diff options
author | Ulrich Weigand <ulrich.weigand@de.ibm.com> | 2017-11-06 15:55:11 +0100 |
---|---|---|
committer | Ulrich Weigand <ulrich.weigand@de.ibm.com> | 2017-11-06 15:56:02 +0100 |
commit | 701000146a01f1966c59f50d7b638915917b6378 (patch) | |
tree | 55e256ada803f5894031631fc45e84a69ae5bc81 /libiberty/configure | |
parent | 74be0bdc3bf8ae5b2e70992730539bca1d1b43ee (diff) | |
download | gdb-701000146a01f1966c59f50d7b638915917b6378.zip gdb-701000146a01f1966c59f50d7b638915917b6378.tar.gz gdb-701000146a01f1966c59f50d7b638915917b6378.tar.bz2 |
Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
Diffstat (limited to 'libiberty/configure')
0 files changed, 0 insertions, 0 deletions