | result; + } + break; + case TSUBCCTV: + *rdd = rs1 - operand2; + result = add_cc (0, rs1, operand2, *rdd); + if ((rs1 | operand2) & 0x3) + result |= PSR_V; + if (result & PSR_V) + { + sregs->trap = TRAP_TAG; + } + else + { + sregs->psr = (sregs->psr & ~PSR_CC) | result; + } + break; + case SLL: + *rdd = rs1 << (operand2 & 0x1f); + break; + case SRL: + *rdd = rs1 >> (operand2 & 0x1f); + break; + case SRA: + *rdd = ((int) rs1) >> (operand2 & 0x1f); + break; + case FLUSH: + if (ift) sregs->trap = TRAP_UNIMP; + break; + case SAVE: + new_cwp = ((sregs->psr & PSR_CWP) - 1) & PSR_CWP; + if (sregs->wim & (1 << new_cwp)) { + sregs->trap = TRAP_WOFL; + break; + } + if (rd > 7) + rdd = &(sregs->r[((new_cwp << 4) + rd) & 0x7f]); + *rdd = rs1 + operand2; + sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp; + break; + case RESTORE: + + new_cwp = ((sregs->psr & PSR_CWP) + 1) & PSR_CWP; + if (sregs->wim & (1 << new_cwp)) { + sregs->trap = TRAP_WUFL; + break; + } + if (rd > 7) + rdd = &(sregs->r[((new_cwp << 4) + rd) & 0x7f]); + *rdd = rs1 + operand2; + sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp; + break; + case RDPSR: + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + *rdd = sregs->psr; + break; + case RDY: + if (!sparclite) + *rdd = sregs->y; + else { + int rs1_is_asr = (sregs->inst >> 14) & 0x1f; + if ( 0 == rs1_is_asr ) + *rdd = sregs->y; + else if ( 17 == rs1_is_asr ) + *rdd = sregs->asr17; + else { + sregs->trap = TRAP_UNIMP; + break; + } + } + break; + case RDWIM: + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + *rdd = sregs->wim; + break; + case RDTBR: + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + *rdd = sregs->tbr; + break; + case WRPSR: + if ((sregs->psr & 0x1f) > 7) { + sregs->trap = TRAP_UNIMP; + break; + } + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + sregs->psr = (rs1 ^ operand2) & 0x00f03fff; + break; + case WRWIM: + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + sregs->wim = (rs1 ^ operand2) & 0x0ff; + break; + case WRTBR: + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + sregs->tbr = (sregs->tbr & 0x00000ff0) | + ((rs1 ^ operand2) & 0xfffff000); + break; + case WRY: + if (!sparclite) + sregs->y = (rs1 ^ operand2); + else { + if ( 0 == rd ) + sregs->y = (rs1 ^ operand2); + else if ( 17 == rd ) + sregs->asr17 = (rs1 ^ operand2); + else { + sregs->trap = TRAP_UNIMP; + break; + } + } + break; + case JMPL: + +#ifdef STAT + sregs->nbranch++; +#endif + sregs->icnt = T_JMPL; /* JMPL takes two cycles */ + if (rs1 & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + *rdd = sregs->pc; + npc = rs1 + operand2; + break; + case RETT: + address = rs1 + operand2; + new_cwp = ((sregs->psr & PSR_CWP) + 1) & PSR_CWP; + sregs->icnt = T_RETT; /* RETT takes two cycles */ + if (sregs->psr & PSR_ET) { + sregs->trap = TRAP_UNIMP; + break; + } + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + break; + } + if (sregs->wim & (1 << new_cwp)) { + sregs->trap = TRAP_WUFL; + break; + } + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + sregs->psr = (sregs->psr & ~PSR_CWP) | new_cwp | PSR_ET; + sregs->psr = + (sregs->psr & ~PSR_S) | ((sregs->psr & PSR_PS) << 1); + npc = address; + break; + + case SCAN: + { + uint32 result, mask; + int i; + + if (!sparclite) { + sregs->trap = TRAP_UNIMP; + break; + } + mask = (operand2 & 0x80000000) | (operand2 >> 1); + result = rs1 ^ mask; + + for (i = 0; i < 32; i++) { + if (result & 0x80000000) + break; + result <<= 1; + } + + *rdd = i == 32 ? 63 : i; + } + break; + + default: + sregs->trap = TRAP_UNIMP; + break; + } + } + break; + case 3: /* Load/store instructions */ + + address = rs1 + operand2; + + if (sregs->psr & PSR_S) + asi = 11; + else + asi = 10; + + if (op3 & 4) { + sregs->icnt = T_ST; /* Set store instruction count */ +#ifdef STAT + sregs->nstore++; +#endif + } else { + sregs->icnt = T_LD; /* Set load instruction count */ +#ifdef STAT + sregs->nload++; +#endif + } + + /* Decode load/store instructions */ + + switch (op3) { + case LDDA: + if (!chk_asi(sregs, &asi, op3)) break; + case LDD: + if (address & 0x7) { + sregs->trap = TRAP_UNALI; + break; + } + if (rd & 1) { + rd &= 0x1e; + if (rd > 7) + rdd = &(sregs->r[(cwp + rd) & 0x7f]); + else + rdd = &(sregs->g[rd]); + } + mexc = memory_read(asi, address, ddata, 3, &ws); + sregs->hold += ws * 2; + sregs->icnt = T_LDD; + if (mexc) { + sregs->trap = TRAP_DEXC; + } else { + rdd[0] = ddata[0]; + rdd[1] = ddata[1]; +#ifdef STAT + sregs->nload++; /* Double load counts twice */ +#endif + } + break; + + case LDA: + if (!chk_asi(sregs, &asi, op3)) break; + case LD: + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_read(asi, address, &data, 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } else { + *rdd = data; + } + break; + case LDSTUBA: + if (!chk_asi(sregs, &asi, op3)) break; + case LDSTUB: + mexc = memory_read(asi, address, &data, 0, &ws); + sregs->hold += ws; + sregs->icnt = T_LDST; + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } + *rdd = data; + data = 0x0ff; + mexc = memory_write(asi, address, &data, 0, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } +#ifdef STAT + sregs->nload++; +#endif + break; + case LDSBA: + case LDUBA: + if (!chk_asi(sregs, &asi, op3)) break; + case LDSB: + case LDUB: + mexc = memory_read(asi, address, &data, 0, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } + if ((op3 == LDSB) && (data & 0x80)) + data |= 0xffffff00; + *rdd = data; + break; + case LDSHA: + case LDUHA: + if (!chk_asi(sregs, &asi, op3)) break; + case LDSH: + case LDUH: + if (address & 0x1) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_read(asi, address, &data, 1, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } + if ((op3 == LDSH) && (data & 0x8000)) + data |= 0xffff0000; + *rdd = data; + break; + case LDF: + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + if (ebase.simtime < sregs->ftime) { + if ((sregs->frd == rd) || (sregs->frs1 == rd) || + (sregs->frs2 == rd)) + sregs->fhold += (sregs->ftime - ebase.simtime); + } + mexc = memory_read(asi, address, &data, 2, &ws); + sregs->hold += ws; + sregs->flrd = rd; + sregs->ltime = ebase.simtime + sregs->icnt + FLSTHOLD + + sregs->hold + sregs->fhold; + if (mexc) { + sregs->trap = TRAP_DEXC; + } else { + sregs->fs[rd] = *((float32 *) & data); + } + break; + case LDDF: + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x7) { + sregs->trap = TRAP_UNALI; + break; + } + if (ebase.simtime < sregs->ftime) { + if (((sregs->frd >> 1) == (rd >> 1)) || + ((sregs->frs1 >> 1) == (rd >> 1)) || + ((sregs->frs2 >> 1) == (rd >> 1))) + sregs->fhold += (sregs->ftime - ebase.simtime); + } + mexc = memory_read(asi, address, ddata, 3, &ws); + sregs->hold += ws * 2; + sregs->icnt = T_LDD; + if (mexc) { + sregs->trap = TRAP_DEXC; + } else { + rd &= 0x1E; + sregs->flrd = rd; + sregs->fs[rd] = *((float32 *) & ddata[0]); +#ifdef STAT + sregs->nload++; /* Double load counts twice */ +#endif + sregs->fs[rd + 1] = *((float32 *) & ddata[1]); + sregs->ltime = ebase.simtime + sregs->icnt + FLSTHOLD + + sregs->hold + sregs->fhold; + } + break; + case LDFSR: + if (ebase.simtime < sregs->ftime) { + sregs->fhold += (sregs->ftime - ebase.simtime); + } + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_read(asi, address, &data, 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } else { + sregs->fsr = + (sregs->fsr & 0x7FF000) | (data & ~0x7FF000); + set_fsr(sregs->fsr); + } + break; + case STFSR: + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + if (ebase.simtime < sregs->ftime) { + sregs->fhold += (sregs->ftime - ebase.simtime); + } + mexc = memory_write(asi, address, &sregs->fsr, 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + + case STA: + if (!chk_asi(sregs, &asi, op3)) break; + case ST: + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_write(asi, address, rdd, 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + case STBA: + if (!chk_asi(sregs, &asi, op3)) break; + case STB: + mexc = memory_write(asi, address, rdd, 0, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + case STDA: + if (!chk_asi(sregs, &asi, op3)) break; + case STD: + if (address & 0x7) { + sregs->trap = TRAP_UNALI; + break; + } + if (rd & 1) { + rd &= 0x1e; + if (rd > 7) + rdd = &(sregs->r[(cwp + rd) & 0x7f]); + else + rdd = &(sregs->g[rd]); + } + mexc = memory_write(asi, address, rdd, 3, &ws); + sregs->hold += ws; + sregs->icnt = T_STD; +#ifdef STAT + sregs->nstore++; /* Double store counts twice */ +#endif + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } + break; + case STDFQ: + if ((sregs->psr & 0x1f) > 7) { + sregs->trap = TRAP_UNIMP; + break; + } + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x7) { + sregs->trap = TRAP_UNALI; + break; + } + if (!(sregs->fsr & FSR_QNE)) { + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_SEQ_ERR; + break; + } + rdd = &(sregs->fpq[0]); + mexc = memory_write(asi, address, rdd, 3, &ws); + sregs->hold += ws; + sregs->icnt = T_STD; +#ifdef STAT + sregs->nstore++; /* Double store counts twice */ +#endif + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } else { + sregs->fsr &= ~FSR_QNE; + sregs->fpstate = FP_EXE_MODE; + } + break; + case STHA: + if (!chk_asi(sregs, &asi, op3)) break; + case STH: + if (address & 0x1) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_write(asi, address, rdd, 1, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + case STF: + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + if (ebase.simtime < sregs->ftime) { + if (sregs->frd == rd) + sregs->fhold += (sregs->ftime - ebase.simtime); + } + mexc = memory_write(asi, address, &sregs->fsi[rd], 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + case STDF: + if (!((sregs->psr & PSR_EF) && FP_PRES)) { + sregs->trap = TRAP_FPDIS; + break; + } + if (address & 0x7) { + sregs->trap = TRAP_UNALI; + break; + } + rd &= 0x1E; + if (ebase.simtime < sregs->ftime) { + if ((sregs->frd == rd) || (sregs->frd + 1 == rd)) + sregs->fhold += (sregs->ftime - ebase.simtime); + } + mexc = memory_write(asi, address, &sregs->fsi[rd], 3, &ws); + sregs->hold += ws; + sregs->icnt = T_STD; +#ifdef STAT + sregs->nstore++; /* Double store counts twice */ +#endif + if (mexc) { + sregs->trap = TRAP_DEXC; + } + break; + case SWAPA: + if (!chk_asi(sregs, &asi, op3)) break; + case SWAP: + if (address & 0x3) { + sregs->trap = TRAP_UNALI; + break; + } + mexc = memory_read(asi, address, &data, 2, &ws); + sregs->hold += ws; + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } + mexc = memory_write(asi, address, rdd, 2, &ws); + sregs->hold += ws; + sregs->icnt = T_LDST; + if (mexc) { + sregs->trap = TRAP_DEXC; + break; + } else + *rdd = data; +#ifdef STAT + sregs->nload++; +#endif + break; + + + default: + sregs->trap = TRAP_UNIMP; + break; + } + +#ifdef LOAD_DEL + + if (!(op3 & 4)) { + sregs->ildtime = ebase.simtime + sregs->hold + sregs->icnt; + sregs->ildreg = rd; + if ((op3 | 0x10) == 0x13) + sregs->ildreg |= 1; /* Double load, odd register loaded + * last */ + } +#endif + break; + + default: + sregs->trap = TRAP_UNIMP; + break; + } + sregs->g[0] = 0; + if (!sregs->trap) { + sregs->pc = pc; + sregs->npc = npc; + } + return (0); +} + +#define T_FABSs 2 +#define T_FADDs 4 +#define T_FADDd 4 +#define T_FCMPs 4 +#define T_FCMPd 4 +#define T_FDIVs 20 +#define T_FDIVd 35 +#define T_FMOVs 2 +#define T_FMULs 5 +#define T_FMULd 9 +#define T_FNEGs 2 +#define T_FSQRTs 37 +#define T_FSQRTd 65 +#define T_FSUBs 4 +#define T_FSUBd 4 +#define T_FdTOi 7 +#define T_FdTOs 3 +#define T_FiTOs 6 +#define T_FiTOd 6 +#define T_FsTOi 6 +#define T_FsTOd 2 + +#define FABSs 0x09 +#define FADDs 0x41 +#define FADDd 0x42 +#define FCMPs 0x51 +#define FCMPd 0x52 +#define FCMPEs 0x55 +#define FCMPEd 0x56 +#define FDIVs 0x4D +#define FDIVd 0x4E +#define FMOVs 0x01 +#define FMULs 0x49 +#define FMULd 0x4A +#define FNEGs 0x05 +#define FSQRTs 0x29 +#define FSQRTd 0x2A +#define FSUBs 0x45 +#define FSUBd 0x46 +#define FdTOi 0xD2 +#define FdTOs 0xC6 +#define FiTOs 0xC4 +#define FiTOd 0xC8 +#define FsTOi 0xD1 +#define FsTOd 0xC9 + + +static int +fpexec(op3, rd, rs1, rs2, sregs) + uint32 op3, rd, rs1, rs2; + struct pstate *sregs; +{ + uint32 opf, tem, accex; + int32 fcc; + uint32 ldadj; + + if (sregs->fpstate == FP_EXC_MODE) { + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_SEQ_ERR; + sregs->fpstate = FP_EXC_PE; + return (0); + } + if (sregs->fpstate == FP_EXC_PE) { + sregs->fpstate = FP_EXC_MODE; + return (TRAP_FPEXC); + } + opf = (sregs->inst >> 5) & 0x1ff; + + /* + * Check if we already have an FPop in the pipe. If so, halt until it is + * finished by incrementing fhold with the remaining execution time + */ + + if (ebase.simtime < sregs->ftime) { + sregs->fhold = (sregs->ftime - ebase.simtime); + } else { + sregs->fhold = 0; + + /* Check load dependencies. */ + + if (ebase.simtime < sregs->ltime) { + + /* Don't check rs1 if single operand instructions */ + + if (((opf >> 6) == 0) || ((opf >> 6) == 3)) + rs1 = 32; + + /* Adjust for double floats */ + + ldadj = opf & 1; + if (!(((sregs->flrd - rs1) >> ldadj) && ((sregs->flrd - rs2) >> ldadj))) + sregs->fhold++; + } + } + + sregs->finst++; + + sregs->frs1 = rs1; /* Store src and dst for dependecy check */ + sregs->frs2 = rs2; + sregs->frd = rd; + + sregs->ftime = ebase.simtime + sregs->hold + sregs->fhold; + + /* SPARC is big-endian - swap double floats if host is little-endian */ + /* This is ugly - I know ... */ + + /* FIXME: should use (CURRENT_HOST_BYTE_ORDER == CURRENT_TARGET_BYTE_ORDER) + but what about machines where float values are different endianness + from integer values? */ + +#ifdef HOST_LITTLE_ENDIAN_FLOAT + rs1 &= 0x1f; + switch (opf) { + case FADDd: + case FDIVd: + case FMULd: + case FSQRTd: + case FSUBd: + case FCMPd: + case FCMPEd: + case FdTOi: + case FdTOs: + sregs->fdp[rs1 | 1] = sregs->fs[rs1 & ~1]; + sregs->fdp[rs1 & ~1] = sregs->fs[rs1 | 1]; + sregs->fdp[rs2 | 1] = sregs->fs[rs2 & ~1]; + sregs->fdp[rs2 & ~1] = sregs->fs[rs2 | 1]; + default: + } +#endif + + clear_accex(); + + switch (opf) { + case FABSs: + sregs->fs[rd] = fabs(sregs->fs[rs2]); + sregs->ftime += T_FABSs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FADDs: + sregs->fs[rd] = sregs->fs[rs1] + sregs->fs[rs2]; + sregs->ftime += T_FADDs; + break; + case FADDd: + sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] + sregs->fd[rs2 >> 1]; + sregs->ftime += T_FADDd; + break; + case FCMPs: + case FCMPEs: + if (sregs->fs[rs1] == sregs->fs[rs2]) + fcc = 3; + else if (sregs->fs[rs1] < sregs->fs[rs2]) + fcc = 2; + else if (sregs->fs[rs1] > sregs->fs[rs2]) + fcc = 1; + else + fcc = 0; + sregs->fsr |= 0x0C00; + sregs->fsr &= ~(fcc << 10); + sregs->ftime += T_FCMPs; + sregs->frd = 32; /* rd ignored */ + if ((fcc == 0) && (opf == FCMPEs)) { + sregs->fpstate = FP_EXC_PE; + sregs->fsr = (sregs->fsr & ~0x1C000) | (1 << 14); + } + break; + case FCMPd: + case FCMPEd: + if (sregs->fd[rs1 >> 1] == sregs->fd[rs2 >> 1]) + fcc = 3; + else if (sregs->fd[rs1 >> 1] < sregs->fd[rs2 >> 1]) + fcc = 2; + else if (sregs->fd[rs1 >> 1] > sregs->fd[rs2 >> 1]) + fcc = 1; + else + fcc = 0; + sregs->fsr |= 0x0C00; + sregs->fsr &= ~(fcc << 10); + sregs->ftime += T_FCMPd; + sregs->frd = 32; /* rd ignored */ + if ((fcc == 0) && (opf == FCMPEd)) { + sregs->fpstate = FP_EXC_PE; + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; + } + break; + case FDIVs: + sregs->fs[rd] = sregs->fs[rs1] / sregs->fs[rs2]; + sregs->ftime += T_FDIVs; + break; + case FDIVd: + sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] / sregs->fd[rs2 >> 1]; + sregs->ftime += T_FDIVd; + break; + case FMOVs: + sregs->fs[rd] = sregs->fs[rs2]; + sregs->ftime += T_FMOVs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FMULs: + sregs->fs[rd] = sregs->fs[rs1] * sregs->fs[rs2]; + sregs->ftime += T_FMULs; + break; + case FMULd: + sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] * sregs->fd[rs2 >> 1]; + sregs->ftime += T_FMULd; + break; + case FNEGs: + sregs->fs[rd] = -sregs->fs[rs2]; + sregs->ftime += T_FNEGs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FSQRTs: + if (sregs->fs[rs2] < 0.0) { + sregs->fpstate = FP_EXC_PE; + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; + sregs->fsr = (sregs->fsr & 0x1f) | 0x10; + break; + } + sregs->fs[rd] = sqrt(sregs->fs[rs2]); + sregs->ftime += T_FSQRTs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FSQRTd: + if (sregs->fd[rs2 >> 1] < 0.0) { + sregs->fpstate = FP_EXC_PE; + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; + sregs->fsr = (sregs->fsr & 0x1f) | 0x10; + break; + } + sregs->fd[rd >> 1] = sqrt(sregs->fd[rs2 >> 1]); + sregs->ftime += T_FSQRTd; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FSUBs: + sregs->fs[rd] = sregs->fs[rs1] - sregs->fs[rs2]; + sregs->ftime += T_FSUBs; + break; + case FSUBd: + sregs->fd[rd >> 1] = sregs->fd[rs1 >> 1] - sregs->fd[rs2 >> 1]; + sregs->ftime += T_FSUBd; + break; + case FdTOi: + sregs->fsi[rd] = (int) sregs->fd[rs2 >> 1]; + sregs->ftime += T_FdTOi; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FdTOs: + sregs->fs[rd] = (float32) sregs->fd[rs2 >> 1]; + sregs->ftime += T_FdTOs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FiTOs: + sregs->fs[rd] = (float32) sregs->fsi[rs2]; + sregs->ftime += T_FiTOs; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FiTOd: + sregs->fd[rd >> 1] = (float64) sregs->fsi[rs2]; + sregs->ftime += T_FiTOd; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FsTOi: + sregs->fsi[rd] = (int) sregs->fs[rs2]; + sregs->ftime += T_FsTOi; + sregs->frs1 = 32; /* rs1 ignored */ + break; + case FsTOd: + sregs->fd[rd >> 1] = sregs->fs[rs2]; + sregs->ftime += T_FsTOd; + sregs->frs1 = 32; /* rs1 ignored */ + break; + + default: + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_UNIMP; + sregs->fpstate = FP_EXC_PE; + } + +#ifdef ERRINJ + if (errftt) { + sregs->fsr = (sregs->fsr & ~FSR_TT) | (errftt << 14); + sregs->fpstate = FP_EXC_PE; + if (sis_verbose) printf("Inserted fpu error %X\n",errftt); + errftt = 0; + } +#endif + + accex = get_accex(); + +#ifdef HOST_LITTLE_ENDIAN_FLOAT + switch (opf) { + case FADDd: + case FDIVd: + case FMULd: + case FSQRTd: + case FSUBd: + case FiTOd: + case FsTOd: + sregs->fs[rd & ~1] = sregs->fdp[rd | 1]; + sregs->fs[rd | 1] = sregs->fdp[rd & ~1]; + default: + } +#endif + if (sregs->fpstate == FP_EXC_PE) { + sregs->fpq[0] = sregs->pc; + sregs->fpq[1] = sregs->inst; + sregs->fsr |= FSR_QNE; + } else { + tem = (sregs->fsr >> 23) & 0x1f; + if (tem & accex) { + sregs->fpstate = FP_EXC_PE; + sregs->fsr = (sregs->fsr & ~FSR_TT) | FP_IEEE; + sregs->fsr = ((sregs->fsr & ~0x1f) | accex); + } else { + sregs->fsr = ((((sregs->fsr >> 5) | accex) << 5) | accex); + } + if (sregs->fpstate == FP_EXC_PE) { + sregs->fpq[0] = sregs->pc; + sregs->fpq[1] = sregs->inst; + sregs->fsr |= FSR_QNE; + } + } + clear_accex(); + + return (0); + + +} + +static int +chk_asi(sregs, asi, op3) + struct pstate *sregs; + uint32 *asi, op3; + +{ + if (!(sregs->psr & PSR_S)) { + sregs->trap = TRAP_PRIVI; + return (0); + } else if (sregs->inst & INST_I) { + sregs->trap = TRAP_UNIMP; + return (0); + } else + *asi = (sregs->inst >> 5) & 0x0ff; + return(1); +} + +int +execute_trap(sregs) + struct pstate *sregs; +{ + int32 cwp; + + if (sregs->trap == 256) { + sregs->pc = 0; + sregs->npc = 4; + sregs->trap = 0; + } else if (sregs->trap == 257) { + return (ERROR); + } else { + + if ((sregs->psr & PSR_ET) == 0) + return (ERROR); + + sregs->tbr = (sregs->tbr & 0xfffff000) | (sregs->trap << 4); + sregs->trap = 0; + sregs->psr &= ~PSR_ET; + sregs->psr |= ((sregs->psr & PSR_S) >> 1); + sregs->annul = 0; + sregs->psr = (((sregs->psr & PSR_CWP) - 1) & 0x7) | (sregs->psr & ~PSR_CWP); + cwp = ((sregs->psr & PSR_CWP) << 4); + sregs->r[(cwp + 17) & 0x7f] = sregs->pc; + sregs->r[(cwp + 18) & 0x7f] = sregs->npc; + sregs->psr |= PSR_S; + sregs->pc = sregs->tbr; + sregs->npc = sregs->tbr + 4; + + if ( 0 != (1 & sregs->asr17) ) { + /* single vector trapping! */ + sregs->pc = sregs->tbr & 0xfffff000; + sregs->npc = sregs->pc + 4; + } + + /* Increase simulator time */ + sregs->icnt = TRAP_C; + + } + + + return (0); + +} + +extern struct irqcell irqarr[16]; + +int +check_interrupts(sregs) + struct pstate *sregs; +{ +#ifdef ERRINJ + if (errtt) { + sregs->trap = errtt; + if (sis_verbose) printf("Inserted error trap 0x%02X\n",errtt); + errtt = 0; + } +#endif + + if ((ext_irl) && (sregs->psr & PSR_ET) && + ((ext_irl == 15) || (ext_irl > (int) ((sregs->psr & PSR_PIL) >> 8)))) { + if (sregs->trap == 0) { + sregs->trap = 16 + ext_irl; + irqarr[ext_irl & 0x0f].callback(irqarr[ext_irl & 0x0f].arg); + return(1); + } + } + return(0); +} + +void +init_regs(sregs) + struct pstate *sregs; +{ + sregs->pc = 0; + sregs->npc = 4; + sregs->trap = 0; + sregs->psr &= 0x00f03fdf; + sregs->psr |= 0x080; /* Set supervisor bit */ + sregs->breakpoint = 0; + sregs->annul = 0; + sregs->fpstate = FP_EXE_MODE; + sregs->fpqn = 0; + sregs->ftime = 0; + sregs->ltime = 0; + sregs->err_mode = 0; + ext_irl = 0; + sregs->g[0] = 0; +#ifdef HOST_LITTLE_ENDIAN_FLOAT + sregs->fdp = (float32 *) sregs->fd; + sregs->fsi = (int32 *) sregs->fs; +#else + sregs->fs = (float32 *) sregs->fd; + sregs->fsi = (int32 *) sregs->fd; +#endif + sregs->fsr = 0; + sregs->fpu_pres = !nfp; + set_fsr(sregs->fsr); + sregs->bphit = 0; + sregs->ildreg = 0; + sregs->ildtime = 0; + + sregs->y = 0; + sregs->asr17 = 0; + + sregs->rett_err = 0; + sregs->jmpltime = 0; +} |