diff options
author | Mike Frysinger <vapier@gentoo.org> | 2011-03-15 03:16:17 +0000 |
---|---|---|
committer | Mike Frysinger <vapier@gentoo.org> | 2011-03-15 03:16:17 +0000 |
commit | 028f6515424e832ee10a1e4cb1f96ea241e2acae (patch) | |
tree | c8ce68621a3ed2425b8dde4e2f523cbae0bf11fe /sim/common/sim-fpu.c | |
parent | 7f35e991971df570411a2688b948cd72adb4cf90 (diff) | |
download | gdb-028f6515424e832ee10a1e4cb1f96ea241e2acae.zip gdb-028f6515424e832ee10a1e4cb1f96ea241e2acae.tar.gz gdb-028f6515424e832ee10a1e4cb1f96ea241e2acae.tar.bz2 |
sim: common: trim trailing whitespace
Diffstat (limited to 'sim/common/sim-fpu.c')
-rw-r--r-- | sim/common/sim-fpu.c | 58 |
1 files changed, 29 insertions, 29 deletions
diff --git a/sim/common/sim-fpu.c b/sim/common/sim-fpu.c index 53f6bcd..be4336b 100644 --- a/sim/common/sim-fpu.c +++ b/sim/common/sim-fpu.c @@ -43,7 +43,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "sim-assert.h" -/* Debugging support. +/* Debugging support. If digits is -1, then print all digits. */ static void @@ -78,7 +78,7 @@ print_bits (unsigned64 x, typedef union { double d; unsigned64 i; -} sim_fpu_map; +} sim_fpu_map; /* A packed IEEE floating point number. @@ -94,7 +94,7 @@ typedef union { Zero (0 == BIASEDEXP && FRAC == 0): (sign ? "-" : "+") 0.0 - + Infinity (BIASEDEXP == EXPMAX && FRAC == 0): (sign ? "-" : "+") "infinity" @@ -254,7 +254,7 @@ pack_fpu (const sim_fpu *src, /* Infinity */ sign = src->sign; exp = EXPMAX; - fraction = 0; + fraction = 0; } else { @@ -309,7 +309,7 @@ pack_fpu (const sim_fpu *src, (long) LSEXTRACTED32 (packed, 23 - 1, 0)); } #endif - + return packed; } @@ -536,7 +536,7 @@ i2fpu (sim_fpu *f, signed64 i, int is_64bit) f->sign = (i < 0); f->normal_exp = NR_FRAC_GUARD; - if (f->sign) + if (f->sign) { /* Special case for minint, since there is no corresponding +ve integer representation for it */ @@ -553,7 +553,7 @@ i2fpu (sim_fpu *f, signed64 i, int is_64bit) if (f->fraction >= IMPLICIT_2) { - do + do { f->fraction = (f->fraction >> 1) | (f->fraction & 1); f->normal_exp += 1; @@ -896,7 +896,7 @@ do_round (sim_fpu *f, return 0; break; case sim_fpu_class_snan: - /* Quieten a SignalingNaN */ + /* Quieten a SignalingNaN */ f->class = sim_fpu_class_qnan; return sim_fpu_status_invalid_snan; break; @@ -1371,14 +1371,14 @@ sim_fpu_mul (sim_fpu *f, res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh; high = res2; low = res0; - + f->normal_exp = l->normal_exp + r->normal_exp; f->sign = l->sign ^ r->sign; f->class = sim_fpu_class_number; /* Input is bounded by [1,2) ; [2^60,2^61) Output is bounded by [1,4) ; [2^120,2^122) */ - + /* Adjust the exponent according to where the decimal point ended up in the high 64 bit word. In the source the decimal point was at NR_FRAC_GUARD. */ @@ -1511,7 +1511,7 @@ sim_fpu_div (sim_fpu *f, f->normal_exp--; } ASSERT (numerator >= denominator); - + /* Gain extra precision, already used one spare bit */ numerator <<= NR_SPARE; denominator <<= NR_SPARE; @@ -1610,7 +1610,7 @@ sim_fpu_max (sim_fpu *f, } ASSERT (l->sign == r->sign); if (l->normal_exp > r->normal_exp - || (l->normal_exp == r->normal_exp && + || (l->normal_exp == r->normal_exp && l->fraction > r->fraction)) { /* |l| > |r| */ @@ -1693,7 +1693,7 @@ sim_fpu_min (sim_fpu *f, } ASSERT (l->sign == r->sign); if (l->normal_exp > r->normal_exp - || (l->normal_exp == r->normal_exp && + || (l->normal_exp == r->normal_exp && l->fraction > r->fraction)) { /* |l| > |r| */ @@ -1808,20 +1808,20 @@ sim_fpu_sqrt (sim_fpu *f, * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice + * software is freely granted, provided that this notice * is preserved. * ==================================================== */ - + /* __ieee754_sqrt(x) * Return correctly rounded sqrt. * ------------------------------------------ * | Use the hardware sqrt if you have one | * ------------------------------------------ - * Method: - * Bit by bit method using integer arithmetic. (Slow, but portable) + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization - * Scale x to y in [1,4) with even powers of 2: + * Scale x to y in [1,4) with even powers of 2: * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) - @@ -1841,9 +1841,9 @@ sim_fpu_sqrt (sim_fpu *f, * i+1 2 * s = 2*q , and y = 2 * ( y - q ). (1) * i i i i - * - * To compute q from q , one checks whether - * i+1 i + * + * To compute q from q , one checks whether + * i+1 i * * -(i+1) 2 * (q + 2 ) <= y. (2) @@ -1853,12 +1853,12 @@ sim_fpu_sqrt (sim_fpu *f, * i+1 i i+1 i * * With some algebric manipulation, it is not difficult to see - * that (2) is equivalent to + * that (2) is equivalent to * -(i+1) * s + 2 <= y (3) * i i * - * The advantage of (3) is that s and y can be computed by + * The advantage of (3) is that s and y can be computed by * i i * the following recurrence formula: * if (3) is false @@ -1874,15 +1874,15 @@ sim_fpu_sqrt (sim_fpu *f, * -i -(i+1) * s = s + 2 , y = y - s - 2 (5) * i+1 i i+1 i i - * + * - - -(i+1) - - NOTE: y = 2 (y - s - 2 ) + - NOTE: y = 2 (y - s - 2 ) - i+1 i i - - * One may easily use induction to prove (4) and (5). + * One may easily use induction to prove (4) and (5). * Note. Since the left hand side of (3) contain only i+2 bits, - * it does not necessary to do a full (53-bit) comparison + * it does not necessary to do a full (53-bit) comparison * in (3). * 3. Final rounding * After generating the 53 bits result, we compute one more bit. @@ -1892,7 +1892,7 @@ sim_fpu_sqrt (sim_fpu *f, * The rounding mode can be detected by checking whether * huge + tiny is equal to huge, and whether huge - tiny is * equal to huge for some floating point number "huge" and "tiny". - * + * * Special cases: * sqrt(+-0) = +-0 ... exact * sqrt(inf) = inf @@ -1927,7 +1927,7 @@ sim_fpu_sqrt (sim_fpu *f, b = IMPLICIT_1; q = 0; s = 0; - + while (b) { unsigned64 t = s + b; |