aboutsummaryrefslogtreecommitdiff
path: root/sim/d10v/interp.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /sim/d10v/interp.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadgdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'sim/d10v/interp.c')
-rw-r--r--sim/d10v/interp.c1086
1 files changed, 1086 insertions, 0 deletions
diff --git a/sim/d10v/interp.c b/sim/d10v/interp.c
new file mode 100644
index 0000000..17c964f
--- /dev/null
+++ b/sim/d10v/interp.c
@@ -0,0 +1,1086 @@
+#include <signal.h>
+#include "sysdep.h"
+#include "bfd.h"
+#include "callback.h"
+#include "remote-sim.h"
+
+#include "d10v_sim.h"
+
+#define IMEM_SIZE 18 /* D10V instruction memory size is 18 bits */
+#define DMEM_SIZE 16 /* Data memory is 64K (but only 32K internal RAM) */
+#define UMEM_SIZE 17 /* Each unified memory segment is 17 bits */
+#define UMEM_SEGMENTS 128 /* Number of segments in unified memory region */
+
+enum _leftright { LEFT_FIRST, RIGHT_FIRST };
+
+static char *myname;
+static SIM_OPEN_KIND sim_kind;
+int d10v_debug;
+host_callback *d10v_callback;
+unsigned long ins_type_counters[ (int)INS_MAX ];
+
+uint16 OP[4];
+
+static int init_text_p = 0;
+/* non-zero if we opened prog_bfd */
+static int prog_bfd_was_opened_p;
+bfd *prog_bfd;
+asection *text;
+bfd_vma text_start;
+bfd_vma text_end;
+
+static long hash PARAMS ((long insn, int format));
+static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int size));
+static void get_operands PARAMS ((struct simops *s, uint32 ins));
+static void do_long PARAMS ((uint32 ins));
+static void do_2_short PARAMS ((uint16 ins1, uint16 ins2, enum _leftright leftright));
+static void do_parallel PARAMS ((uint16 ins1, uint16 ins2));
+static char *add_commas PARAMS ((char *buf, int sizeof_buf, unsigned long value));
+extern void sim_set_profile PARAMS ((int n));
+extern void sim_set_profile_size PARAMS ((int n));
+
+#ifndef INLINE
+#if defined(__GNUC__) && defined(__OPTIMIZE__)
+#define INLINE __inline__
+#else
+#define INLINE
+#endif
+#endif
+
+#define MAX_HASH 63
+struct hash_entry
+{
+ struct hash_entry *next;
+ uint32 opcode;
+ uint32 mask;
+ int size;
+ struct simops *ops;
+};
+
+struct hash_entry hash_table[MAX_HASH+1];
+
+INLINE static long
+hash(insn, format)
+ long insn;
+ int format;
+{
+ if (format & LONG_OPCODE)
+ return ((insn & 0x3F000000) >> 24);
+ else
+ return((insn & 0x7E00) >> 9);
+}
+
+INLINE static struct hash_entry *
+lookup_hash (ins, size)
+ uint32 ins;
+ int size;
+{
+ struct hash_entry *h;
+
+ if (size)
+ h = &hash_table[(ins & 0x3F000000) >> 24];
+ else
+ h = &hash_table[(ins & 0x7E00) >> 9];
+
+ while ((ins & h->mask) != h->opcode || h->size != size)
+ {
+ if (h->next == NULL)
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC);
+ exit (1);
+ }
+ h = h->next;
+ }
+ return (h);
+}
+
+INLINE static void
+get_operands (struct simops *s, uint32 ins)
+{
+ int i, shift, bits, flags;
+ uint32 mask;
+ for (i=0; i < s->numops; i++)
+ {
+ shift = s->operands[3*i];
+ bits = s->operands[3*i+1];
+ flags = s->operands[3*i+2];
+ mask = 0x7FFFFFFF >> (31 - bits);
+ OP[i] = (ins >> shift) & mask;
+ }
+ /* FIXME: for tracing, update values that need to be updated each
+ instruction decode cycle */
+ State.trace.psw = PSW;
+}
+
+bfd_vma
+decode_pc ()
+{
+ asection *s;
+ if (!init_text_p && prog_bfd != NULL)
+ {
+ init_text_p = 1;
+ for (s = prog_bfd->sections; s; s = s->next)
+ if (strcmp (bfd_get_section_name (prog_bfd, s), ".text") == 0)
+ {
+ text = s;
+ text_start = bfd_get_section_vma (prog_bfd, s);
+ text_end = text_start + bfd_section_size (prog_bfd, s);
+ break;
+ }
+ }
+
+ return (PC << 2) + text_start;
+}
+
+static void
+do_long (ins)
+ uint32 ins;
+{
+ struct hash_entry *h;
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
+ (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
+#endif
+ h = lookup_hash (ins, 1);
+ get_operands (h->ops, ins);
+ State.ins_type = INS_LONG;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h->ops->func)();
+}
+
+static void
+do_2_short (ins1, ins2, leftright)
+ uint16 ins1, ins2;
+ enum _leftright leftright;
+{
+ struct hash_entry *h;
+ enum _ins_type first, second;
+
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
+ (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
+ ins1, (leftright) ? "left" : "right", ins2);
+#endif
+
+ if (leftright == LEFT_FIRST)
+ {
+ first = INS_LEFT;
+ second = INS_RIGHT;
+ ins_type_counters[ (int)INS_LEFTRIGHT ]++;
+ }
+ else
+ {
+ first = INS_RIGHT;
+ second = INS_LEFT;
+ ins_type_counters[ (int)INS_RIGHTLEFT ]++;
+ }
+
+ /* Issue the first instruction */
+ h = lookup_hash (ins1, 0);
+ get_operands (h->ops, ins1);
+ State.ins_type = first;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h->ops->func)();
+
+ /* Issue the second instruction (if the PC hasn't changed) */
+ if (!State.pc_changed && !State.exception)
+ {
+ /* finish any existing instructions */
+ SLOT_FLUSH ();
+ h = lookup_hash (ins2, 0);
+ get_operands (h->ops, ins2);
+ State.ins_type = second;
+ ins_type_counters[ (int)State.ins_type ]++;
+ ins_type_counters[ (int)INS_CYCLES ]++;
+ (h->ops->func)();
+ }
+ else if (!State.exception)
+ ins_type_counters[ (int)INS_COND_JUMP ]++;
+}
+
+static void
+do_parallel (ins1, ins2)
+ uint16 ins1, ins2;
+{
+ struct hash_entry *h1, *h2;
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
+ (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
+#endif
+ ins_type_counters[ (int)INS_PARALLEL ]++;
+ h1 = lookup_hash (ins1, 0);
+ h2 = lookup_hash (ins2, 0);
+
+ if (h1->ops->exec_type == PARONLY)
+ {
+ get_operands (h1->ops, ins1);
+ State.ins_type = INS_LEFT_COND_TEST;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h1->ops->func)();
+ if (State.exe)
+ {
+ ins_type_counters[ (int)INS_COND_TRUE ]++;
+ get_operands (h2->ops, ins2);
+ State.ins_type = INS_RIGHT_COND_EXE;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h2->ops->func)();
+ }
+ else
+ ins_type_counters[ (int)INS_COND_FALSE ]++;
+ }
+ else if (h2->ops->exec_type == PARONLY)
+ {
+ get_operands (h2->ops, ins2);
+ State.ins_type = INS_RIGHT_COND_TEST;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h2->ops->func)();
+ if (State.exe)
+ {
+ ins_type_counters[ (int)INS_COND_TRUE ]++;
+ get_operands (h1->ops, ins1);
+ State.ins_type = INS_LEFT_COND_EXE;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h1->ops->func)();
+ }
+ else
+ ins_type_counters[ (int)INS_COND_FALSE ]++;
+ }
+ else
+ {
+ get_operands (h1->ops, ins1);
+ State.ins_type = INS_LEFT_PARALLEL;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h1->ops->func)();
+ if (!State.exception)
+ {
+ get_operands (h2->ops, ins2);
+ State.ins_type = INS_RIGHT_PARALLEL;
+ ins_type_counters[ (int)State.ins_type ]++;
+ (h2->ops->func)();
+ }
+ }
+}
+
+static char *
+add_commas(buf, sizeof_buf, value)
+ char *buf;
+ int sizeof_buf;
+ unsigned long value;
+{
+ int comma = 3;
+ char *endbuf = buf + sizeof_buf - 1;
+
+ *--endbuf = '\0';
+ do {
+ if (comma-- == 0)
+ {
+ *--endbuf = ',';
+ comma = 2;
+ }
+
+ *--endbuf = (value % 10) + '0';
+ } while ((value /= 10) != 0);
+
+ return endbuf;
+}
+
+void
+sim_size (power)
+ int power;
+
+{
+ int i;
+
+ if (State.imem)
+ {
+ for (i=0;i<UMEM_SEGMENTS;i++)
+ {
+ if (State.umem[i])
+ {
+ free (State.umem[i]);
+ State.umem[i] = NULL;
+ }
+ }
+ free (State.imem);
+ free (State.dmem);
+ }
+
+ State.imem = (uint8 *)calloc(1,1<<IMEM_SIZE);
+ State.dmem = (uint8 *)calloc(1,1<<DMEM_SIZE);
+ for (i=1;i<(UMEM_SEGMENTS-1);i++)
+ State.umem[i] = NULL;
+ State.umem[0] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ State.umem[1] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ State.umem[2] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ State.umem[UMEM_SEGMENTS-1] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ if (!State.imem || !State.dmem || !State.umem[0] || !State.umem[1] || !State.umem[2] || !State.umem[UMEM_SEGMENTS-1] )
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "Memory allocation failed.\n");
+ exit(1);
+ }
+
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_MEMSIZE) != 0)
+ {
+ char buffer[20];
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "Allocated %s bytes instruction memory and\n",
+ add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)));
+
+ (*d10v_callback->printf_filtered) (d10v_callback, " %s bytes data memory.\n",
+ add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)));
+ }
+#endif
+}
+
+/* Transfer data to/from simulated memory. Since a bug in either the
+ simulated program or in gdb or the simulator itself may cause a
+ bogus address to be passed in, we need to do some sanity checking
+ on addresses to make sure they are within bounds. When an address
+ fails the bounds check, treat it as a zero length read/write rather
+ than aborting the entire run. */
+
+static int
+xfer_mem (SIM_ADDR addr,
+ unsigned char *buffer,
+ int size,
+ int write_p)
+{
+ unsigned char *memory;
+ int segment = ((addr >> 24) & 0xff);
+ addr = (addr & 0x00ffffff);
+
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
+ {
+ if (write_p)
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%02x:%06x\n", size, segment, addr);
+ }
+ else
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%2x:%6x\n", size, segment, addr);
+ }
+ }
+#endif
+
+ /* to access data, we use the following mapping
+ 0x00xxxxxx: Logical data address segment (DMAP translated memory)
+ 0x01xxxxxx: Logical instruction address segment (IMAP translated memory)
+ 0x10xxxxxx: Physical data memory segment (On-chip data memory)
+ 0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)
+ 0x12xxxxxx: Phisical unified memory segment (Unified memory)
+ */
+
+ switch (segment)
+ {
+ case 0x00: /* DMAP translated memory */
+ {
+ int byte;
+ for (byte = 0; byte < size; byte++)
+ {
+ uint8 *mem = dmem_addr (addr + byte);
+ if (mem == NULL)
+ return byte;
+ else if (write_p)
+ *mem = buffer[byte];
+ else
+ buffer[byte] = *mem;
+ }
+ return byte;
+ }
+
+ case 0x01: /* IMAP translated memory */
+ {
+ int byte;
+ for (byte = 0; byte < size; byte++)
+ {
+ uint8 *mem = imem_addr (addr + byte);
+ if (mem == NULL)
+ return byte;
+ else if (write_p)
+ *mem = buffer[byte];
+ else
+ buffer[byte] = *mem;
+ }
+ return byte;
+ }
+
+ case 0x10: /* On-chip data memory */
+ {
+ addr &= ((1 << DMEM_SIZE) - 1);
+ if ((addr + size) > (1 << DMEM_SIZE))
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n",
+ addr + size - 1, (1 << DMEM_SIZE) - 1);
+ return (0);
+ }
+ memory = State.dmem + addr;
+ break;
+ }
+
+ case 0x11: /* On-chip insn memory */
+ {
+ addr &= ((1 << IMEM_SIZE) - 1);
+ if ((addr + size) > (1 << IMEM_SIZE))
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n",
+ addr + size - 1, (1 << IMEM_SIZE) - 1);
+ return (0);
+ }
+ memory = State.imem + addr;
+ break;
+ }
+
+ case 0x12: /* Unified memory */
+ {
+ int startsegment, startoffset; /* Segment and offset within segment where xfer starts */
+ int endsegment, endoffset; /* Segment and offset within segment where xfer ends */
+
+ startsegment = addr >> UMEM_SIZE;
+ startoffset = addr & ((1 << UMEM_SIZE) - 1);
+ endsegment = (addr + size) >> UMEM_SIZE;
+ endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1);
+
+ /* FIXME: We do not currently implement xfers across segments,
+ so detect this case and fail gracefully. */
+
+ if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0))
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n");
+ return (0);
+ }
+ if (!State.umem[startsegment])
+ {
+#ifdef DEBUG
+ if ((d10v_debug & DEBUG_MEMSIZE) != 0)
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n",
+ add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment);
+ }
+#endif
+ State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ }
+ if (!State.umem[startsegment])
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE);
+ return (0);
+ }
+ memory = State.umem[startsegment] + startoffset;
+ break;
+ }
+
+ default:
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%lx is not in valid range\n", (long) addr);
+ (*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx: Logical data address segment (DMAP translated memory)\n");
+ (*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx: Logical instruction address segment (IMAP translated memory)\n");
+ (*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx: Physical data memory segment (On-chip data memory)\n");
+ (*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)\n");
+ (*d10v_callback->printf_filtered) (d10v_callback, "0x12xxxxxx: Phisical unified memory segment (Unified memory)\n");
+ return (0);
+ }
+ }
+
+ if (write_p)
+ {
+ memcpy (memory, buffer, size);
+ }
+ else
+ {
+ memcpy (buffer, memory, size);
+ }
+
+ return size;
+}
+
+
+int
+sim_write (sd, addr, buffer, size)
+ SIM_DESC sd;
+ SIM_ADDR addr;
+ unsigned char *buffer;
+ int size;
+{
+ /* FIXME: this should be performing a virtual transfer */
+ return xfer_mem( addr, buffer, size, 1);
+}
+
+int
+sim_read (sd, addr, buffer, size)
+ SIM_DESC sd;
+ SIM_ADDR addr;
+ unsigned char *buffer;
+ int size;
+{
+ /* FIXME: this should be performing a virtual transfer */
+ return xfer_mem( addr, buffer, size, 0);
+}
+
+
+SIM_DESC
+sim_open (kind, callback, abfd, argv)
+ SIM_OPEN_KIND kind;
+ host_callback *callback;
+ struct _bfd *abfd;
+ char **argv;
+{
+ struct simops *s;
+ struct hash_entry *h;
+ static int init_p = 0;
+ char **p;
+
+ sim_kind = kind;
+ d10v_callback = callback;
+ myname = argv[0];
+
+ for (p = argv + 1; *p; ++p)
+ {
+#ifdef DEBUG
+ if (strcmp (*p, "-t") == 0)
+ d10v_debug = DEBUG;
+ else
+#endif
+ (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",*p);
+ }
+
+ /* put all the opcodes in the hash table */
+ if (!init_p++)
+ {
+ for (s = Simops; s->func; s++)
+ {
+ h = &hash_table[hash(s->opcode,s->format)];
+
+ /* go to the last entry in the chain */
+ while (h->next)
+ h = h->next;
+
+ if (h->ops)
+ {
+ h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
+ if (!h->next)
+ perror ("malloc failure");
+
+ h = h->next;
+ }
+ h->ops = s;
+ h->mask = s->mask;
+ h->opcode = s->opcode;
+ h->size = s->is_long;
+ }
+ }
+
+ /* reset the processor state */
+ if (!State.imem)
+ sim_size(1);
+ sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);
+
+ /* Fudge our descriptor. */
+ return (SIM_DESC) 1;
+}
+
+
+void
+sim_close (sd, quitting)
+ SIM_DESC sd;
+ int quitting;
+{
+ if (prog_bfd != NULL && prog_bfd_was_opened_p)
+ {
+ bfd_close (prog_bfd);
+ prog_bfd = NULL;
+ prog_bfd_was_opened_p = 0;
+ }
+}
+
+void
+sim_set_profile (n)
+ int n;
+{
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile %d\n",n);
+}
+
+void
+sim_set_profile_size (n)
+ int n;
+{
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n);
+}
+
+
+uint8 *
+dmem_addr( addr )
+ uint32 addr;
+{
+ int seg;
+
+ addr &= 0xffff;
+
+ if (addr > 0xbfff)
+ {
+ if ( (addr & 0xfff0) != 0xff00)
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback, "Data address 0x%lx is in I/O space, pc = 0x%lx.\n",
+ (long)addr, (long)decode_pc ());
+ State.exception = SIGBUS;
+ }
+
+ return State.dmem + addr;
+ }
+
+ if (addr > 0x7fff)
+ {
+ if (DMAP & 0x1000)
+ {
+ /* instruction memory */
+ return (DMAP & 0xf) * 0x4000 + State.imem + (addr - 0x8000);
+ }
+ else
+ {
+ /* unified memory */
+ /* this is ugly because we allocate unified memory in 128K segments and */
+ /* dmap addresses 16k segments */
+ seg = (DMAP & 0x3ff) >> 3;
+ if (State.umem[seg] == NULL)
+ {
+#ifdef DEBUG
+ (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %d bytes unified memory to region %d\n", 1<<UMEM_SIZE, seg);
+#endif
+ State.umem[seg] = (uint8 *)calloc(1,1<<UMEM_SIZE);
+ if (!State.umem[seg])
+ {
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "ERROR: alloc failed. unified memory region %d unmapped, pc = 0x%lx\n",
+ seg, (long)decode_pc ());
+ State.exception = SIGBUS;
+ }
+ }
+ return State.umem[seg] + (DMAP & 7) * 0x4000 + (addr - 0x8000);
+ }
+ }
+ return State.dmem + addr;
+}
+
+
+uint8 *
+imem_addr (uint32 pc)
+{
+ uint16 imap;
+
+ if (pc & 0x20000)
+ imap = IMAP1;
+ else
+ imap = IMAP0;
+
+ if (imap & 0x1000)
+ return State.imem + pc;
+
+ if (State.umem[imap & 0xff] == NULL)
+ return 0;
+
+ /* Discard upper bit(s) of PC in case IMAP1 selects unified memory. */
+ pc &= (1 << UMEM_SIZE) - 1;
+
+ return State.umem[imap & 0xff] + pc;
+}
+
+
+static int stop_simulator = 0;
+
+int
+sim_stop (sd)
+ SIM_DESC sd;
+{
+ stop_simulator = 1;
+ return 1;
+}
+
+
+/* Run (or resume) the program. */
+void
+sim_resume (sd, step, siggnal)
+ SIM_DESC sd;
+ int step, siggnal;
+{
+ uint32 inst;
+ uint8 *iaddr;
+
+/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
+ State.exception = 0;
+ if (step)
+ sim_stop (sd);
+
+ do
+ {
+ iaddr = imem_addr ((uint32)PC << 2);
+ if (iaddr == NULL)
+ {
+ State.exception = SIGBUS;
+ break;
+ }
+
+ inst = get_longword( iaddr );
+
+ State.pc_changed = 0;
+ ins_type_counters[ (int)INS_CYCLES ]++;
+
+ switch (inst & 0xC0000000)
+ {
+ case 0xC0000000:
+ /* long instruction */
+ do_long (inst & 0x3FFFFFFF);
+ break;
+ case 0x80000000:
+ /* R -> L */
+ do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
+ break;
+ case 0x40000000:
+ /* L -> R */
+ do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
+ break;
+ case 0:
+ do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
+ break;
+ }
+
+ /* If the PC of the current instruction matches RPT_E then
+ schedule a branch to the loop start. If one of those
+ instructions happens to be a branch, than that instruction
+ will be ignored */
+ if (!State.pc_changed)
+ {
+ if (PSW_RP && PC == RPT_E)
+ {
+ /* Note: The behavour of a branch instruction at RPT_E
+ is implementation dependant, this simulator takes the
+ branch. Branching to RPT_E is valid, the instruction
+ must be executed before the loop is taken. */
+ if (RPT_C == 1)
+ {
+ SET_PSW_RP (0);
+ SET_RPT_C (0);
+ SET_PC (PC + 1);
+ }
+ else
+ {
+ SET_RPT_C (RPT_C - 1);
+ SET_PC (RPT_S);
+ }
+ }
+ else
+ SET_PC (PC + 1);
+ }
+
+ /* Check for a breakpoint trap on this instruction. This
+ overrides any pending branches or loops */
+ if (PSW_DB && PC == IBA)
+ {
+ SET_BPC (PC);
+ SET_BPSW (PSW);
+ SET_PSW (PSW & PSW_SM_BIT);
+ SET_PC (SDBT_VECTOR_START);
+ }
+
+ /* Writeback all the DATA / PC changes */
+ SLOT_FLUSH ();
+
+ }
+ while ( !State.exception && !stop_simulator);
+
+ if (step && !State.exception)
+ State.exception = SIGTRAP;
+}
+
+int
+sim_trace (sd)
+ SIM_DESC sd;
+{
+#ifdef DEBUG
+ d10v_debug = DEBUG;
+#endif
+ sim_resume (sd, 0, 0);
+ return 1;
+}
+
+void
+sim_info (sd, verbose)
+ SIM_DESC sd;
+ int verbose;
+{
+ char buf1[40];
+ char buf2[40];
+ char buf3[40];
+ char buf4[40];
+ char buf5[40];
+ unsigned long left = ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
+ unsigned long left_nops = ins_type_counters[ (int)INS_LEFT_NOPS ];
+ unsigned long left_parallel = ins_type_counters[ (int)INS_LEFT_PARALLEL ];
+ unsigned long left_cond = ins_type_counters[ (int)INS_LEFT_COND_TEST ];
+ unsigned long left_total = left + left_parallel + left_cond + left_nops;
+
+ unsigned long right = ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
+ unsigned long right_nops = ins_type_counters[ (int)INS_RIGHT_NOPS ];
+ unsigned long right_parallel = ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
+ unsigned long right_cond = ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
+ unsigned long right_total = right + right_parallel + right_cond + right_nops;
+
+ unsigned long unknown = ins_type_counters[ (int)INS_UNKNOWN ];
+ unsigned long ins_long = ins_type_counters[ (int)INS_LONG ];
+ unsigned long parallel = ins_type_counters[ (int)INS_PARALLEL ];
+ unsigned long leftright = ins_type_counters[ (int)INS_LEFTRIGHT ];
+ unsigned long rightleft = ins_type_counters[ (int)INS_RIGHTLEFT ];
+ unsigned long cond_true = ins_type_counters[ (int)INS_COND_TRUE ];
+ unsigned long cond_false = ins_type_counters[ (int)INS_COND_FALSE ];
+ unsigned long cond_jump = ins_type_counters[ (int)INS_COND_JUMP ];
+ unsigned long cycles = ins_type_counters[ (int)INS_CYCLES ];
+ unsigned long total = (unknown + left_total + right_total + ins_long);
+
+ int size = strlen (add_commas (buf1, sizeof (buf1), total));
+ int parallel_size = strlen (add_commas (buf1, sizeof (buf1),
+ (left_parallel > right_parallel) ? left_parallel : right_parallel));
+ int cond_size = strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
+ int nop_size = strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
+ int normal_size = strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));
+
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s left instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
+ size, add_commas (buf1, sizeof (buf1), left_total),
+ normal_size, add_commas (buf2, sizeof (buf2), left),
+ parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
+ cond_size, add_commas (buf4, sizeof (buf4), left_cond),
+ nop_size, add_commas (buf5, sizeof (buf5), left_nops));
+
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
+ size, add_commas (buf1, sizeof (buf1), right_total),
+ normal_size, add_commas (buf2, sizeof (buf2), right),
+ parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
+ cond_size, add_commas (buf4, sizeof (buf4), right_cond),
+ nop_size, add_commas (buf5, sizeof (buf5), right_nops));
+
+ if (ins_long)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s long instruction(s)\n",
+ size, add_commas (buf1, sizeof (buf1), ins_long));
+
+ if (parallel)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s parallel instruction(s)\n",
+ size, add_commas (buf1, sizeof (buf1), parallel));
+
+ if (leftright)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s instruction(s) encoded L->R\n",
+ size, add_commas (buf1, sizeof (buf1), leftright));
+
+ if (rightleft)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s instruction(s) encoded R->L\n",
+ size, add_commas (buf1, sizeof (buf1), rightleft));
+
+ if (unknown)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s unknown instruction(s)\n",
+ size, add_commas (buf1, sizeof (buf1), unknown));
+
+ if (cond_true)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s instruction(s) due to EXExxx condition being true\n",
+ size, add_commas (buf1, sizeof (buf1), cond_true));
+
+ if (cond_false)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "skipped %*s instruction(s) due to EXExxx condition being false\n",
+ size, add_commas (buf1, sizeof (buf1), cond_false));
+
+ if (cond_jump)
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "skipped %*s instruction(s) due to conditional branch succeeding\n",
+ size, add_commas (buf1, sizeof (buf1), cond_jump));
+
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s cycle(s)\n",
+ size, add_commas (buf1, sizeof (buf1), cycles));
+
+ (*d10v_callback->printf_filtered) (d10v_callback,
+ "executed %*s total instructions\n",
+ size, add_commas (buf1, sizeof (buf1), total));
+}
+
+SIM_RC
+sim_create_inferior (sd, abfd, argv, env)
+ SIM_DESC sd;
+ struct _bfd *abfd;
+ char **argv;
+ char **env;
+{
+ bfd_vma start_address;
+
+ /* reset all state information */
+ memset (&State.regs, 0, (int)&State.imem - (int)&State.regs[0]);
+
+ if (argv)
+ {
+ /* a hack to set r0/r1 with argc/argv */
+ /* some high memory that won't be overwritten by the stack soon */
+ bfd_vma addr = 0x7C00;
+ int p = 20;
+ int i = 0;
+ while (argv[i])
+ {
+ int size = strlen (argv[i]) + 1;
+ SW (addr + 2*i, addr + p);
+ sim_write (sd, addr + 0, argv[i], size);
+ p += size;
+ i++;
+ }
+ SET_GPR (0, addr);
+ SET_GPR (1, i);
+ }
+
+ /* set PC */
+ if (abfd != NULL)
+ start_address = bfd_get_start_address (abfd);
+ else
+ start_address = 0xffc0 << 2;
+#ifdef DEBUG
+ if (d10v_debug)
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address);
+#endif
+ SET_CREG (PC_CR, start_address >> 2);
+
+ /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board */
+ /* resets imap0 and imap1 to 0x1000. */
+ if (1)
+ {
+ SET_IMAP0 (0x0000);
+ SET_IMAP1 (0x007f);
+ SET_DMAP (0x0000);
+ }
+ else
+ {
+ SET_IMAP0 (0x1000);
+ SET_IMAP1 (0x1000);
+ SET_DMAP(0);
+ }
+
+ SLOT_FLUSH ();
+ return SIM_RC_OK;
+}
+
+
+void
+sim_set_callbacks (p)
+ host_callback *p;
+{
+ d10v_callback = p;
+}
+
+void
+sim_stop_reason (sd, reason, sigrc)
+ SIM_DESC sd;
+ enum sim_stop *reason;
+ int *sigrc;
+{
+/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
+
+ switch (State.exception)
+ {
+ case SIG_D10V_STOP: /* stop instruction */
+ *reason = sim_exited;
+ *sigrc = 0;
+ break;
+
+ case SIG_D10V_EXIT: /* exit trap */
+ *reason = sim_exited;
+ *sigrc = GPR (0);
+ break;
+
+ default: /* some signal */
+ *reason = sim_stopped;
+ if (stop_simulator && !State.exception)
+ *sigrc = SIGINT;
+ else
+ *sigrc = State.exception;
+ break;
+ }
+
+ stop_simulator = 0;
+}
+
+int
+sim_fetch_register (sd, rn, memory, length)
+ SIM_DESC sd;
+ int rn;
+ unsigned char *memory;
+ int length;
+{
+ if (rn > 34)
+ WRITE_64 (memory, ACC (rn-35));
+ else if (rn == 32)
+ WRITE_16 (memory, IMAP0);
+ else if (rn == 33)
+ WRITE_16 (memory, IMAP1);
+ else if (rn == 34)
+ WRITE_16 (memory, DMAP);
+ else if (rn >= 16)
+ WRITE_16 (memory, CREG (rn - 16));
+ else
+ WRITE_16 (memory, GPR (rn));
+ return -1;
+}
+
+int
+sim_store_register (sd, rn, memory, length)
+ SIM_DESC sd;
+ int rn;
+ unsigned char *memory;
+ int length;
+{
+ if (rn > 34)
+ SET_ACC (rn-35, READ_64 (memory) & MASK40);
+ else if (rn == 34)
+ SET_DMAP( READ_16(memory) );
+ else if (rn == 33)
+ SET_IMAP1( READ_16(memory) );
+ else if (rn == 32)
+ SET_IMAP0( READ_16(memory) );
+ else if (rn >= 16)
+ SET_CREG (rn - 16, READ_16 (memory));
+ else
+ SET_GPR (rn, READ_16 (memory));
+ SLOT_FLUSH ();
+ return -1;
+}
+
+
+void
+sim_do_command (sd, cmd)
+ SIM_DESC sd;
+ char *cmd;
+{
+ (*d10v_callback->printf_filtered) (d10v_callback, "sim_do_command: %s\n",cmd);
+}
+
+SIM_RC
+sim_load (sd, prog, abfd, from_tty)
+ SIM_DESC sd;
+ char *prog;
+ bfd *abfd;
+ int from_tty;
+{
+ extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
+
+ if (prog_bfd != NULL && prog_bfd_was_opened_p)
+ {
+ bfd_close (prog_bfd);
+ prog_bfd_was_opened_p = 0;
+ }
+ prog_bfd = sim_load_file (sd, myname, d10v_callback, prog, abfd,
+ sim_kind == SIM_OPEN_DEBUG,
+ 1/*LMA*/, sim_write);
+ if (prog_bfd == NULL)
+ return SIM_RC_FAIL;
+ prog_bfd_was_opened_p = abfd == NULL;
+ return SIM_RC_OK;
+}