aboutsummaryrefslogtreecommitdiff
path: root/gprof
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2002-02-27 01:40:36 +0000
committerAndrew Cagney <cagney@redhat.com>2002-02-27 01:40:36 +0000
commit81a9a963a1d5374ada16859384e378b5561f4b2a (patch)
treeb100194c8f6fe3321ed3f1a882561b80b4e6d624 /gprof
parent0f017ab98fb70697cbb2b1d58b35932456fd9489 (diff)
downloadgdb-81a9a963a1d5374ada16859384e378b5561f4b2a.zip
gdb-81a9a963a1d5374ada16859384e378b5561f4b2a.tar.gz
gdb-81a9a963a1d5374ada16859384e378b5561f4b2a.tar.bz2
* memattr.c (mem_command): Eliminate ``true'' and ``false''.
* osfsolib.c (solib_map_sections): Ditto. * irix5-nat.c (solib_map_sections): Ditto. * corelow.c (gdb_check_format): Ditto. * symfile.c (symfile_bfd_open): Ditto. * solib.c (solib_map_sections): Ditto. Partially fix PR gdb/354.
Diffstat (limited to 'gprof')
0 files changed, 0 insertions, 0 deletions
33' href='#n133'>133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/* BFD back-end for Renesas Super-H COFF binaries.
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
   Free Software Foundation, Inc.
   Contributed by Cygnus Support.
   Written by Steve Chamberlain, <sac@cygnus.com>.
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */

#include "sysdep.h"
#include "bfd.h"
#include "libiberty.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "coff/sh.h"
#include "coff/internal.h"

#undef  bfd_pe_print_pdata

#ifdef COFF_WITH_PE
#include "coff/pe.h"

#ifndef COFF_IMAGE_WITH_PE
static bfd_boolean sh_align_load_span
  PARAMS ((bfd *, asection *, bfd_byte *,
	   bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
	   PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));

#define _bfd_sh_align_load_span sh_align_load_span
#endif

#define	bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata

#else

#define	bfd_pe_print_pdata   NULL

#endif /* COFF_WITH_PE.  */

#include "libcoff.h"

/* Internal functions.  */
static bfd_reloc_status_type sh_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static long get_symbol_value PARAMS ((asymbol *));
static bfd_boolean sh_relax_section
  PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
static bfd_boolean sh_relax_delete_bytes
  PARAMS ((bfd *, asection *, bfd_vma, int));
#ifndef COFF_IMAGE_WITH_PE
static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
#endif
static bfd_boolean sh_align_loads
  PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
	   bfd_boolean *));
static bfd_boolean sh_swap_insns
  PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
static bfd_boolean sh_relocate_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
	   struct internal_reloc *, struct internal_syment *, asection **));
static bfd_byte *sh_coff_get_relocated_section_contents
  PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
	   bfd_byte *, bfd_boolean, asymbol **));
static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));

#ifdef COFF_WITH_PE
/* Can't build import tables with 2**4 alignment.  */
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2
#else
/* Default section alignment to 2**4.  */
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4
#endif

#ifdef COFF_IMAGE_WITH_PE
/* Align PE executables.  */
#define COFF_PAGE_SIZE 0x1000
#endif

/* Generate long file names.  */
#define COFF_LONG_FILENAMES

#ifdef COFF_WITH_PE
static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
/* Return TRUE if this relocation should
   appear in the output .reloc section.  */
static bfd_boolean in_reloc_p (abfd, howto)
     bfd * abfd ATTRIBUTE_UNUSED;
     reloc_howto_type * howto;
{
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
}
#endif

/* The supported relocations.  There are a lot of relocations defined
   in coff/internal.h which we do not expect to ever see.  */
static reloc_howto_type sh_coff_howtos[] =
{
  EMPTY_HOWTO (0),
  EMPTY_HOWTO (1),
#ifdef COFF_WITH_PE
  /* Windows CE */
  HOWTO (R_SH_IMM32CE,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm32ce",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */
#else
  EMPTY_HOWTO (2),
#endif
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
  EMPTY_HOWTO (8),
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */

  HOWTO (R_SH_PCDISP8BY2,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 TRUE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp8by2",	/* name */
	 TRUE,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 TRUE),			/* pcrel_offset */

  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */

  HOWTO (R_SH_PCDISP,		/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 12,			/* bitsize */
	 TRUE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp12by2",	/* name */
	 TRUE,			/* partial_inplace */
	 0xfff,			/* src_mask */
	 0xfff,			/* dst_mask */
	 TRUE),			/* pcrel_offset */

  EMPTY_HOWTO (13),

  HOWTO (R_SH_IMM32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm32",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  EMPTY_HOWTO (15),
#ifdef COFF_WITH_PE
  HOWTO (R_SH_IMAGEBASE,        /* type */
	 0,	                /* rightshift */
	 2,	                /* size (0 = byte, 1 = short, 2 = long) */
	 32,	                /* bitsize */
	 FALSE,	                /* pc_relative */
	 0,	                /* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,       	/* special_function */
	 "rva32",	        /* name */
	 TRUE,	                /* partial_inplace */
	 0xffffffff,            /* src_mask */
	 0xffffffff,            /* dst_mask */
	 FALSE),                /* pcrel_offset */
#else
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
#endif
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */

  HOWTO (R_SH_PCRELIMM8BY2,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 TRUE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by2",	/* name */
	 TRUE,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 TRUE),			/* pcrel_offset */

  HOWTO (R_SH_PCRELIMM8BY4,	/* type */
	 2,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 TRUE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by4",	/* name */
	 TRUE,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 TRUE),			/* pcrel_offset */

  HOWTO (R_SH_IMM16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm16",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch16",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch32",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_USES,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_uses",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_COUNT,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_count",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_ALIGN,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_align",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_CODE,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_code",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_DATA,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_data",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_LABEL,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_label",		/* name */
	 TRUE,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 FALSE),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH8,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 FALSE,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch8",		/* name */
	 TRUE,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 FALSE)			/* pcrel_offset */
};

#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])

/* Check for a bad magic number.  */
#define BADMAG(x) SHBADMAG(x)

/* Customize coffcode.h (this is not currently used).  */
#define SH 1

/* FIXME: This should not be set here.  */
#define __A_MAGIC_SET__

#ifndef COFF_WITH_PE
/* Swap the r_offset field in and out.  */
#define SWAP_IN_RELOC_OFFSET  H_GET_32
#define SWAP_OUT_RELOC_OFFSET H_PUT_32

/* Swap out extra information in the reloc structure.  */
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
  do						\
    {						\
      dst->r_stuff[0] = 'S';			\
      dst->r_stuff[1] = 'C';			\
    }						\
  while (0)
#endif

/* Get the value of a symbol, when performing a relocation.  */

static long
get_symbol_value (symbol)
     asymbol *symbol;
{
  bfd_vma relocation;

  if (bfd_is_com_section (symbol->section))
    relocation = 0;
  else
    relocation = (symbol->value +
		  symbol->section->output_section->vma +
		  symbol->section->output_offset);

  return relocation;
}

#ifdef COFF_WITH_PE
/* Convert an rtype to howto for the COFF backend linker.
   Copied from coff-i386.  */
#define coff_rtype_to_howto coff_sh_rtype_to_howto
static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));

static reloc_howto_type *
coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
     bfd * abfd ATTRIBUTE_UNUSED;
     asection * sec;
     struct internal_reloc * rel;
     struct coff_link_hash_entry * h;
     struct internal_syment * sym;
     bfd_vma * addendp;
{
  reloc_howto_type * howto;

  howto = sh_coff_howtos + rel->r_type;

  *addendp = 0;

  if (howto->pc_relative)
    *addendp += sec->vma;

  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
    {
      /* This is a common symbol.  The section contents include the
	 size (sym->n_value) as an addend.  The relocate_section
	 function will be adding in the final value of the symbol.  We
	 need to subtract out the current size in order to get the
	 correct result.  */
      BFD_ASSERT (h != NULL);
    }

  if (howto->pc_relative)
    {
      *addendp -= 4;

      /* If the symbol is defined, then the generic code is going to
         add back the symbol value in order to cancel out an
         adjustment it made to the addend.  However, we set the addend
         to 0 at the start of this function.  We need to adjust here,
         to avoid the adjustment the generic code will make.  FIXME:
         This is getting a bit hackish.  */
      if (sym != NULL && sym->n_scnum != 0)
	*addendp -= sym->n_value;
    }

  if (rel->r_type == R_SH_IMAGEBASE)
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;

  return howto;
}

#endif /* COFF_WITH_PE */

/* This structure is used to map BFD reloc codes to SH PE relocs.  */
struct shcoff_reloc_map
{
  bfd_reloc_code_real_type bfd_reloc_val;
  unsigned char shcoff_reloc_val;
};

#ifdef COFF_WITH_PE
/* An array mapping BFD reloc codes to SH PE relocs.  */
static const struct shcoff_reloc_map sh_reloc_map[] =
{
  { BFD_RELOC_32, R_SH_IMM32CE },
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
};
#else
/* An array mapping BFD reloc codes to SH PE relocs.  */
static const struct shcoff_reloc_map sh_reloc_map[] =
{
  { BFD_RELOC_32, R_SH_IMM32 },
  { BFD_RELOC_CTOR, R_SH_IMM32 },
};
#endif

/* Given a BFD reloc code, return the howto structure for the
   corresponding SH PE reloc.  */
#define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup

static reloc_howto_type *
sh_coff_reloc_type_lookup (abfd, code)
     bfd * abfd ATTRIBUTE_UNUSED;
     bfd_reloc_code_real_type code;
{
  unsigned int i;

  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
    if (sh_reloc_map[i].bfd_reloc_val == code)
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];

  (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code);
  return NULL;
}

static reloc_howto_type *
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
			   const char *r_name)
{
  unsigned int i;

  for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
    if (sh_coff_howtos[i].name != NULL
	&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
      return &sh_coff_howtos[i];

  return NULL;
}

/* This macro is used in coffcode.h to get the howto corresponding to
   an internal reloc.  */

#define RTYPE2HOWTO(relent, internal)		\
  ((relent)->howto =				\
   ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
    ? &sh_coff_howtos[(internal)->r_type]	\
    : (reloc_howto_type *) NULL))

/* This is the same as the macro in coffcode.h, except that it copies
   r_offset into reloc_entry->addend for some relocs.  */
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
  {                                                             \
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
      coffsym = (obj_symbols (abfd)                             \
                 + (cache_ptr->sym_ptr_ptr - symbols));         \
    else if (ptr)                                               \
      coffsym = coff_symbol_from (abfd, ptr);                   \
    if (coffsym != (coff_symbol_type *) NULL                    \
        && coffsym->native->u.syment.n_scnum == 0)              \
      cache_ptr->addend = 0;                                    \
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
             && ptr->section != (asection *) NULL)              \
      cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
    else                                                        \
      cache_ptr->addend = 0;                                    \
    if ((reloc).r_type == R_SH_SWITCH8				\
	|| (reloc).r_type == R_SH_SWITCH16			\
	|| (reloc).r_type == R_SH_SWITCH32			\
	|| (reloc).r_type == R_SH_USES				\
	|| (reloc).r_type == R_SH_COUNT				\
	|| (reloc).r_type == R_SH_ALIGN)			\
      cache_ptr->addend = (reloc).r_offset;			\
  }

/* This is the howto function for the SH relocations.  */

static bfd_reloc_status_type
sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
	  error_message)
     bfd *abfd;
     arelent *reloc_entry;
     asymbol *symbol_in;
     PTR data;
     asection *input_section;
     bfd *output_bfd;
     char **error_message ATTRIBUTE_UNUSED;
{
  unsigned long insn;
  bfd_vma sym_value;
  unsigned short r_type;
  bfd_vma addr = reloc_entry->address;
  bfd_byte *hit_data = addr + (bfd_byte *) data;

  r_type = reloc_entry->howto->type;

  if (output_bfd != NULL)
    {
      /* Partial linking--do nothing.  */
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }

  /* Almost all relocs have to do with relaxing.  If any work must be
     done for them, it has been done in sh_relax_section.  */
  if (r_type != R_SH_IMM32
#ifdef COFF_WITH_PE
      && r_type != R_SH_IMM32CE
      && r_type != R_SH_IMAGEBASE
#endif
      && (r_type != R_SH_PCDISP
	  || (symbol_in->flags & BSF_LOCAL) != 0))
    return bfd_reloc_ok;

  if (symbol_in != NULL
      && bfd_is_und_section (symbol_in->section))
    return bfd_reloc_undefined;

  sym_value = get_symbol_value (symbol_in);

  switch (r_type)
    {
    case R_SH_IMM32:
#ifdef COFF_WITH_PE
    case R_SH_IMM32CE:
#endif
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
      break;
#ifdef COFF_WITH_PE
    case R_SH_IMAGEBASE:
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
      break;
#endif
    case R_SH_PCDISP:
      insn = bfd_get_16 (abfd, hit_data);
      sym_value += reloc_entry->addend;
      sym_value -= (input_section->output_section->vma
		    + input_section->output_offset
		    + addr
		    + 4);
      sym_value += (insn & 0xfff) << 1;
      if (insn & 0x800)
	sym_value -= 0x1000;
      insn = (insn & 0xf000) | (sym_value & 0xfff);
      bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
	return bfd_reloc_overflow;
      break;
    default:
      abort ();
      break;
    }

  return bfd_reloc_ok;
}

#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match

/* We can do relaxing.  */
#define coff_bfd_relax_section sh_relax_section

/* We use the special COFF backend linker.  */
#define coff_relocate_section sh_relocate_section

/* When relaxing, we need to use special code to get the relocated
   section contents.  */
#define coff_bfd_get_relocated_section_contents \
  sh_coff_get_relocated_section_contents

#include "coffcode.h"

/* This function handles relaxing on the SH.

   Function calls on the SH look like this:

       movl  L1,r0
       ...
       jsr   @r0
       ...
     L1:
       .long function

   The compiler and assembler will cooperate to create R_SH_USES
   relocs on the jsr instructions.  The r_offset field of the
   R_SH_USES reloc is the PC relative offset to the instruction which
   loads the register (the r_offset field is computed as though it
   were a jump instruction, so the offset value is actually from four
   bytes past the instruction).  The linker can use this reloc to
   determine just which function is being called, and thus decide
   whether it is possible to replace the jsr with a bsr.

   If multiple function calls are all based on a single register load
   (i.e., the same function is called multiple times), the compiler
   guarantees that each function call will have an R_SH_USES reloc.
   Therefore, if the linker is able to convert each R_SH_USES reloc
   which refers to that address, it can safely eliminate the register
   load.

   When the assembler creates an R_SH_USES reloc, it examines it to
   determine which address is being loaded (L1 in the above example).
   It then counts the number of references to that address, and
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
   the R_SH_COUNT reloc will be the number of references.  If the
   linker is able to eliminate a register load, it can use the
   R_SH_COUNT reloc to see whether it can also eliminate the function
   address.

   SH relaxing also handles another, unrelated, matter.  On the SH, if
   a load or store instruction is not aligned on a four byte boundary,
   the memory cycle interferes with the 32 bit instruction fetch,
   causing a one cycle bubble in the pipeline.  Therefore, we try to
   align load and store instructions on four byte boundaries if we
   can, by swapping them with one of the adjacent instructions.  */

static bfd_boolean
sh_relax_section (abfd, sec, link_info, again)
     bfd *abfd;
     asection *sec;
     struct bfd_link_info *link_info;
     bfd_boolean *again;
{
  struct internal_reloc *internal_relocs;
  bfd_boolean have_code;
  struct internal_reloc *irel, *irelend;
  bfd_byte *contents = NULL;

  *again = FALSE;

  if (link_info->relocatable
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0)
    return TRUE;

  if (coff_section_data (abfd, sec) == NULL)
    {
      bfd_size_type amt = sizeof (struct coff_section_tdata);
      sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
      if (sec->used_by_bfd == NULL)
	return FALSE;
    }

  internal_relocs = (_bfd_coff_read_internal_relocs
		     (abfd, sec, link_info->keep_memory,
		      (bfd_byte *) NULL, FALSE,
		      (struct internal_reloc *) NULL));
  if (internal_relocs == NULL)
    goto error_return;

  have_code = FALSE;

  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma laddr, paddr, symval;
      unsigned short insn;
      struct internal_reloc *irelfn, *irelscan, *irelcount;
      struct internal_syment sym;
      bfd_signed_vma foff;

      if (irel->r_type == R_SH_CODE)
	have_code = TRUE;

      if (irel->r_type != R_SH_USES)
	continue;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
		goto error_return;
	    }
	}

      /* The r_offset field of the R_SH_USES reloc will point us to
         the register load.  The 4 is because the r_offset field is
         computed as though it were a jump offset, which are based
         from 4 bytes after the jump instruction.  */
      laddr = irel->r_vaddr - sec->vma + 4;
      /* Careful to sign extend the 32-bit offset.  */
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
      if (laddr >= sec->size)
	{
	  (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
				 abfd, (unsigned long) irel->r_vaddr);
	  continue;
	}
      insn = bfd_get_16 (abfd, contents + laddr);

      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
      if ((insn & 0xf000) != 0xd000)
	{
	  ((*_bfd_error_handler)
	   ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
	    abfd, (unsigned long) irel->r_vaddr, insn));
	  continue;
	}

      /* Get the address from which the register is being loaded.  The
      	 displacement in the mov.l instruction is quadrupled.  It is a
      	 displacement from four bytes after the movl instruction, but,
      	 before adding in the PC address, two least significant bits
      	 of the PC are cleared.  We assume that the section is aligned
      	 on a four byte boundary.  */
      paddr = insn & 0xff;
      paddr *= 4;
      paddr += (laddr + 4) &~ (bfd_vma) 3;
      if (paddr >= sec->size)
	{
	  ((*_bfd_error_handler)
	   ("%B: 0x%lx: warning: bad R_SH_USES load offset",
	    abfd, (unsigned long) irel->r_vaddr));
	  continue;
	}

      /* Get the reloc for the address from which the register is
         being loaded.  This reloc will tell us which function is
         actually being called.  */
      paddr += sec->vma;
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
	if (irelfn->r_vaddr == paddr
#ifdef COFF_WITH_PE
	    && (irelfn->r_type == R_SH_IMM32
		|| irelfn->r_type == R_SH_IMM32CE
		|| irelfn->r_type == R_SH_IMAGEBASE)

#else
	    && irelfn->r_type == R_SH_IMM32
#endif
	    )
	  break;
      if (irelfn >= irelend)
	{
	  ((*_bfd_error_handler)
	   ("%B: 0x%lx: warning: could not find expected reloc",
	    abfd, (unsigned long) paddr));
	  continue;
	}

      /* Get the value of the symbol referred to by the reloc.  */
      if (! _bfd_coff_get_external_symbols (abfd))
	goto error_return;
      bfd_coff_swap_sym_in (abfd,
			    ((bfd_byte *) obj_coff_external_syms (abfd)
			     + (irelfn->r_symndx
				* bfd_coff_symesz (abfd))),
			    &sym);
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
	{
	  ((*_bfd_error_handler)
	   ("%B: 0x%lx: warning: symbol in unexpected section",
	    abfd, (unsigned long) paddr));
	  continue;
	}

      if (sym.n_sclass != C_EXT)
	{
	  symval = (sym.n_value
		    - sec->vma
		    + sec->output_section->vma
		    + sec->output_offset);
	}
      else
	{
	  struct coff_link_hash_entry *h;

	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
	  BFD_ASSERT (h != NULL);
	  if (h->root.type != bfd_link_hash_defined
	      && h->root.type != bfd_link_hash_defweak)
	    {
	      /* This appears to be a reference to an undefined
                 symbol.  Just ignore it--it will be caught by the
                 regular reloc processing.  */
	      continue;
	    }

	  symval = (h->root.u.def.value
		    + h->root.u.def.section->output_section->vma
		    + h->root.u.def.section->output_offset);
	}

      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);

      /* See if this function call can be shortened.  */
      foff = (symval
	      - (irel->r_vaddr
		 - sec->vma
		 + sec->output_section->vma
		 + sec->output_offset
		 + 4));
      if (foff < -0x1000 || foff >= 0x1000)
	{
	  /* After all that work, we can't shorten this function call.  */
	  continue;
	}

      /* Shorten the function call.  */

      /* For simplicity of coding, we are going to modify the section
	 contents, the section relocs, and the BFD symbol table.  We
	 must tell the rest of the code not to free up this
	 information.  It would be possible to instead create a table
	 of changes which have to be made, as is done in coff-mips.c;
	 that would be more work, but would require less memory when
	 the linker is run.  */

      coff_section_data (abfd, sec)->relocs = internal_relocs;
      coff_section_data (abfd, sec)->keep_relocs = TRUE;

      coff_section_data (abfd, sec)->contents = contents;
      coff_section_data (abfd, sec)->keep_contents = TRUE;

      obj_coff_keep_syms (abfd) = TRUE;

      /* Replace the jsr with a bsr.  */

      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
         replace the jsr with a bsr.  */
      irel->r_type = R_SH_PCDISP;
      irel->r_symndx = irelfn->r_symndx;
      if (sym.n_sclass != C_EXT)
	{
	  /* If this needs to be changed because of future relaxing,
             it will be handled here like other internal PCDISP
             relocs.  */
	  bfd_put_16 (abfd,
		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
		      contents + irel->r_vaddr - sec->vma);
	}
      else
	{
	  /* We can't fully resolve this yet, because the external
             symbol value may be changed by future relaxing.  We let
             the final link phase handle it.  */
	  bfd_put_16 (abfd, (bfd_vma) 0xb000,
		      contents + irel->r_vaddr - sec->vma);
	}

      /* See if there is another R_SH_USES reloc referring to the same
         register load.  */
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
	if (irelscan->r_type == R_SH_USES
	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
	  break;
      if (irelscan < irelend)
	{
	  /* Some other function call depends upon this register load,
	     and we have not yet converted that function call.
	     Indeed, we may never be able to convert it.  There is
	     nothing else we can do at this point.  */
	  continue;
	}

      /* Look for a R_SH_COUNT reloc on the location where the
         function address is stored.  Do this before deleting any
         bytes, to avoid confusion about the address.  */
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
	if (irelcount->r_vaddr == paddr
	    && irelcount->r_type == R_SH_COUNT)
	  break;

      /* Delete the register load.  */
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
	goto error_return;

      /* That will change things, so, just in case it permits some
         other function call to come within range, we should relax
         again.  Note that this is not required, and it may be slow.  */
      *again = TRUE;

      /* Now check whether we got a COUNT reloc.  */
      if (irelcount >= irelend)
	{
	  ((*_bfd_error_handler)
	   ("%B: 0x%lx: warning: could not find expected COUNT reloc",
	    abfd, (unsigned long) paddr));
	  continue;
	}

      /* The number of uses is stored in the r_offset field.  We've
         just deleted one.  */
      if (irelcount->r_offset == 0)
	{
	  ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
				  abfd, (unsigned long) paddr));
	  continue;
	}

      --irelcount->r_offset;

      /* If there are no more uses, we can delete the address.  Reload
         the address from irelfn, in case it was changed by the
         previous call to sh_relax_delete_bytes.  */
      if (irelcount->r_offset == 0)
	{
	  if (! sh_relax_delete_bytes (abfd, sec,
				       irelfn->r_vaddr - sec->vma, 4))
	    goto error_return;
	}

      /* We've done all we can with that function call.  */
    }

  /* Look for load and store instructions that we can align on four
     byte boundaries.  */
  if (have_code)
    {
      bfd_boolean swapped;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
		goto error_return;
	    }
	}

      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
	goto error_return;

      if (swapped)
	{
	  coff_section_data (abfd, sec)->relocs = internal_relocs;
	  coff_section_data (abfd, sec)->keep_relocs = TRUE;

	  coff_section_data (abfd, sec)->contents = contents;
	  coff_section_data (abfd, sec)->keep_contents = TRUE;

	  obj_coff_keep_syms (abfd) = TRUE;
	}
    }

  if (internal_relocs != NULL
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
    {
      if (! link_info->keep_memory)
	free (internal_relocs);
      else
	coff_section_data (abfd, sec)->relocs = internal_relocs;
    }

  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
    {
      if (! link_info->keep_memory)
	free (contents);
      else
	/* Cache the section contents for coff_link_input_bfd.  */
	coff_section_data (abfd, sec)->contents = contents;
    }

  return TRUE;

 error_return:
  if (internal_relocs != NULL
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
    free (internal_relocs);
  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
    free (contents);
  return FALSE;
}

/* Delete some bytes from a section while relaxing.  */

static bfd_boolean
sh_relax_delete_bytes (abfd, sec, addr, count)
     bfd *abfd;
     asection *sec;
     bfd_vma addr;
     int count;
{
  bfd_byte *contents;
  struct internal_reloc *irel, *irelend;
  struct internal_reloc *irelalign;
  bfd_vma toaddr;
  bfd_byte *esym, *esymend;
  bfd_size_type symesz;
  struct coff_link_hash_entry **sym_hash;
  asection *o;

  contents = coff_section_data (abfd, sec)->contents;

  /* The deletion must stop at the next ALIGN reloc for an aligment
     power larger than the number of bytes we are deleting.  */

  irelalign = NULL;
  toaddr = sec->size;

  irel = coff_section_data (abfd, sec)->relocs;
  irelend = irel + sec->reloc_count;
  for (; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_ALIGN
	  && irel->r_vaddr - sec->vma > addr
	  && count < (1 << irel->r_offset))
	{
	  irelalign = irel;
	  toaddr = irel->r_vaddr - sec->vma;
	  break;
	}
    }

  /* Actually delete the bytes.  */
  memmove (contents + addr, contents + addr + count,
	   (size_t) (toaddr - addr - count));
  if (irelalign == NULL)
    sec->size -= count;
  else
    {
      int i;

#define NOP_OPCODE (0x0009)

      BFD_ASSERT ((count & 1) == 0);
      for (i = 0; i < count; i += 2)
	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
    }

  /* Adjust all the relocs.  */
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
    {
      bfd_vma nraddr, stop;
      bfd_vma start = 0;
      int insn = 0;
      struct internal_syment sym;
      int off, adjust, oinsn;
      bfd_signed_vma voff = 0;
      bfd_boolean overflow;

      /* Get the new reloc address.  */
      nraddr = irel->r_vaddr - sec->vma;
      if ((irel->r_vaddr - sec->vma > addr
	   && irel->r_vaddr - sec->vma < toaddr)
	  || (irel->r_type == R_SH_ALIGN
	      && irel->r_vaddr - sec->vma == toaddr))
	nraddr -= count;

      /* See if this reloc was for the bytes we have deleted, in which
	 case we no longer care about it.  Don't delete relocs which
	 represent addresses, though.  */
      if (irel->r_vaddr - sec->vma >= addr
	  && irel->r_vaddr - sec->vma < addr + count
	  && irel->r_type != R_SH_ALIGN
	  && irel->r_type != R_SH_CODE
	  && irel->r_type != R_SH_DATA
	  && irel->r_type != R_SH_LABEL)
	irel->r_type = R_SH_UNUSED;

      /* If this is a PC relative reloc, see if the range it covers
         includes the bytes we have deleted.  */
      switch (irel->r_type)
	{
	default:
	  break;

	case R_SH_PCDISP8BY2:
	case R_SH_PCDISP:
	case R_SH_PCRELIMM8BY2:
	case R_SH_PCRELIMM8BY4:
	  start = irel->r_vaddr - sec->vma;
	  insn = bfd_get_16 (abfd, contents + nraddr);
	  break;
	}

      switch (irel->r_type)
	{
	default:
	  start = stop = addr;
	  break;

	case R_SH_IMM32:
#ifdef COFF_WITH_PE
	case R_SH_IMM32CE:
	case R_SH_IMAGEBASE:
#endif
	  /* If this reloc is against a symbol defined in this
             section, and the symbol will not be adjusted below, we
             must check the addend to see it will put the value in
             range to be adjusted, and hence must be changed.  */
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      val = bfd_get_32 (abfd, contents + nraddr);
	      val += sym.n_value;
	      if (val > addr && val < toaddr)
		bfd_put_32 (abfd, val - count, contents + nraddr);
	    }
	  start = stop = addr;
	  break;

	case R_SH_PCDISP8BY2:
	  off = insn & 0xff;
	  if (off & 0x80)
	    off -= 0x100;
	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	  break;

	case R_SH_PCDISP:
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass == C_EXT)
	    start = stop = addr;
	  else
	    {
	      off = insn & 0xfff;
	      if (off & 0x800)
		off -= 0x1000;
	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	    }
	  break;

	case R_SH_PCRELIMM8BY2:
	  off = insn & 0xff;
	  stop = start + 4 + off * 2;
	  break;

	case R_SH_PCRELIMM8BY4:
	  off = insn & 0xff;
	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
	  break;

	case R_SH_SWITCH8:
	case R_SH_SWITCH16:
	case R_SH_SWITCH32:
	  /* These relocs types represent
	       .word L2-L1
	     The r_offset field holds the difference between the reloc
	     address and L1.  That is the start of the reloc, and
	     adding in the contents gives us the top.  We must adjust
	     both the r_offset field and the section contents.  */

	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);

	  if (start > addr
	      && start < toaddr
	      && (stop <= addr || stop >= toaddr))
	    irel->r_offset += count;
	  else if (stop > addr
		   && stop < toaddr
		   && (start <= addr || start >= toaddr))
	    irel->r_offset -= count;

	  start = stop;

	  if (irel->r_type == R_SH_SWITCH16)
	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
	  else if (irel->r_type == R_SH_SWITCH8)
	    voff = bfd_get_8 (abfd, contents + nraddr);
	  else
	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);

	  break;

	case R_SH_USES:
	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start
			    + (long) irel->r_offset
			    + 4);
	  break;
	}

      if (start > addr
	  && start < toaddr
	  && (stop <= addr || stop >= toaddr))
	adjust = count;
      else if (stop > addr
	       && stop < toaddr
	       && (start <= addr || start >= toaddr))
	adjust = - count;
      else
	adjust = 0;

      if (adjust != 0)
	{
	  oinsn = insn;
	  overflow = FALSE;
	  switch (irel->r_type)
	    {
	    default:
	      abort ();
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn += adjust / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = TRUE;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_PCDISP:
	      insn += adjust / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = TRUE;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      BFD_ASSERT (adjust == count || count >= 4);
	      if (count >= 4)
		insn += adjust / 4;
	      else
		{
		  if ((irel->r_vaddr & 3) == 0)
		    ++insn;
		}
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = TRUE;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_SWITCH8:
	      voff += adjust;
	      if (voff < 0 || voff >= 0xff)
		overflow = TRUE;
	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_SWITCH16:
	      voff += adjust;
	      if (voff < - 0x8000 || voff >= 0x8000)
		overflow = TRUE;
	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_SWITCH32:
	      voff += adjust;
	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_USES:
	      irel->r_offset += adjust;
	      break;
	    }

	  if (overflow)
	    {
	      ((*_bfd_error_handler)
	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
		abfd, (unsigned long) irel->r_vaddr));
	      bfd_set_error (bfd_error_bad_value);
	      return FALSE;
	    }
	}

      irel->r_vaddr = nraddr + sec->vma;
    }

  /* Look through all the other sections.  If there contain any IMM32
     relocs against internal symbols which we are not going to adjust
     below, we may need to adjust the addends.  */
  for (o = abfd->sections; o != NULL; o = o->next)
    {
      struct internal_reloc *internal_relocs;
      struct internal_reloc *irelscan, *irelscanend;
      bfd_byte *ocontents;

      if (o == sec
	  || (o->flags & SEC_RELOC) == 0
	  || o->reloc_count == 0)
	continue;

      /* We always cache the relocs.  Perhaps, if info->keep_memory is
         FALSE, we should free them, if we are permitted to, when we
         leave sh_coff_relax_section.  */
      internal_relocs = (_bfd_coff_read_internal_relocs
			 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
			  (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	return FALSE;

      ocontents = NULL;
      irelscanend = internal_relocs + o->reloc_count;
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
	{
	  struct internal_syment sym;

#ifdef COFF_WITH_PE
	  if (irelscan->r_type != R_SH_IMM32
	      && irelscan->r_type != R_SH_IMAGEBASE
	      && irelscan->r_type != R_SH_IMM32CE)
#else
	  if (irelscan->r_type != R_SH_IMM32)
#endif
	    continue;

	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irelscan->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      if (ocontents == NULL)
		{
		  if (coff_section_data (abfd, o)->contents != NULL)
		    ocontents = coff_section_data (abfd, o)->contents;
		  else
		    {
		      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
			return FALSE;
		      /* We always cache the section contents.
                         Perhaps, if info->keep_memory is FALSE, we
                         should free them, if we are permitted to,
                         when we leave sh_coff_relax_section.  */
		      coff_section_data (abfd, o)->contents = ocontents;
		    }
		}

	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
	      val += sym.n_value;
	      if (val > addr && val < toaddr)
		bfd_put_32 (abfd, val - count,
			    ocontents + irelscan->r_vaddr - o->vma);

	      coff_section_data (abfd, o)->keep_contents = TRUE;
	    }
	}
    }

  /* Adjusting the internal symbols will not work if something has
     already retrieved the generic symbols.  It would be possible to
     make this work by adjusting the generic symbols at the same time.
     However, this case should not arise in normal usage.  */
  if (obj_symbols (abfd) != NULL
      || obj_raw_syments (abfd) != NULL)
    {
      ((*_bfd_error_handler)
       ("%B: fatal: generic symbols retrieved before relaxing", abfd));
      bfd_set_error (bfd_error_invalid_operation);
      return FALSE;
    }

  /* Adjust all the symbols.  */
  sym_hash = obj_coff_sym_hashes (abfd);
  symesz = bfd_coff_symesz (abfd);
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
  while (esym < esymend)
    {
      struct internal_syment isym;

      bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);

      if (isym.n_scnum == sec->target_index
	  && (bfd_vma) isym.n_value > addr
	  && (bfd_vma) isym.n_value < toaddr)
	{
	  isym.n_value -= count;

	  bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);

	  if (*sym_hash != NULL)
	    {
	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
			  && (*sym_hash)->root.u.def.value < toaddr);
	      (*sym_hash)->root.u.def.value -= count;
	    }
	}

      esym += (isym.n_numaux + 1) * symesz;
      sym_hash += isym.n_numaux + 1;
    }

  /* See if we can move the ALIGN reloc forward.  We have adjusted
     r_vaddr for it already.  */
  if (irelalign != NULL)
    {
      bfd_vma alignto, alignaddr;

      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
			     1 << irelalign->r_offset);
      if (alignto != alignaddr)
	{
	  /* Tail recursion.  */
	  return sh_relax_delete_bytes (abfd, sec, alignaddr,
					(int) (alignto - alignaddr));
	}
    }

  return TRUE;
}

/* This is yet another version of the SH opcode table, used to rapidly
   get information about a particular instruction.  */

/* The opcode map is represented by an array of these structures.  The
   array is indexed by the high order four bits in the instruction.  */

struct sh_major_opcode
{
  /* A pointer to the instruction list.  This is an array which
     contains all the instructions with this major opcode.  */
  const struct sh_minor_opcode *minor_opcodes;
  /* The number of elements in minor_opcodes.  */
  unsigned short count;
};

/* This structure holds information for a set of SH opcodes.  The
   instruction code is anded with the mask value, and the resulting
   value is used to search the order opcode list.  */

struct sh_minor_opcode
{
  /* The sorted opcode list.  */
  const struct sh_opcode *opcodes;
  /* The number of elements in opcodes.  */
  unsigned short count;
  /* The mask value to use when searching the opcode list.  */
  unsigned short mask;
};

/* This structure holds information for an SH instruction.  An array
   of these structures is sorted in order by opcode.  */

struct sh_opcode
{
  /* The code for this instruction, after it has been anded with the
     mask value in the sh_major_opcode structure.  */
  unsigned short opcode;
  /* Flags for this instruction.  */
  unsigned long flags;
};

/* Flag which appear in the sh_opcode structure.  */

/* This instruction loads a value from memory.  */
#define LOAD (0x1)

/* This instruction stores a value to memory.  */
#define STORE (0x2)

/* This instruction is a branch.  */
#define BRANCH (0x4)

/* This instruction has a delay slot.  */
#define DELAY (0x8)

/* This instruction uses the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define USES1 (0x10)
#define USES1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction uses the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define USES2 (0x20)
#define USES2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction uses the value in register 0.  */
#define USESR0 (0x40)

/* This instruction sets the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define SETS1 (0x80)
#define SETS1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction sets the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define SETS2 (0x100)
#define SETS2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction sets register 0.  */
#define SETSR0 (0x200)

/* This instruction sets a special register.  */
#define SETSSP (0x400)

/* This instruction uses a special register.  */
#define USESSP (0x800)

/* This instruction uses the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define USESF1 (0x1000)
#define USESF1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction uses the floating point register in the field at
   mask 0x00f0 of the instruction.  */
#define USESF2 (0x2000)
#define USESF2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction uses floating point register 0.  */
#define USESF0 (0x4000)

/* This instruction sets the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define SETSF1 (0x8000)
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)

#define USESAS (0x10000)
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
#define USESR8 (0x20000)
#define SETSAS (0x40000)
#define SETSAS_REG(x) USESAS_REG (x)

#define MAP(a) a, sizeof a / sizeof a[0]

#ifndef COFF_IMAGE_WITH_PE
static bfd_boolean sh_insn_uses_reg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insn_sets_reg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insn_uses_or_sets_reg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insn_uses_freg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insn_sets_freg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insn_uses_or_sets_freg
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
static bfd_boolean sh_insns_conflict
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
	   const struct sh_opcode *));
static bfd_boolean sh_load_use
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
	   const struct sh_opcode *));

/* The opcode maps.  */

static const struct sh_opcode sh_opcode00[] =
{
  { 0x0008, SETSSP },			/* clrt */
  { 0x0009, 0 },			/* nop */
  { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
  { 0x0018, SETSSP },			/* sett */
  { 0x0019, SETSSP },			/* div0u */
  { 0x001b, 0 },			/* sleep */
  { 0x0028, SETSSP },			/* clrmac */
  { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
  { 0x0038, USESSP | SETSSP },		/* ldtlb */
  { 0x0048, SETSSP },			/* clrs */
  { 0x0058, SETSSP }			/* sets */
};

static const struct sh_opcode sh_opcode01[] =
{
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
  { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
  { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
  { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
  { 0x0029, SETS1 | USESSP },			/* movt rn */
  { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
  { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
  { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */
  { 0x0083, LOAD | USES1 },			/* pref @rn */
  { 0x007a, SETS1 | USESSP },			/* sts a0,rn */
  { 0x008a, SETS1 | USESSP },			/* sts x0,rn */
  { 0x009a, SETS1 | USESSP },			/* sts x1,rn */
  { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */
  { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */
};

static const struct sh_opcode sh_opcode02[] =
{
  { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */
  { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
  { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
  { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
  { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode0[] =
{
  { MAP (sh_opcode00), 0xffff },
  { MAP (sh_opcode01), 0xf0ff },
  { MAP (sh_opcode02), 0xf00f }
};

static const struct sh_opcode sh_opcode10[] =
{
  { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
};

static const struct sh_minor_opcode sh_opcode1[] =
{
  { MAP (sh_opcode10), 0xf000 }
};

static const struct sh_opcode sh_opcode20[] =
{
  { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
  { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
  { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
  { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
  { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
  { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
  { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
  { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
  { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
  { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
  { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
  { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
  { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
  { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode2[] =
{
  { MAP (sh_opcode20), 0xf00f }
};

static const struct sh_opcode sh_opcode30[] =
{
  { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
  { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
  { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
  { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
  { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
  { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
  { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
  { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
  { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
};

static const struct sh_minor_opcode sh_opcode3[] =
{
  { MAP (sh_opcode30), 0xf00f }
};

static const struct sh_opcode sh_opcode40[] =
{
  { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
  { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
  { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
  { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
  { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
  { 0x4008, SETS1 | USES1 },			/* shll2 rn */
  { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
  { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
  { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
  { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
  { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
  { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
  { 0x4014, SETSSP | USES1 },			/* setrc rm */
  { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
  { 0x4018, SETS1 | USES1 },			/* shll8 rn */
  { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
  { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
  { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
  { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
  { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
  { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
  { 0x4028, SETS1 | USES1 },			/* shll16 rn */
  { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
  { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
  { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
  { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
  { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
  { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */
  { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */
  { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */
  { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */
  { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */
  { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */
  { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */
  { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */
  { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */
  { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */
  { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */
  { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */
};

static const struct sh_opcode sh_opcode41[] =
{
  { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */
  { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */
  { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */
  { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode4[] =
{
  { MAP (sh_opcode40), 0xf0ff },
  { MAP (sh_opcode41), 0xf00f }
};

static const struct sh_opcode sh_opcode50[] =
{
  { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
};

static const struct sh_minor_opcode sh_opcode5[] =
{
  { MAP (sh_opcode50), 0xf000 }
};

static const struct sh_opcode sh_opcode60[] =
{
  { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
  { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
  { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
  { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
  { 0x6007, SETS1 | USES2 },			/* not rm,rn */
  { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
  { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
  { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
  { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
  { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
  { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
  { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode6[] =
{
  { MAP (sh_opcode60), 0xf00f }
};

static const struct sh_opcode sh_opcode70[] =
{
  { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
};

static const struct sh_minor_opcode sh_opcode7[] =
{
  { MAP (sh_opcode70), 0xf000 }
};

static const struct sh_opcode sh_opcode80[] =
{
  { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
  { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
  { 0x8200, SETSSP },			/* setrc #imm */
  { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
  { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
  { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
  { 0x8900, BRANCH | USESSP },		/* bt label */
  { 0x8b00, BRANCH | USESSP },		/* bf label */
  { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */
  { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
  { 0x8e00, SETSSP },			/* ldre @(disp,pc) */
  { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
};

static const struct sh_minor_opcode sh_opcode8[] =
{
  { MAP (sh_opcode80), 0xff00 }
};

static const struct sh_opcode sh_opcode90[] =
{
  { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcode9[] =
{
  { MAP (sh_opcode90), 0xf000 }
};

static const struct sh_opcode sh_opcodea0[] =
{
  { 0xa000, BRANCH | DELAY }	/* bra label */
};

static const struct sh_minor_opcode sh_opcodea[] =
{
  { MAP (sh_opcodea0), 0xf000 }
};

static const struct sh_opcode sh_opcodeb0[] =
{
  { 0xb000, BRANCH | DELAY }	/* bsr label */
};

static const struct sh_minor_opcode sh_opcodeb[] =
{
  { MAP (sh_opcodeb0), 0xf000 }
};

static const struct sh_opcode sh_opcodec0[] =
{
  { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
  { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
  { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
  { 0xc300, BRANCH | USESSP },			/* trapa #imm */
  { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
  { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
  { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
  { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
  { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
  { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
  { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
  { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
  { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
  { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
};

static const struct sh_minor_opcode sh_opcodec[] =
{
  { MAP (sh_opcodec0), 0xff00 }
};

static const struct sh_opcode sh_opcoded0[] =
{
  { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcoded[] =
{
  { MAP (sh_opcoded0), 0xf000 }
};

static const struct sh_opcode sh_opcodee0[] =
{
  { 0xe000, SETS1 }		/* mov #imm,rn */
};

static const struct sh_minor_opcode sh_opcodee[] =
{
  { MAP (sh_opcodee0), 0xf000 }
};

static const struct sh_opcode sh_opcodef0[] =
{
  { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
  { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
  { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
  { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
  { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
  { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
  { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
  { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
  { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
};

static const struct sh_opcode sh_opcodef1[] =
{
  { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
  { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
  { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
  { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
  { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
  { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
  { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
  { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
  { 0xf08d, SETSF1 },		/* fldi0 fn */
  { 0xf09d, SETSF1 }		/* fldi1 fn */
};

static const struct sh_minor_opcode sh_opcodef[] =
{
  { MAP (sh_opcodef0), 0xf00f },
  { MAP (sh_opcodef1), 0xf0ff }
};

static struct sh_major_opcode sh_opcodes[] =
{
  { MAP (sh_opcode0) },
  { MAP (sh_opcode1) },
  { MAP (sh_opcode2) },
  { MAP (sh_opcode3) },
  { MAP (sh_opcode4) },
  { MAP (sh_opcode5) },
  { MAP (sh_opcode6) },
  { MAP (sh_opcode7) },
  { MAP (sh_opcode8) },
  { MAP (sh_opcode9) },
  { MAP (sh_opcodea) },
  { MAP (sh_opcodeb) },
  { MAP (sh_opcodec) },
  { MAP (sh_opcoded) },
  { MAP (sh_opcodee) },
  { MAP (sh_opcodef) }
};

/* The double data transfer / parallel processing insns are not
   described here.  This will cause sh_align_load_span to leave them alone.  */

static const struct sh_opcode sh_dsp_opcodef0[] =
{
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */
  { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */
  { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */
  { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */
  { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */
};

static const struct sh_minor_opcode sh_dsp_opcodef[] =
{
  { MAP (sh_dsp_opcodef0), 0xfc0d }
};

/* Given an instruction, return a pointer to the corresponding
   sh_opcode structure.  Return NULL if the instruction is not
   recognized.  */

static const struct sh_opcode *
sh_insn_info (insn)
     unsigned int insn;
{
  const struct sh_major_opcode *maj;
  const struct sh_minor_opcode *min, *minend;

  maj = &sh_opcodes[(insn & 0xf000) >> 12];
  min = maj->minor_opcodes;
  minend = min + maj->count;
  for (; min < minend; min++)
    {
      unsigned int l;
      const struct sh_opcode *op, *opend;

      l = insn & min->mask;
      op = min->opcodes;
      opend = op + min->count;

      /* Since the opcodes tables are sorted, we could use a binary
         search here if the count were above some cutoff value.  */
      for (; op < opend; op++)
	if (op->opcode == l)
	  return op;
    }

  return NULL;
}

/* See whether an instruction uses or sets a general purpose register */

static bfd_boolean
sh_insn_uses_or_sets_reg (insn, op, reg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int reg;
{
  if (sh_insn_uses_reg (insn, op, reg))
    return TRUE;

  return sh_insn_sets_reg (insn, op, reg);
}

/* See whether an instruction uses a general purpose register.  */

static bfd_boolean
sh_insn_uses_reg (insn, op, reg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int reg;
{
  unsigned int f;

  f = op->flags;

  if ((f & USES1) != 0
      && USES1_REG (insn) == reg)
    return TRUE;
  if ((f & USES2) != 0
      && USES2_REG (insn) == reg)
    return TRUE;
  if ((f & USESR0) != 0
      && reg == 0)
    return TRUE;
  if ((f & USESAS) && reg == USESAS_REG (insn))
    return TRUE;
  if ((f & USESR8) && reg == 8)
    return TRUE;

  return FALSE;
}

/* See whether an instruction sets a general purpose register.  */

static bfd_boolean
sh_insn_sets_reg (insn, op, reg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int reg;
{
  unsigned int f;

  f = op->flags;

  if ((f & SETS1) != 0
      && SETS1_REG (insn) == reg)
    return TRUE;
  if ((f & SETS2) != 0
      && SETS2_REG (insn) == reg)
    return TRUE;
  if ((f & SETSR0) != 0
      && reg == 0)
    return TRUE;
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
    return TRUE;

  return FALSE;
}

/* See whether an instruction uses or sets a floating point register */

static bfd_boolean
sh_insn_uses_or_sets_freg (insn, op, reg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int reg;
{
  if (sh_insn_uses_freg (insn, op, reg))
    return TRUE;

  return sh_insn_sets_freg (insn, op, reg);
}

/* See whether an instruction uses a floating point register.  */

static bfd_boolean
sh_insn_uses_freg (insn, op, freg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int freg;
{
  unsigned int f;

  f = op->flags;

  /* We can't tell if this is a double-precision insn, so just play safe
     and assume that it might be.  So not only have we test FREG against
     itself, but also even FREG against FREG+1 - if the using insn uses
     just the low part of a double precision value - but also an odd
     FREG against FREG-1 -  if the setting insn sets just the low part
     of a double precision value.
     So what this all boils down to is that we have to ignore the lowest
     bit of the register number.  */

  if ((f & USESF1) != 0
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
    return TRUE;
  if ((f & USESF2) != 0
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
    return TRUE;
  if ((f & USESF0) != 0
      && freg == 0)
    return TRUE;

  return FALSE;
}

/* See whether an instruction sets a floating point register.  */

static bfd_boolean
sh_insn_sets_freg (insn, op, freg)
     unsigned int insn;
     const struct sh_opcode *op;
     unsigned int freg;
{
  unsigned int f;

  f = op->flags;

  /* We can't tell if this is a double-precision insn, so just play safe
     and assume that it might be.  So not only have we test FREG against
     itself, but also even FREG against FREG+1 - if the using insn uses
     just the low part of a double precision value - but also an odd
     FREG against FREG-1 -  if the setting insn sets just the low part
     of a double precision value.
     So what this all boils down to is that we have to ignore the lowest
     bit of the register number.  */

  if ((f & SETSF1) != 0
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
    return TRUE;

  return FALSE;
}

/* See whether instructions I1 and I2 conflict, assuming I1 comes
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
   This should return TRUE if there is a conflict, or FALSE if the
   instructions can be swapped safely.  */

static bfd_boolean
sh_insns_conflict (i1, op1, i2, op2)
     unsigned int i1;
     const struct sh_opcode *op1;
     unsigned int i2;
     const struct sh_opcode *op2;
{
  unsigned int f1, f2;

  f1 = op1->flags;
  f2 = op2->flags;

  /* Load of fpscr conflicts with floating point operations.
     FIXME: shouldn't test raw opcodes here.  */
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
    return TRUE;

  if ((f1 & (BRANCH | DELAY)) != 0
      || (f2 & (BRANCH | DELAY)) != 0)
    return TRUE;

  if (((f1 | f2) & SETSSP)
      && (f1 & (SETSSP | USESSP))
      && (f2 & (SETSSP | USESSP)))
    return TRUE;

  if ((f1 & SETS1) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
    return TRUE;
  if ((f1 & SETS2) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
    return TRUE;
  if ((f1 & SETSR0) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
    return TRUE;
  if ((f1 & SETSAS)
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
    return TRUE;
  if ((f1 & SETSF1) != 0
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
    return TRUE;

  if ((f2 & SETS1) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
    return TRUE;
  if ((f2 & SETS2) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
    return TRUE;
  if ((f2 & SETSR0) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
    return TRUE;
  if ((f2 & SETSAS)
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
    return TRUE;
  if ((f2 & SETSF1) != 0
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
    return TRUE;

  /* The instructions do not conflict.  */
  return FALSE;
}

/* I1 is a load instruction, and I2 is some other instruction.  Return
   TRUE if I1 loads a register which I2 uses.  */

static bfd_boolean
sh_load_use (i1, op1, i2, op2)
     unsigned int i1;
     const struct sh_opcode *op1;
     unsigned int i2;
     const struct sh_opcode *op2;
{
  unsigned int f1;

  f1 = op1->flags;

  if ((f1 & LOAD) == 0)
    return FALSE;

  /* If both SETS1 and SETSSP are set, that means a load to a special
     register using postincrement addressing mode, which we don't care
     about here.  */
  if ((f1 & SETS1) != 0
      && (f1 & SETSSP) == 0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
    return TRUE;

  if ((f1 & SETSR0) != 0
      && sh_insn_uses_reg (i2, op2, 0))
    return TRUE;

  if ((f1 & SETSF1) != 0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
    return TRUE;

  return FALSE;
}

/* Try to align loads and stores within a span of memory.  This is
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
   the BFD and section we are examining.  CONTENTS is the contents of
   the section.  SWAP is the routine to call to swap two instructions.
   RELOCS is a pointer to the internal relocation information, to be
   passed to SWAP.  PLABEL is a pointer to the current label in a
   sorted list of labels; LABEL_END is the end of the list.  START and
   STOP are the range of memory to examine.  If a swap is made,
   *PSWAPPED is set to TRUE.  */

#ifdef COFF_WITH_PE
static
#endif
bfd_boolean
_bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
			 plabel, label_end, start, stop, pswapped)
     bfd *abfd;
     asection *sec;
     bfd_byte *contents;
     bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
     PTR relocs;
     bfd_vma **plabel;
     bfd_vma *label_end;
     bfd_vma start;
     bfd_vma stop;
     bfd_boolean *pswapped;
{
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
	     || abfd->arch_info->mach == bfd_mach_sh3_dsp);
  bfd_vma i;

  /* The SH4 has a Harvard architecture, hence aligning loads is not
     desirable.  In fact, it is counter-productive, since it interferes
     with the schedules generated by the compiler.  */
  if (abfd->arch_info->mach == bfd_mach_sh4)
    return TRUE;

  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
     instructions.  */
  if (dsp)
    {
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
    }

  /* Instructions should be aligned on 2 byte boundaries.  */
  if ((start & 1) == 1)
    ++start;

  /* Now look through the unaligned addresses.  */
  i = start;
  if ((i & 2) == 0)
    i += 2;
  for (; i < stop; i += 4)
    {
      unsigned int insn;
      const struct sh_opcode *op;
      unsigned int prev_insn = 0;
      const struct sh_opcode *prev_op = NULL;

      insn = bfd_get_16 (abfd, contents + i);
      op = sh_insn_info (insn);
      if (op == NULL
	  || (op->flags & (LOAD | STORE)) == 0)
	continue;

      /* This is a load or store which is not on a four byte boundary.  */

      while (*plabel < label_end && **plabel < i)
	++*plabel;

      if (i > start)
	{
	  prev_insn = bfd_get_16 (abfd, contents + i - 2);
	  /* If INSN is the field b of a parallel processing insn, it is not
	     a load / store after all.  Note that the test here might mistake
	     the field_b of a pcopy insn for the starting code of a parallel
	     processing insn; this might miss a swapping opportunity, but at
	     least we're on the safe side.  */
	  if (dsp && (prev_insn & 0xfc00) == 0xf800)
	    continue;

	  /* Check if prev_insn is actually the field b of a parallel
	     processing insn.  Again, this can give a spurious match
	     after a pcopy.  */
	  if (dsp && i - 2 > start)
	    {
	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);

	      if ((pprev_insn & 0xfc00) == 0xf800)
		prev_op = NULL;
	      else
		prev_op = sh_insn_info (prev_insn);
	    }
	  else
	    prev_op = sh_insn_info (prev_insn);

	  /* If the load/store instruction is in a delay slot, we
	     can't swap.  */
	  if (prev_op == NULL
	      || (prev_op->flags & DELAY) != 0)
	    continue;
	}
      if (i > start
	  && (*plabel >= label_end || **plabel != i)
	  && prev_op != NULL
	  && (prev_op->flags & (LOAD | STORE)) == 0
	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
	{
	  bfd_boolean ok;

	  /* The load/store instruction does not have a label, and
	     there is a previous instruction; PREV_INSN is not
	     itself a load/store instruction, and PREV_INSN and
	     INSN do not conflict.  */

	  ok = TRUE;

	  if (i >= start + 4)
	    {
	      unsigned int prev2_insn;
	      const struct sh_opcode *prev2_op;

	      prev2_insn = bfd_get_16 (abfd, contents + i - 4);
	      prev2_op = sh_insn_info (prev2_insn);

	      /* If the instruction before PREV_INSN has a delay
		 slot--that is, PREV_INSN is in a delay slot--we
		 can not swap.  */
	      if (prev2_op == NULL
		  || (prev2_op->flags & DELAY) != 0)
		ok = FALSE;

	      /* If the instruction before PREV_INSN is a load,
		 and it sets a register which INSN uses, then
		 putting INSN immediately after PREV_INSN will
		 cause a pipeline bubble, so there is no point to
		 making the swap.  */
	      if (ok
		  && (prev2_op->flags & LOAD) != 0
		  && sh_load_use (prev2_insn, prev2_op, insn, op))
		ok = FALSE;
	    }

	  if (ok)
	    {
	      if (! (*swap) (abfd, sec, relocs, contents, i - 2))
		return FALSE;
	      *pswapped = TRUE;
	      continue;
	    }
	}

      while (*plabel < label_end && **plabel < i + 2)
	++*plabel;

      if (i + 2 < stop
	  && (*plabel >= label_end || **plabel != i + 2))
	{
	  unsigned int next_insn;
	  const struct sh_opcode *next_op;

	  /* There is an instruction after the load/store
	     instruction, and it does not have a label.  */
	  next_insn = bfd_get_16 (abfd, contents + i + 2);
	  next_op = sh_insn_info (next_insn);
	  if (next_op != NULL
	      && (next_op->flags & (LOAD | STORE)) == 0
	      && ! sh_insns_conflict (insn, op, next_insn, next_op))
	    {
	      bfd_boolean ok;

	      /* NEXT_INSN is not itself a load/store instruction,
		 and it does not conflict with INSN.  */

	      ok = TRUE;

	      /* If PREV_INSN is a load, and it sets a register
		 which NEXT_INSN uses, then putting NEXT_INSN
		 immediately after PREV_INSN will cause a pipeline
		 bubble, so there is no reason to make this swap.  */
	      if (prev_op != NULL
		  && (prev_op->flags & LOAD) != 0
		  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
		ok = FALSE;

	      /* If INSN is a load, and it sets a register which
		 the insn after NEXT_INSN uses, then doing the
		 swap will cause a pipeline bubble, so there is no
		 reason to make the swap.  However, if the insn
		 after NEXT_INSN is itself a load or store
		 instruction, then it is misaligned, so
		 optimistically hope that it will be swapped
		 itself, and just live with the pipeline bubble if
		 it isn't.  */
	      if (ok
		  && i + 4 < stop
		  && (op->flags & LOAD) != 0)
		{
		  unsigned int next2_insn;
		  const struct sh_opcode *next2_op;

		  next2_insn = bfd_get_16 (abfd, contents + i + 4);
		  next2_op = sh_insn_info (next2_insn);
		  if (next2_op == NULL
		      || ((next2_op->flags & (LOAD | STORE)) == 0
			  && sh_load_use (insn, op, next2_insn, next2_op)))
		    ok = FALSE;
		}

	      if (ok)
		{
		  if (! (*swap) (abfd, sec, relocs, contents, i))
		    return FALSE;
		  *pswapped = TRUE;
		  continue;
		}
	    }
	}
    }

  return TRUE;
}
#endif /* not COFF_IMAGE_WITH_PE */

/* Look for loads and stores which we can align to four byte
   boundaries.  See the longer comment above sh_relax_section for why
   this is desirable.  This sets *PSWAPPED if some instruction was
   swapped.  */

static bfd_boolean
sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
     bfd *abfd;
     asection *sec;
     struct internal_reloc *internal_relocs;
     bfd_byte *contents;
     bfd_boolean *pswapped;
{
  struct internal_reloc *irel, *irelend;
  bfd_vma *labels = NULL;
  bfd_vma *label, *label_end;
  bfd_size_type amt;

  *pswapped = FALSE;

  irelend = internal_relocs + sec->reloc_count;

  /* Get all the addresses with labels on them.  */
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
  labels = (bfd_vma *) bfd_malloc (amt);
  if (labels == NULL)
    goto error_return;
  label_end = labels;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_LABEL)
	{
	  *label_end = irel->r_vaddr - sec->vma;
	  ++label_end;
	}
    }

  /* Note that the assembler currently always outputs relocs in
     address order.  If that ever changes, this code will need to sort
     the label values and the relocs.  */

  label = labels;

  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma start, stop;

      if (irel->r_type != R_SH_CODE)
	continue;

      start = irel->r_vaddr - sec->vma;

      for (irel++; irel < irelend; irel++)
	if (irel->r_type == R_SH_DATA)
	  break;
      if (irel < irelend)
	stop = irel->r_vaddr - sec->vma;
      else
	stop = sec->size;

      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
				     (PTR) internal_relocs, &label,
				     label_end, start, stop, pswapped))
	goto error_return;
    }

  free (labels);

  return TRUE;

 error_return:
  if (labels != NULL)
    free (labels);
  return FALSE;
}

/* Swap two SH instructions.  */

static bfd_boolean
sh_swap_insns (abfd, sec, relocs, contents, addr)
     bfd *abfd;
     asection *sec;
     PTR relocs;
     bfd_byte *contents;
     bfd_vma addr;
{
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
  unsigned short i1, i2;
  struct internal_reloc *irel, *irelend;

  /* Swap the instructions themselves.  */
  i1 = bfd_get_16 (abfd, contents + addr);
  i2 = bfd_get_16 (abfd, contents + addr + 2);
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);

  /* Adjust all reloc addresses.  */
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      int type, add;

      /* There are a few special types of relocs that we don't want to
         adjust.  These relocs do not apply to the instruction itself,
         but are only associated with the address.  */
      type = irel->r_type;
      if (type == R_SH_ALIGN
	  || type == R_SH_CODE
	  || type == R_SH_DATA
	  || type == R_SH_LABEL)
	continue;

      /* If an R_SH_USES reloc points to one of the addresses being
         swapped, we must adjust it.  It would be incorrect to do this
         for a jump, though, since we want to execute both
         instructions after the jump.  (We have avoided swapping
         around a label, so the jump will not wind up executing an
         instruction it shouldn't).  */
      if (type == R_SH_USES)
	{
	  bfd_vma off;

	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
	  if (off == addr)
	    irel->r_offset += 2;
	  else if (off == addr + 2)
	    irel->r_offset -= 2;
	}

      if (irel->r_vaddr - sec->vma == addr)
	{
	  irel->r_vaddr += 2;
	  add = -2;
	}
      else if (irel->r_vaddr - sec->vma == addr + 2)
	{
	  irel->r_vaddr -= 2;
	  add = 2;
	}
      else
	add = 0;

      if (add != 0)
	{
	  bfd_byte *loc;
	  unsigned short insn, oinsn;
	  bfd_boolean overflow;

	  loc = contents + irel->r_vaddr - sec->vma;
	  overflow = FALSE;
	  switch (type)
	    {
	    default:
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = TRUE;
	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
	      break;

	    case R_SH_PCDISP:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = TRUE;
	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      /* This reloc ignores the least significant 3 bits of
                 the program counter before adding in the offset.
                 This means that if ADDR is at an even address, the
                 swap will not affect the offset.  If ADDR is an at an
                 odd address, then the instruction will be crossing a
                 four byte boundary, and must be adjusted.  */
	      if ((addr & 3) != 0)
		{
		  insn = bfd_get_16 (abfd, loc);
		  oinsn = insn;
		  insn += add / 2;
		  if ((oinsn & 0xff00) != (insn & 0xff00))
		    overflow = TRUE;
		  bfd_put_16 (abfd, (bfd_vma) insn, loc);
		}

	      break;
	    }

	  if (overflow)
	    {
	      ((*_bfd_error_handler)
	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
		abfd, (unsigned long) irel->r_vaddr));
	      bfd_set_error (bfd_error_bad_value);
	      return FALSE;
	    }
	}
    }

  return TRUE;
}

/* This is a modification of _bfd_coff_generic_relocate_section, which
   will handle SH relaxing.  */

static bfd_boolean
sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
		     relocs, syms, sections)
     bfd *output_bfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info;
     bfd *input_bfd;
     asection *input_section;
     bfd_byte *contents;
     struct internal_reloc *relocs;
     struct internal_syment *syms;
     asection **sections;
{
  struct internal_reloc *rel;
  struct internal_reloc *relend;

  rel = relocs;
  relend = rel + input_section->reloc_count;
  for (; rel < relend; rel++)
    {
      long symndx;
      struct coff_link_hash_entry *h;
      struct internal_syment *sym;
      bfd_vma addend;
      bfd_vma val;
      reloc_howto_type *howto;
      bfd_reloc_status_type rstat;

      /* Almost all relocs have to do with relaxing.  If any work must
         be done for them, it has been done in sh_relax_section.  */
      if (rel->r_type != R_SH_IMM32
#ifdef COFF_WITH_PE
	  && rel->r_type != R_SH_IMM32CE
	  && rel->r_type != R_SH_IMAGEBASE
#endif
	  && rel->r_type != R_SH_PCDISP)
	continue;

      symndx = rel->r_symndx;

      if (symndx == -1)
	{
	  h = NULL;
	  sym = NULL;
	}
      else
	{
	  if (symndx < 0
	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
	    {
	      (*_bfd_error_handler)
		("%B: illegal symbol index %ld in relocs",
		 input_bfd, symndx);
	      bfd_set_error (bfd_error_bad_value);
	      return FALSE;
	    }
	  h = obj_coff_sym_hashes (input_bfd)[symndx];
	  sym = syms + symndx;
	}

      if (sym != NULL && sym->n_scnum != 0)
	addend = - sym->n_value;
      else
	addend = 0;

      if (rel->r_type == R_SH_PCDISP)
	addend -= 4;

      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
	howto = NULL;
      else
	howto = &sh_coff_howtos[rel->r_type];

      if (howto == NULL)
	{
	  bfd_set_error (bfd_error_bad_value);
	  return FALSE;
	}

#ifdef COFF_WITH_PE
      if (rel->r_type == R_SH_IMAGEBASE)
	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
#endif

      val = 0;

      if (h == NULL)
	{
	  asection *sec;

	  /* There is nothing to do for an internal PCDISP reloc.  */
	  if (rel->r_type == R_SH_PCDISP)
	    continue;

	  if (symndx == -1)
	    {
	      sec = bfd_abs_section_ptr;
	      val = 0;
	    }
	  else
	    {
	      sec = sections[symndx];
              val = (sec->output_section->vma
		     + sec->output_offset
		     + sym->n_value
		     - sec->vma);
	    }
	}
      else
	{
	  if (h->root.type == bfd_link_hash_defined
	      || h->root.type == bfd_link_hash_defweak)
	    {
	      asection *sec;

	      sec = h->root.u.def.section;
	      val = (h->root.u.def.value
		     + sec->output_section->vma
		     + sec->output_offset);
	    }
	  else if (! info->relocatable)
	    {
	      if (! ((*info->callbacks->undefined_symbol)
		     (info, h->root.root.string, input_bfd, input_section,
		      rel->r_vaddr - input_section->vma, TRUE)))
		return FALSE;
	    }
	}

      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
					contents,
					rel->r_vaddr - input_section->vma,
					val, addend);

      switch (rstat)
	{
	default:
	  abort ();
	case bfd_reloc_ok:
	  break;
	case bfd_reloc_overflow:
	  {
	    const char *name;
	    char buf[SYMNMLEN + 1];

	    if (symndx == -1)
	      name = "*ABS*";
	    else if (h != NULL)
	      name = NULL;
	    else if (sym->_n._n_n._n_zeroes == 0
		     && sym->_n._n_n._n_offset != 0)
	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
	    else
	      {
 		strncpy (buf, sym->_n._n_name, SYMNMLEN);
		buf[SYMNMLEN] = '\0';
		name = buf;
	      }

	    if (! ((*info->callbacks->reloc_overflow)
		   (info, (h ? &h->root : NULL), name, howto->name,
		    (bfd_vma) 0, input_bfd, input_section,
		    rel->r_vaddr - input_section->vma)))
	      return FALSE;
	  }
	}
    }

  return TRUE;
}

/* This is a version of bfd_generic_get_relocated_section_contents
   which uses sh_relocate_section.  */

static bfd_byte *
sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
					data, relocatable, symbols)
     bfd *output_bfd;
     struct bfd_link_info *link_info;
     struct bfd_link_order *link_order;
     bfd_byte *data;
     bfd_boolean relocatable;
     asymbol **symbols;
{
  asection *input_section = link_order->u.indirect.section;
  bfd *input_bfd = input_section->owner;
  asection **sections = NULL;
  struct internal_reloc *internal_relocs = NULL;
  struct internal_syment *internal_syms = NULL;

  /* We only need to handle the case of relaxing, or of having a
     particular set of section contents, specially.  */
  if (relocatable
      || coff_section_data (input_bfd, input_section) == NULL
      || coff_section_data (input_bfd, input_section)->contents == NULL)
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
						       link_order, data,
						       relocatable,
						       symbols);

  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
	  (size_t) input_section->size);

  if ((input_section->flags & SEC_RELOC) != 0
      && input_section->reloc_count > 0)
    {
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
      bfd_byte *esym, *esymend;
      struct internal_syment *isymp;
      asection **secpp;
      bfd_size_type amt;

      if (! _bfd_coff_get_external_symbols (input_bfd))
	goto error_return;

      internal_relocs = (_bfd_coff_read_internal_relocs
			 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
			  FALSE, (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	goto error_return;

      amt = obj_raw_syment_count (input_bfd);
      amt *= sizeof (struct internal_syment);
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
      if (internal_syms == NULL)
	goto error_return;

      amt = obj_raw_syment_count (input_bfd);
      amt *= sizeof (asection *);
      sections = (asection **) bfd_malloc (amt);
      if (sections == NULL)
	goto error_return;

      isymp = internal_syms;
      secpp = sections;
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
      while (esym < esymend)
	{
	  bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);

	  if (isymp->n_scnum != 0)
	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
	  else
	    {
	      if (isymp->n_value == 0)
		*secpp = bfd_und_section_ptr;
	      else
		*secpp = bfd_com_section_ptr;
	    }

	  esym += (isymp->n_numaux + 1) * symesz;
	  secpp += isymp->n_numaux + 1;
	  isymp += isymp->n_numaux + 1;
	}

      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
				 input_section, data, internal_relocs,
				 internal_syms, sections))
	goto error_return;

      free (sections);
      sections = NULL;
      free (internal_syms);
      internal_syms = NULL;
      free (internal_relocs);
      internal_relocs = NULL;
    }

  return data;

 error_return:
  if (internal_relocs != NULL)
    free (internal_relocs);
  if (internal_syms != NULL)
    free (internal_syms);
  if (sections != NULL)
    free (sections);
  return NULL;
}

/* The target vectors.  */

#ifndef TARGET_SHL_SYM
CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
#endif

#ifdef TARGET_SHL_SYM
#define TARGET_SYM TARGET_SHL_SYM
#else
#define TARGET_SYM shlcoff_vec
#endif

#ifndef TARGET_SHL_NAME
#define TARGET_SHL_NAME "coff-shl"
#endif

#ifdef COFF_WITH_PE
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
#else
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
			       0, '_', NULL, COFF_SWAP_TABLE)
#endif

#ifndef TARGET_SHL_SYM
static const bfd_target * coff_small_object_p PARAMS ((bfd *));
static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
/* Some people want versions of the SH COFF target which do not align
   to 16 byte boundaries.  We implement that by adding a couple of new
   target vectors.  These are just like the ones above, but they
   change the default section alignment.  To generate them in the
   assembler, use -small.  To use them in the linker, use -b
   coff-sh{l}-small and -oformat coff-sh{l}-small.

   Yes, this is a horrible hack.  A general solution for setting
   section alignment in COFF is rather complex.  ELF handles this
   correctly.  */

/* Only recognize the small versions if the target was not defaulted.
   Otherwise we won't recognize the non default endianness.  */

static const bfd_target *
coff_small_object_p (abfd)
     bfd *abfd;
{
  if (abfd->target_defaulted)
    {
      bfd_set_error (bfd_error_wrong_format);
      return NULL;
    }
  return coff_object_p (abfd);
}

/* Set the section alignment for the small versions.  */

static bfd_boolean
coff_small_new_section_hook (abfd, section)
     bfd *abfd;
     asection *section;
{
  if (! coff_new_section_hook (abfd, section))
    return FALSE;

  /* We must align to at least a four byte boundary, because longword
     accesses must be on a four byte boundary.  */
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
    section->alignment_power = 2;

  return TRUE;
}

/* This is copied from bfd_coff_std_swap_table so that we can change
   the default section alignment power.  */

static bfd_coff_backend_data bfd_coff_small_swap_table =
{
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
  coff_swap_aux_out, coff_swap_sym_out,
  coff_swap_lineno_out, coff_swap_reloc_out,
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
  coff_swap_scnhdr_out,
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
#ifdef COFF_LONG_FILENAMES
  TRUE,
#else
  FALSE,
#endif
  COFF_DEFAULT_LONG_SECTION_NAMES,
  2,
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
  TRUE,
#else
  FALSE,
#endif
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
  4,
#else
  2,
#endif
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
  coff_classify_symbol, coff_compute_section_file_positions,
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
  coff_adjust_symndx, coff_link_add_one_symbol,
  coff_link_output_has_begun, coff_final_link_postscript,
  bfd_pe_print_pdata
};

#define coff_small_close_and_cleanup \
  coff_close_and_cleanup
#define coff_small_bfd_free_cached_info \
  coff_bfd_free_cached_info
#define coff_small_get_section_contents \
  coff_get_section_contents
#define coff_small_get_section_contents_in_window \
  coff_get_section_contents_in_window

extern const bfd_target shlcoff_small_vec;

const bfd_target shcoff_small_vec =
{
  "coff-sh-small",		/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_BIG,		/* data byte order is big */
  BFD_ENDIAN_BIG,		/* header byte order is big */

  (HAS_RELOC | EXEC_P |		/* object flags */
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  0,				/* match priority.  */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */

  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
     bfd_generic_archive_p, _bfd_dummy_target},
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
     bfd_false},
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
     _bfd_write_archive_contents, bfd_false},

  BFD_JUMP_TABLE_GENERIC (coff_small),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  & shlcoff_small_vec,

  (PTR) &bfd_coff_small_swap_table
};

const bfd_target shlcoff_small_vec =
{
  "coff-shl-small",		/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_LITTLE,		/* data byte order is little */
  BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/

  (HAS_RELOC | EXEC_P |		/* object flags */
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  0,				/* match priority.  */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */

  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
     bfd_generic_archive_p, _bfd_dummy_target},
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
     bfd_false},
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
     _bfd_write_archive_contents, bfd_false},

  BFD_JUMP_TABLE_GENERIC (coff_small),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  & shcoff_small_vec,

  (PTR) &bfd_coff_small_swap_table
};
#endif