aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-dedup.c
diff options
context:
space:
mode:
authorNick Alcock <nick.alcock@oracle.com>2020-06-05 18:35:46 +0100
committerNick Alcock <nick.alcock@oracle.com>2020-07-22 18:02:19 +0100
commit0f0c11f7fc9f0ab6bd63fc5f8a4cee7367a81849 (patch)
treeeff35c0824fa60651cd492f8fa63316da9a205da /libctf/ctf-dedup.c
parenta9b9870206658564272fe17d2079ed9eb6ffb15f (diff)
downloadgdb-0f0c11f7fc9f0ab6bd63fc5f8a4cee7367a81849.zip
gdb-0f0c11f7fc9f0ab6bd63fc5f8a4cee7367a81849.tar.gz
gdb-0f0c11f7fc9f0ab6bd63fc5f8a4cee7367a81849.tar.bz2
libctf, dedup: add deduplicator
This adds the core deduplicator that the ctf_link machinery calls (possibly repeatedly) to link the CTF sections: it takes an array of input ctf_file_t's and another array that indicates which entries in the input array are parents of which other entries, and returns an array of outputs. The first output is always the ctf_file_t on which ctf_link/ctf_dedup/etc was called: the other outputs are child dicts that have the first output as their parent. include/ * ctf-api.h (CTF_LINK_SHARE_DUPLICATED): No longer unimplemented. libctf/ * ctf-impl.h (ctf_type_id_key): New, the key in the cd_id_to_file_t. (ctf_dedup): New, core deduplicator state. (ctf_file_t) <ctf_dedup>: New. <ctf_dedup_atoms>: New. <ctf_dedup_atoms_alloc>: New. (ctf_hash_type_id_key): New prototype. (ctf_hash_eq_type_id_key): Likewise. (ctf_dedup_atoms_init): Likewise. * ctf-hash.c (ctf_hash_eq_type_id_key): New. (ctf_dedup_atoms_init): Likewise. * ctf-create.c (ctf_serialize): Adjusted. (ctf_add_encoded): No longer static. (ctf_add_reftype): Likewise. * ctf-open.c (ctf_file_close): Destroy the ctf_dedup_atoms_alloc. * ctf-dedup.c: New file. * ctf-decls.h [!HAVE_DECL_STPCPY]: Add prototype. * configure.ac: Check for stpcpy. * Makefile.am: Add it. * Makefile.in: Regenerate. * config.h.in: Regenerate. * configure: Regenerate.
Diffstat (limited to 'libctf/ctf-dedup.c')
-rw-r--r--libctf/ctf-dedup.c3155
1 files changed, 3155 insertions, 0 deletions
diff --git a/libctf/ctf-dedup.c b/libctf/ctf-dedup.c
new file mode 100644
index 0000000..77b34f4
--- /dev/null
+++ b/libctf/ctf-dedup.c
@@ -0,0 +1,3155 @@
+/* CTF type deduplication.
+ Copyright (C) 2019 Free Software Foundation, Inc.
+
+ This file is part of libctf.
+
+ libctf is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 3, or (at your option) any later
+ version.
+
+ This program is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ See the GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; see the file COPYING. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include <ctf-impl.h>
+#include <string.h>
+#include <errno.h>
+#include <assert.h>
+#include "hashtab.h"
+
+/* (In the below, relevant functions are named in square brackets.) */
+
+/* Type deduplication is a three-phase process:
+
+ [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
+ 1) come up with unambiguous hash values for all types: no two types may have
+ the same hash value, and any given type should have only one hash value
+ (for optimal deduplication).
+
+ [ctf_dedup, ctf_dedup_detect_name_ambiguity,
+ ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
+ 2) mark those distinct types with names that collide (and thus cannot be
+ declared simultaneously in the same translation unit) as conflicting, and
+ recursively mark all types that cite one of those types as conflicting as
+ well. Possibly mark all types cited in only one TU as conflicting, if
+ the CTF_LINK_SHARE_DUPLICATED link mode is active.
+
+ [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
+ 3) emit all the types, one hash value at a time. Types not marked
+ conflicting are emitted once, into the shared dictionary: types marked
+ conflicting are emitted once per TU into a dictionary corresponding to
+ each TU in which they appear. Structs marked conflicting get at the very
+ least a forward emitted into the shared dict so that other dicts can cite
+ it if needed.
+
+ [id_to_packed_id]
+ This all works over an array of inputs (usually in the same order as the
+ inputs on the link line). We don't use the ctf_link_inputs hash directly
+ because it is convenient to be able to address specific input types as a
+ *global type ID* or 'GID', a pair of an array offset and a ctf_id_t. Since
+ both are already 32 bits or less or can easily be constrained to that range,
+ we can pack them both into a single 64-bit hash word for easy lookups, which
+ would be much more annoying to do with a ctf_file_t * and a ctf_id_t. (On
+ 32-bit platforms, we must do that anyway, since pointers, and thus hash keys
+ and values, are only 32 bits wide). We track which inputs are parents of
+ which other inputs so that we can correctly recognize that types we have
+ traversed in children may cite types in parents, and so that we can process
+ the parents first.)
+
+ Note that thanks to ld -r, the deduplicator can be fed its own output, so the
+ inputs may themselves have child dicts. Since we need to support this usage
+ anyway, we can use it in one other place. If the caller finds translation
+ units to be too small a unit ambiguous types, links can be 'cu-mapped', where
+ the caller provides a mapping of input TU names to output child dict names.
+ This mapping can fuse many child TUs into one potential child dict, so that
+ ambiguous types in any of those input TUs go into the same child dict.
+ When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
+ repeatedly, once for every output name that has more than one input, to fuse
+ all the input TUs associated with a given output dict into one, and once again
+ as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
+ together. This has much higher memory usage than otherwise, because in the
+ intermediate state, all the output TUs are in memory at once and cannot be
+ lazily opened. It also has implications for the emission code: if types
+ appear ambiguously in multiple input TUs that are all mapped to the same
+ child dict, we cannot put them in children in the cu-mapping link phase
+ because this output is meant to *become* a child in the next link stage and
+ parent/child relationships are only one level deep: so instead, we just hide
+ all but one of the ambiguous types.
+
+ There are a few other subtleties here that make this more complex than it
+ seems. Let's go over the steps above in more detail.
+
+ 1) HASHING.
+
+ [ctf_dedup_hash_type, ctf_dedup_rhash_type]
+ Hashing proceeds recursively, mixing in the properties of each input type
+ (including its name, if any), and then adding the hash values of every type
+ cited by that type. The result is stashed in the cd_type_hashes so other
+ phases can find the hash values of input types given their IDs, and so that
+ if we encounter this type again while hashing we can just return its hash
+ value: it is also stashed in the *output mapping*, a mapping from hash value
+ to the set of GIDs corresponding to that type in all inputs. We also keep
+ track of the GID of the first appearance of the type in any input (in
+ cd_output_first_gid), and the GID of structs, unions, and forwards that only
+ appear in one TU (in cd_struct_origin). See below for where these things are
+ used.
+
+ Everything in this phase is time-critical, because it is operating over
+ non-deduplicated types and so may have hundreds or thousands of times the
+ data volume to deal with than later phases. Trace output is hidden behind
+ ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
+ ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
+ from the calls to ctf_dprintf(), even with debugging switched off), and keep
+ down the volume of output (hundreds of gigabytes of debug output are not
+ uncommon on larger links).
+
+ We have to do *something* about potential cycles in the type graph. We'd
+ like to avoid emitting forwards in the final output if possible, because
+ forwards aren't much use: they have no members. We are mostly saved from
+ needing to worry about this at emission time by ctf_add_struct*()
+ automatically replacing newly-created forwards when the real struct/union
+ comes along. So we only have to avoid getting stuck in cycles during the
+ hashing phase, while also not confusing types that cite members that are
+ structs with each other. It is easiest to solve this problem by noting two
+ things:
+
+ - all cycles in C depend on the presence of tagged structs/unions
+ - all tagged structs/unions have a unique name they can be disambiguated by
+
+ [ctf_dedup_is_stub]
+ This means that we can break all cycles by ceasing to hash in cited types at
+ every tagged struct/union and instead hashing in a stub consisting of the
+ struct/union's *decorated name*, which is the name preceded by "s " or "u "
+ depending on the namespace (cached in cd_decorated_names). Forwards are
+ decorated identically (so a forward to "struct foo" would be represented as
+ "s foo"): this means that a citation of a forward to a type and a citation of
+ a concrete definition of a type with the same name ends up getting the same
+ hash value.
+
+ Of course, it is quite possible to have two TUs with structs with the same
+ name and different definitions, but that's OK because when we scan for types
+ with ambiguous names we will identify these and mark them conflicting.
+
+ We populate one thing to help conflictedness marking. No unconflicted type
+ may cite a conflicted one, but this means that conflictedness marking must
+ walk from types to the types that cite them, which is the opposite of the
+ usual order. We can make this easier to do by constructing a *citers* graph
+ in cd_citers, which points from types to the types that cite them: because we
+ emit forwards corresponding to every conflicted struct/union, we don't need
+ to do this for citations of structs/unions by other types. This is very
+ convenient for us, because that's the only type we don't traverse
+ recursively: so we can construct the citers graph at the same time as we
+ hash, rather than needing to add an extra pass. (This graph is a dynhash of
+ *type hash values*, so it's small: in effect it is automatically
+ deduplicated.)
+
+ 2) COLLISIONAL MARKING.
+
+ [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
+ We identify types whose names collide during the hashing process, and count
+ the rough number of uses of each name (caching may throw it off a bit: this
+ doesn't need to be accurate). We then mark the less-frequently-cited types
+ with each names conflicting: the most-frequently-cited one goes into the
+ shared type dictionary, while all others are duplicated into per-TU
+ dictionaries, named after the input TU, that have the shared dictionary as a
+ parent. For structures and unions this is not quite good enough: we'd like
+ to have citations of forwards to ambiguously named structures and unions
+ *stay* as citations of forwards, so that the user can tell that the caller
+ didn't actually know which structure definition was meant: but if we put one
+ of those structures into the shared dictionary, it would supplant and replace
+ the forward, leaving no sign. So structures and unions do not take part in
+ this popularity contest: if their names are ambiguous, they are just
+ duplicated, and only a forward appears in the shared dict.
+
+ [ctf_dedup_propagate_conflictedness]
+ The process of marking types conflicted is itself recursive: we recursively
+ traverse the cd_citers graph populated in the hashing pass above and mark
+ everything that we encounter conflicted (without wasting time re-marking
+ anything that is already marked). This naturally terminates just where we
+ want it to (at types that are cited by no other types, and at structures and
+ unions) and suffices to ensure that types that cite conflicted types are
+ always marked conflicted.
+
+ [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
+ When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
+ are used in only one TU to end up in a per-CU dict. The easiest way to do
+ that is to mark them conflicted. ctf_dedup_conflictify_unshared does this,
+ traversing the output mapping and using ctf_dedup_multiple_input_dicts to
+ check the number of input dicts each distinct type hash value came from:
+ types that only came from one get marked conflicted. One caveat here is that
+ we need to consider both structs and forwards to them: a struct that appears
+ in one TU and has a dozen citations to an opaque forward in other TUs should
+ *not* be considered to be used in only one TU, because users would find it
+ useful to be able to traverse into opaque structures of that sort: so we use
+ cd_struct_origin to check both structs/unions and the forwards corresponding
+ to them.
+
+ 3) EMISSION.
+
+ [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
+ ctf_dedup_rwalk_one_output_mapping]
+ Emission involves another walk of the entire output mapping, this time
+ traversing everything other than struct members, recursively. Types are
+ emitted from leaves to trunk, emitting all types a type cites before emitting
+ the type itself. We sort the output mapping before traversing it, for
+ reproducibility and also correctness: the input dicts may have parent/child
+ relationships, so we simply sort all types that first appear in parents
+ before all children, then sort types that first appear in dicts appearing
+ earlier on the linker command line before those that appear later, then sort
+ by input ctf_id_t. (This is where we use cd_output_first_gid, collected
+ above.)
+
+ The walking is done using a recursive traverser which arranges to not revisit
+ any type already visited and to call its callback once per input GID for
+ input GIDs corresponding to conflicted output types. The traverser only
+ finds input types and calls a callback for them as many times as the output
+ needs to appear: it doesn't try to figure out anything about where the output
+ might go. That's done by the callback based on whether the type is
+ marked conflicted or not.
+
+ [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
+ ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
+ Conflicted types have all necessary dictionaries created, and then we emit
+ the type into each dictionary in turn, working over each input CTF type
+ corresponding to each hash value and using ctf_dedup_id_to_target to map each
+ input ctf_id_t into the corresponding type in the output (dealing with input
+ ctf_id_t's with parents in the process by simply chasing to the parent dict
+ if the type we're looking up is in there). Emitting structures involves
+ simply noting that the members of this structure need emission later on:
+ because you cannot cite a single structure member from another type, we avoid
+ emitting the members at this stage to keep recursion depths down a bit.
+
+ At this point, if we have by some mischance decided that two different types
+ with child types that hash to different values have in fact got the same hash
+ value themselves and *not* marked it conflicting, the type walk will walk
+ only *one* of them and in all likelihood we'll find that we are trying to
+ emit a type into some child dictionary that references a type that was never
+ emitted into that dictionary and assertion-fail. This always indicates a bug
+ in the conflictedness marking machinery or the hashing code, or both.
+
+ ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
+ thing, alluded to above: if this is a conflicted tagged structure or union,
+ and the target is the shared dict (i.e., the type we're being asked to emit
+ is not itself conflicted so can't just point straight at the conflicted
+ type), we instead synthesise a forward with the same name, emit it into the
+ shared dict, record it in cd_output_emission_conflicted_forwards so that we
+ don't re-emit it, and return it. This means that cycles that contain
+ conflicts do not cause the entire cycle to be replicated in every child: only
+ that piece of the cycle which takes you back as far as the closest tagged
+ struct/union needs to be replicated. This trick means that no part of the
+ deduplicator needs a cycle detector: every recursive walk can stop at tagged
+ structures.
+
+ [ctf_dedup_emit_struct_members]
+ The final stage of emission is to walk over all structures with members
+ that need emission and emit all of them. Every type has been emitted at
+ this stage, so emission cannot fail.
+
+ [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
+ Finally, we update the input -> output type ID mappings used by the ctf-link
+ machinery to update all the other sections. This is surprisingly expensive
+ and may be replaced with a scheme which lets the ctf-link machinery extract
+ the needed info directly from the deduplicator. */
+
+/* Possible future optimizations are flagged with 'optimization opportunity'
+ below. */
+
+/* Global optimization opportunity: a GC pass, eliminating types with no direct
+ or indirect citations from the other sections in the dictionary. */
+
+/* Internal flag values for ctf_dedup_hash_type. */
+
+/* Child call: consider forwardable types equivalent to forwards or stubs below
+ this point. */
+#define CTF_DEDUP_HASH_INTERNAL_CHILD 0x01
+
+/* Transform references to single ctf_id_ts in passed-in inputs into a number
+ that will fit in a uint64_t. Needs rethinking if CTF_MAX_TYPE is boosted.
+
+ On 32-bit platforms, we pack things together differently: see the note
+ above. */
+
+#if UINTPTR_MAX < UINT64_MAX
+# define IDS_NEED_ALLOCATION 1
+# define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
+# define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
+# define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
+#else
+# define CTF_DEDUP_GID(fp, input, type) \
+ (void *) (((uint64_t) input) << 32 | (type))
+# define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
+# define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
+#endif
+
+#ifdef IDS_NEED_ALLOCATION
+
+ /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
+ into the pool. It is notably less efficient than the 64-bit direct storage
+ approach, but with a smaller key, this is all we can do. */
+
+static void *
+id_to_packed_id (ctf_file_t *fp, int input_num, ctf_id_t type)
+{
+ const void *lookup;
+ ctf_type_id_key_t *dynkey = NULL;
+ ctf_type_id_key_t key = { input_num, type };
+
+ if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_file_t,
+ &key, &lookup, NULL))
+ {
+ if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
+ goto oom;
+ memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
+
+ if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_file_t, dynkey, NULL) < 0)
+ goto oom;
+
+ ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_file_t,
+ dynkey, &lookup, NULL);
+ }
+ /* We use a raw assert() here because there isn't really a way to get any sort
+ of error back from this routine without vastly complicating things for the
+ much more common case of !IDS_NEED_ALLOCATION. */
+ assert (lookup);
+ return (void *) lookup;
+
+ oom:
+ free (dynkey);
+ ctf_set_errno (fp, ENOMEM);
+ return NULL;
+}
+
+static int
+packed_id_to_input (const void *id)
+{
+ const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
+
+ return key->ctii_input_num;
+}
+
+static ctf_id_t
+packed_id_to_type (const void *id)
+{
+ const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
+
+ return key->ctii_type;
+}
+#endif
+
+/* Make an element in a dynhash-of-dynsets, or return it if already present. */
+
+static ctf_dynset_t *
+make_set_element (ctf_dynhash_t *set, const void *key)
+{
+ ctf_dynset_t *element;
+
+ if ((element = ctf_dynhash_lookup (set, key)) == NULL)
+ {
+ if ((element = ctf_dynset_create (htab_hash_string,
+ ctf_dynset_eq_string,
+ NULL)) == NULL)
+ return NULL;
+
+ if (ctf_dynhash_insert (set, (void *) key, element) < 0)
+ {
+ ctf_dynset_destroy (element);
+ return NULL;
+ }
+ }
+
+ return element;
+}
+
+/* Initialize the dedup atoms table. */
+int
+ctf_dedup_atoms_init (ctf_file_t *fp)
+{
+ if (fp->ctf_dedup_atoms)
+ return 0;
+
+ if (!fp->ctf_dedup_atoms_alloc)
+ {
+ if ((fp->ctf_dedup_atoms_alloc
+ = ctf_dynset_create (htab_hash_string, ctf_dynset_eq_string,
+ free)) == NULL)
+ return ctf_set_errno (fp, ENOMEM);
+ }
+ fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
+ return 0;
+}
+
+/* Intern things in the dedup atoms table. */
+
+static const char *
+intern (ctf_file_t *fp, char *atom)
+{
+ const void *foo;
+
+ if (atom == NULL)
+ return NULL;
+
+ if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
+ {
+ if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
+ {
+ ctf_set_errno (fp, ENOMEM);
+ return NULL;
+ }
+ foo = atom;
+ }
+ else
+ free (atom);
+
+ return (const char *) foo;
+}
+
+/* Add an indication of the namespace to a type name in a way that is not valid
+ for C identifiers. Used to maintain hashes of type names to other things
+ while allowing for the four C namespaces (normal, struct, union, enum).
+ Return a new dynamically-allocated string. */
+static const char *
+ctf_decorate_type_name (ctf_file_t *fp, const char *name, int kind)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ const char *ret;
+ const char *k;
+ char *p;
+ size_t i;
+
+ switch (kind)
+ {
+ case CTF_K_STRUCT:
+ k = "s ";
+ i = 0;
+ break;
+ case CTF_K_UNION:
+ k = "u ";
+ i = 1;
+ break;
+ case CTF_K_ENUM:
+ k = "e ";
+ i = 2;
+ break;
+ default:
+ k = "";
+ i = 3;
+ }
+
+ if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
+ {
+ char *str;
+
+ if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
+ goto oom;
+
+ p = stpcpy (str, k);
+ strcpy (p, name);
+ ret = intern (fp, str);
+ if (!ret)
+ goto oom;
+
+ if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
+ goto oom;
+ }
+
+ return ret;
+
+ oom:
+ ctf_set_errno (fp, ENOMEM);
+ return NULL;
+}
+
+/* Hash a type, possibly debugging-dumping something about it as well. */
+static inline void
+ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
+ const char *description _libctf_unused_,
+ unsigned long depth _libctf_unused_)
+{
+ ctf_sha1_add (sha1, buf, len);
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_sha1_t tmp;
+ char tmp_hval[CTF_SHA1_SIZE];
+ tmp = *sha1;
+ ctf_sha1_fini (&tmp, tmp_hval);
+ ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
+ tmp_hval);
+#endif
+}
+
+static const char *
+ctf_dedup_hash_type (ctf_file_t *fp, ctf_file_t *input,
+ ctf_file_t **inputs, uint32_t *parents,
+ int input_num, ctf_id_t type, int flags,
+ unsigned long depth,
+ int (*populate_fun) (ctf_file_t *fp,
+ ctf_file_t *input,
+ ctf_file_t **inputs,
+ int input_num,
+ ctf_id_t type,
+ void *id,
+ const char *decorated_name,
+ const char *hash));
+
+/* Determine whether this type is being hashed as a stub (in which case it is
+ unsafe to cache it). */
+static int
+ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
+{
+ /* We can cache all types unless we are recursing to children and are hashing
+ in a tagged struct, union or forward, all of which are replaced with their
+ decorated name as a stub and will have different hash values when hashed at
+ the top level. */
+
+ return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
+ && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
+ || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
+ || fwdkind == CTF_K_UNION))));
+}
+
+/* Populate struct_origin if need be (not already populated, or populated with
+ a different origin), in which case it must go to -1, "shared".)
+
+ Only called for forwards or forwardable types with names, when the link mode
+ is CTF_LINK_SHARE_DUPLICATED. */
+static int
+ctf_dedup_record_origin (ctf_file_t *fp, int input_num, const char *decorated,
+ void *id)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ void *origin;
+ int populate_origin = 0;
+
+ if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
+ {
+ if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
+ && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
+ {
+ populate_origin = 1;
+ origin = CTF_DEDUP_GID (fp, -1, -1);
+ }
+ }
+ else
+ {
+ populate_origin = 1;
+ origin = id;
+ }
+
+ if (populate_origin)
+ if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
+ return ctf_set_errno (fp, errno);
+ return 0;
+}
+
+/* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
+ calls, recursively). */
+
+static const char *
+ctf_dedup_rhash_type (ctf_file_t *fp, ctf_file_t *input, ctf_file_t **inputs,
+ uint32_t *parents, int input_num, ctf_id_t type,
+ void *type_id, const ctf_type_t *tp, const char *name,
+ const char *decorated, int kind, int flags,
+ unsigned long depth,
+ int (*populate_fun) (ctf_file_t *fp,
+ ctf_file_t *input,
+ ctf_file_t **inputs,
+ int input_num,
+ ctf_id_t type,
+ void *id,
+ const char *decorated_name,
+ const char *hash))
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ ctf_next_t *i = NULL;
+ ctf_sha1_t hash;
+ ctf_id_t child_type;
+ char hashbuf[CTF_SHA1_SIZE];
+ const char *hval = NULL;
+ const char *whaterr;
+ int err;
+
+ const char *citer = NULL;
+ ctf_dynset_t *citers = NULL;
+
+ /* Add a citer to the citers set. */
+#define ADD_CITER(citers, hval) \
+ do \
+ { \
+ whaterr = "updating citers"; \
+ if (!citers) \
+ if ((citers = ctf_dynset_create (htab_hash_string, \
+ ctf_dynset_eq_string, \
+ NULL)) == NULL) \
+ goto oom; \
+ if (ctf_dynset_cinsert (citers, hval) < 0) \
+ goto oom; \
+ } while (0)
+
+ /* If this is a named struct or union or a forward to one, and this is a child
+ traversal, treat this type as if it were a forward -- do not recurse to
+ children, ignore all content not already hashed in, and hash in the
+ decorated name of the type instead. */
+
+ if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
+ {
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
+ "stub with decorated name %s\n", decorated);
+
+#endif
+ ctf_sha1_init (&hash);
+ ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
+ "decorated struct/union/forward name", depth);
+ ctf_sha1_fini (&hash, hashbuf);
+
+ if ((hval = intern (fp, strdup (hashbuf))) == NULL)
+ {
+ ctf_err_warn (fp, 0, "%s (%i): out of memory during forwarding-stub "
+ "hashing for type with GID %p; errno: %s",
+ ctf_link_input_name (input), input_num, type_id,
+ strerror (errno));
+ return NULL; /* errno is set for us. */
+ }
+
+ /* In share--duplicated link mode, make sure the origin of this type is
+ recorded, even if this is a type in a parent dict which will not be
+ directly traversed. */
+ if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
+ && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
+ return NULL; /* errno is set for us. */
+
+ return hval;
+ }
+
+ /* Now ensure that subsequent recursive calls (but *not* the top-level call)
+ get this treatment. */
+ flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
+
+ /* If this is a struct, union, or forward with a name, record the unique
+ originating input TU, if there is one. */
+
+ if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
+ if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
+ && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
+ return NULL; /* errno is set for us. */
+
+ /* Mix in invariant stuff, transforming the type kind if needed. Note that
+ the vlen is *not* hashed in: the actual variable-length info is hashed in
+ instead, piecewise. The vlen is not part of the type, only the
+ variable-length data is: identical types with distinct vlens are quite
+ possible. Equally, we do not want to hash in the isroot flag: both the
+ compiler and the deduplicator set the nonroot flag to indicate clashes with
+ *other types in the same TU* with the same name: so two types can easily
+ have distinct nonroot flags, yet be exactly the same type.*/
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
+ depth, input_num, type, kind, name ? name : "");
+#endif
+
+ ctf_sha1_init (&hash);
+ if (name)
+ ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
+ ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
+
+ /* Hash content of this type. */
+ switch (kind)
+ {
+ case CTF_K_UNKNOWN:
+ /* No extra state. */
+ break;
+ case CTF_K_FORWARD:
+
+ /* Add the forwarded kind, stored in the ctt_type. */
+ ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
+ "forwarded kind", depth);
+ break;
+ case CTF_K_INTEGER:
+ case CTF_K_FLOAT:
+ {
+ ctf_encoding_t ep;
+ memset (&ep, 0, sizeof (ctf_encoding_t));
+
+ ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
+ depth);
+ if (ctf_type_encoding (input, type, &ep) < 0)
+ {
+ whaterr = "encoding";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
+ depth);
+ break;
+ }
+ /* Types that reference other types. */
+ case CTF_K_TYPEDEF:
+ case CTF_K_VOLATILE:
+ case CTF_K_CONST:
+ case CTF_K_RESTRICT:
+ case CTF_K_POINTER:
+ /* Hash the referenced type, if not already hashed, and mix it in. */
+ child_type = ctf_type_reference (input, type);
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
+ child_type, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "referenced type hashing";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
+ depth);
+ citer = hval;
+
+ break;
+
+ /* The slices of two types hash identically only if the type they overlay
+ also has the same encoding. This is not ideal, but in practice will work
+ well enough. We work directly rather than using the CTF API because
+ we do not want the slice's normal automatically-shine-through
+ semantics to kick in here. */
+ case CTF_K_SLICE:
+ {
+ const ctf_slice_t *slice;
+ const ctf_dtdef_t *dtd;
+ ssize_t size;
+ ssize_t increment;
+
+ child_type = ctf_type_reference (input, type);
+ ctf_get_ctt_size (input, tp, &size, &increment);
+ ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
+
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
+ child_type, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "slice-referenced type hashing";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
+ depth);
+ citer = hval;
+
+ if ((dtd = ctf_dynamic_type (input, type)) != NULL)
+ slice = &dtd->dtd_u.dtu_slice;
+ else
+ slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
+
+ ctf_dedup_sha1_add (&hash, &slice->cts_offset,
+ sizeof (slice->cts_offset), "slice offset", depth);
+ ctf_dedup_sha1_add (&hash, &slice->cts_bits,
+ sizeof (slice->cts_bits), "slice bits", depth);
+ break;
+ }
+
+ case CTF_K_ARRAY:
+ {
+ ctf_arinfo_t ar;
+
+ if (ctf_array_info (input, type, &ar) < 0)
+ {
+ whaterr = "array info";
+ goto err;
+ }
+
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
+ ar.ctr_contents, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "array contents type hashing";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
+ depth);
+ ADD_CITER (citers, hval);
+
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
+ ar.ctr_index, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "array index type hashing";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
+ depth);
+ ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
+ "element count", depth);
+ ADD_CITER (citers, hval);
+
+ break;
+ }
+ case CTF_K_FUNCTION:
+ {
+ ctf_funcinfo_t fi;
+ ctf_id_t *args;
+ uint32_t j;
+
+ if (ctf_func_type_info (input, type, &fi) < 0)
+ {
+ whaterr = "func type info";
+ goto err;
+ }
+
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
+ fi.ctc_return, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "func return type";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
+ depth);
+ ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
+ "func argc", depth);
+ ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
+ "func flags", depth);
+ ADD_CITER (citers, hval);
+
+ if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
+ {
+ whaterr = "memory allocation";
+ goto err;
+ }
+
+ if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
+ {
+ free (args);
+ whaterr = "func arg type";
+ goto err;
+ }
+ for (j = 0; j < fi.ctc_argc; j++)
+ {
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
+ input_num, args[j], flags, depth,
+ populate_fun)) == NULL)
+ {
+ free (args);
+ whaterr = "func arg type hashing";
+ goto err;
+ }
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
+ depth);
+ ADD_CITER (citers, hval);
+ }
+ free (args);
+ break;
+ }
+ case CTF_K_ENUM:
+ {
+ int val;
+ const char *ename;
+
+ ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
+ "enum size", depth);
+ while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
+ {
+ ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
+ depth);
+ ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
+ }
+ if (ctf_errno (input) != ECTF_NEXT_END)
+ {
+ whaterr = "enum member iteration";
+ goto err;
+ }
+ break;
+ }
+ /* Top-level only. */
+ case CTF_K_STRUCT:
+ case CTF_K_UNION:
+ {
+ ssize_t offset;
+ const char *mname;
+ ctf_id_t membtype;
+ ssize_t size;
+
+ ctf_get_ctt_size (input, tp, &size, NULL);
+ ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
+ depth);
+
+ while ((offset = ctf_member_next (input, type, &i, &mname,
+ &membtype)) >= 0)
+ {
+ if (mname == NULL)
+ mname = "";
+ ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
+ "member name", depth);
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
+#endif
+ if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
+ input_num, membtype, flags, depth,
+ populate_fun)) == NULL)
+ {
+ whaterr = "struct/union member type hashing";
+ goto iterr;
+ }
+
+ ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
+ depth);
+ ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
+ depth);
+ ADD_CITER (citers, hval);
+ }
+ if (ctf_errno (input) != ECTF_NEXT_END)
+ {
+ whaterr = "struct/union member iteration";
+ goto err;
+ }
+ break;
+ }
+ default:
+ whaterr = "unknown type kind";
+ goto err;
+ }
+ ctf_sha1_fini (&hash, hashbuf);
+
+ if ((hval = intern (fp, strdup (hashbuf))) == NULL)
+ {
+ whaterr = "hash internment";
+ goto oom;
+ }
+
+ /* Populate the citers for this type's subtypes, now the hash for the type
+ itself is known. */
+ whaterr = "citer tracking";
+
+ if (citer)
+ {
+ ctf_dynset_t *citer_hashes;
+
+ if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
+ goto oom;
+ if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
+ goto oom;
+ }
+ else if (citers)
+ {
+ const void *k;
+
+ while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
+ {
+ ctf_dynset_t *citer_hashes;
+ citer = (const char *) k;
+
+ if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
+ goto oom;
+
+ if (ctf_dynset_exists (citer_hashes, hval, NULL))
+ continue;
+ if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
+ goto oom;
+ }
+ if (err != ECTF_NEXT_END)
+ goto err;
+ ctf_dynset_destroy (citers);
+ }
+
+ return hval;
+
+ iterr:
+ ctf_next_destroy (i);
+ err:
+ ctf_sha1_fini (&hash, NULL);
+ ctf_err_warn (fp, 0, "%s (%i): %s error during type hashing for "
+ "type %lx, kind %i: CTF error: %s; errno: %s",
+ ctf_link_input_name (input), input_num, whaterr, type,
+ kind, ctf_errmsg (ctf_errno (fp)), strerror (errno));
+ return NULL;
+ oom:
+ ctf_set_errno (fp, errno);
+ ctf_err_warn (fp, 0, "%s (%i): %s error during type hashing for "
+ "type %lx, kind %i: CTF error: %s; errno: %s",
+ ctf_link_input_name (input), input_num, whaterr, type,
+ kind, ctf_errmsg (ctf_errno (fp)), strerror (errno));
+ return NULL;
+}
+
+/* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
+ state is stored. INPUT_NUM is the number of this input in the set of inputs.
+ Record its hash in FP's cd_type_hashes once it is known. PARENTS is
+ described in the comment above ctf_dedup.
+
+ (The flags argument currently accepts only the flag
+ CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
+ struct/union hashing in recursive traversals below the TYPE.)
+
+ We use the CTF API rather than direct access wherever possible, because types
+ that appear identical through the API should be considered identical, with
+ one exception: slices should only be considered identical to other slices,
+ not to the corresponding unsliced type.
+
+ The POPULATE_FUN is a mandatory hook that populates other mappings with each
+ type we see (excepting types that are recursively hashed as stubs). The
+ caller should not rely on the order of calls to this hook, though it will be
+ called at least once for every non-stub reference to every type.
+
+ Returns a hash value (an atom), or NULL on error. */
+
+static const char *
+ctf_dedup_hash_type (ctf_file_t *fp, ctf_file_t *input,
+ ctf_file_t **inputs, uint32_t *parents,
+ int input_num, ctf_id_t type, int flags,
+ unsigned long depth,
+ int (*populate_fun) (ctf_file_t *fp,
+ ctf_file_t *input,
+ ctf_file_t **inputs,
+ int input_num,
+ ctf_id_t type,
+ void *id,
+ const char *decorated_name,
+ const char *hash))
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ const ctf_type_t *tp;
+ void *type_id;
+ const char *hval = NULL;
+ const char *name;
+ const char *whaterr;
+ const char *decorated = NULL;
+ uint32_t kind, fwdkind;
+
+ depth++;
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
+#endif
+
+ /* The unimplemented type doesn't really exist, but must be noted in parent
+ hashes: so it gets a fixed, arbitrary hash. */
+ if (type == 0)
+ return "00000000000000000000";
+
+ /* Possible optimization: if the input type is in the parent type space, just
+ copy recursively-cited hashes from the parent's types into the output
+ mapping rather than rehashing them. */
+
+ type_id = CTF_DEDUP_GID (fp, input_num, type);
+
+ if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
+ {
+ ctf_err_warn (fp, 0, "%s (%i): lookup failure for type %lx: flags %x",
+ ctf_link_input_name (input), input_num, type, flags);
+ return NULL; /* errno is set for us. */
+ }
+
+ kind = LCTF_INFO_KIND (input, tp->ctt_info);
+ name = ctf_strraw (input, tp->ctt_name);
+
+ if (tp->ctt_name == 0 || !name || name[0] == '\0')
+ name = NULL;
+
+ /* Treat the unknown kind just like the unimplemented type. */
+ if (kind == CTF_K_UNKNOWN)
+ return "00000000000000000000";
+
+ /* Decorate the name appropriately for the namespace it appears in: forwards
+ appear in the namespace of their referent. */
+
+ fwdkind = kind;
+ if (name)
+ {
+ if (kind == CTF_K_FORWARD)
+ fwdkind = tp->ctt_type;
+
+ if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
+ return NULL; /* errno is set for us. */
+ }
+
+ /* If not hashing a stub, we can rely on various sorts of caches.
+
+ Optimization opportunity: we may be able to avoid calling the populate_fun
+ sometimes here. */
+
+ if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
+ {
+ if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
+ {
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
+ type, hval);
+#endif
+ populate_fun (fp, input, inputs, input_num, type, type_id,
+ decorated, hval);
+
+ return hval;
+ }
+ }
+
+ /* We have never seen this type before, and must figure out its hash and the
+ hashes of the types it cites.
+
+ Hash this type, and call ourselves recursively. (The hashing part is
+ optional, and is disabled if overidden_hval is set.) */
+
+ if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
+ type, type_id, tp, name, decorated,
+ kind, flags, depth, populate_fun)) == NULL)
+ return NULL; /* errno is set for us. */
+
+ /* The hash of this type is now known: record it unless caching is unsafe
+ because the hash value will change later. This will be the final storage
+ of this type's hash, so we call the population function on it. */
+
+ if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
+ {
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
+ type_id, name ? name : "", hval);
+#endif
+
+ if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
+ {
+ whaterr = "hash caching";
+ goto oom;
+ }
+
+ if (populate_fun (fp, input, inputs, input_num, type, type_id,
+ decorated, hval) < 0)
+ {
+ whaterr = "population function";
+ goto err; /* errno is set for us. */
+ }
+ }
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
+ input_num, type, hval);
+#endif
+ return hval;
+
+ oom:
+ ctf_set_errno (fp, errno);
+ err:
+ ctf_err_warn (fp, 0, "%s (%i): %s error during type hashing, type %lx, "
+ "kind %i: CTF errno: %s; errno: %s",
+ ctf_link_input_name (input), input_num, whaterr, type,
+ kind, ctf_errmsg (ctf_errno (fp)),
+ strerror (errno));
+ return NULL;
+}
+
+/* Populate a number of useful mappings not directly used by the hashing
+ machinery: the output mapping, the cd_name_counts mapping from name -> hash
+ -> count of hashval deduplication state for a given hashed type, and the
+ cd_output_first_tu mapping. */
+
+static int
+ctf_dedup_populate_mappings (ctf_file_t *fp, ctf_file_t *input _libctf_unused_,
+ ctf_file_t **inputs _libctf_unused_,
+ int input_num _libctf_unused_,
+ ctf_id_t type _libctf_unused_, void *id,
+ const char *decorated_name,
+ const char *hval)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ ctf_dynset_t *type_ids;
+ ctf_dynhash_t *name_counts;
+ long int count;
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
+ hval, decorated_name ? decorated_name : "(unnamed)",
+ input_num, type, ctf_link_input_name (input));
+
+ const char *orig_hval;
+
+ /* Make sure we never map a single GID to multiple hash values. */
+
+ if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
+ {
+ /* We can rely on pointer identity here, since all hashes are
+ interned. */
+ if (!ctf_assert (fp, orig_hval == hval))
+ return -1;
+ }
+ else
+ if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
+ return ctf_set_errno (fp, errno);
+#endif
+
+ /* Record the type in the output mapping: if this is the first time this type
+ has been seen, also record it in the cd_output_first_gid. Because we
+ traverse types in TU order and we do not merge types after the hashing
+ phase, this will be the lowest TU this type ever appears in. */
+
+ if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
+ hval)) == NULL)
+ {
+ if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
+ return ctf_set_errno (fp, errno);
+
+ if ((type_ids = ctf_dynset_create (htab_hash_pointer,
+ htab_eq_pointer,
+ NULL)) == NULL)
+ return ctf_set_errno (fp, errno);
+ if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
+ type_ids) < 0)
+ {
+ ctf_dynset_destroy (type_ids);
+ return ctf_set_errno (fp, errno);
+ }
+ }
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ {
+ /* Verify that all types with this hash are of the same kind, and that the
+ first TU a type was seen in never falls. */
+
+ int err;
+ const void *one_id;
+ ctf_next_t *i = NULL;
+ int orig_kind = ctf_type_kind_unsliced (input, type);
+ int orig_first_tu;
+
+ orig_first_tu = CTF_DEDUP_GID_TO_INPUT
+ (ctf_dynhash_lookup (d->cd_output_first_gid, hval));
+ if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
+ return -1;
+
+ while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
+ {
+ ctf_file_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
+ ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
+ if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
+ {
+ ctf_err_warn (fp, 1, "added wrong kind to output mapping "
+ "for hash %s named %s: %p/%lx from %s is "
+ "kind %i, but newly-added %p/%lx from %s is "
+ "kind %i", hval,
+ decorated_name ? decorated_name : "(unnamed)",
+ (void *) foo, bar,
+ ctf_link_input_name (foo),
+ ctf_type_kind_unsliced (foo, bar),
+ (void *) input, type,
+ ctf_link_input_name (input), orig_kind);
+ if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
+ == orig_kind))
+ return -1;
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ return ctf_set_errno (fp, err);
+ }
+#endif
+
+ /* This function will be repeatedly called for the same types many times:
+ don't waste time reinserting the same keys in that case. */
+ if (!ctf_dynset_exists (type_ids, id, NULL)
+ && ctf_dynset_insert (type_ids, id) < 0)
+ return ctf_set_errno (fp, errno);
+
+ /* The rest only needs to happen for types with names. */
+ if (!decorated_name)
+ return 0;
+
+ /* Count the number of occurrences of the hash value for this GID. */
+
+ hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
+
+ /* Mapping from name -> hash(hashval, count) not already present? */
+ if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
+ decorated_name)) == NULL)
+ {
+ if ((name_counts = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ return ctf_set_errno (fp, errno);
+ if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
+ name_counts) < 0)
+ {
+ ctf_dynhash_destroy (name_counts);
+ return ctf_set_errno (fp, errno);
+ }
+ }
+
+ /* This will, conveniently, return NULL (i.e. 0) for a new entry. */
+ count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
+
+ if (ctf_dynhash_cinsert (name_counts, hval,
+ (const void *) (uintptr_t) (count + 1)) < 0)
+ return ctf_set_errno (fp, errno);
+
+ return 0;
+}
+
+/* Mark a single hash as corresponding to a conflicting type. Mark all types
+ that cite it as conflicting as well, terminating the recursive walk only when
+ types that are already conflicted or types do not cite other types are seen.
+ (Tagged structures and unions do not appear in the cd_citers graph, so the
+ walk also terminates there, since any reference to a conflicting structure is
+ just going to reference an unconflicting forward instead: see
+ ctf_dedup_maybe_synthesize_forward.) */
+
+static int
+ctf_dedup_mark_conflicting_hash (ctf_file_t *fp, const char *hval)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ ctf_next_t *i = NULL;
+ int err;
+ const void *k;
+ ctf_dynset_t *citers;
+
+ /* Mark conflicted if not already so marked. */
+ if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
+ return 0;
+
+ ctf_dprintf ("Marking %s as conflicted\n", hval);
+
+ if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
+ {
+ ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
+ ctf_set_errno (fp, errno);
+ return -1;
+ }
+
+ /* If any types cite this type, mark them conflicted too. */
+ if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
+ return 0;
+
+ while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
+ {
+ const char *hv = (const char *) k;
+
+ if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
+ continue;
+
+ if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
+ {
+ ctf_next_destroy (i);
+ return -1; /* errno is set for us. */
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ return ctf_set_errno (fp, err);
+
+ return 0;
+}
+
+/* Look up a type kind from the output mapping, given a type hash value. */
+static int
+ctf_dedup_hash_kind (ctf_file_t *fp, ctf_file_t **inputs, const char *hash)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ void *id;
+ ctf_dynset_t *type_ids;
+
+ /* Precondition: the output mapping is populated. */
+ if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
+ return -1;
+
+ /* Look up some GID from the output hash for this type. (They are all
+ identical, so we can pick any). Don't assert if someone calls this
+ function wrongly, but do assert if the output mapping knows about the hash,
+ but has nothing associated with it. */
+
+ type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
+ if (!type_ids)
+ {
+ ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
+ return ctf_set_errno (fp, ECTF_INTERNAL);
+ }
+ id = ctf_dynset_lookup_any (type_ids);
+ if (!ctf_assert (fp, id))
+ return -1;
+
+ return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
+ CTF_DEDUP_GID_TO_TYPE (id));
+}
+
+/* Used to keep a count of types: i.e. distinct type hash values. */
+typedef struct ctf_dedup_type_counter
+{
+ ctf_file_t *fp;
+ ctf_file_t **inputs;
+ int num_non_forwards;
+} ctf_dedup_type_counter_t;
+
+/* Add to the type counter for one name entry from the cd_name_counts. */
+static int
+ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
+{
+ const char *hval = (const char *) key_;
+ int kind;
+ ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
+
+ kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
+
+ /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
+ smuggle errors out of here. */
+
+ if (kind != CTF_K_FORWARD)
+ {
+ arg->num_non_forwards++;
+ ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
+ hval, kind, arg->num_non_forwards);
+ }
+
+ /* We only need to know if there is more than one non-forward (an ambiguous
+ type): don't waste time iterating any more than needed to figure that
+ out. */
+
+ if (arg->num_non_forwards > 1)
+ return 1;
+
+ return 0;
+}
+
+/* Detect name ambiguity and mark ambiguous names as conflicting, other than the
+ most common. */
+static int
+ctf_dedup_detect_name_ambiguity (ctf_file_t *fp, ctf_file_t **inputs)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ ctf_next_t *i = NULL;
+ void *k;
+ void *v;
+ int err;
+ const char *erm;
+
+ /* Go through cd_name_counts for all CTF namespaces in turn. */
+
+ while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
+ {
+ const char *decorated = (const char *) k;
+ ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
+ ctf_next_t *j = NULL;
+
+ /* If this is a forwardable kind or a forward (which we can tell without
+ consulting the type because its decorated name has a space as its
+ second character: see ctf_decorate_type_name), we are only interested
+ in whether this name has many hashes associated with it: any such name
+ is necessarily ambiguous, and types with that name are conflicting.
+ Once we know whether this is true, we can skip to the next name: so use
+ ctf_dynhash_iter_find for efficiency. */
+
+ if (decorated[0] != '\0' && decorated[1] == ' ')
+ {
+ ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
+ ctf_dynhash_t *counts = (ctf_dynhash_t *) v;
+
+ ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);
+
+ /* Check for assertion failure and pass it up. */
+ if (ctf_errno (fp) == ECTF_INTERNAL)
+ goto assert_err;
+
+ if (counters.num_non_forwards > 1)
+ {
+ const void *hval_;
+
+ while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
+ {
+ const char *hval = (const char *) hval_;
+ ctf_dynset_t *type_ids;
+ void *id;
+ int kind;
+
+ /* Dig through the types in this hash to find the non-forwards
+ and mark them ambiguous. */
+
+ type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
+
+ /* Nonexistent? Must be a forward with no referent. */
+ if (!type_ids)
+ continue;
+
+ id = ctf_dynset_lookup_any (type_ids);
+
+ kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
+ CTF_DEDUP_GID_TO_TYPE (id));
+
+ if (kind != CTF_K_FORWARD)
+ {
+ ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
+ "of many non-forward GIDs for %s\n", id,
+ hval, (char *) k);
+ ctf_dedup_mark_conflicting_hash (fp, hval);
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ erm = "marking conflicting structs/unions";
+ goto iterr;
+ }
+ }
+ }
+ else
+ {
+ /* This is an ordinary type. Find the most common type with this
+ name, and mark it unconflicting: all others are conflicting. (We
+ cannot do this sort of popularity contest with forwardable types
+ because any forwards to that type would be immediately unified with
+ the most-popular type on insertion, and we want conflicting structs
+ et al to have all forwards left intact, so the user is notified
+ that this type is conflicting. TODO: improve this in future by
+ setting such forwards non-root-visible.) */
+
+ const void *key;
+ const void *count;
+ const char *hval;
+ long max_hcount = -1;
+ const char *max_hval = NULL;
+
+ if (ctf_dynhash_elements (name_counts) <= 1)
+ continue;
+
+ /* First find the most common. */
+ while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
+ {
+ hval = (const char *) key;
+ if ((long int) (uintptr_t) count > max_hcount)
+ {
+ max_hcount = (long int) (uintptr_t) count;
+ max_hval = hval;
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ erm = "finding commonest conflicting type";
+ goto iterr;
+ }
+
+ /* Mark all the others as conflicting. */
+ while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
+ {
+ hval = (const char *) key;
+ if (strcmp (max_hval, hval) == 0)
+ continue;
+
+ ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
+ hval, (const char *) k);
+ if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
+ {
+ erm = "marking hashes as conflicting";
+ goto err;
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ erm = "marking uncommon conflicting types";
+ goto iterr;
+ }
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ erm = "scanning for ambiguous names";
+ goto iterr;
+ }
+
+ return 0;
+
+ err:
+ ctf_next_destroy (i);
+ ctf_err_warn (fp, 0, "%s: %s", erm, ctf_errmsg (ctf_errno (fp)));
+ return -1;
+
+ iterr:
+ ctf_err_warn (fp, 0, "iteration failed %s: %s", erm, ctf_errmsg (err));
+ return ctf_set_errno (fp, err);
+
+ assert_err:
+ ctf_next_destroy (i);
+ return -1; /* errno is set for us. */
+}
+
+/* Initialize the deduplication machinery. */
+
+static int
+ctf_dedup_init (ctf_file_t *fp)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ size_t i;
+
+ if (ctf_dedup_atoms_init (fp) < 0)
+ goto oom;
+
+#if IDS_NEED_ALLOCATION
+ if ((d->cd_id_to_file_t = ctf_dynhash_create (ctf_hash_type_id_key,
+ ctf_hash_eq_type_id_key,
+ free, NULL)) == NULL)
+ goto oom;
+#endif
+
+ for (i = 0; i < 4; i++)
+ {
+ if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ goto oom;
+ }
+
+ if ((d->cd_name_counts
+ = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string, NULL,
+ (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
+ goto oom;
+
+ if ((d->cd_type_hashes
+ = ctf_dynhash_create (ctf_hash_integer,
+ ctf_hash_eq_integer,
+ NULL, NULL)) == NULL)
+ goto oom;
+
+ if ((d->cd_struct_origin
+ = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ goto oom;
+
+ if ((d->cd_citers
+ = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string, NULL,
+ (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
+ goto oom;
+
+ if ((d->cd_output_mapping
+ = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string, NULL,
+ (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
+ goto oom;
+
+ if ((d->cd_output_first_gid
+ = ctf_dynhash_create (ctf_hash_string,
+ ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ goto oom;
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ if ((d->cd_output_mapping_guard
+ = ctf_dynhash_create (ctf_hash_integer,
+ ctf_hash_eq_integer, NULL, NULL)) == NULL)
+ goto oom;
+#endif
+
+ if ((d->cd_emission_struct_members
+ = ctf_dynhash_create (ctf_hash_integer,
+ ctf_hash_eq_integer,
+ NULL, NULL)) == NULL)
+ goto oom;
+
+ if ((d->cd_conflicting_types
+ = ctf_dynset_create (htab_hash_string,
+ ctf_dynset_eq_string, NULL)) == NULL)
+ goto oom;
+
+ return 0;
+
+ oom:
+ ctf_err_warn (fp, 0, "ctf_dedup_init: cannot initialize: "
+ "out of memory.");
+ return ctf_set_errno (fp, ENOMEM);
+}
+
+void
+ctf_dedup_fini (ctf_file_t *fp, ctf_file_t **outputs, uint32_t noutputs)
+{
+ ctf_dedup_t *d = &fp->ctf_dedup;
+ size_t i;
+
+ /* ctf_dedup_atoms is kept across links. */
+#if IDS_NEED_ALLOCATION
+ ctf_dynhash_destroy (d->cd_id_to_file_t);
+#endif
+ for (i = 0; i < 4; i++)
+ ctf_dynhash_destroy (d->cd_decorated_names[i]);
+ ctf_dynhash_destroy (d->cd_name_counts);
+ ctf_dynhash_destroy (d->cd_type_hashes);
+ ctf_dynhash_destroy (d->cd_struct_origin);
+ ctf_dynhash_destroy (d->cd_citers);
+ ctf_dynhash_destroy (d->cd_output_mapping);
+ ctf_dynhash_destroy (d->cd_output_first_gid);
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dynhash_destroy (d->cd_output_mapping_guard);
+#endif
+ ctf_dynhash_destroy (d->cd_emission_struct_members);
+ ctf_dynset_destroy (d->cd_conflicting_types);
+
+ /* Free the per-output state. */
+ if (outputs)
+ {
+ for (i = 0; i < noutputs; i++)
+ {
+ ctf_dedup_t *od = &outputs[i]->ctf_dedup;
+ ctf_dynhash_destroy (od->cd_output_emission_hashes);
+ ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
+ ctf_file_close (od->cd_output);
+ }
+ }
+ memset (d, 0, sizeof (ctf_dedup_t));
+}
+
+/* Return 1 if this type is cited by multiple input dictionaries. */
+
+static int
+ctf_dedup_multiple_input_dicts (ctf_file_t *output, ctf_file_t **inputs,
+ const char *hval)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ ctf_dynset_t *type_ids;
+ ctf_next_t *i = NULL;
+ void *id;
+ ctf_file_t *found = NULL, *relative_found = NULL;
+ const char *type_id;
+ ctf_file_t *input_fp;
+ ctf_id_t input_id;
+ const char *name;
+ const char *decorated;
+ int fwdkind;
+ int multiple = 0;
+ int err;
+
+ type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
+ if (!ctf_assert (output, type_ids))
+ return -1;
+
+ /* Scan across the IDs until we find proof that two disjoint dictionaries
+ are referenced. Exit as soon as possible. Optimization opportunity, but
+ possibly not worth it, given that this is only executed in
+ CTF_LINK_SHARE_DUPLICATED mode. */
+
+ while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
+ {
+ ctf_file_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
+
+ if (fp == found || fp == relative_found)
+ continue;
+
+ if (!found)
+ {
+ found = fp;
+ continue;
+ }
+
+ if (!relative_found
+ && (fp->ctf_parent == found || found->ctf_parent == fp))
+ {
+ relative_found = fp;
+ continue;
+ }
+
+ multiple = 1;
+ ctf_next_destroy (i);
+ break;
+ }
+ if ((err != ECTF_NEXT_END) && (err != 0))
+ {
+ ctf_err_warn (output, 0, "propagating conflictedness: %s",
+ ctf_errmsg (err));
+ ctf_set_errno (output, err);
+ return -1;
+ }
+
+ if (multiple)
+ return multiple;
+
+ /* This type itself does not appear in multiple input dicts: how about another
+ related type with the same name (e.g. a forward if this is a struct,
+ etc). */
+
+ type_id = ctf_dynset_lookup_any (type_ids);
+ if (!ctf_assert (output, type_id))
+ return -1;
+
+ input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
+ input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
+ fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
+ name = ctf_type_name_raw (input_fp, input_id);
+
+ if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
+ && name && name[0] != '\0')
+ {
+ const void *origin;
+
+ if ((decorated = ctf_decorate_type_name (output, name,
+ fwdkind)) == NULL)
+ return -1; /* errno is set for us. */
+
+ origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
+ if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
+ multiple = 1;
+ }
+
+ return multiple;
+}
+
+/* Demote unconflicting types which reference only one input, or which reference
+ two inputs where one input is the parent of the other, into conflicting
+ types. Only used if the link mode is CTF_LINK_SHARE_DUPLICATED. */
+
+static int
+ctf_dedup_conflictify_unshared (ctf_file_t *output, ctf_file_t **inputs)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ ctf_next_t *i = NULL;
+ int err;
+ const void *k;
+ ctf_dynset_t *to_mark = NULL;
+
+ if ((to_mark = ctf_dynset_create (htab_hash_string, ctf_dynset_eq_string,
+ NULL)) == NULL)
+ goto err_no;
+
+ while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
+ {
+ const char *hval = (const char *) k;
+ int conflicting;
+
+ /* Types referenced by only one dict, with no type appearing under that
+ name elsewhere, are marked conflicting. */
+
+ conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
+
+ if (conflicting < 0)
+ goto err; /* errno is set for us. */
+
+ if (conflicting)
+ if (ctf_dynset_cinsert (to_mark, hval) < 0)
+ goto err;
+ }
+ if (err != ECTF_NEXT_END)
+ goto iterr;
+
+ while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
+ {
+ const char *hval = (const char *) k;
+
+ if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
+ goto err;
+ }
+ if (err != ECTF_NEXT_END)
+ goto iterr;
+
+ ctf_dynset_destroy (to_mark);
+
+ return 0;
+
+ err_no:
+ ctf_set_errno (output, errno);
+ err:
+ err = ctf_errno (output);
+ ctf_next_destroy (i);
+ iterr:
+ ctf_set_errno (output, err);
+ ctf_dynset_destroy (to_mark);
+ ctf_err_warn (output, 0, "conflictifying unshared types: %s",
+ ctf_errmsg (ctf_errno (output)));
+ return -1;
+}
+
+/* The core deduplicator. Populate cd_output_mapping in the output ctf_dedup
+ with a mapping of all types that belong in this dictionary and where they
+ come from, and cd_conflicting_types with an indication of whether each type
+ is conflicted or not. OUTPUT is the top-level output: INPUTS is the array of
+ input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
+ array with each element corresponding to a input which is a child dict set to
+ the number in the INPUTS array of that input's parent.
+
+ If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
+ mapping: only one output will result.
+
+ Only deduplicates: does not emit the types into the output. Call
+ ctf_dedup_emit afterwards to do that. */
+
+int
+ctf_dedup (ctf_file_t *output, ctf_file_t **inputs, uint32_t ninputs,
+ uint32_t *parents, int cu_mapped)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ size_t i;
+ ctf_next_t *it = NULL;
+
+ for (i = 0; i < ninputs; i++)
+ ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
+
+ if (ctf_dedup_init (output) < 0)
+ return -1; /* errno is set for us. */
+
+ /* Some flags do not apply when CU-mapping: this is not a duplicated link,
+ because there is only one output and we really don't want to end up marking
+ all nonconflicting but appears-only-once types as conflicting (which in the
+ CU-mapped link means we'd mark them all as non-root-visible!). */
+ d->cd_link_flags = output->ctf_link_flags;
+ if (cu_mapped)
+ d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
+
+ /* Compute hash values for all types, recursively, treating child structures
+ and unions equivalent to forwards, and hashing in the name of the referent
+ of each such type into structures, unions, and non-opaque forwards.
+ Populate a mapping from decorated name (including an indication of
+ struct/union/enum namespace) to count of type hash values in
+ cd_name_counts, a mapping from and a mapping from hash values to input type
+ IDs in cd_output_mapping. */
+
+ ctf_dprintf ("Computing type hashes\n");
+ for (i = 0; i < ninputs; i++)
+ {
+ ctf_id_t id;
+
+ while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
+ {
+ ctf_dedup_hash_type (output, inputs[i], inputs, parents,
+ i, id, 0, 0, ctf_dedup_populate_mappings);
+ }
+ if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
+ {
+ ctf_err_warn (output, 0, "iteration failure computing type "
+ "hashes: %s", ctf_errmsg (ctf_errno (inputs[i])));
+ return ctf_set_errno (output, ctf_errno (inputs[i]));
+ }
+ }
+
+ /* Go through the cd_name_counts name->hash->count mapping for all CTF
+ namespaces: any name with many hashes associated with it at this stage is
+ necessarily ambiguous. Mark all the hashes except the most common as
+ conflicting in the output. */
+
+ ctf_dprintf ("Detecting type name ambiguity\n");
+ if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
+ return -1; /* errno is set for us. */
+
+ /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
+ types whose output mapping references only one input dict into a
+ conflicting type, so that they end up in the per-CU dictionaries. */
+
+ if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
+ {
+ ctf_dprintf ("Conflictifying unshared types\n");
+ if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
+ return -1; /* errno is set for us. */
+ }
+ return 0;
+}
+
+static int
+ctf_dedup_rwalk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs, uint32_t *parents,
+ ctf_dynset_t *already_visited,
+ const char *hval,
+ int (*visit_fun) (const char *hval,
+ ctf_file_t *output,
+ ctf_file_t **inputs,
+ uint32_t ninputs,
+ uint32_t *parents,
+ int already_visited,
+ ctf_file_t *input,
+ ctf_id_t type,
+ void *id,
+ int depth,
+ void *arg),
+ void *arg, unsigned long depth);
+
+/* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
+ type and visits it. */
+static int
+ctf_dedup_rwalk_one_output_mapping (ctf_file_t *output,
+ ctf_file_t **inputs, uint32_t ninputs,
+ uint32_t *parents,
+ ctf_dynset_t *already_visited,
+ int visited, void *type_id,
+ const char *hval,
+ int (*visit_fun) (const char *hval,
+ ctf_file_t *output,
+ ctf_file_t **inputs,
+ uint32_t ninputs,
+ uint32_t *parents,
+ int already_visited,
+ ctf_file_t *input,
+ ctf_id_t type,
+ void *id,
+ int depth,
+ void *arg),
+ void *arg, unsigned long depth)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ ctf_file_t *fp;
+ int input_num;
+ ctf_id_t type;
+ int ret;
+ const char *whaterr;
+
+ input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
+ fp = inputs[input_num];
+ type = CTF_DEDUP_GID_TO_TYPE (type_id);
+
+ ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
+ "kind %i\n", depth, hval, input_num, type, (void *) fp,
+ ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
+
+ /* Get the single call we do if this type has already been visited out of the
+ way. */
+ if (visited)
+ return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
+ type, type_id, depth, arg);
+
+ /* This macro is really ugly, but the alternative is repeating this code many
+ times, which is worse. */
+
+#define CTF_TYPE_WALK(type, errlabel, errmsg) \
+ do { \
+ void *type_id; \
+ const char *hashval; \
+ int cited_type_input_num = input_num; \
+ \
+ if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
+ cited_type_input_num = parents[input_num]; \
+ \
+ type_id = CTF_DEDUP_GID (output, cited_type_input_num, type); \
+ \
+ if (type == 0) \
+ { \
+ ctf_dprintf ("Walking: unimplemented type\n"); \
+ break; \
+ } \
+ \
+ ctf_dprintf ("Looking up ID %i/%lx in type hashes\n", \
+ cited_type_input_num, type); \
+ hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id); \
+ if (!ctf_assert (output, hashval)) \
+ { \
+ whaterr = "looking up ID in type hashes"; \
+ goto errlabel; \
+ } \
+ ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
+ hashval); \
+ \
+ ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
+ already_visited, hashval, \
+ visit_fun, arg, depth); \
+ if (ret < 0) \
+ { \
+ whaterr = errmsg; \
+ goto errlabel; \
+ } \
+ } while (0)
+
+ switch (ctf_type_kind_unsliced (fp, type))
+ {
+ case CTF_K_UNKNOWN:
+ /* Just skip things of unknown kind. */
+ return 0;
+ case CTF_K_FORWARD:
+ case CTF_K_INTEGER:
+ case CTF_K_FLOAT:
+ case CTF_K_ENUM:
+ /* No types referenced. */
+ break;
+
+ case CTF_K_TYPEDEF:
+ case CTF_K_VOLATILE:
+ case CTF_K_CONST:
+ case CTF_K_RESTRICT:
+ case CTF_K_POINTER:
+ case CTF_K_SLICE:
+ CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
+ "Referenced type walk");
+ break;
+
+ case CTF_K_ARRAY:
+ {
+ ctf_arinfo_t ar;
+
+ if (ctf_array_info (fp, type, &ar) < 0)
+ {
+ whaterr = "array info lookup";
+ goto err_msg;
+ }
+
+ CTF_TYPE_WALK (ar.ctr_contents, err, "Array contents type walk");
+ CTF_TYPE_WALK (ar.ctr_index, err, "Array index type walk");
+ break;
+ }
+
+ case CTF_K_FUNCTION:
+ {
+ ctf_funcinfo_t fi;
+ ctf_id_t *args;
+ uint32_t j;
+
+ if (ctf_func_type_info (fp, type, &fi) < 0)
+ {
+ whaterr = "func type info lookup";
+ goto err_msg;
+ }
+
+ CTF_TYPE_WALK (fi.ctc_return, err, "Func return type walk");
+
+ if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
+ {
+ whaterr = "memory allocation";
+ goto err_msg;
+ }
+
+ if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
+ {
+ whaterr = "func arg type lookup";
+ free (args);
+ goto err_msg;
+ }
+
+ for (j = 0; j < fi.ctc_argc; j++)
+ CTF_TYPE_WALK (args[j], err_free_args, "Func arg type walk");
+ free (args);
+ break;
+
+ err_free_args:
+ free (args);
+ goto err;
+ }
+ case CTF_K_STRUCT:
+ case CTF_K_UNION:
+ /* We do not recursively traverse the members of structures: they are
+ emitted later, in a separate pass. */
+ break;
+ default:
+ whaterr = "unknown type kind";
+ goto err;
+ }
+
+ return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
+ type_id, depth, arg);
+
+ err_msg:
+ ctf_set_errno (output, ctf_errno (fp));
+ ctf_err_warn (fp, 0, "%s during type walking in %s at ID %lx: %s", whaterr,
+ ctf_link_input_name (fp), type, ctf_errmsg (ctf_errno (fp)));
+ err:
+ return -1;
+}
+/* Recursively traverse the output mapping, and do something with each type
+ visited, from leaves to root. VISIT_FUN, called as recursion unwinds,
+ returns a negative error code or zero. Type hashes may be visited more than
+ once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
+ types have already been visited. */
+static int
+ctf_dedup_rwalk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs, uint32_t *parents,
+ ctf_dynset_t *already_visited,
+ const char *hval,
+ int (*visit_fun) (const char *hval,
+ ctf_file_t *output,
+ ctf_file_t **inputs,
+ uint32_t ninputs,
+ uint32_t *parents,
+ int already_visited,
+ ctf_file_t *input,
+ ctf_id_t type,
+ void *id,
+ int depth,
+ void *arg),
+ void *arg, unsigned long depth)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ ctf_next_t *i = NULL;
+ int err;
+ int visited = 1;
+ ctf_dynset_t *type_ids;
+ void *id;
+
+ depth++;
+
+ type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
+ if (!type_ids)
+ {
+ ctf_err_warn (output, 0, "looked up type kind by nonexistent "
+ "hash %s.", hval);
+ return ctf_set_errno (output, ECTF_INTERNAL);
+ }
+
+ /* Have we seen this type before? */
+
+ if (!ctf_dynset_exists (already_visited, hval, NULL))
+ {
+ /* Mark as already-visited immediately, to eliminate the possibility of
+ cycles: but remember we have not actually visited it yet for the
+ upcoming call to the visit_fun. (All our callers handle cycles
+ properly themselves, so we can just abort them aggressively as soon as
+ we find ourselves in one.) */
+
+ visited = 0;
+ if (ctf_dynset_cinsert (already_visited, hval) < 0)
+ {
+ ctf_err_warn (output, 0, "out of memory tracking already-visited "
+ "types.");
+ return ctf_set_errno (output, ENOMEM);
+ }
+ }
+
+ /* If this type is marked conflicted, traverse members and call
+ ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
+ pick a random one and use it. */
+
+ if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
+ {
+ id = ctf_dynset_lookup_any (type_ids);
+ if (!ctf_assert (output, id))
+ return -1;
+
+ return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
+ parents, already_visited,
+ visited, id, hval, visit_fun,
+ arg, depth);
+ }
+
+ while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
+ {
+ int ret;
+
+ ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
+ parents, already_visited,
+ visited, id, hval,
+ visit_fun, arg, depth);
+ if (ret < 0)
+ {
+ ctf_next_destroy (i);
+ return ret; /* errno is set for us. */
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ ctf_err_warn (output, 0, "walking many types with one hash: %s",
+ ctf_errmsg (err));
+ return ctf_set_errno (output, err);
+ }
+
+ return 0;
+}
+
+typedef struct ctf_sort_om_cb_arg
+{
+ ctf_file_t **inputs;
+ uint32_t ninputs;
+ ctf_dedup_t *d;
+} ctf_sort_om_cb_arg_t;
+
+/* Sort the output mapping into order: types first appearing in earlier inputs
+ first, parents preceding children: if types first appear in the same input,
+ sort those with earlier ctf_id_t's first. */
+static int
+sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
+ void *arg_)
+{
+ ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
+ ctf_dedup_t *d = arg->d;
+ const char *one_hval = (const char *) one->hkv_key;
+ const char *two_hval = (const char *) two->hkv_key;
+ void *one_gid, *two_gid;
+ uint32_t one_ninput;
+ uint32_t two_ninput;
+ ctf_file_t *one_fp;
+ ctf_file_t *two_fp;
+ ctf_id_t one_type;
+ ctf_id_t two_type;
+
+ one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
+ two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
+
+ one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
+ two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
+
+ one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
+ two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
+
+ /* It's kind of hard to smuggle an assertion failure out of here. */
+ assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
+
+ one_fp = arg->inputs[one_ninput];
+ two_fp = arg->inputs[two_ninput];
+
+ /* Parents before children. */
+
+ if (!(one_fp->ctf_flags & LCTF_CHILD)
+ && (two_fp->ctf_flags & LCTF_CHILD))
+ return -1;
+ else if ((one_fp->ctf_flags & LCTF_CHILD)
+ && !(two_fp->ctf_flags & LCTF_CHILD))
+ return 1;
+
+ /* ninput order, types appearing in earlier TUs first. */
+
+ if (one_ninput < two_ninput)
+ return -1;
+ else if (two_ninput < one_ninput)
+ return 1;
+
+ /* Same TU. Earliest ctf_id_t first. They cannot be the same. */
+
+ assert (one_type != two_type);
+ if (one_type < two_type)
+ return -1;
+ else
+ return 1;
+}
+
+/* The public entry point to ctf_dedup_rwalk_output_mapping, above. */
+static int
+ctf_dedup_walk_output_mapping (ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs, uint32_t *parents,
+ int (*visit_fun) (const char *hval,
+ ctf_file_t *output,
+ ctf_file_t **inputs,
+ uint32_t ninputs,
+ uint32_t *parents,
+ int already_visited,
+ ctf_file_t *input,
+ ctf_id_t type,
+ void *id,
+ int depth,
+ void *arg),
+ void *arg)
+{
+ ctf_dynset_t *already_visited;
+ ctf_next_t *i = NULL;
+ ctf_sort_om_cb_arg_t sort_arg;
+ int err;
+ void *k;
+
+ if ((already_visited = ctf_dynset_create (htab_hash_string,
+ ctf_dynset_eq_string,
+ NULL)) == NULL)
+ return ctf_set_errno (output, ENOMEM);
+
+ sort_arg.inputs = inputs;
+ sort_arg.ninputs = ninputs;
+ sort_arg.d = &output->ctf_dedup;
+
+ while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
+ &i, &k, NULL, sort_output_mapping,
+ &sort_arg)) == 0)
+ {
+ const char *hval = (const char *) k;
+
+ err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
+ already_visited, hval, visit_fun,
+ arg, 0);
+ if (err < 0)
+ {
+ ctf_next_destroy (i);
+ goto err; /* errno is set for us. */
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ ctf_err_warn (output, 0, "recursing over output mapping: %s",
+ ctf_errmsg (err));
+ ctf_set_errno (output, err);
+ goto err;
+ }
+ ctf_dynset_destroy (already_visited);
+
+ return 0;
+ err:
+ ctf_dynset_destroy (already_visited);
+ return -1;
+}
+
+/* Possibly synthesise a synthetic forward in TARGET to subsitute for a
+ conflicted per-TU type ID in INPUT with hash HVAL. Return its CTF ID, or 0
+ if none was needed. */
+static ctf_id_t
+ctf_dedup_maybe_synthesize_forward (ctf_file_t *output, ctf_file_t *target,
+ ctf_file_t *input, ctf_id_t id,
+ const char *hval)
+{
+ ctf_dedup_t *od = &output->ctf_dedup;
+ ctf_dedup_t *td = &target->ctf_dedup;
+ int kind;
+ int fwdkind;
+ const char *name;
+ const char *decorated;
+ void *v;
+ ctf_id_t emitted_forward;
+
+ if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
+ || target->ctf_flags & LCTF_CHILD
+ || !ctf_type_name_raw (input, id)
+ || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
+ && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
+ return 0;
+
+ fwdkind = ctf_type_kind_forwarded (input, id);
+ name = ctf_type_name_raw (input, id);
+
+ ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
+ "hval %s\n", hval);
+
+ if (!ctf_assert (output, name))
+ return CTF_ERR;
+
+ if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
+ return CTF_ERR;
+
+ if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
+ decorated, NULL, &v))
+ {
+ if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
+ fwdkind)) == CTF_ERR)
+ {
+ ctf_set_errno (output, ctf_errno (target));
+ return CTF_ERR;
+ }
+
+ if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
+ decorated, (void *) (uintptr_t)
+ emitted_forward) < 0)
+ {
+ ctf_set_errno (output, ENOMEM);
+ return CTF_ERR;
+ }
+ }
+ else
+ emitted_forward = (ctf_id_t) (uintptr_t) v;
+
+ ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
+ emitted_forward);
+
+ return emitted_forward;
+}
+
+/* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
+ into a GID in a target output dict. If it returns 0, this is the
+ unimplemented type, and the input type must have been 0. The OUTPUT dict is
+ assumed to be the parent of the TARGET, if it is not the TARGET itself.
+
+ Returns CTF_ERR on failure. Responds to an incoming CTF_ERR as an 'id' by
+ returning CTF_ERR, to simplify callers. Errors are always propagated to the
+ input, even if they relate to the target, for the same reason. (Target
+ errors are expected to be very rare.)
+
+ If the type in question is a citation of a conflicted type in a different TU,
+ emit a forward of the right type in its place (if not already emitted), and
+ record that forward in cd_output_emission_conflicted_forwards. This avoids
+ the need to replicate the entire type graph below this point in the current
+ TU (an appalling waste of space).
+
+ TODO: maybe replace forwards in the same TU with their referents? Might
+ make usability a bit better. */
+
+static ctf_id_t
+ctf_dedup_id_to_target (ctf_file_t *output, ctf_file_t *target,
+ ctf_file_t **inputs, uint32_t ninputs,
+ uint32_t *parents, ctf_file_t *input, int input_num,
+ ctf_id_t id)
+{
+ ctf_dedup_t *od = &output->ctf_dedup;
+ ctf_dedup_t *td = &target->ctf_dedup;
+ ctf_file_t *err_fp = input;
+ const char *hval;
+ void *target_id;
+ ctf_id_t emitted_forward;
+
+ /* The target type of an error is an error. */
+ if (id == CTF_ERR)
+ return CTF_ERR;
+
+ /* The unimplemented type's ID never changes. */
+ if (!id)
+ {
+ ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
+ return 0;
+ }
+
+ ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
+ id, (void *) target, ctf_link_input_name (target));
+
+ /* If the input type is in the parent type space, and this is a child, reset
+ the input to the parent (which must already have been emitted, since
+ emission of parent dicts happens before children). */
+ if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
+ {
+ if (!ctf_assert (output, parents[input_num] <= ninputs))
+ return -1;
+ input = inputs[parents[input_num]];
+ input_num = parents[input_num];
+ }
+
+ hval = ctf_dynhash_lookup (od->cd_type_hashes,
+ CTF_DEDUP_GID (output, input_num, id));
+
+ if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
+ return -1;
+
+ /* If this type is a conflicted tagged structure, union, or forward,
+ substitute a synthetic forward instead, emitting it if need be. Only do
+ this if the target is in the parent dict: if it's in the child dict, we can
+ just point straight at the thing itself. Of course, we might be looking in
+ the child dict right now and not find it and have to look in the parent, so
+ we have to do this check twice. */
+
+ emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
+ input, id, hval);
+ switch (emitted_forward)
+ {
+ case 0: /* No forward needed. */
+ break;
+ case -1:
+ ctf_set_errno (err_fp, ctf_errno (output));
+ ctf_err_warn (err_fp, 0, "adding synthetic forward for type %i/%lx: "
+ "%s", input_num, id, ctf_errmsg (ctf_errno (err_fp)));
+ return -1;
+ default:
+ return emitted_forward;
+ }
+
+ ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
+
+ target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
+ if (!target_id)
+ {
+ /* Must be in the parent, so this must be a child, and they must not be
+ the same dict. */
+ ctf_dprintf ("Checking shared parent for target\n");
+ if (!ctf_assert (output, (target != output)
+ && (target->ctf_flags & LCTF_CHILD)))
+ return -1;
+
+ target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
+
+ emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
+ input, id, hval);
+ switch (emitted_forward)
+ {
+ case 0: /* No forward needed. */
+ break;
+ case -1:
+ ctf_set_errno (err_fp, ctf_errno (output));
+ ctf_err_warn (err_fp, 0, "adding synthetic forward for type %i/%lx: "
+ "%s", input_num, id, ctf_errmsg (ctf_errno (err_fp)));
+ return -1;
+ default:
+ return emitted_forward;
+ }
+ }
+ if (!ctf_assert (output, target_id))
+ return -1;
+ return (ctf_id_t) (uintptr_t) target_id;
+}
+
+/* Emit a single deduplicated TYPE with the given HVAL, located in a given
+ INPUT, with the given (G)ID, into the shared OUTPUT or a
+ possibly-newly-created per-CU dict. All the types this type depends upon
+ have already been emitted. (This type itself may also have been emitted.)
+
+ If the ARG is 1, this is a CU-mapped deduplication round mapping many
+ ctf_file_t's into precisely one: conflicting types should be marked
+ non-root-visible. If the ARG is 0, conflicting types go into per-CU
+ dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
+ is emitted directly into the output. No struct/union members are emitted.
+
+ Optimization opportunity: trace the ancestry of non-root-visible types and
+ elide all that neither have a root-visible type somewhere towards their root,
+ nor have the type visible via any other route (the function info section,
+ data object section, backtrace section etc). */
+
+static int
+ctf_dedup_emit_type (const char *hval, ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs, uint32_t *parents, int already_visited,
+ ctf_file_t *input, ctf_id_t type, void *id, int depth,
+ void *arg)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ int kind = ctf_type_kind_unsliced (input, type);
+ const char *name;
+ ctf_file_t *target = output;
+ ctf_file_t *real_input;
+ const ctf_type_t *tp;
+ int input_num = CTF_DEDUP_GID_TO_INPUT (id);
+ int output_num = (uint32_t) -1; /* 'shared' */
+ int cu_mapped = *(int *)arg;
+ int isroot = 1;
+ int is_conflicting;
+
+ ctf_next_t *i = NULL;
+ ctf_id_t new_type;
+ ctf_id_t ref;
+ ctf_id_t maybe_dup = 0;
+ ctf_encoding_t ep;
+ const char *erm;
+ int emission_hashed = 0;
+
+ /* We don't want to re-emit something we've already emitted. */
+
+ if (already_visited)
+ return 0;
+
+ ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
+ depth, hval, ctf_link_input_name (input));
+
+ /* Conflicting types go into a per-CU output dictionary, unless this is a
+ CU-mapped run. The import is not refcounted, since it goes into the
+ ctf_link_outputs dict of the output that is its parent. */
+ is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
+
+ if (is_conflicting && !cu_mapped)
+ {
+ ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
+ "inserting into per-CU target.\n",
+ depth, hval, input_num, type);
+
+ if (input->ctf_dedup.cd_output)
+ target = input->ctf_dedup.cd_output;
+ else
+ {
+ int err;
+
+ if ((target = ctf_create (&err)) == NULL)
+ {
+ ctf_err_warn (output, 0, "cannot create per-CU CTF archive "
+ "for CU %s: %s", ctf_link_input_name (input),
+ ctf_errmsg (err)); ctf_set_errno (output, err);
+ return -1;
+ }
+
+ ctf_import_unref (target, output);
+ if (ctf_cuname (input) != NULL)
+ ctf_cuname_set (target, ctf_cuname (input));
+ else
+ ctf_cuname_set (target, "unnamed-CU");
+ ctf_parent_name_set (target, _CTF_SECTION);
+
+ input->ctf_dedup.cd_output = target;
+ }
+ output_num = input_num;
+ }
+
+ real_input = input;
+ if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
+ {
+ ctf_err_warn (output, 0, "%s: lookup failure for type %lx: %s",
+ ctf_link_input_name (real_input), type,
+ ctf_errmsg (ctf_errno (input)));
+ ctf_set_errno (output, ctf_errno (input));
+ return -1; /* errno is set for us. */
+ }
+
+ name = ctf_strraw (real_input, tp->ctt_name);
+
+ /* Hide conflicting types, if we were asked to: also hide if a type with this
+ name already exists and is not a forward. */
+ if (cu_mapped && is_conflicting)
+ isroot = 0;
+ else if (name
+ && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
+ {
+ if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
+ isroot = 0;
+ }
+
+ ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
+ depth, hval, name ? name : "", input_num, (void *) target);
+
+ if (!target->ctf_dedup.cd_output_emission_hashes)
+ if ((target->ctf_dedup.cd_output_emission_hashes
+ = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ goto oom_hash;
+
+ if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
+ if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
+ = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
+ NULL, NULL)) == NULL)
+ goto oom_hash;
+
+ switch (kind)
+ {
+ case CTF_K_UNKNOWN:
+ /* These are types that CTF cannot encode, marked as such by the compile.
+ We intentionally do not re-emit these. */
+ new_type = 0;
+ break;
+ case CTF_K_FORWARD:
+ /* This will do nothing if the type to which this forwards already exists,
+ and will be replaced with such a type if it appears later. */
+
+ erm = "forward";
+ if ((new_type = ctf_add_forward (target, isroot, name,
+ ctf_type_kind_forwarded (input, type)))
+ == CTF_ERR)
+ goto err_target;
+ break;
+
+ case CTF_K_FLOAT:
+ case CTF_K_INTEGER:
+ erm = "float/int";
+ if (ctf_type_encoding (input, type, &ep) < 0)
+ goto err_input; /* errno is set for us. */
+ if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
+ == CTF_ERR)
+ goto err_target;
+ break;
+
+ case CTF_K_ENUM:
+ {
+ int val;
+ erm = "enum";
+ if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
+ goto err_input; /* errno is set for us. */
+
+ while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
+ {
+ if (ctf_add_enumerator (target, new_type, name, val) < 0)
+ {
+ ctf_err_warn (target, 0, "%s (%i): cannot add enumeration "
+ "value %s from input type %lx: %s",
+ ctf_link_input_name (input), input_num, name,
+ type, ctf_errmsg (ctf_errno (target)));
+ ctf_next_destroy (i);
+ return ctf_set_errno (output, ctf_errno (target));
+ }
+ }
+ if (ctf_errno (input) != ECTF_NEXT_END)
+ goto err_input;
+ break;
+ }
+
+ case CTF_K_TYPEDEF:
+ erm = "typedef";
+
+ ref = ctf_type_reference (input, type);
+ if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ ref)) == CTF_ERR)
+ goto err_input; /* errno is set for us. */
+
+ if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
+ goto err_target; /* errno is set for us. */
+ break;
+
+ case CTF_K_VOLATILE:
+ case CTF_K_CONST:
+ case CTF_K_RESTRICT:
+ case CTF_K_POINTER:
+ erm = "pointer or cvr-qual";
+
+ ref = ctf_type_reference (input, type);
+ if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ ref)) == CTF_ERR)
+ goto err_input; /* errno is set for us. */
+
+ if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
+ goto err_target; /* errno is set for us. */
+ break;
+
+ case CTF_K_SLICE:
+ erm = "slice";
+
+ if (ctf_type_encoding (input, type, &ep) < 0)
+ goto err_input; /* errno is set for us. */
+
+ ref = ctf_type_reference (input, type);
+ if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ ref)) == CTF_ERR)
+ goto err_input;
+
+ if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
+ goto err_target;
+ break;
+
+ case CTF_K_ARRAY:
+ {
+ ctf_arinfo_t ar;
+
+ erm = "array info";
+ if (ctf_array_info (input, type, &ar) < 0)
+ goto err_input;
+
+ ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
+ ninputs, parents, input,
+ input_num, ar.ctr_contents);
+ ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ ar.ctr_index);
+
+ if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
+ goto err_input;
+
+ if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
+ goto err_target;
+
+ break;
+ }
+
+ case CTF_K_FUNCTION:
+ {
+ ctf_funcinfo_t fi;
+ ctf_id_t *args;
+ uint32_t j;
+
+ erm = "function";
+ if (ctf_func_type_info (input, type, &fi) < 0)
+ goto err_input;
+
+ fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ fi.ctc_return);
+ if (fi.ctc_return == CTF_ERR)
+ goto err_input;
+
+ if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
+ {
+ ctf_set_errno (input, ENOMEM);
+ goto err_input;
+ }
+
+ erm = "function args";
+ if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
+ {
+ free (args);
+ goto err_input;
+ }
+
+ for (j = 0; j < fi.ctc_argc; j++)
+ {
+ args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
+ parents, input, input_num,
+ args[j]);
+ if (args[j] == CTF_ERR)
+ goto err_input;
+ }
+
+ if ((new_type = ctf_add_function (target, isroot,
+ &fi, args)) == CTF_ERR)
+ {
+ free (args);
+ goto err_target;
+ }
+ free (args);
+ break;
+ }
+
+ case CTF_K_STRUCT:
+ case CTF_K_UNION:
+ {
+ size_t size = ctf_type_size (input, type);
+ void *out_id;
+ /* Insert the structure itself, so other types can refer to it. */
+
+ erm = "structure/union";
+ if (kind == CTF_K_STRUCT)
+ new_type = ctf_add_struct_sized (target, isroot, name, size);
+ else
+ new_type = ctf_add_union_sized (target, isroot, name, size);
+
+ if (new_type == CTF_ERR)
+ goto err_target;
+
+ out_id = CTF_DEDUP_GID (output, output_num, new_type);
+ ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
+ id, out_id);
+ /* Record the need to emit the members of this structure later. */
+ if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
+ goto err_target;
+ break;
+ }
+ default:
+ ctf_err_warn (output, 0, "%s: unknown type kind for input type %lx",
+ ctf_link_input_name (input), type);
+ return -1;
+ }
+
+ if (!emission_hashed
+ && new_type != 0
+ && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
+ hval, (void *) (uintptr_t) new_type) < 0)
+ {
+ ctf_err_warn (output, 0, "out of memory tracking deduplicated "
+ "global type IDs");
+ return ctf_set_errno (output, ENOMEM);
+ }
+
+ if (!emission_hashed && new_type != 0)
+ ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
+ "target %p (%s)\n", depth, hval, input_num, type, new_type,
+ (void *) target, ctf_link_input_name (target));
+
+ return 0;
+
+ oom_hash:
+ ctf_err_warn (output, 0, "out of memory creating emission-tracking hashes");
+ return ctf_set_errno (output, ENOMEM);
+
+ err_input:
+ ctf_err_warn (output, 0, "%s (%i): while emitting deduplicated %s, error "
+ "getting input type %lx: %s", ctf_link_input_name (input),
+ input_num,erm, type, ctf_errmsg (ctf_errno (input)));
+ ctf_set_errno (output, ctf_errno (input));
+ return -1;
+ err_target:
+ ctf_err_warn (output, 0, "%s (%i): while emitting deduplicated %s, error "
+ "emitting target type from input type %lx: %s",
+ ctf_link_input_name (input), input_num, erm, type,
+ ctf_errmsg (ctf_errno (target)));
+ ctf_set_errno (output, ctf_errno (target));
+ return -1;
+}
+
+/* Traverse the cd_emission_struct_members and emit the members of all
+ structures and unions. All other types are emitted and complete by this
+ point. */
+
+static int
+ctf_dedup_emit_struct_members (ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs, uint32_t *parents)
+{
+ ctf_dedup_t *d = &output->ctf_dedup;
+ ctf_next_t *i = NULL;
+ void *input_id, *target_id;
+ int err;
+ ctf_file_t *err_fp, *input_fp;
+ int input_num;
+ ctf_id_t err_type;
+
+ while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
+ &input_id, &target_id)) == 0)
+ {
+ ctf_next_t *j = NULL;
+ ctf_file_t *target;
+ uint32_t target_num;
+ ctf_id_t input_type, target_type;
+ ssize_t offset;
+ ctf_id_t membtype;
+ const char *name;
+
+ input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
+ input_fp = inputs[input_num];
+ input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
+
+ /* The output is either -1 (for the shared, parent output dict) or the
+ number of the corresponding input. */
+ target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
+ if (target_num == (uint32_t) -1)
+ target = output;
+ else
+ {
+ target = inputs[target_num]->ctf_dedup.cd_output;
+ if (!ctf_assert (output, target))
+ {
+ err_fp = output;
+ err_type = input_type;
+ goto err_target;
+ }
+ }
+ target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
+
+ while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
+ &membtype)) >= 0)
+ {
+ err_fp = target;
+ err_type = target_type;
+ if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
+ ninputs, parents, input_fp,
+ input_num,
+ membtype)) == CTF_ERR)
+ {
+ ctf_next_destroy (j);
+ goto err_target;
+ }
+
+ if (name == NULL)
+ name = "";
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
+#endif
+ if (ctf_add_member_offset (target, target_type, name,
+ membtype, offset) < 0)
+ {
+ ctf_next_destroy (j);
+ goto err_target;
+ }
+ }
+ if (ctf_errno (input_fp) != ECTF_NEXT_END)
+ {
+ err = ctf_errno (input_fp);
+ ctf_next_destroy (i);
+ goto iterr;
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ goto iterr;
+
+ return 0;
+ err_target:
+ ctf_next_destroy (i);
+ ctf_err_warn (output, 0, "%s (%i): error emitting members for structure "
+ "type %lx: %s", ctf_link_input_name (input_fp), input_num,
+ err_type, ctf_errmsg (ctf_errno (err_fp)));
+ ctf_set_errno (output, ctf_errno (err_fp));
+ return -1;
+ iterr:
+ ctf_err_warn (output, 0, "iteration failure emitting structure members: %s",
+ ctf_errmsg (err));
+ ctf_set_errno (output, err);
+ return -1;
+}
+
+/* Populate the type mapping used by the types in one FP (which must be an input
+ dict containing a non-null cd_output resulting from a ctf_dedup_emit_type
+ walk). */
+static int
+ctf_dedup_populate_type_mapping (ctf_file_t *shared, ctf_file_t *fp,
+ ctf_file_t **inputs)
+{
+ ctf_dedup_t *d = &shared->ctf_dedup;
+ ctf_file_t *output = fp->ctf_dedup.cd_output;
+ const void *k, *v;
+ ctf_next_t *i = NULL;
+ int err;
+
+ /* The shared dict (the output) stores its types in the fp itself, not in a
+ separate cd_output dict. */
+ if (shared == fp)
+ output = fp;
+
+ /* There may be no types to emit at all, or all the types in this TU may be
+ shared. */
+ if (!output || !output->ctf_dedup.cd_output_emission_hashes)
+ return 0;
+
+ while ((err = ctf_dynhash_cnext (output->ctf_dedup.cd_output_emission_hashes,
+ &i, &k, &v)) == 0)
+ {
+ const char *hval = (const char *) k;
+ ctf_id_t id_out = (ctf_id_t) (uintptr_t) v;
+ ctf_next_t *j = NULL;
+ ctf_dynset_t *type_ids;
+ const void *id;
+
+ type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
+ if (!ctf_assert (shared, type_ids))
+ return -1;
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Traversing emission hash: hval %s\n", hval);
+#endif
+
+ while ((err = ctf_dynset_cnext (type_ids, &j, &id)) == 0)
+ {
+ ctf_file_t *input = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
+ ctf_id_t id_in = CTF_DEDUP_GID_TO_TYPE (id);
+
+#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
+ ctf_dprintf ("Adding mapping from %i/%lx to %lx\n",
+ CTF_DEDUP_GID_TO_INPUT (id), id_in, id_out);
+#endif
+ ctf_add_type_mapping (input, id_in, output, id_out);
+ }
+ if (err != ECTF_NEXT_END)
+ {
+ ctf_next_destroy (i);
+ goto err;
+ }
+ }
+ if (err != ECTF_NEXT_END)
+ goto err;
+
+ return 0;
+
+ err:
+ ctf_err_warn (shared, 0, "iteration error populating the type mapping: %s",
+ ctf_errmsg (err));
+ return ctf_set_errno (shared, err);
+}
+
+/* Populate the type mapping machinery used by the rest of the linker,
+ by ctf_add_type, etc. */
+static int
+ctf_dedup_populate_type_mappings (ctf_file_t *output, ctf_file_t **inputs,
+ uint32_t ninputs)
+{
+ size_t i;
+
+ if (ctf_dedup_populate_type_mapping (output, output, inputs) < 0)
+ {
+ ctf_err_warn (output, 0, "cannot populate type mappings for shared "
+ "CTF dict: %s", ctf_errmsg (ctf_errno (output)));
+ return -1; /* errno is set for us. */
+ }
+
+ for (i = 0; i < ninputs; i++)
+ {
+ if (ctf_dedup_populate_type_mapping (output, inputs[i], inputs) < 0)
+ {
+ ctf_err_warn (output, 0, "cannot populate type mappings for per-CU "
+ "CTF dict: %s", ctf_errmsg (ctf_errno (inputs[i])));
+ return ctf_set_errno (output, ctf_errno (inputs[i]));
+ }
+ }
+
+ return 0;
+}
+
+/* Emit deduplicated types into the outputs. The shared type repository is
+ OUTPUT, on which the ctf_dedup function must have already been called. The
+ PARENTS array contains the INPUTS index of the parent dict for every child
+ dict at the corresponding index in the INPUTS (for non-child dicts, the value
+ is undefined).
+
+ Return an array of fps with content emitted into them (starting with OUTPUT,
+ which is the parent of all others, then all the newly-generated outputs).
+
+ If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
+ mapping: only one output will result. */
+
+ctf_file_t **
+ctf_dedup_emit (ctf_file_t *output, ctf_file_t **inputs, uint32_t ninputs,
+ uint32_t *parents, uint32_t *noutputs, int cu_mapped)
+{
+ size_t num_outputs = 1; /* Always at least one output: us. */
+ ctf_file_t **outputs;
+ ctf_file_t **walk;
+ size_t i;
+
+ ctf_dprintf ("Triggering emission.\n");
+ if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
+ ctf_dedup_emit_type, &cu_mapped) < 0)
+ return NULL; /* errno is set for us. */
+
+ ctf_dprintf ("Populating struct members.\n");
+ if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
+ return NULL; /* errno is set for us. */
+
+ if (ctf_dedup_populate_type_mappings (output, inputs, ninputs) < 0)
+ return NULL; /* errno is set for us. */
+
+ for (i = 0; i < ninputs; i++)
+ {
+ if (inputs[i]->ctf_dedup.cd_output)
+ num_outputs++;
+ }
+
+ if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
+ return NULL;
+
+ if ((outputs = calloc (num_outputs, sizeof (ctf_file_t *))) == NULL)
+ {
+ ctf_err_warn (output, 0, "out of memory allocating link outputs array");
+ ctf_set_errno (output, ENOMEM);
+ return NULL;
+ }
+ *noutputs = num_outputs;
+
+ walk = outputs;
+ *walk = output;
+ output->ctf_refcnt++;
+ walk++;
+
+ for (i = 0; i < ninputs; i++)
+ {
+ if (inputs[i]->ctf_dedup.cd_output)
+ {
+ *walk = inputs[i]->ctf_dedup.cd_output;
+ inputs[i]->ctf_dedup.cd_output = NULL;
+ walk++;
+ }
+ }
+
+ ctf_dedup_fini (output, outputs, num_outputs);
+ return outputs;
+}