diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
commit | c906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch) | |
tree | a0015aa5cedc19ccbab307251353a41722a3ae13 /sim/d10v/interp.c | |
parent | cd946cff9ede3f30935803403f06f6ed30cad136 (diff) | |
download | gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2 |
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'sim/d10v/interp.c')
-rw-r--r-- | sim/d10v/interp.c | 1086 |
1 files changed, 1086 insertions, 0 deletions
diff --git a/sim/d10v/interp.c b/sim/d10v/interp.c new file mode 100644 index 0000000..17c964f --- /dev/null +++ b/sim/d10v/interp.c @@ -0,0 +1,1086 @@ +#include <signal.h> +#include "sysdep.h" +#include "bfd.h" +#include "callback.h" +#include "remote-sim.h" + +#include "d10v_sim.h" + +#define IMEM_SIZE 18 /* D10V instruction memory size is 18 bits */ +#define DMEM_SIZE 16 /* Data memory is 64K (but only 32K internal RAM) */ +#define UMEM_SIZE 17 /* Each unified memory segment is 17 bits */ +#define UMEM_SEGMENTS 128 /* Number of segments in unified memory region */ + +enum _leftright { LEFT_FIRST, RIGHT_FIRST }; + +static char *myname; +static SIM_OPEN_KIND sim_kind; +int d10v_debug; +host_callback *d10v_callback; +unsigned long ins_type_counters[ (int)INS_MAX ]; + +uint16 OP[4]; + +static int init_text_p = 0; +/* non-zero if we opened prog_bfd */ +static int prog_bfd_was_opened_p; +bfd *prog_bfd; +asection *text; +bfd_vma text_start; +bfd_vma text_end; + +static long hash PARAMS ((long insn, int format)); +static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int size)); +static void get_operands PARAMS ((struct simops *s, uint32 ins)); +static void do_long PARAMS ((uint32 ins)); +static void do_2_short PARAMS ((uint16 ins1, uint16 ins2, enum _leftright leftright)); +static void do_parallel PARAMS ((uint16 ins1, uint16 ins2)); +static char *add_commas PARAMS ((char *buf, int sizeof_buf, unsigned long value)); +extern void sim_set_profile PARAMS ((int n)); +extern void sim_set_profile_size PARAMS ((int n)); + +#ifndef INLINE +#if defined(__GNUC__) && defined(__OPTIMIZE__) +#define INLINE __inline__ +#else +#define INLINE +#endif +#endif + +#define MAX_HASH 63 +struct hash_entry +{ + struct hash_entry *next; + uint32 opcode; + uint32 mask; + int size; + struct simops *ops; +}; + +struct hash_entry hash_table[MAX_HASH+1]; + +INLINE static long +hash(insn, format) + long insn; + int format; +{ + if (format & LONG_OPCODE) + return ((insn & 0x3F000000) >> 24); + else + return((insn & 0x7E00) >> 9); +} + +INLINE static struct hash_entry * +lookup_hash (ins, size) + uint32 ins; + int size; +{ + struct hash_entry *h; + + if (size) + h = &hash_table[(ins & 0x3F000000) >> 24]; + else + h = &hash_table[(ins & 0x7E00) >> 9]; + + while ((ins & h->mask) != h->opcode || h->size != size) + { + if (h->next == NULL) + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC); + exit (1); + } + h = h->next; + } + return (h); +} + +INLINE static void +get_operands (struct simops *s, uint32 ins) +{ + int i, shift, bits, flags; + uint32 mask; + for (i=0; i < s->numops; i++) + { + shift = s->operands[3*i]; + bits = s->operands[3*i+1]; + flags = s->operands[3*i+2]; + mask = 0x7FFFFFFF >> (31 - bits); + OP[i] = (ins >> shift) & mask; + } + /* FIXME: for tracing, update values that need to be updated each + instruction decode cycle */ + State.trace.psw = PSW; +} + +bfd_vma +decode_pc () +{ + asection *s; + if (!init_text_p && prog_bfd != NULL) + { + init_text_p = 1; + for (s = prog_bfd->sections; s; s = s->next) + if (strcmp (bfd_get_section_name (prog_bfd, s), ".text") == 0) + { + text = s; + text_start = bfd_get_section_vma (prog_bfd, s); + text_end = text_start + bfd_section_size (prog_bfd, s); + break; + } + } + + return (PC << 2) + text_start; +} + +static void +do_long (ins) + uint32 ins; +{ + struct hash_entry *h; +#ifdef DEBUG + if ((d10v_debug & DEBUG_INSTRUCTION) != 0) + (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins); +#endif + h = lookup_hash (ins, 1); + get_operands (h->ops, ins); + State.ins_type = INS_LONG; + ins_type_counters[ (int)State.ins_type ]++; + (h->ops->func)(); +} + +static void +do_2_short (ins1, ins2, leftright) + uint16 ins1, ins2; + enum _leftright leftright; +{ + struct hash_entry *h; + enum _ins_type first, second; + +#ifdef DEBUG + if ((d10v_debug & DEBUG_INSTRUCTION) != 0) + (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n", + ins1, (leftright) ? "left" : "right", ins2); +#endif + + if (leftright == LEFT_FIRST) + { + first = INS_LEFT; + second = INS_RIGHT; + ins_type_counters[ (int)INS_LEFTRIGHT ]++; + } + else + { + first = INS_RIGHT; + second = INS_LEFT; + ins_type_counters[ (int)INS_RIGHTLEFT ]++; + } + + /* Issue the first instruction */ + h = lookup_hash (ins1, 0); + get_operands (h->ops, ins1); + State.ins_type = first; + ins_type_counters[ (int)State.ins_type ]++; + (h->ops->func)(); + + /* Issue the second instruction (if the PC hasn't changed) */ + if (!State.pc_changed && !State.exception) + { + /* finish any existing instructions */ + SLOT_FLUSH (); + h = lookup_hash (ins2, 0); + get_operands (h->ops, ins2); + State.ins_type = second; + ins_type_counters[ (int)State.ins_type ]++; + ins_type_counters[ (int)INS_CYCLES ]++; + (h->ops->func)(); + } + else if (!State.exception) + ins_type_counters[ (int)INS_COND_JUMP ]++; +} + +static void +do_parallel (ins1, ins2) + uint16 ins1, ins2; +{ + struct hash_entry *h1, *h2; +#ifdef DEBUG + if ((d10v_debug & DEBUG_INSTRUCTION) != 0) + (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2); +#endif + ins_type_counters[ (int)INS_PARALLEL ]++; + h1 = lookup_hash (ins1, 0); + h2 = lookup_hash (ins2, 0); + + if (h1->ops->exec_type == PARONLY) + { + get_operands (h1->ops, ins1); + State.ins_type = INS_LEFT_COND_TEST; + ins_type_counters[ (int)State.ins_type ]++; + (h1->ops->func)(); + if (State.exe) + { + ins_type_counters[ (int)INS_COND_TRUE ]++; + get_operands (h2->ops, ins2); + State.ins_type = INS_RIGHT_COND_EXE; + ins_type_counters[ (int)State.ins_type ]++; + (h2->ops->func)(); + } + else + ins_type_counters[ (int)INS_COND_FALSE ]++; + } + else if (h2->ops->exec_type == PARONLY) + { + get_operands (h2->ops, ins2); + State.ins_type = INS_RIGHT_COND_TEST; + ins_type_counters[ (int)State.ins_type ]++; + (h2->ops->func)(); + if (State.exe) + { + ins_type_counters[ (int)INS_COND_TRUE ]++; + get_operands (h1->ops, ins1); + State.ins_type = INS_LEFT_COND_EXE; + ins_type_counters[ (int)State.ins_type ]++; + (h1->ops->func)(); + } + else + ins_type_counters[ (int)INS_COND_FALSE ]++; + } + else + { + get_operands (h1->ops, ins1); + State.ins_type = INS_LEFT_PARALLEL; + ins_type_counters[ (int)State.ins_type ]++; + (h1->ops->func)(); + if (!State.exception) + { + get_operands (h2->ops, ins2); + State.ins_type = INS_RIGHT_PARALLEL; + ins_type_counters[ (int)State.ins_type ]++; + (h2->ops->func)(); + } + } +} + +static char * +add_commas(buf, sizeof_buf, value) + char *buf; + int sizeof_buf; + unsigned long value; +{ + int comma = 3; + char *endbuf = buf + sizeof_buf - 1; + + *--endbuf = '\0'; + do { + if (comma-- == 0) + { + *--endbuf = ','; + comma = 2; + } + + *--endbuf = (value % 10) + '0'; + } while ((value /= 10) != 0); + + return endbuf; +} + +void +sim_size (power) + int power; + +{ + int i; + + if (State.imem) + { + for (i=0;i<UMEM_SEGMENTS;i++) + { + if (State.umem[i]) + { + free (State.umem[i]); + State.umem[i] = NULL; + } + } + free (State.imem); + free (State.dmem); + } + + State.imem = (uint8 *)calloc(1,1<<IMEM_SIZE); + State.dmem = (uint8 *)calloc(1,1<<DMEM_SIZE); + for (i=1;i<(UMEM_SEGMENTS-1);i++) + State.umem[i] = NULL; + State.umem[0] = (uint8 *)calloc(1,1<<UMEM_SIZE); + State.umem[1] = (uint8 *)calloc(1,1<<UMEM_SIZE); + State.umem[2] = (uint8 *)calloc(1,1<<UMEM_SIZE); + State.umem[UMEM_SEGMENTS-1] = (uint8 *)calloc(1,1<<UMEM_SIZE); + if (!State.imem || !State.dmem || !State.umem[0] || !State.umem[1] || !State.umem[2] || !State.umem[UMEM_SEGMENTS-1] ) + { + (*d10v_callback->printf_filtered) (d10v_callback, "Memory allocation failed.\n"); + exit(1); + } + +#ifdef DEBUG + if ((d10v_debug & DEBUG_MEMSIZE) != 0) + { + char buffer[20]; + (*d10v_callback->printf_filtered) (d10v_callback, + "Allocated %s bytes instruction memory and\n", + add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE))); + + (*d10v_callback->printf_filtered) (d10v_callback, " %s bytes data memory.\n", + add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE))); + } +#endif +} + +/* Transfer data to/from simulated memory. Since a bug in either the + simulated program or in gdb or the simulator itself may cause a + bogus address to be passed in, we need to do some sanity checking + on addresses to make sure they are within bounds. When an address + fails the bounds check, treat it as a zero length read/write rather + than aborting the entire run. */ + +static int +xfer_mem (SIM_ADDR addr, + unsigned char *buffer, + int size, + int write_p) +{ + unsigned char *memory; + int segment = ((addr >> 24) & 0xff); + addr = (addr & 0x00ffffff); + +#ifdef DEBUG + if ((d10v_debug & DEBUG_INSTRUCTION) != 0) + { + if (write_p) + { + (*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%02x:%06x\n", size, segment, addr); + } + else + { + (*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%2x:%6x\n", size, segment, addr); + } + } +#endif + + /* to access data, we use the following mapping + 0x00xxxxxx: Logical data address segment (DMAP translated memory) + 0x01xxxxxx: Logical instruction address segment (IMAP translated memory) + 0x10xxxxxx: Physical data memory segment (On-chip data memory) + 0x11xxxxxx: Physical instruction memory segment (On-chip insn memory) + 0x12xxxxxx: Phisical unified memory segment (Unified memory) + */ + + switch (segment) + { + case 0x00: /* DMAP translated memory */ + { + int byte; + for (byte = 0; byte < size; byte++) + { + uint8 *mem = dmem_addr (addr + byte); + if (mem == NULL) + return byte; + else if (write_p) + *mem = buffer[byte]; + else + buffer[byte] = *mem; + } + return byte; + } + + case 0x01: /* IMAP translated memory */ + { + int byte; + for (byte = 0; byte < size; byte++) + { + uint8 *mem = imem_addr (addr + byte); + if (mem == NULL) + return byte; + else if (write_p) + *mem = buffer[byte]; + else + buffer[byte] = *mem; + } + return byte; + } + + case 0x10: /* On-chip data memory */ + { + addr &= ((1 << DMEM_SIZE) - 1); + if ((addr + size) > (1 << DMEM_SIZE)) + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n", + addr + size - 1, (1 << DMEM_SIZE) - 1); + return (0); + } + memory = State.dmem + addr; + break; + } + + case 0x11: /* On-chip insn memory */ + { + addr &= ((1 << IMEM_SIZE) - 1); + if ((addr + size) > (1 << IMEM_SIZE)) + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n", + addr + size - 1, (1 << IMEM_SIZE) - 1); + return (0); + } + memory = State.imem + addr; + break; + } + + case 0x12: /* Unified memory */ + { + int startsegment, startoffset; /* Segment and offset within segment where xfer starts */ + int endsegment, endoffset; /* Segment and offset within segment where xfer ends */ + + startsegment = addr >> UMEM_SIZE; + startoffset = addr & ((1 << UMEM_SIZE) - 1); + endsegment = (addr + size) >> UMEM_SIZE; + endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1); + + /* FIXME: We do not currently implement xfers across segments, + so detect this case and fail gracefully. */ + + if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0)) + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n"); + return (0); + } + if (!State.umem[startsegment]) + { +#ifdef DEBUG + if ((d10v_debug & DEBUG_MEMSIZE) != 0) + { + (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n", + add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment); + } +#endif + State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE); + } + if (!State.umem[startsegment]) + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE); + return (0); + } + memory = State.umem[startsegment] + startoffset; + break; + } + + default: + { + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%lx is not in valid range\n", (long) addr); + (*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx: Logical data address segment (DMAP translated memory)\n"); + (*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx: Logical instruction address segment (IMAP translated memory)\n"); + (*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx: Physical data memory segment (On-chip data memory)\n"); + (*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)\n"); + (*d10v_callback->printf_filtered) (d10v_callback, "0x12xxxxxx: Phisical unified memory segment (Unified memory)\n"); + return (0); + } + } + + if (write_p) + { + memcpy (memory, buffer, size); + } + else + { + memcpy (buffer, memory, size); + } + + return size; +} + + +int +sim_write (sd, addr, buffer, size) + SIM_DESC sd; + SIM_ADDR addr; + unsigned char *buffer; + int size; +{ + /* FIXME: this should be performing a virtual transfer */ + return xfer_mem( addr, buffer, size, 1); +} + +int +sim_read (sd, addr, buffer, size) + SIM_DESC sd; + SIM_ADDR addr; + unsigned char *buffer; + int size; +{ + /* FIXME: this should be performing a virtual transfer */ + return xfer_mem( addr, buffer, size, 0); +} + + +SIM_DESC +sim_open (kind, callback, abfd, argv) + SIM_OPEN_KIND kind; + host_callback *callback; + struct _bfd *abfd; + char **argv; +{ + struct simops *s; + struct hash_entry *h; + static int init_p = 0; + char **p; + + sim_kind = kind; + d10v_callback = callback; + myname = argv[0]; + + for (p = argv + 1; *p; ++p) + { +#ifdef DEBUG + if (strcmp (*p, "-t") == 0) + d10v_debug = DEBUG; + else +#endif + (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",*p); + } + + /* put all the opcodes in the hash table */ + if (!init_p++) + { + for (s = Simops; s->func; s++) + { + h = &hash_table[hash(s->opcode,s->format)]; + + /* go to the last entry in the chain */ + while (h->next) + h = h->next; + + if (h->ops) + { + h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry)); + if (!h->next) + perror ("malloc failure"); + + h = h->next; + } + h->ops = s; + h->mask = s->mask; + h->opcode = s->opcode; + h->size = s->is_long; + } + } + + /* reset the processor state */ + if (!State.imem) + sim_size(1); + sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL); + + /* Fudge our descriptor. */ + return (SIM_DESC) 1; +} + + +void +sim_close (sd, quitting) + SIM_DESC sd; + int quitting; +{ + if (prog_bfd != NULL && prog_bfd_was_opened_p) + { + bfd_close (prog_bfd); + prog_bfd = NULL; + prog_bfd_was_opened_p = 0; + } +} + +void +sim_set_profile (n) + int n; +{ + (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile %d\n",n); +} + +void +sim_set_profile_size (n) + int n; +{ + (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n); +} + + +uint8 * +dmem_addr( addr ) + uint32 addr; +{ + int seg; + + addr &= 0xffff; + + if (addr > 0xbfff) + { + if ( (addr & 0xfff0) != 0xff00) + { + (*d10v_callback->printf_filtered) (d10v_callback, "Data address 0x%lx is in I/O space, pc = 0x%lx.\n", + (long)addr, (long)decode_pc ()); + State.exception = SIGBUS; + } + + return State.dmem + addr; + } + + if (addr > 0x7fff) + { + if (DMAP & 0x1000) + { + /* instruction memory */ + return (DMAP & 0xf) * 0x4000 + State.imem + (addr - 0x8000); + } + else + { + /* unified memory */ + /* this is ugly because we allocate unified memory in 128K segments and */ + /* dmap addresses 16k segments */ + seg = (DMAP & 0x3ff) >> 3; + if (State.umem[seg] == NULL) + { +#ifdef DEBUG + (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %d bytes unified memory to region %d\n", 1<<UMEM_SIZE, seg); +#endif + State.umem[seg] = (uint8 *)calloc(1,1<<UMEM_SIZE); + if (!State.umem[seg]) + { + (*d10v_callback->printf_filtered) (d10v_callback, + "ERROR: alloc failed. unified memory region %d unmapped, pc = 0x%lx\n", + seg, (long)decode_pc ()); + State.exception = SIGBUS; + } + } + return State.umem[seg] + (DMAP & 7) * 0x4000 + (addr - 0x8000); + } + } + return State.dmem + addr; +} + + +uint8 * +imem_addr (uint32 pc) +{ + uint16 imap; + + if (pc & 0x20000) + imap = IMAP1; + else + imap = IMAP0; + + if (imap & 0x1000) + return State.imem + pc; + + if (State.umem[imap & 0xff] == NULL) + return 0; + + /* Discard upper bit(s) of PC in case IMAP1 selects unified memory. */ + pc &= (1 << UMEM_SIZE) - 1; + + return State.umem[imap & 0xff] + pc; +} + + +static int stop_simulator = 0; + +int +sim_stop (sd) + SIM_DESC sd; +{ + stop_simulator = 1; + return 1; +} + + +/* Run (or resume) the program. */ +void +sim_resume (sd, step, siggnal) + SIM_DESC sd; + int step, siggnal; +{ + uint32 inst; + uint8 *iaddr; + +/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */ + State.exception = 0; + if (step) + sim_stop (sd); + + do + { + iaddr = imem_addr ((uint32)PC << 2); + if (iaddr == NULL) + { + State.exception = SIGBUS; + break; + } + + inst = get_longword( iaddr ); + + State.pc_changed = 0; + ins_type_counters[ (int)INS_CYCLES ]++; + + switch (inst & 0xC0000000) + { + case 0xC0000000: + /* long instruction */ + do_long (inst & 0x3FFFFFFF); + break; + case 0x80000000: + /* R -> L */ + do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST); + break; + case 0x40000000: + /* L -> R */ + do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST); + break; + case 0: + do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF); + break; + } + + /* If the PC of the current instruction matches RPT_E then + schedule a branch to the loop start. If one of those + instructions happens to be a branch, than that instruction + will be ignored */ + if (!State.pc_changed) + { + if (PSW_RP && PC == RPT_E) + { + /* Note: The behavour of a branch instruction at RPT_E + is implementation dependant, this simulator takes the + branch. Branching to RPT_E is valid, the instruction + must be executed before the loop is taken. */ + if (RPT_C == 1) + { + SET_PSW_RP (0); + SET_RPT_C (0); + SET_PC (PC + 1); + } + else + { + SET_RPT_C (RPT_C - 1); + SET_PC (RPT_S); + } + } + else + SET_PC (PC + 1); + } + + /* Check for a breakpoint trap on this instruction. This + overrides any pending branches or loops */ + if (PSW_DB && PC == IBA) + { + SET_BPC (PC); + SET_BPSW (PSW); + SET_PSW (PSW & PSW_SM_BIT); + SET_PC (SDBT_VECTOR_START); + } + + /* Writeback all the DATA / PC changes */ + SLOT_FLUSH (); + + } + while ( !State.exception && !stop_simulator); + + if (step && !State.exception) + State.exception = SIGTRAP; +} + +int +sim_trace (sd) + SIM_DESC sd; +{ +#ifdef DEBUG + d10v_debug = DEBUG; +#endif + sim_resume (sd, 0, 0); + return 1; +} + +void +sim_info (sd, verbose) + SIM_DESC sd; + int verbose; +{ + char buf1[40]; + char buf2[40]; + char buf3[40]; + char buf4[40]; + char buf5[40]; + unsigned long left = ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ]; + unsigned long left_nops = ins_type_counters[ (int)INS_LEFT_NOPS ]; + unsigned long left_parallel = ins_type_counters[ (int)INS_LEFT_PARALLEL ]; + unsigned long left_cond = ins_type_counters[ (int)INS_LEFT_COND_TEST ]; + unsigned long left_total = left + left_parallel + left_cond + left_nops; + + unsigned long right = ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ]; + unsigned long right_nops = ins_type_counters[ (int)INS_RIGHT_NOPS ]; + unsigned long right_parallel = ins_type_counters[ (int)INS_RIGHT_PARALLEL ]; + unsigned long right_cond = ins_type_counters[ (int)INS_RIGHT_COND_TEST ]; + unsigned long right_total = right + right_parallel + right_cond + right_nops; + + unsigned long unknown = ins_type_counters[ (int)INS_UNKNOWN ]; + unsigned long ins_long = ins_type_counters[ (int)INS_LONG ]; + unsigned long parallel = ins_type_counters[ (int)INS_PARALLEL ]; + unsigned long leftright = ins_type_counters[ (int)INS_LEFTRIGHT ]; + unsigned long rightleft = ins_type_counters[ (int)INS_RIGHTLEFT ]; + unsigned long cond_true = ins_type_counters[ (int)INS_COND_TRUE ]; + unsigned long cond_false = ins_type_counters[ (int)INS_COND_FALSE ]; + unsigned long cond_jump = ins_type_counters[ (int)INS_COND_JUMP ]; + unsigned long cycles = ins_type_counters[ (int)INS_CYCLES ]; + unsigned long total = (unknown + left_total + right_total + ins_long); + + int size = strlen (add_commas (buf1, sizeof (buf1), total)); + int parallel_size = strlen (add_commas (buf1, sizeof (buf1), + (left_parallel > right_parallel) ? left_parallel : right_parallel)); + int cond_size = strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond)); + int nop_size = strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops)); + int normal_size = strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right)); + + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s left instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n", + size, add_commas (buf1, sizeof (buf1), left_total), + normal_size, add_commas (buf2, sizeof (buf2), left), + parallel_size, add_commas (buf3, sizeof (buf3), left_parallel), + cond_size, add_commas (buf4, sizeof (buf4), left_cond), + nop_size, add_commas (buf5, sizeof (buf5), left_nops)); + + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n", + size, add_commas (buf1, sizeof (buf1), right_total), + normal_size, add_commas (buf2, sizeof (buf2), right), + parallel_size, add_commas (buf3, sizeof (buf3), right_parallel), + cond_size, add_commas (buf4, sizeof (buf4), right_cond), + nop_size, add_commas (buf5, sizeof (buf5), right_nops)); + + if (ins_long) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s long instruction(s)\n", + size, add_commas (buf1, sizeof (buf1), ins_long)); + + if (parallel) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s parallel instruction(s)\n", + size, add_commas (buf1, sizeof (buf1), parallel)); + + if (leftright) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s instruction(s) encoded L->R\n", + size, add_commas (buf1, sizeof (buf1), leftright)); + + if (rightleft) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s instruction(s) encoded R->L\n", + size, add_commas (buf1, sizeof (buf1), rightleft)); + + if (unknown) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s unknown instruction(s)\n", + size, add_commas (buf1, sizeof (buf1), unknown)); + + if (cond_true) + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s instruction(s) due to EXExxx condition being true\n", + size, add_commas (buf1, sizeof (buf1), cond_true)); + + if (cond_false) + (*d10v_callback->printf_filtered) (d10v_callback, + "skipped %*s instruction(s) due to EXExxx condition being false\n", + size, add_commas (buf1, sizeof (buf1), cond_false)); + + if (cond_jump) + (*d10v_callback->printf_filtered) (d10v_callback, + "skipped %*s instruction(s) due to conditional branch succeeding\n", + size, add_commas (buf1, sizeof (buf1), cond_jump)); + + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s cycle(s)\n", + size, add_commas (buf1, sizeof (buf1), cycles)); + + (*d10v_callback->printf_filtered) (d10v_callback, + "executed %*s total instructions\n", + size, add_commas (buf1, sizeof (buf1), total)); +} + +SIM_RC +sim_create_inferior (sd, abfd, argv, env) + SIM_DESC sd; + struct _bfd *abfd; + char **argv; + char **env; +{ + bfd_vma start_address; + + /* reset all state information */ + memset (&State.regs, 0, (int)&State.imem - (int)&State.regs[0]); + + if (argv) + { + /* a hack to set r0/r1 with argc/argv */ + /* some high memory that won't be overwritten by the stack soon */ + bfd_vma addr = 0x7C00; + int p = 20; + int i = 0; + while (argv[i]) + { + int size = strlen (argv[i]) + 1; + SW (addr + 2*i, addr + p); + sim_write (sd, addr + 0, argv[i], size); + p += size; + i++; + } + SET_GPR (0, addr); + SET_GPR (1, i); + } + + /* set PC */ + if (abfd != NULL) + start_address = bfd_get_start_address (abfd); + else + start_address = 0xffc0 << 2; +#ifdef DEBUG + if (d10v_debug) + (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address); +#endif + SET_CREG (PC_CR, start_address >> 2); + + /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board */ + /* resets imap0 and imap1 to 0x1000. */ + if (1) + { + SET_IMAP0 (0x0000); + SET_IMAP1 (0x007f); + SET_DMAP (0x0000); + } + else + { + SET_IMAP0 (0x1000); + SET_IMAP1 (0x1000); + SET_DMAP(0); + } + + SLOT_FLUSH (); + return SIM_RC_OK; +} + + +void +sim_set_callbacks (p) + host_callback *p; +{ + d10v_callback = p; +} + +void +sim_stop_reason (sd, reason, sigrc) + SIM_DESC sd; + enum sim_stop *reason; + int *sigrc; +{ +/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */ + + switch (State.exception) + { + case SIG_D10V_STOP: /* stop instruction */ + *reason = sim_exited; + *sigrc = 0; + break; + + case SIG_D10V_EXIT: /* exit trap */ + *reason = sim_exited; + *sigrc = GPR (0); + break; + + default: /* some signal */ + *reason = sim_stopped; + if (stop_simulator && !State.exception) + *sigrc = SIGINT; + else + *sigrc = State.exception; + break; + } + + stop_simulator = 0; +} + +int +sim_fetch_register (sd, rn, memory, length) + SIM_DESC sd; + int rn; + unsigned char *memory; + int length; +{ + if (rn > 34) + WRITE_64 (memory, ACC (rn-35)); + else if (rn == 32) + WRITE_16 (memory, IMAP0); + else if (rn == 33) + WRITE_16 (memory, IMAP1); + else if (rn == 34) + WRITE_16 (memory, DMAP); + else if (rn >= 16) + WRITE_16 (memory, CREG (rn - 16)); + else + WRITE_16 (memory, GPR (rn)); + return -1; +} + +int +sim_store_register (sd, rn, memory, length) + SIM_DESC sd; + int rn; + unsigned char *memory; + int length; +{ + if (rn > 34) + SET_ACC (rn-35, READ_64 (memory) & MASK40); + else if (rn == 34) + SET_DMAP( READ_16(memory) ); + else if (rn == 33) + SET_IMAP1( READ_16(memory) ); + else if (rn == 32) + SET_IMAP0( READ_16(memory) ); + else if (rn >= 16) + SET_CREG (rn - 16, READ_16 (memory)); + else + SET_GPR (rn, READ_16 (memory)); + SLOT_FLUSH (); + return -1; +} + + +void +sim_do_command (sd, cmd) + SIM_DESC sd; + char *cmd; +{ + (*d10v_callback->printf_filtered) (d10v_callback, "sim_do_command: %s\n",cmd); +} + +SIM_RC +sim_load (sd, prog, abfd, from_tty) + SIM_DESC sd; + char *prog; + bfd *abfd; + int from_tty; +{ + extern bfd *sim_load_file (); /* ??? Don't know where this should live. */ + + if (prog_bfd != NULL && prog_bfd_was_opened_p) + { + bfd_close (prog_bfd); + prog_bfd_was_opened_p = 0; + } + prog_bfd = sim_load_file (sd, myname, d10v_callback, prog, abfd, + sim_kind == SIM_OPEN_DEBUG, + 1/*LMA*/, sim_write); + if (prog_bfd == NULL) + return SIM_RC_FAIL; + prog_bfd_was_opened_p = abfd == NULL; + return SIM_RC_OK; +} |