aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-hash.c
diff options
context:
space:
mode:
authorNick Alcock <nick.alcock@oracle.com>2020-06-03 16:36:18 +0100
committerNick Alcock <nick.alcock@oracle.com>2020-07-22 17:57:51 +0100
commite28591b3dfc3958b954fc5264e5aaa94a9855f5b (patch)
tree861c605a95b4a6c2b5dc2ebcd46fd00f0161e1c1 /libctf/ctf-hash.c
parent688d28f62146bf07b2ce1efd5380768d5ead418d (diff)
downloadgdb-e28591b3dfc3958b954fc5264e5aaa94a9855f5b.zip
gdb-e28591b3dfc3958b954fc5264e5aaa94a9855f5b.tar.gz
gdb-e28591b3dfc3958b954fc5264e5aaa94a9855f5b.tar.bz2
libctf, next, hash: add dynhash and dynset _next iteration
This lets you iterate over dynhashes and dynsets using the _next API. dynhashes can be iterated over in sorted order, which works by populating an array of key/value pairs using ctf_dynhash_next itself, then sorting it with qsort. Convenience inline functions named ctf_dyn{hash,set}_cnext are also provided that take (-> return) const keys and values. libctf/ * ctf-impl.h (ctf_next_hkv_t): New, kv-pairs passed to sorting functions. (ctf_next_t) <u.ctn_sorted_hkv>: New, sorted kv-pairs for ctf_dynhash_next_sorted. <cu.ctn_h>: New, pointer to the dynhash under iteration. <cu.ctn_s>: New, pointer to the dynset under iteration. (ctf_hash_sort_f): Sorting function passed to... (ctf_dynhash_next_sorted): ... this new function. (ctf_dynhash_next): New. (ctf_dynset_next): New. * ctf-inlines.h (ctf_dynhash_cnext_sorted): New. (ctf_dynhash_cnext): New. (ctf_dynset_cnext): New. * ctf-hash.c (ctf_dynhash_next_sorted): New. (ctf_dynhash_next): New. (ctf_dynset_next): New. * ctf-util.c (ctf_next_destroy): Free the u.ctn_sorted_hkv if needed. (ctf_next_copy): Alloc-and-copy the u.ctn_sorted_hkv if needed.
Diffstat (limited to 'libctf/ctf-hash.c')
-rw-r--r--libctf/ctf-hash.c225
1 files changed, 225 insertions, 0 deletions
diff --git a/libctf/ctf-hash.c b/libctf/ctf-hash.c
index 7eba494..a026ef2 100644
--- a/libctf/ctf-hash.c
+++ b/libctf/ctf-hash.c
@@ -378,6 +378,163 @@ ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
}
+/* Traverse a dynhash in arbitrary order, in _next iterator form.
+
+ Mutating the dynhash while iterating is not supported (just as it isn't for
+ htab_traverse).
+
+ Note: unusually, this returns zero on success and a *positive* value on
+ error, because it does not take an fp, taking an error pointer would be
+ incredibly clunky, and nearly all error-handling ends up stuffing the result
+ of this into some sort of errno or ctf_errno, which is invariably
+ positive. So doing this simplifies essentially all callers. */
+int
+ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
+{
+ ctf_next_t *i = *it;
+ ctf_helem_t *slot;
+
+ if (!i)
+ {
+ size_t size = htab_size (h->htab);
+
+ /* If the table has too many entries to fit in an ssize_t, just give up.
+ This might be spurious, but if any type-related hashtable has ever been
+ nearly as large as that then something very odd is going on. */
+ if (((ssize_t) size) < 0)
+ return EDOM;
+
+ if ((i = ctf_next_create ()) == NULL)
+ return ENOMEM;
+
+ i->u.ctn_hash_slot = h->htab->entries;
+ i->cu.ctn_h = h;
+ i->ctn_n = 0;
+ i->ctn_size = (ssize_t) size;
+ i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
+ *it = i;
+ }
+
+ if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
+ return ECTF_NEXT_WRONGFUN;
+
+ if (h != i->cu.ctn_h)
+ return ECTF_NEXT_WRONGFP;
+
+ if ((ssize_t) i->ctn_n == i->ctn_size)
+ goto hash_end;
+
+ while ((ssize_t) i->ctn_n < i->ctn_size
+ && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
+ || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
+ {
+ i->u.ctn_hash_slot++;
+ i->ctn_n++;
+ }
+
+ if ((ssize_t) i->ctn_n == i->ctn_size)
+ goto hash_end;
+
+ slot = *i->u.ctn_hash_slot;
+
+ if (key)
+ *key = slot->key;
+ if (value)
+ *value = slot->value;
+
+ i->u.ctn_hash_slot++;
+ i->ctn_n++;
+
+ return 0;
+
+ hash_end:
+ ctf_next_destroy (i);
+ *it = NULL;
+ return ECTF_NEXT_END;
+}
+
+/* Traverse a sorted dynhash, in _next iterator form.
+
+ See ctf_dynhash_next for notes on error returns, etc.
+
+ Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
+
+ If SORT_FUN is null, thunks to ctf_dynhash_next. */
+int
+ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
+ void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
+{
+ ctf_next_t *i = *it;
+
+ if (sort_fun == NULL)
+ return ctf_dynhash_next (h, it, key, value);
+
+ if (!i)
+ {
+ size_t els = ctf_dynhash_elements (h);
+ ctf_next_t *accum_i = NULL;
+ void *key, *value;
+ int err;
+ ctf_next_hkv_t *walk;
+
+ if (((ssize_t) els) < 0)
+ return EDOM;
+
+ if ((i = ctf_next_create ()) == NULL)
+ return ENOMEM;
+
+ if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
+ {
+ ctf_next_destroy (i);
+ return ENOMEM;
+ }
+ walk = i->u.ctn_sorted_hkv;
+
+ i->cu.ctn_h = h;
+
+ while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
+ {
+ walk->hkv_key = key;
+ walk->hkv_value = value;
+ walk++;
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ ctf_next_destroy (i);
+ return err;
+ }
+
+ if (sort_fun)
+ ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
+ (int (*) (const void *, const void *, void *)) sort_fun,
+ sort_arg);
+ i->ctn_n = 0;
+ i->ctn_size = (ssize_t) els;
+ i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
+ *it = i;
+ }
+
+ if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
+ return ECTF_NEXT_WRONGFUN;
+
+ if (h != i->cu.ctn_h)
+ return ECTF_NEXT_WRONGFP;
+
+ if ((ssize_t) i->ctn_n == i->ctn_size)
+ {
+ ctf_next_destroy (i);
+ *it = NULL;
+ return ECTF_NEXT_END;
+ }
+
+ if (key)
+ *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
+ if (value)
+ *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
+ i->ctn_n++;
+ return 0;
+}
+
void
ctf_dynhash_destroy (ctf_dynhash_t *hp)
{
@@ -515,6 +672,74 @@ ctf_dynset_lookup_any (ctf_dynset_t *hp)
return NULL;
}
+/* Traverse a dynset in arbitrary order, in _next iterator form.
+
+ Otherwise, just like ctf_dynhash_next. */
+int
+ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
+{
+ struct htab *htab = (struct htab *) hp;
+ ctf_next_t *i = *it;
+ void *slot;
+
+ if (!i)
+ {
+ size_t size = htab_size (htab);
+
+ /* If the table has too many entries to fit in an ssize_t, just give up.
+ This might be spurious, but if any type-related hashtable has ever been
+ nearly as large as that then somthing very odd is going on. */
+
+ if (((ssize_t) size) < 0)
+ return EDOM;
+
+ if ((i = ctf_next_create ()) == NULL)
+ return ENOMEM;
+
+ i->u.ctn_hash_slot = htab->entries;
+ i->cu.ctn_s = hp;
+ i->ctn_n = 0;
+ i->ctn_size = (ssize_t) size;
+ i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
+ *it = i;
+ }
+
+ if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
+ return ECTF_NEXT_WRONGFUN;
+
+ if (hp != i->cu.ctn_s)
+ return ECTF_NEXT_WRONGFP;
+
+ if ((ssize_t) i->ctn_n == i->ctn_size)
+ goto set_end;
+
+ while ((ssize_t) i->ctn_n < i->ctn_size
+ && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
+ || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
+ {
+ i->u.ctn_hash_slot++;
+ i->ctn_n++;
+ }
+
+ if ((ssize_t) i->ctn_n == i->ctn_size)
+ goto set_end;
+
+ slot = *i->u.ctn_hash_slot;
+
+ if (key)
+ *key = internal_to_key (slot);
+
+ i->u.ctn_hash_slot++;
+ i->ctn_n++;
+
+ return 0;
+
+ set_end:
+ ctf_next_destroy (i);
+ *it = NULL;
+ return ECTF_NEXT_END;
+}
+
/* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
removal. This is a straight cast of a hashtab. */