diff options
author | Jason Molenda <jmolenda@apple.com> | 1999-11-17 02:31:06 +0000 |
---|---|---|
committer | Jason Molenda <jmolenda@apple.com> | 1999-11-17 02:31:06 +0000 |
commit | 4ce44c668ddc0a909c3f081d98c68bea90a93af9 (patch) | |
tree | cf330e250ee02bf77884cb91292faaaa849c5837 /sim/d10v/interp.c | |
parent | 2daf4fd8960262b76e597427e2e230b3fe6470b3 (diff) | |
download | gdb-4ce44c668ddc0a909c3f081d98c68bea90a93af9.zip gdb-4ce44c668ddc0a909c3f081d98c68bea90a93af9.tar.gz gdb-4ce44c668ddc0a909c3f081d98c68bea90a93af9.tar.bz2 |
import gdb-1999-11-16 snapshot
Diffstat (limited to 'sim/d10v/interp.c')
-rw-r--r-- | sim/d10v/interp.c | 845 |
1 files changed, 557 insertions, 288 deletions
diff --git a/sim/d10v/interp.c b/sim/d10v/interp.c index bd16391..2a9ae04 100644 --- a/sim/d10v/interp.c +++ b/sim/d10v/interp.c @@ -5,11 +5,7 @@ #include "remote-sim.h" #include "d10v_sim.h" - -#define IMEM_SIZE 18 /* D10V instruction memory size is 18 bits */ -#define DMEM_SIZE 16 /* Data memory is 64K (but only 32K internal RAM) */ -#define UMEM_SIZE 17 /* Each unified memory segment is 17 bits */ -#define UMEM_SEGMENTS 128 /* Number of segments in unified memory region */ +#include "sim-d10v.h" enum _leftright { LEFT_FIRST, RIGHT_FIRST }; @@ -43,6 +39,7 @@ static void do_parallel PARAMS ((uint16 ins1, uint16 ins2)); static char *add_commas PARAMS ((char *buf, int sizeof_buf, unsigned long value)); extern void sim_set_profile PARAMS ((int n)); extern void sim_set_profile_size PARAMS ((int n)); +static INLINE uint8 *map_memory (unsigned phys_addr); #ifdef NEED_UI_LOOP_HOOK /* How often to run the ui_loop update, when in use */ @@ -102,8 +99,10 @@ lookup_hash (ins, size) { if (h->next == NULL) { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC); - exit (1); + (*d10v_callback->printf_filtered) + (d10v_callback, "ERROR: Illegal instruction %x at PC %x\n", ins, PC); + State.exception = SIGILL; + return NULL; } h = h->next; } @@ -158,6 +157,8 @@ do_long (ins) (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins); #endif h = lookup_hash (ins, 1); + if (h == NULL) + return; get_operands (h->ops, ins); State.ins_type = INS_LONG; ins_type_counters[ (int)State.ins_type ]++; @@ -193,6 +194,8 @@ do_2_short (ins1, ins2, leftright) /* Issue the first instruction */ h = lookup_hash (ins1, 0); + if (h == NULL) + return; get_operands (h->ops, ins1); State.ins_type = first; ins_type_counters[ (int)State.ins_type ]++; @@ -204,6 +207,8 @@ do_2_short (ins1, ins2, leftright) /* finish any existing instructions */ SLOT_FLUSH (); h = lookup_hash (ins2, 0); + if (h == NULL) + return; get_operands (h->ops, ins2); State.ins_type = second; ins_type_counters[ (int)State.ins_type ]++; @@ -225,7 +230,11 @@ do_parallel (ins1, ins2) #endif ins_type_counters[ (int)INS_PARALLEL ]++; h1 = lookup_hash (ins1, 0); + if (h1 == NULL) + return; h2 = lookup_hash (ins2, 0); + if (h2 == NULL) + return; if (h1->ops->exec_type == PARONLY) { @@ -306,252 +315,446 @@ sim_size (power) { int i; - - if (State.imem) + for (i = 0; i < IMEM_SEGMENTS; i++) { - for (i=0;i<UMEM_SEGMENTS;i++) - { - if (State.umem[i]) - { - free (State.umem[i]); - State.umem[i] = NULL; - } - } - free (State.imem); - free (State.dmem); + if (State.mem.insn[i]) + free (State.mem.insn[i]); } - - State.imem = (uint8 *)calloc(1,1<<IMEM_SIZE); - State.dmem = (uint8 *)calloc(1,1<<DMEM_SIZE); - for (i=1;i<(UMEM_SEGMENTS-1);i++) - State.umem[i] = NULL; - State.umem[0] = (uint8 *)calloc(1,1<<UMEM_SIZE); - State.umem[1] = (uint8 *)calloc(1,1<<UMEM_SIZE); - State.umem[2] = (uint8 *)calloc(1,1<<UMEM_SIZE); - State.umem[UMEM_SEGMENTS-1] = (uint8 *)calloc(1,1<<UMEM_SIZE); - if (!State.imem || !State.dmem || !State.umem[0] || !State.umem[1] || !State.umem[2] || !State.umem[UMEM_SEGMENTS-1] ) + for (i = 0; i < DMEM_SEGMENTS; i++) { - (*d10v_callback->printf_filtered) (d10v_callback, "Memory allocation failed.\n"); - exit(1); + if (State.mem.data[i]) + free (State.mem.data[i]); } - + for (i = 0; i < UMEM_SEGMENTS; i++) + { + if (State.mem.unif[i]) + free (State.mem.unif[i]); + } + /* Always allocate dmem segment 0. This contains the IMAP and DMAP + registers. */ + State.mem.data[0] = calloc (1, SEGMENT_SIZE); +} + +/* For tracing - leave info on last access around. */ +static char *last_segname = "invalid"; +static char *last_from = "invalid"; +static char *last_to = "invalid"; + +enum + { + IMAP0_OFFSET = 0xff00, + DMAP0_OFFSET = 0xff08, + DMAP2_SHADDOW = 0xff04, + DMAP2_OFFSET = 0xff0c + }; + +static void +set_dmap_register (int reg_nr, unsigned long value) +{ + uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA + + DMAP0_OFFSET + 2 * reg_nr); + WRITE_16 (raw, value); #ifdef DEBUG - if ((d10v_debug & DEBUG_MEMSIZE) != 0) + if ((d10v_debug & DEBUG_MEMORY)) { - char buffer[20]; - (*d10v_callback->printf_filtered) (d10v_callback, - "Allocated %s bytes instruction memory and\n", - add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE))); + (*d10v_callback->printf_filtered) + (d10v_callback, "mem: dmap%d=0x%04lx\n", reg_nr, value); + } +#endif +} - (*d10v_callback->printf_filtered) (d10v_callback, " %s bytes data memory.\n", - add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE))); +static unsigned long +dmap_register (int reg_nr) +{ + uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA + + DMAP0_OFFSET + 2 * reg_nr); + return READ_16 (raw); +} + +static void +set_imap_register (int reg_nr, unsigned long value) +{ + uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA + + IMAP0_OFFSET + 2 * reg_nr); + WRITE_16 (raw, value); +#ifdef DEBUG + if ((d10v_debug & DEBUG_MEMORY)) + { + (*d10v_callback->printf_filtered) + (d10v_callback, "mem: imap%d=0x%04lx\n", reg_nr, value); } #endif } -/* Transfer data to/from simulated memory. Since a bug in either the - simulated program or in gdb or the simulator itself may cause a - bogus address to be passed in, we need to do some sanity checking - on addresses to make sure they are within bounds. When an address - fails the bounds check, treat it as a zero length read/write rather - than aborting the entire run. */ +static unsigned long +imap_register (int reg_nr) +{ + uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA + + IMAP0_OFFSET + 2 * reg_nr); + return READ_16 (raw); +} -static int -xfer_mem (SIM_ADDR addr, - unsigned char *buffer, - int size, - int write_p) +enum + { + HELD_SPI_IDX = 0, + HELD_SPU_IDX = 1 + }; + +static unsigned long +spu_register (void) { - unsigned char *memory; - int segment = ((addr >> 24) & 0xff); - addr = (addr & 0x00ffffff); + if (PSW_SM) + return GPR (SP_IDX); + else + return HELD_SP (HELD_SPU_IDX); +} -#ifdef DEBUG - if ((d10v_debug & DEBUG_INSTRUCTION) != 0) +static unsigned long +spi_register (void) +{ + if (!PSW_SM) + return GPR (SP_IDX); + else + return HELD_SP (HELD_SPI_IDX); +} + +static void +set_spi_register (unsigned long value) +{ + if (!PSW_SM) + SET_GPR (SP_IDX, value); + SET_HELD_SP (HELD_SPI_IDX, value); +} + +static void +set_spu_register (unsigned long value) +{ + if (PSW_SM) + SET_GPR (SP_IDX, value); + SET_HELD_SP (HELD_SPU_IDX, value); +} + +/* Given a virtual address in the DMAP address space, translate it + into a physical address. */ + +unsigned long +sim_d10v_translate_dmap_addr (unsigned long offset, + int nr_bytes, + unsigned long *phys, + unsigned long (*dmap_register) (int reg_nr)) +{ + short map; + int regno; + last_from = "logical-data"; + if (offset >= DMAP_BLOCK_SIZE * SIM_D10V_NR_DMAP_REGS) { - if (write_p) - { - (*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%02x:%06x\n", size, segment, addr); - } - else + /* Logical address out side of data segments, not supported */ + return 0; + } + regno = (offset / DMAP_BLOCK_SIZE); + offset = (offset % DMAP_BLOCK_SIZE); + if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE) + { + /* Don't cross a BLOCK boundary */ + nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE); + } + map = dmap_register (regno); + if (regno == 3) + { + /* Always maps to data memory */ + int iospi = (offset / 0x1000) % 4; + int iosp = (map >> (4 * (3 - iospi))) % 0x10; + last_to = "io-space"; + *phys = (SIM_D10V_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset); + } + else + { + int sp = ((map & 0x3000) >> 12); + int segno = (map & 0x3ff); + switch (sp) { - (*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%2x:%6x\n", size, segment, addr); + case 0: /* 00: Unified memory */ + *phys = SIM_D10V_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset; + last_to = "unified"; + break; + case 1: /* 01: Instruction Memory */ + *phys = SIM_D10V_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset; + last_to = "chip-insn"; + break; + case 2: /* 10: Internal data memory */ + *phys = SIM_D10V_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset; + last_to = "chip-data"; + break; + case 3: /* 11: Reserved */ + return 0; } } -#endif + return nr_bytes; +} - /* To access data, we use the following mappings: +/* Given a virtual address in the IMAP address space, translate it + into a physical address. */ - 0x00xxxxxx: Physical unified memory segment (Unified memory) - 0x01xxxxxx: Physical instruction memory segment (On-chip insn memory) - 0x02xxxxxx: Physical data memory segment (On-chip data memory) - 0x10xxxxxx: Logical data address segment (DMAP translated memory) - 0x11xxxxxx: Logical instruction address segment (IMAP translated memory) +unsigned long +sim_d10v_translate_imap_addr (unsigned long offset, + int nr_bytes, + unsigned long *phys, + unsigned long (*imap_register) (int reg_nr)) +{ + short map; + int regno; + int sp; + int segno; + last_from = "logical-insn"; + if (offset >= (IMAP_BLOCK_SIZE * SIM_D10V_NR_IMAP_REGS)) + { + /* Logical address outside of IMAP segments, not supported */ + return 0; + } + regno = (offset / IMAP_BLOCK_SIZE); + offset = (offset % IMAP_BLOCK_SIZE); + if (offset + nr_bytes > IMAP_BLOCK_SIZE) + { + /* Don't cross a BLOCK boundary */ + nr_bytes = IMAP_BLOCK_SIZE - offset; + } + map = imap_register (regno); + sp = (map & 0x3000) >> 12; + segno = (map & 0x007f); + switch (sp) + { + case 0: /* 00: unified memory */ + *phys = SIM_D10V_MEMORY_UNIFIED + (segno << 17) + offset; + last_to = "unified"; + break; + case 1: /* 01: instruction memory */ + *phys = SIM_D10V_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset; + last_to = "chip-insn"; + break; + case 2: /*10*/ + /* Reserved. */ + return 0; + case 3: /* 11: for testing - instruction memory */ + offset = (offset % 0x800); + *phys = SIM_D10V_MEMORY_INSN + offset; + if (offset + nr_bytes > 0x800) + /* don't cross VM boundary */ + nr_bytes = 0x800 - offset; + last_to = "test-insn"; + break; + } + return nr_bytes; +} - Alternatively, the "old segment mapping" is still available by setting - old_segment_mapping to 1. It looks like this: +unsigned long +sim_d10v_translate_addr (unsigned long memaddr, + int nr_bytes, + unsigned long *targ_addr, + unsigned long (*dmap_register) (int reg_nr), + unsigned long (*imap_register) (int reg_nr)) +{ + unsigned long phys; + unsigned long seg; + unsigned long off; - 0x00xxxxxx: Logical data address segment (DMAP translated memory) - 0x01xxxxxx: Logical instruction address segment (IMAP translated memory) - 0x10xxxxxx: Physical data memory segment (On-chip data memory) - 0x11xxxxxx: Physical instruction memory segment (On-chip insn memory) - 0x12xxxxxx: Physical unified memory segment (Unified memory) + last_from = "unknown"; + last_to = "unknown"; - */ + seg = (memaddr >> 24); + off = (memaddr & 0xffffffL); /* However, if we've asked to use the previous generation of segment mapping, rearrange the segments as follows. */ if (old_segment_mapping) { - switch (segment) + switch (seg) { case 0x00: /* DMAP translated memory */ - segment = 0x10; + seg = 0x10; break; case 0x01: /* IMAP translated memory */ - segment = 0x11; + seg = 0x11; break; case 0x10: /* On-chip data memory */ - segment = 0x02; + seg = 0x02; break; case 0x11: /* On-chip insn memory */ - segment = 0x01; + seg = 0x01; break; case 0x12: /* Unified memory */ - segment = 0x00; + seg = 0x00; break; } } - switch (segment) + switch (seg) { - case 0x10: /* DMAP translated memory */ - { - int byte; - for (byte = 0; byte < size; byte++) - { - uint8 *mem = dmem_addr (addr + byte); - if (mem == NULL) - return byte; - else if (write_p) - *mem = buffer[byte]; - else - buffer[byte] = *mem; - } - return byte; - } + case 0x00: /* Physical unified memory */ + last_from = "phys-unified"; + last_to = "unified"; + phys = SIM_D10V_MEMORY_UNIFIED + off; + if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE) + nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE); + break; - case 0x11: /* IMAP translated memory */ - { - int byte; - for (byte = 0; byte < size; byte++) - { - uint8 *mem = imem_addr (addr + byte); - if (mem == NULL) - return byte; - else if (write_p) - *mem = buffer[byte]; - else - buffer[byte] = *mem; - } - return byte; - } + case 0x01: /* Physical instruction memory */ + last_from = "phys-insn"; + last_to = "chip-insn"; + phys = SIM_D10V_MEMORY_INSN + off; + if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE) + nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE); + break; - case 0x02: /* On-chip data memory */ + case 0x02: /* Physical data memory segment */ + last_from = "phys-data"; + last_to = "chip-data"; + phys = SIM_D10V_MEMORY_DATA + off; + if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE) + nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE); + break; + + case 0x10: /* in logical data address segment */ + nr_bytes = sim_d10v_translate_dmap_addr (off, nr_bytes, &phys, + dmap_register); + break; + + case 0x11: /* in logical instruction address segment */ + nr_bytes = sim_d10v_translate_imap_addr (off, nr_bytes, &phys, + imap_register); + break; + + default: + return 0; + } + + *targ_addr = phys; + return nr_bytes; +} + +/* Return a pointer into the raw buffer designated by phys_addr. It + is assumed that the client has already ensured that the access + isn't going to cross a segment boundary. */ + +uint8 * +map_memory (unsigned phys_addr) +{ + uint8 **memory; + uint8 *raw; + unsigned offset; + int segment = ((phys_addr >> 24) & 0xff); + + switch (segment) + { + + case 0x00: /* Unified memory */ { - addr &= ((1 << DMEM_SIZE) - 1); - if ((addr + size) > (1 << DMEM_SIZE)) - { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n", - addr + size - 1, (1 << DMEM_SIZE) - 1); - return (0); - } - memory = State.dmem + addr; + memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS]; + last_segname = "umem"; break; } - + case 0x01: /* On-chip insn memory */ { - addr &= ((1 << IMEM_SIZE) - 1); - if ((addr + size) > (1 << IMEM_SIZE)) - { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n", - addr + size - 1, (1 << IMEM_SIZE) - 1); - return (0); - } - memory = State.imem + addr; + memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS]; + last_segname = "imem"; break; } - - case 0x00: /* Unified memory */ + + case 0x02: /* On-chip data memory */ { - int startsegment, startoffset; /* Segment and offset within segment where xfer starts */ - int endsegment, endoffset; /* Segment and offset within segment where xfer ends */ - - startsegment = addr >> UMEM_SIZE; - startoffset = addr & ((1 << UMEM_SIZE) - 1); - endsegment = (addr + size) >> UMEM_SIZE; - endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1); - - /* FIXME: We do not currently implement xfers across segments, - so detect this case and fail gracefully. */ - - if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0)) - { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n"); - return (0); - } - if (!State.umem[startsegment]) + if ((phys_addr & 0xff00) == 0xff00) { -#ifdef DEBUG - if ((d10v_debug & DEBUG_MEMSIZE) != 0) + phys_addr = (phys_addr & 0xffff); + if (phys_addr == DMAP2_SHADDOW) { - (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n", - add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment); + phys_addr = DMAP2_OFFSET; + last_segname = "dmap"; } -#endif - State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE); - } - if (!State.umem[startsegment]) - { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE); - return (0); + else + last_segname = "reg"; } - memory = State.umem[startsegment] + startoffset; + else + last_segname = "dmem"; + memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS]; break; } - + default: - { - (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%lx is not in valid range\n", (long) addr); - if (old_segment_mapping) - { - (*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx: Logical data address segment (DMAP translated memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx: Logical instruction address segment (IMAP translated memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx: Physical data memory segment (On-chip data memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x12xxxxxx: Phisical unified memory segment (Unified memory)\n"); - } - else - { - (*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx: Physical unified memory segment (Unified memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx: Physical instruction memory segment (On-chip insn memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x02xxxxxx: Physical data memory segment (On-chip data memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx: Logical data address segment (DMAP translated memory)\n"); - (*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx: Logical instruction address segment (IMAP translated memory)\n"); - } - return (0); - } + /* OOPS! */ + last_segname = "scrap"; + return State.mem.fault; } - - if (write_p) + + if (*memory == NULL) { - memcpy (memory, buffer, size); + *memory = calloc (1, SEGMENT_SIZE); + if (*memory == NULL) + { + (*d10v_callback->printf_filtered) (d10v_callback, "Malloc failed.\n"); + return State.mem.fault; + } } - else + + offset = (phys_addr % SEGMENT_SIZE); + raw = *memory + offset; + return raw; +} + +/* Transfer data to/from simulated memory. Since a bug in either the + simulated program or in gdb or the simulator itself may cause a + bogus address to be passed in, we need to do some sanity checking + on addresses to make sure they are within bounds. When an address + fails the bounds check, treat it as a zero length read/write rather + than aborting the entire run. */ + +static int +xfer_mem (SIM_ADDR virt, + unsigned char *buffer, + int size, + int write_p) +{ + int xfered = 0; + + while (xfered < size) { - memcpy (buffer, memory, size); + uint8 *memory; + unsigned long phys; + int phys_size; + phys_size = sim_d10v_translate_addr (virt, size, + &phys, + dmap_register, + imap_register); + if (phys_size == 0) + return xfered; + + memory = map_memory (phys); + +#ifdef DEBUG + if ((d10v_debug & DEBUG_INSTRUCTION) != 0) + { + (*d10v_callback->printf_filtered) + (d10v_callback, + "sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n", + (write_p ? "write" : "read"), + phys_size, virt, last_from, + phys, last_to, + (long) memory, last_segname); + } +#endif + + if (write_p) + { + memcpy (memory, buffer, phys_size); + } + else + { + memcpy (buffer, memory, phys_size); + } + + virt += phys_size; + buffer += phys_size; + xfered += phys_size; } return size; @@ -598,6 +801,9 @@ sim_open (kind, callback, abfd, argv) myname = argv[0]; old_segment_mapping = 0; + /* NOTE: This argument parsing is only effective when this function + is called by GDB. Standalone argument parsing is handled by + sim/common/run.c. */ for (p = argv + 1; *p; ++p) { if (strcmp (*p, "-oldseg") == 0) @@ -605,6 +811,8 @@ sim_open (kind, callback, abfd, argv) #ifdef DEBUG else if (strcmp (*p, "-t") == 0) d10v_debug = DEBUG; + else if (strncmp (*p, "-t", 2) == 0) + d10v_debug = atoi (*p + 2); #endif else (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",*p); @@ -637,8 +845,8 @@ sim_open (kind, callback, abfd, argv) } /* reset the processor state */ - if (!State.imem) - sim_size(1); + if (!State.mem.data[0]) + sim_size (1); sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL); /* Fudge our descriptor. */ @@ -673,84 +881,64 @@ sim_set_profile_size (n) (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n); } - uint8 * -dmem_addr( addr ) - uint32 addr; +dmem_addr (uint16 offset) { - int seg; + unsigned long phys; + uint8 *mem; + int phys_size; - addr &= 0xffff; + /* Note: DMEM address range is 0..0x10000. Calling code can compute + things like ``0xfffe + 0x0e60 == 0x10e5d''. Since offset's type + is uint16 this is modulo'ed onto 0x0e5d. */ - if (addr > 0xbfff) + phys_size = sim_d10v_translate_dmap_addr (offset, 1, &phys, + dmap_register); + if (phys_size == 0) { - if ( (addr & 0xfff0) != 0xff00) - { - (*d10v_callback->printf_filtered) (d10v_callback, "Data address 0x%lx is in I/O space, pc = 0x%lx.\n", - (long)addr, (long)decode_pc ()); - State.exception = SIGBUS; - } - - return State.dmem + addr; + mem = State.mem.fault; } - - if (addr > 0x7fff) - { - if (DMAP & 0x1000) - { - /* instruction memory */ - return (DMAP & 0xf) * 0x4000 + State.imem + (addr - 0x8000); - } - else - { - /* unified memory */ - /* this is ugly because we allocate unified memory in 128K segments and */ - /* dmap addresses 16k segments */ - seg = (DMAP & 0x3ff) >> 3; - if (State.umem[seg] == NULL) - { + else + mem = map_memory (phys); #ifdef DEBUG - (*d10v_callback->printf_filtered) (d10v_callback,"Allocating %d bytes unified memory to region %d\n", 1<<UMEM_SIZE, seg); -#endif - State.umem[seg] = (uint8 *)calloc(1,1<<UMEM_SIZE); - if (!State.umem[seg]) - { - (*d10v_callback->printf_filtered) (d10v_callback, - "ERROR: alloc failed. unified memory region %d unmapped, pc = 0x%lx\n", - seg, (long)decode_pc ()); - State.exception = SIGBUS; - } - } - return State.umem[seg] + (DMAP & 7) * 0x4000 + (addr - 0x8000); - } + if ((d10v_debug & DEBUG_MEMORY)) + { + (*d10v_callback->printf_filtered) + (d10v_callback, + "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n", + offset, last_from, + phys, phys_size, last_to, + (long) mem, last_segname); } - return State.dmem + addr; +#endif + return mem; } - uint8 * -imem_addr (uint32 pc) +imem_addr (uint32 offset) { - uint16 imap; - - if (pc & 0x20000) - imap = IMAP1; - else - imap = IMAP0; - - if (imap & 0x1000) - return State.imem + pc; - - if (State.umem[imap & 0xff] == NULL) - return 0; - - /* Discard upper bit(s) of PC in case IMAP1 selects unified memory. */ - pc &= (1 << UMEM_SIZE) - 1; - - return State.umem[imap & 0xff] + pc; + unsigned long phys; + uint8 *mem; + int phys_size = sim_d10v_translate_imap_addr (offset, 1, &phys, imap_register); + if (phys_size == 0) + { + return State.mem.fault; + } + mem = map_memory (phys); +#ifdef DEBUG + if ((d10v_debug & DEBUG_MEMORY)) + { + (*d10v_callback->printf_filtered) + (d10v_callback, + "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n", + offset, last_from, + phys, phys_size, last_to, + (long) mem, last_segname); + } +#endif + return mem; } - static int stop_simulator = 0; int @@ -779,7 +967,7 @@ sim_resume (sd, step, siggnal) do { iaddr = imem_addr ((uint32)PC << 2); - if (iaddr == NULL) + if (iaddr == State.mem.fault) { State.exception = SIGBUS; break; @@ -990,7 +1178,7 @@ sim_create_inferior (sd, abfd, argv, env) bfd_vma start_address; /* reset all state information */ - memset (&State.regs, 0, (int)&State.imem - (int)&State.regs[0]); + memset (&State.regs, 0, (int)&State.mem - (int)&State.regs); if (argv) { @@ -1022,19 +1210,28 @@ sim_create_inferior (sd, abfd, argv, env) #endif SET_CREG (PC_CR, start_address >> 2); - /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board */ - /* resets imap0 and imap1 to 0x1000. */ + /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board + initializes imap0 and imap1 to 0x1000 as part of its ROM + initialization. */ if (old_segment_mapping) { - SET_IMAP0 (0x0000); - SET_IMAP1 (0x007f); - SET_DMAP (0x0000); + /* External memory startup. This is the HARD reset state. */ + set_imap_register (0, 0x0000); + set_imap_register (1, 0x007f); + set_dmap_register (0, 0x2000); + set_dmap_register (1, 0x2000); + set_dmap_register (2, 0x0000); /* Old DMAP */ + set_dmap_register (3, 0x0000); } else { - SET_IMAP0 (0x1000); - SET_IMAP1 (0x1000); - SET_DMAP(0); + /* Internal memory startup. This is the ROM intialized state. */ + set_imap_register (0, 0x1000); + set_imap_register (1, 0x1000); + set_dmap_register (0, 0x2000); + set_dmap_register (1, 0x2000); + set_dmap_register (2, 0x0000); /* Old DMAP, Value is not 0x2000 */ + set_dmap_register (3, 0x0000); } SLOT_FLUSH (); @@ -1088,19 +1285,56 @@ sim_fetch_register (sd, rn, memory, length) unsigned char *memory; int length; { - if (rn > 34) - WRITE_64 (memory, ACC (rn-35)); - else if (rn == 32) - WRITE_16 (memory, IMAP0); - else if (rn == 33) - WRITE_16 (memory, IMAP1); - else if (rn == 34) - WRITE_16 (memory, DMAP); - else if (rn >= 16) - WRITE_16 (memory, CREG (rn - 16)); + int size; + if (rn < 0) + size = 0; + else if (rn >= SIM_D10V_R0_REGNUM + && rn < SIM_D10V_R0_REGNUM + SIM_D10V_NR_R_REGS) + { + WRITE_16 (memory, GPR (rn - SIM_D10V_R0_REGNUM)); + size = 2; + } + else if (rn >= SIM_D10V_CR0_REGNUM + && rn < SIM_D10V_CR0_REGNUM + SIM_D10V_NR_CR_REGS) + { + WRITE_16 (memory, CREG (rn - SIM_D10V_CR0_REGNUM)); + size = 2; + } + else if (rn >= SIM_D10V_A0_REGNUM + && rn < SIM_D10V_A0_REGNUM + SIM_D10V_NR_A_REGS) + { + WRITE_64 (memory, ACC (rn - SIM_D10V_A0_REGNUM)); + size = 8; + } + else if (rn == SIM_D10V_SPI_REGNUM) + { + /* PSW_SM indicates that the current SP is the USER + stack-pointer. */ + WRITE_16 (memory, spi_register ()); + size = 2; + } + else if (rn == SIM_D10V_SPU_REGNUM) + { + /* PSW_SM indicates that the current SP is the USER + stack-pointer. */ + WRITE_16 (memory, spu_register ()); + size = 2; + } + else if (rn >= SIM_D10V_IMAP0_REGNUM + && rn < SIM_D10V_IMAP0_REGNUM + SIM_D10V_NR_IMAP_REGS) + { + WRITE_16 (memory, imap_register (rn - SIM_D10V_IMAP0_REGNUM)); + size = 2; + } + else if (rn >= SIM_D10V_DMAP0_REGNUM + && rn < SIM_D10V_DMAP0_REGNUM + SIM_D10V_NR_DMAP_REGS) + { + WRITE_16 (memory, dmap_register (rn - SIM_D10V_DMAP0_REGNUM)); + size = 2; + } else - WRITE_16 (memory, GPR (rn)); - return -1; + size = 0; + return size; } int @@ -1110,20 +1344,55 @@ sim_store_register (sd, rn, memory, length) unsigned char *memory; int length; { - if (rn > 34) - SET_ACC (rn-35, READ_64 (memory) & MASK40); - else if (rn == 34) - SET_DMAP( READ_16(memory) ); - else if (rn == 33) - SET_IMAP1( READ_16(memory) ); - else if (rn == 32) - SET_IMAP0( READ_16(memory) ); - else if (rn >= 16) - SET_CREG (rn - 16, READ_16 (memory)); + int size; + if (rn < 0) + size = 0; + else if (rn >= SIM_D10V_R0_REGNUM + && rn < SIM_D10V_R0_REGNUM + SIM_D10V_NR_R_REGS) + { + SET_GPR (rn - SIM_D10V_R0_REGNUM, READ_16 (memory)); + size = 2; + } + else if (rn >= SIM_D10V_CR0_REGNUM + && rn < SIM_D10V_CR0_REGNUM + SIM_D10V_NR_CR_REGS) + { + SET_CREG (rn - SIM_D10V_CR0_REGNUM, READ_16 (memory)); + size = 2; + } + else if (rn >= SIM_D10V_A0_REGNUM + && rn < SIM_D10V_A0_REGNUM + SIM_D10V_NR_A_REGS) + { + SET_ACC (rn - SIM_D10V_A0_REGNUM, READ_64 (memory) & MASK40); + size = 8; + } + else if (rn == SIM_D10V_SPI_REGNUM) + { + /* PSW_SM indicates that the current SP is the USER + stack-pointer. */ + set_spi_register (READ_16 (memory)); + size = 2; + } + else if (rn == SIM_D10V_SPU_REGNUM) + { + set_spu_register (READ_16 (memory)); + size = 2; + } + else if (rn >= SIM_D10V_IMAP0_REGNUM + && rn < SIM_D10V_IMAP0_REGNUM + SIM_D10V_NR_IMAP_REGS) + { + set_imap_register (rn - SIM_D10V_IMAP0_REGNUM, READ_16(memory)); + size = 2; + } + else if (rn >= SIM_D10V_DMAP0_REGNUM + && rn < SIM_D10V_DMAP0_REGNUM + SIM_D10V_NR_DMAP_REGS) + { + set_dmap_register (rn - SIM_D10V_DMAP0_REGNUM, READ_16(memory)); + size = 2; + } else - SET_GPR (rn, READ_16 (memory)); + size = 0; SLOT_FLUSH (); - return -1; + return size; } |