aboutsummaryrefslogtreecommitdiff
path: root/gprof
diff options
context:
space:
mode:
authorDaniel Jacobowitz <drow@false.org>2003-04-27 20:36:18 +0000
committerDaniel Jacobowitz <drow@false.org>2003-04-27 20:36:18 +0000
commitf530783f40fd7d7a2517454718ec29c5b4e74ad8 (patch)
treec4c700790f04d665e268dabd1bb4bb78ce116ef4 /gprof
parent4cd8e21959e49596962d2a9b1995e69af8371f22 (diff)
downloadgdb-f530783f40fd7d7a2517454718ec29c5b4e74ad8.zip
gdb-f530783f40fd7d7a2517454718ec29c5b4e74ad8.tar.gz
gdb-f530783f40fd7d7a2517454718ec29c5b4e74ad8.tar.bz2
Add generated files on 2.14 branch.
Diffstat (limited to 'gprof')
-rw-r--r--gprof/bsd_callg_bl.c120
-rw-r--r--gprof/flat_bl.c39
-rw-r--r--gprof/fsf_callg_bl.c95
-rw-r--r--gprof/gprof.1712
-rw-r--r--gprof/gprof.info58
-rw-r--r--gprof/gprof.info-11132
-rw-r--r--gprof/gprof.info-2753
-rw-r--r--gprof/gprof.info-3369
-rw-r--r--gprof/po/da.gmobin0 -> 9586 bytes
-rw-r--r--gprof/po/es.gmobin0 -> 10041 bytes
-rw-r--r--gprof/po/fr.gmobin0 -> 10001 bytes
-rw-r--r--gprof/po/id.gmobin0 -> 9735 bytes
-rw-r--r--gprof/po/pt_BR.gmobin0 -> 9984 bytes
-rw-r--r--gprof/po/sv.gmobin0 -> 9554 bytes
-rw-r--r--gprof/po/tr.gmobin0 -> 11335 bytes
15 files changed, 3278 insertions, 0 deletions
diff --git a/gprof/bsd_callg_bl.c b/gprof/bsd_callg_bl.c
new file mode 100644
index 0000000..e6f9b36
--- /dev/null
+++ b/gprof/bsd_callg_bl.c
@@ -0,0 +1,120 @@
+/* ==> Do not modify this file!! It is created automatically
+ from bsd_callg_bl.m using the gen-c-prog.awk script. <== */
+
+#include <stdio.h>
+#include "ansidecl.h"
+
+void bsd_callg_blurb PARAMS ((FILE *));
+void
+bsd_callg_blurb (file)
+ FILE *file;
+{
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("call graph profile:\n", file);
+ fputs (" The sum of self and descendents is the major sort\n", file);
+ fputs (" for this listing.\n", file);
+ fputs ("\n", file);
+ fputs (" function entries:\n", file);
+ fputs ("\n", file);
+ fputs ("index the index of the function in the call graph\n", file);
+ fputs (" listing, as an aid to locating it (see below).\n", file);
+ fputs ("\n", file);
+ fputs ("%time the percentage of the total time of the program\n", file);
+ fputs (" accounted for by this function and its\n", file);
+ fputs (" descendents.\n", file);
+ fputs ("\n", file);
+ fputs ("self the number of seconds spent in this function\n", file);
+ fputs (" itself.\n", file);
+ fputs ("\n", file);
+ fputs ("descendents\n", file);
+ fputs (" the number of seconds spent in the descendents of\n", file);
+ fputs (" this function on behalf of this function.\n", file);
+ fputs ("\n", file);
+ fputs ("called the number of times this function is called (other\n", file);
+ fputs (" than recursive calls).\n", file);
+ fputs ("\n", file);
+ fputs ("self the number of times this function calls itself\n", file);
+ fputs (" recursively.\n", file);
+ fputs ("\n", file);
+ fputs ("name the name of the function, with an indication of\n", file);
+ fputs (" its membership in a cycle, if any.\n", file);
+ fputs ("\n", file);
+ fputs ("index the index of the function in the call graph\n", file);
+ fputs (" listing, as an aid to locating it.\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs (" parent listings:\n", file);
+ fputs ("\n", file);
+ fputs ("self* the number of seconds of this function's self time\n", file);
+ fputs (" which is due to calls from this parent.\n", file);
+ fputs ("\n", file);
+ fputs ("descendents*\n", file);
+ fputs (" the number of seconds of this function's\n", file);
+ fputs (" descendent time which is due to calls from this\n", file);
+ fputs (" parent.\n", file);
+ fputs ("\n", file);
+ fputs ("called** the number of times this function is called by\n", file);
+ fputs (" this parent. This is the numerator of the\n", file);
+ fputs (" fraction which divides up the function's time to\n", file);
+ fputs (" its parents.\n", file);
+ fputs ("\n", file);
+ fputs ("total* the number of times this function was called by\n", file);
+ fputs (" all of its parents. This is the denominator of\n", file);
+ fputs (" the propagation fraction.\n", file);
+ fputs ("\n", file);
+ fputs ("parents the name of this parent, with an indication of the\n", file);
+ fputs (" parent's membership in a cycle, if any.\n", file);
+ fputs ("\n", file);
+ fputs ("index the index of this parent in the call graph\n", file);
+ fputs (" listing, as an aid in locating it.\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs (" children listings:\n", file);
+ fputs ("\n", file);
+ fputs ("self* the number of seconds of this child's self time\n", file);
+ fputs (" which is due to being called by this function.\n", file);
+ fputs ("\n", file);
+ fputs ("descendent*\n", file);
+ fputs (" the number of seconds of this child's descendent's\n", file);
+ fputs (" time which is due to being called by this\n", file);
+ fputs (" function.\n", file);
+ fputs ("\n", file);
+ fputs ("called** the number of times this child is called by this\n", file);
+ fputs (" function. This is the numerator of the\n", file);
+ fputs (" propagation fraction for this child.\n", file);
+ fputs ("\n", file);
+ fputs ("total* the number of times this child is called by all\n", file);
+ fputs (" functions. This is the denominator of the\n", file);
+ fputs (" propagation fraction.\n", file);
+ fputs ("\n", file);
+ fputs ("children the name of this child, and an indication of its\n", file);
+ fputs (" membership in a cycle, if any.\n", file);
+ fputs ("\n", file);
+ fputs ("index the index of this child in the call graph listing,\n", file);
+ fputs (" as an aid to locating it.\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs (" * these fields are omitted for parents (or\n", file);
+ fputs (" children) in the same cycle as the function. If\n", file);
+ fputs (" the function (or child) is a member of a cycle,\n", file);
+ fputs (" the propagated times and propagation denominator\n", file);
+ fputs (" represent the self time and descendent time of the\n", file);
+ fputs (" cycle as a whole.\n", file);
+ fputs ("\n", file);
+ fputs (" ** static-only parents and children are indicated\n", file);
+ fputs (" by a call count of 0.\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs (" cycle listings:\n", file);
+ fputs (" the cycle as a whole is listed with the same\n", file);
+ fputs (" fields as a function entry. Below it are listed\n", file);
+ fputs (" the members of the cycle, and their contributions\n", file);
+ fputs (" to the time and call counts of the cycle.\n", file);
+ fputs (" \n", file);
+}
diff --git a/gprof/flat_bl.c b/gprof/flat_bl.c
new file mode 100644
index 0000000..e4d32c2
--- /dev/null
+++ b/gprof/flat_bl.c
@@ -0,0 +1,39 @@
+/* ==> Do not modify this file!! It is created automatically
+ from flat_bl.m using the gen-c-prog.awk script. <== */
+
+#include <stdio.h>
+#include "ansidecl.h"
+
+void flat_blurb PARAMS ((FILE *));
+void
+flat_blurb (file)
+ FILE *file;
+{
+ fputs ("\n", file);
+ fputs (" % the percentage of the total running time of the\n", file);
+ fputs ("time program used by this function.\n", file);
+ fputs ("\n", file);
+ fputs ("cumulative a running sum of the number of seconds accounted\n", file);
+ fputs (" seconds for by this function and those listed above it.\n", file);
+ fputs ("\n", file);
+ fputs (" self the number of seconds accounted for by this\n", file);
+ fputs ("seconds function alone. This is the major sort for this\n", file);
+ fputs (" listing.\n", file);
+ fputs ("\n", file);
+ fputs ("calls the number of times this function was invoked, if\n", file);
+ fputs (" this function is profiled, else blank.\n", file);
+ fputs (" \n", file);
+ fputs (" self the average number of milliseconds spent in this\n", file);
+ fputs ("ms/call function per call, if this function is profiled,\n", file);
+ fputs (" else blank.\n", file);
+ fputs ("\n", file);
+ fputs (" total the average number of milliseconds spent in this\n", file);
+ fputs ("ms/call function and its descendents per call, if this \n", file);
+ fputs (" function is profiled, else blank.\n", file);
+ fputs ("\n", file);
+ fputs ("name the name of the function. This is the minor sort\n", file);
+ fputs (" for this listing. The index shows the location of\n", file);
+ fputs (" the function in the gprof listing. If the index is\n", file);
+ fputs (" in parenthesis it shows where it would appear in\n", file);
+ fputs (" the gprof listing if it were to be printed.\n", file);
+}
diff --git a/gprof/fsf_callg_bl.c b/gprof/fsf_callg_bl.c
new file mode 100644
index 0000000..ab7baab
--- /dev/null
+++ b/gprof/fsf_callg_bl.c
@@ -0,0 +1,95 @@
+/* ==> Do not modify this file!! It is created automatically
+ from fsf_callg_bl.m using the gen-c-prog.awk script. <== */
+
+#include <stdio.h>
+#include "ansidecl.h"
+
+void fsf_callg_blurb PARAMS ((FILE *));
+void
+fsf_callg_blurb (file)
+ FILE *file;
+{
+ fputs ("\n", file);
+ fputs (" This table describes the call tree of the program, and was sorted by\n", file);
+ fputs (" the total amount of time spent in each function and its children.\n", file);
+ fputs ("\n", file);
+ fputs (" Each entry in this table consists of several lines. The line with the\n", file);
+ fputs (" index number at the left hand margin lists the current function.\n", file);
+ fputs (" The lines above it list the functions that called this function,\n", file);
+ fputs (" and the lines below it list the functions this one called.\n", file);
+ fputs (" This line lists:\n", file);
+ fputs (" index A unique number given to each element of the table.\n", file);
+ fputs (" Index numbers are sorted numerically.\n", file);
+ fputs (" The index number is printed next to every function name so\n", file);
+ fputs (" it is easier to look up where the function in the table.\n", file);
+ fputs ("\n", file);
+ fputs (" % time This is the percentage of the `total' time that was spent\n", file);
+ fputs (" in this function and its children. Note that due to\n", file);
+ fputs (" different viewpoints, functions excluded by options, etc,\n", file);
+ fputs (" these numbers will NOT add up to 100%.\n", file);
+ fputs ("\n", file);
+ fputs (" self This is the total amount of time spent in this function.\n", file);
+ fputs ("\n", file);
+ fputs (" children This is the total amount of time propagated into this\n", file);
+ fputs (" function by its children.\n", file);
+ fputs ("\n", file);
+ fputs (" called This is the number of times the function was called.\n", file);
+ fputs (" If the function called itself recursively, the number\n", file);
+ fputs (" only includes non-recursive calls, and is followed by\n", file);
+ fputs (" a `+' and the number of recursive calls.\n", file);
+ fputs ("\n", file);
+ fputs (" name The name of the current function. The index number is\n", file);
+ fputs (" printed after it. If the function is a member of a\n", file);
+ fputs (" cycle, the cycle number is printed between the\n", file);
+ fputs (" function's name and the index number.\n", file);
+ fputs ("\n", file);
+ fputs ("\n", file);
+ fputs (" For the function's parents, the fields have the following meanings:\n", file);
+ fputs ("\n", file);
+ fputs (" self This is the amount of time that was propagated directly\n", file);
+ fputs (" from the function into this parent.\n", file);
+ fputs ("\n", file);
+ fputs (" children This is the amount of time that was propagated from\n", file);
+ fputs (" the function's children into this parent.\n", file);
+ fputs ("\n", file);
+ fputs (" called This is the number of times this parent called the\n", file);
+ fputs (" function `/' the total number of times the function\n", file);
+ fputs (" was called. Recursive calls to the function are not\n", file);
+ fputs (" included in the number after the `/'.\n", file);
+ fputs ("\n", file);
+ fputs (" name This is the name of the parent. The parent's index\n", file);
+ fputs (" number is printed after it. If the parent is a\n", file);
+ fputs (" member of a cycle, the cycle number is printed between\n", file);
+ fputs (" the name and the index number.\n", file);
+ fputs ("\n", file);
+ fputs (" If the parents of the function cannot be determined, the word\n", file);
+ fputs (" `<spontaneous>' is printed in the `name' field, and all the other\n", file);
+ fputs (" fields are blank.\n", file);
+ fputs ("\n", file);
+ fputs (" For the function's children, the fields have the following meanings:\n", file);
+ fputs ("\n", file);
+ fputs (" self This is the amount of time that was propagated directly\n", file);
+ fputs (" from the child into the function.\n", file);
+ fputs ("\n", file);
+ fputs (" children This is the amount of time that was propagated from the\n", file);
+ fputs (" child's children to the function.\n", file);
+ fputs ("\n", file);
+ fputs (" called This is the number of times the function called\n", file);
+ fputs (" this child `/' the total number of times the child\n", file);
+ fputs (" was called. Recursive calls by the child are not\n", file);
+ fputs (" listed in the number after the `/'.\n", file);
+ fputs ("\n", file);
+ fputs (" name This is the name of the child. The child's index\n", file);
+ fputs (" number is printed after it. If the child is a\n", file);
+ fputs (" member of a cycle, the cycle number is printed\n", file);
+ fputs (" between the name and the index number.\n", file);
+ fputs ("\n", file);
+ fputs (" If there are any cycles (circles) in the call graph, there is an\n", file);
+ fputs (" entry for the cycle-as-a-whole. This entry shows who called the\n", file);
+ fputs (" cycle (as parents) and the members of the cycle (as children.)\n", file);
+ fputs (" The `+' recursive calls entry shows the number of function calls that\n", file);
+ fputs (" were internal to the cycle, and the calls entry for each member shows,\n", file);
+ fputs (" for that member, how many times it was called from other members of\n", file);
+ fputs (" the cycle.\n", file);
+ fputs ("\n", file);
+}
diff --git a/gprof/gprof.1 b/gprof/gprof.1
new file mode 100644
index 0000000..044ad0c
--- /dev/null
+++ b/gprof/gprof.1
@@ -0,0 +1,712 @@
+.\" Automatically generated by Pod::Man v1.34, Pod::Parser v1.13
+.\"
+.\" Standard preamble:
+.\" ========================================================================
+.de Sh \" Subsection heading
+.br
+.if t .Sp
+.ne 5
+.PP
+\fB\\$1\fR
+.PP
+..
+.de Sp \" Vertical space (when we can't use .PP)
+.if t .sp .5v
+.if n .sp
+..
+.de Vb \" Begin verbatim text
+.ft CW
+.nf
+.ne \\$1
+..
+.de Ve \" End verbatim text
+.ft R
+.fi
+..
+.\" Set up some character translations and predefined strings. \*(-- will
+.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
+.\" double quote, and \*(R" will give a right double quote. | will give a
+.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
+.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
+.\" expand to `' in nroff, nothing in troff, for use with C<>.
+.tr \(*W-|\(bv\*(Tr
+.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
+.ie n \{\
+. ds -- \(*W-
+. ds PI pi
+. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
+. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
+. ds L" ""
+. ds R" ""
+. ds C` ""
+. ds C' ""
+'br\}
+.el\{\
+. ds -- \|\(em\|
+. ds PI \(*p
+. ds L" ``
+. ds R" ''
+'br\}
+.\"
+.\" If the F register is turned on, we'll generate index entries on stderr for
+.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
+.\" entries marked with X<> in POD. Of course, you'll have to process the
+.\" output yourself in some meaningful fashion.
+.if \nF \{\
+. de IX
+. tm Index:\\$1\t\\n%\t"\\$2"
+..
+. nr % 0
+. rr F
+.\}
+.\"
+.\" For nroff, turn off justification. Always turn off hyphenation; it makes
+.\" way too many mistakes in technical documents.
+.hy 0
+.\"
+.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
+.\" Fear. Run. Save yourself. No user-serviceable parts.
+. \" fudge factors for nroff and troff
+.if n \{\
+. ds #H 0
+. ds #V .8m
+. ds #F .3m
+. ds #[ \f1
+. ds #] \fP
+.\}
+.if t \{\
+. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
+. ds #V .6m
+. ds #F 0
+. ds #[ \&
+. ds #] \&
+.\}
+. \" simple accents for nroff and troff
+.if n \{\
+. ds ' \&
+. ds ` \&
+. ds ^ \&
+. ds , \&
+. ds ~ ~
+. ds /
+.\}
+.if t \{\
+. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
+. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
+. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
+. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
+. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
+. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
+.\}
+. \" troff and (daisy-wheel) nroff accents
+.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
+.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
+.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
+.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
+.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
+.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
+.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
+.ds ae a\h'-(\w'a'u*4/10)'e
+.ds Ae A\h'-(\w'A'u*4/10)'E
+. \" corrections for vroff
+.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
+.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
+. \" for low resolution devices (crt and lpr)
+.if \n(.H>23 .if \n(.V>19 \
+\{\
+. ds : e
+. ds 8 ss
+. ds o a
+. ds d- d\h'-1'\(ga
+. ds D- D\h'-1'\(hy
+. ds th \o'bp'
+. ds Th \o'LP'
+. ds ae ae
+. ds Ae AE
+.\}
+.rm #[ #] #H #V #F C
+.\" ========================================================================
+.\"
+.IX Title "GPROF 1"
+.TH GPROF 1 "2003-04-27" "binutils-2.13.90" "GNU"
+.SH "NAME"
+gprof \- display call graph profile data
+.SH "SYNOPSIS"
+.IX Header "SYNOPSIS"
+gprof [ \-[abcDhilLsTvwxyz] ] [ \-[ACeEfFJnNOpPqQZ][\fIname\fR] ]
+ [ \-I \fIdirs\fR ] [ \-d[\fInum\fR] ] [ \-k \fIfrom/to\fR ]
+ [ \-m \fImin-count\fR ] [ \-t \fItable-length\fR ]
+ [ \-\-[no\-]annotated\-source[=\fIname\fR] ]
+ [ \-\-[no\-]exec\-counts[=\fIname\fR] ]
+ [ \-\-[no\-]flat\-profile[=\fIname\fR] ] [ \-\-[no\-]graph[=\fIname\fR] ]
+ [ \-\-[no\-]time=\fIname\fR] [ \-\-all\-lines ] [ \-\-brief ]
+ [ \-\-debug[=\fIlevel\fR] ] [ \-\-function\-ordering ]
+ [ \-\-file\-ordering ] [ \-\-directory\-path=\fIdirs\fR ]
+ [ \-\-display\-unused\-functions ] [ \-\-file\-format=\fIname\fR ]
+ [ \-\-file\-info ] [ \-\-help ] [ \-\-line ] [ \-\-min\-count=\fIn\fR ]
+ [ \-\-no\-static ] [ \-\-print\-path ] [ \-\-separate\-files ]
+ [ \-\-static\-call\-graph ] [ \-\-sum ] [ \-\-table\-length=\fIlen\fR ]
+ [ \-\-traditional ] [ \-\-version ] [ \-\-width=\fIn\fR ]
+ [ \-\-ignore\-non\-functions ] [ \-\-demangle[=\fI\s-1STYLE\s0\fR] ]
+ [ \-\-no\-demangle ] [ \fIimage-file\fR ] [ \fIprofile-file\fR ... ]
+.SH "DESCRIPTION"
+.IX Header "DESCRIPTION"
+\&\f(CW\*(C`gprof\*(C'\fR produces an execution profile of C, Pascal, or Fortran77
+programs. The effect of called routines is incorporated in the profile
+of each caller. The profile data is taken from the call graph profile file
+(\fIgmon.out\fR default) which is created by programs
+that are compiled with the \fB\-pg\fR option of
+\&\f(CW\*(C`cc\*(C'\fR, \f(CW\*(C`pc\*(C'\fR, and \f(CW\*(C`f77\*(C'\fR.
+The \fB\-pg\fR option also links in versions of the library routines
+that are compiled for profiling. \f(CW\*(C`Gprof\*(C'\fR reads the given object
+file (the default is \f(CW\*(C`a.out\*(C'\fR) and establishes the relation between
+its symbol table and the call graph profile from \fIgmon.out\fR.
+If more than one profile file is specified, the \f(CW\*(C`gprof\*(C'\fR
+output shows the sum of the profile information in the given profile files.
+.PP
+\&\f(CW\*(C`Gprof\*(C'\fR calculates the amount of time spent in each routine.
+Next, these times are propagated along the edges of the call graph.
+Cycles are discovered, and calls into a cycle are made to share the time
+of the cycle.
+.PP
+Several forms of output are available from the analysis.
+.PP
+The \fIflat profile\fR shows how much time your program spent in each function,
+and how many times that function was called. If you simply want to know
+which functions burn most of the cycles, it is stated concisely here.
+.PP
+The \fIcall graph\fR shows, for each function, which functions called it, which
+other functions it called, and how many times. There is also an estimate
+of how much time was spent in the subroutines of each function. This can
+suggest places where you might try to eliminate function calls that use a
+lot of time.
+.PP
+The \fIannotated source\fR listing is a copy of the program's
+source code, labeled with the number of times each line of the
+program was executed.
+.SH "OPTIONS"
+.IX Header "OPTIONS"
+These options specify which of several output formats
+\&\f(CW\*(C`gprof\*(C'\fR should produce.
+.PP
+Many of these options take an optional \fIsymspec\fR to specify
+functions to be included or excluded. These options can be
+specified multiple times, with different symspecs, to include
+or exclude sets of symbols.
+.PP
+Specifying any of these options overrides the default (\fB\-p \-q\fR),
+which prints a flat profile and call graph analysis
+for all functions.
+.ie n .IP """\-A[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-A[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-A[symspec]"
+.PD 0
+.ie n .IP """\-\-annotated\-source[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-annotated\-source[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--annotated-source[=symspec]"
+.PD
+The \fB\-A\fR option causes \f(CW\*(C`gprof\*(C'\fR to print annotated source code.
+If \fIsymspec\fR is specified, print output only for matching symbols.
+.ie n .IP """\-b""" 4
+.el .IP "\f(CW\-b\fR" 4
+.IX Item "-b"
+.PD 0
+.ie n .IP """\-\-brief""" 4
+.el .IP "\f(CW\-\-brief\fR" 4
+.IX Item "--brief"
+.PD
+If the \fB\-b\fR option is given, \f(CW\*(C`gprof\*(C'\fR doesn't print the
+verbose blurbs that try to explain the meaning of all of the fields in
+the tables. This is useful if you intend to print out the output, or
+are tired of seeing the blurbs.
+.ie n .IP """\-C[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-C[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-C[symspec]"
+.PD 0
+.ie n .IP """\-\-exec\-counts[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-exec\-counts[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--exec-counts[=symspec]"
+.PD
+The \fB\-C\fR option causes \f(CW\*(C`gprof\*(C'\fR to
+print a tally of functions and the number of times each was called.
+If \fIsymspec\fR is specified, print tally only for matching symbols.
+.Sp
+If the profile data file contains basic-block count records, specifying
+the \fB\-l\fR option, along with \fB\-C\fR, will cause basic-block
+execution counts to be tallied and displayed.
+.ie n .IP """\-i""" 4
+.el .IP "\f(CW\-i\fR" 4
+.IX Item "-i"
+.PD 0
+.ie n .IP """\-\-file\-info""" 4
+.el .IP "\f(CW\-\-file\-info\fR" 4
+.IX Item "--file-info"
+.PD
+The \fB\-i\fR option causes \f(CW\*(C`gprof\*(C'\fR to display summary information
+about the profile data file(s) and then exit. The number of histogram,
+call graph, and basic-block count records is displayed.
+.ie n .IP """\-I \f(CIdirs\f(CW""" 4
+.el .IP "\f(CW\-I \f(CIdirs\f(CW\fR" 4
+.IX Item "-I dirs"
+.PD 0
+.ie n .IP """\-\-directory\-path=\f(CIdirs\f(CW""" 4
+.el .IP "\f(CW\-\-directory\-path=\f(CIdirs\f(CW\fR" 4
+.IX Item "--directory-path=dirs"
+.PD
+The \fB\-I\fR option specifies a list of search directories in
+which to find source files. Environment variable \fI\s-1GPROF_PATH\s0\fR
+can also be used to convey this information.
+Used mostly for annotated source output.
+.ie n .IP """\-J[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-J[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-J[symspec]"
+.PD 0
+.ie n .IP """\-\-no\-annotated\-source[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-no\-annotated\-source[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--no-annotated-source[=symspec]"
+.PD
+The \fB\-J\fR option causes \f(CW\*(C`gprof\*(C'\fR not to
+print annotated source code.
+If \fIsymspec\fR is specified, \f(CW\*(C`gprof\*(C'\fR prints annotated source,
+but excludes matching symbols.
+.ie n .IP """\-L""" 4
+.el .IP "\f(CW\-L\fR" 4
+.IX Item "-L"
+.PD 0
+.ie n .IP """\-\-print\-path""" 4
+.el .IP "\f(CW\-\-print\-path\fR" 4
+.IX Item "--print-path"
+.PD
+Normally, source filenames are printed with the path
+component suppressed. The \fB\-L\fR option causes \f(CW\*(C`gprof\*(C'\fR
+to print the full pathname of
+source filenames, which is determined
+from symbolic debugging information in the image file
+and is relative to the directory in which the compiler
+was invoked.
+.ie n .IP """\-p[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-p[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-p[symspec]"
+.PD 0
+.ie n .IP """\-\-flat\-profile[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-flat\-profile[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--flat-profile[=symspec]"
+.PD
+The \fB\-p\fR option causes \f(CW\*(C`gprof\*(C'\fR to print a flat profile.
+If \fIsymspec\fR is specified, print flat profile only for matching symbols.
+.ie n .IP """\-P[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-P[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-P[symspec]"
+.PD 0
+.ie n .IP """\-\-no\-flat\-profile[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-no\-flat\-profile[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--no-flat-profile[=symspec]"
+.PD
+The \fB\-P\fR option causes \f(CW\*(C`gprof\*(C'\fR to suppress printing a flat profile.
+If \fIsymspec\fR is specified, \f(CW\*(C`gprof\*(C'\fR prints a flat profile,
+but excludes matching symbols.
+.ie n .IP """\-q[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-q[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-q[symspec]"
+.PD 0
+.ie n .IP """\-\-graph[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-graph[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--graph[=symspec]"
+.PD
+The \fB\-q\fR option causes \f(CW\*(C`gprof\*(C'\fR to print the call graph analysis.
+If \fIsymspec\fR is specified, print call graph only for matching symbols
+and their children.
+.ie n .IP """\-Q[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-Q[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-Q[symspec]"
+.PD 0
+.ie n .IP """\-\-no\-graph[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-no\-graph[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--no-graph[=symspec]"
+.PD
+The \fB\-Q\fR option causes \f(CW\*(C`gprof\*(C'\fR to suppress printing the
+call graph.
+If \fIsymspec\fR is specified, \f(CW\*(C`gprof\*(C'\fR prints a call graph,
+but excludes matching symbols.
+.ie n .IP """\-y""" 4
+.el .IP "\f(CW\-y\fR" 4
+.IX Item "-y"
+.PD 0
+.ie n .IP """\-\-separate\-files""" 4
+.el .IP "\f(CW\-\-separate\-files\fR" 4
+.IX Item "--separate-files"
+.PD
+This option affects annotated source output only.
+Normally, \f(CW\*(C`gprof\*(C'\fR prints annotated source files
+to standard\-output. If this option is specified,
+annotated source for a file named \fIpath/\fIfilename\fI\fR
+is generated in the file \fI\fIfilename\fI\-ann\fR. If the underlying
+filesystem would truncate \fI\fIfilename\fI\-ann\fR so that it
+overwrites the original \fI\fIfilename\fI\fR, \f(CW\*(C`gprof\*(C'\fR generates
+annotated source in the file \fI\fIfilename\fI.ann\fR instead (if the
+original file name has an extension, that extension is \fIreplaced\fR
+with \fI.ann\fR).
+.ie n .IP """\-Z[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-Z[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-Z[symspec]"
+.PD 0
+.ie n .IP """\-\-no\-exec\-counts[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-no\-exec\-counts[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--no-exec-counts[=symspec]"
+.PD
+The \fB\-Z\fR option causes \f(CW\*(C`gprof\*(C'\fR not to
+print a tally of functions and the number of times each was called.
+If \fIsymspec\fR is specified, print tally, but exclude matching symbols.
+.ie n .IP """\-\-function\-ordering""" 4
+.el .IP "\f(CW\-\-function\-ordering\fR" 4
+.IX Item "--function-ordering"
+The \fB\-\-function\-ordering\fR option causes \f(CW\*(C`gprof\*(C'\fR to print a
+suggested function ordering for the program based on profiling data.
+This option suggests an ordering which may improve paging, tlb and
+cache behavior for the program on systems which support arbitrary
+ordering of functions in an executable.
+.Sp
+The exact details of how to force the linker to place functions
+in a particular order is system dependent and out of the scope of this
+manual.
+.ie n .IP """\-\-file\-ordering \f(CImap_file\f(CW""" 4
+.el .IP "\f(CW\-\-file\-ordering \f(CImap_file\f(CW\fR" 4
+.IX Item "--file-ordering map_file"
+The \fB\-\-file\-ordering\fR option causes \f(CW\*(C`gprof\*(C'\fR to print a
+suggested .o link line ordering for the program based on profiling data.
+This option suggests an ordering which may improve paging, tlb and
+cache behavior for the program on systems which do not support arbitrary
+ordering of functions in an executable.
+.Sp
+Use of the \fB\-a\fR argument is highly recommended with this option.
+.Sp
+The \fImap_file\fR argument is a pathname to a file which provides
+function name to object file mappings. The format of the file is similar to
+the output of the program \f(CW\*(C`nm\*(C'\fR.
+.Sp
+.Vb 8
+\& c-parse.o:00000000 T yyparse
+\& c-parse.o:00000004 C yyerrflag
+\& c-lang.o:00000000 T maybe_objc_method_name
+\& c-lang.o:00000000 T print_lang_statistics
+\& c-lang.o:00000000 T recognize_objc_keyword
+\& c-decl.o:00000000 T print_lang_identifier
+\& c-decl.o:00000000 T print_lang_type
+\& ...
+.Ve
+.Sp
+To create a \fImap_file\fR with \s-1GNU\s0 \f(CW\*(C`nm\*(C'\fR, type a command like
+\&\f(CW\*(C`nm \-\-extern\-only \-\-defined\-only \-v \-\-print\-file\-name program\-name\*(C'\fR.
+.ie n .IP """\-T""" 4
+.el .IP "\f(CW\-T\fR" 4
+.IX Item "-T"
+.PD 0
+.ie n .IP """\-\-traditional""" 4
+.el .IP "\f(CW\-\-traditional\fR" 4
+.IX Item "--traditional"
+.PD
+The \fB\-T\fR option causes \f(CW\*(C`gprof\*(C'\fR to print its output in
+``traditional'' \s-1BSD\s0 style.
+.ie n .IP """\-w \f(CIwidth\f(CW""" 4
+.el .IP "\f(CW\-w \f(CIwidth\f(CW\fR" 4
+.IX Item "-w width"
+.PD 0
+.ie n .IP """\-\-width=\f(CIwidth\f(CW""" 4
+.el .IP "\f(CW\-\-width=\f(CIwidth\f(CW\fR" 4
+.IX Item "--width=width"
+.PD
+Sets width of output lines to \fIwidth\fR.
+Currently only used when printing the function index at the bottom
+of the call graph.
+.ie n .IP """\-x""" 4
+.el .IP "\f(CW\-x\fR" 4
+.IX Item "-x"
+.PD 0
+.ie n .IP """\-\-all\-lines""" 4
+.el .IP "\f(CW\-\-all\-lines\fR" 4
+.IX Item "--all-lines"
+.PD
+This option affects annotated source output only.
+By default, only the lines at the beginning of a basic-block
+are annotated. If this option is specified, every line in
+a basic-block is annotated by repeating the annotation for the
+first line. This behavior is similar to \f(CW\*(C`tcov\*(C'\fR's \fB\-a\fR.
+.ie n .IP """\-\-demangle[=\f(CIstyle\f(CW]""" 4
+.el .IP "\f(CW\-\-demangle[=\f(CIstyle\f(CW]\fR" 4
+.IX Item "--demangle[=style]"
+.PD 0
+.ie n .IP """\-\-no\-demangle""" 4
+.el .IP "\f(CW\-\-no\-demangle\fR" 4
+.IX Item "--no-demangle"
+.PD
+These options control whether \*(C+ symbol names should be demangled when
+printing output. The default is to demangle symbols. The
+\&\f(CW\*(C`\-\-no\-demangle\*(C'\fR option may be used to turn off demangling. Different
+compilers have different mangling styles. The optional demangling style
+argument can be used to choose an appropriate demangling style for your
+compiler.
+.Sh "Analysis Options"
+.IX Subsection "Analysis Options"
+.ie n .IP """\-a""" 4
+.el .IP "\f(CW\-a\fR" 4
+.IX Item "-a"
+.PD 0
+.ie n .IP """\-\-no\-static""" 4
+.el .IP "\f(CW\-\-no\-static\fR" 4
+.IX Item "--no-static"
+.PD
+The \fB\-a\fR option causes \f(CW\*(C`gprof\*(C'\fR to suppress the printing of
+statically declared (private) functions. (These are functions whose
+names are not listed as global, and which are not visible outside the
+file/function/block where they were defined.) Time spent in these
+functions, calls to/from them, etc, will all be attributed to the
+function that was loaded directly before it in the executable file.
+This option affects both the flat profile and the call graph.
+.ie n .IP """\-c""" 4
+.el .IP "\f(CW\-c\fR" 4
+.IX Item "-c"
+.PD 0
+.ie n .IP """\-\-static\-call\-graph""" 4
+.el .IP "\f(CW\-\-static\-call\-graph\fR" 4
+.IX Item "--static-call-graph"
+.PD
+The \fB\-c\fR option causes the call graph of the program to be
+augmented by a heuristic which examines the text space of the object
+file and identifies function calls in the binary machine code.
+Since normal call graph records are only generated when functions are
+entered, this option identifies children that could have been called,
+but never were. Calls to functions that were not compiled with
+profiling enabled are also identified, but only if symbol table
+entries are present for them.
+Calls to dynamic library routines are typically \fInot\fR found
+by this option.
+Parents or children identified via this heuristic
+are indicated in the call graph with call counts of \fB0\fR.
+.ie n .IP """\-D""" 4
+.el .IP "\f(CW\-D\fR" 4
+.IX Item "-D"
+.PD 0
+.ie n .IP """\-\-ignore\-non\-functions""" 4
+.el .IP "\f(CW\-\-ignore\-non\-functions\fR" 4
+.IX Item "--ignore-non-functions"
+.PD
+The \fB\-D\fR option causes \f(CW\*(C`gprof\*(C'\fR to ignore symbols which
+are not known to be functions. This option will give more accurate
+profile data on systems where it is supported (Solaris and \s-1HPUX\s0 for
+example).
+.ie n .IP """\-k \f(CIfrom\f(CW/\f(CIto\f(CW""" 4
+.el .IP "\f(CW\-k \f(CIfrom\f(CW/\f(CIto\f(CW\fR" 4
+.IX Item "-k from/to"
+The \fB\-k\fR option allows you to delete from the call graph any arcs from
+symbols matching symspec \fIfrom\fR to those matching symspec \fIto\fR.
+.ie n .IP """\-l""" 4
+.el .IP "\f(CW\-l\fR" 4
+.IX Item "-l"
+.PD 0
+.ie n .IP """\-\-line""" 4
+.el .IP "\f(CW\-\-line\fR" 4
+.IX Item "--line"
+.PD
+The \fB\-l\fR option enables line-by-line profiling, which causes
+histogram hits to be charged to individual source code lines,
+instead of functions.
+If the program was compiled with basic-block counting enabled,
+this option will also identify how many times each line of
+code was executed.
+While line-by-line profiling can help isolate where in a large function
+a program is spending its time, it also significantly increases
+the running time of \f(CW\*(C`gprof\*(C'\fR, and magnifies statistical
+inaccuracies.
+.ie n .IP """\-m \f(CInum\f(CW""" 4
+.el .IP "\f(CW\-m \f(CInum\f(CW\fR" 4
+.IX Item "-m num"
+.PD 0
+.ie n .IP """\-\-min\-count=\f(CInum\f(CW""" 4
+.el .IP "\f(CW\-\-min\-count=\f(CInum\f(CW\fR" 4
+.IX Item "--min-count=num"
+.PD
+This option affects execution count output only.
+Symbols that are executed less than \fInum\fR times are suppressed.
+.ie n .IP """\-n[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-n[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-n[symspec]"
+.PD 0
+.ie n .IP """\-\-time[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-time[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--time[=symspec]"
+.PD
+The \fB\-n\fR option causes \f(CW\*(C`gprof\*(C'\fR, in its call graph analysis,
+to only propagate times for symbols matching \fIsymspec\fR.
+.ie n .IP """\-N[\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-N[\f(CIsymspec\f(CW]\fR" 4
+.IX Item "-N[symspec]"
+.PD 0
+.ie n .IP """\-\-no\-time[=\f(CIsymspec\f(CW]""" 4
+.el .IP "\f(CW\-\-no\-time[=\f(CIsymspec\f(CW]\fR" 4
+.IX Item "--no-time[=symspec]"
+.PD
+The \fB\-n\fR option causes \f(CW\*(C`gprof\*(C'\fR, in its call graph analysis,
+not to propagate times for symbols matching \fIsymspec\fR.
+.ie n .IP """\-z""" 4
+.el .IP "\f(CW\-z\fR" 4
+.IX Item "-z"
+.PD 0
+.ie n .IP """\-\-display\-unused\-functions""" 4
+.el .IP "\f(CW\-\-display\-unused\-functions\fR" 4
+.IX Item "--display-unused-functions"
+.PD
+If you give the \fB\-z\fR option, \f(CW\*(C`gprof\*(C'\fR will mention all
+functions in the flat profile, even those that were never called, and
+that had no time spent in them. This is useful in conjunction with the
+\&\fB\-c\fR option for discovering which routines were never called.
+.Sh "Miscellaneous Options"
+.IX Subsection "Miscellaneous Options"
+.ie n .IP """\-d[\f(CInum\f(CW]""" 4
+.el .IP "\f(CW\-d[\f(CInum\f(CW]\fR" 4
+.IX Item "-d[num]"
+.PD 0
+.ie n .IP """\-\-debug[=\f(CInum\f(CW]""" 4
+.el .IP "\f(CW\-\-debug[=\f(CInum\f(CW]\fR" 4
+.IX Item "--debug[=num]"
+.PD
+The \fB\-d\fR \fInum\fR option specifies debugging options.
+If \fInum\fR is not specified, enable all debugging.
+.ie n .IP """\-O\f(CIname\f(CW""" 4
+.el .IP "\f(CW\-O\f(CIname\f(CW\fR" 4
+.IX Item "-Oname"
+.PD 0
+.ie n .IP """\-\-file\-format=\f(CIname\f(CW""" 4
+.el .IP "\f(CW\-\-file\-format=\f(CIname\f(CW\fR" 4
+.IX Item "--file-format=name"
+.PD
+Selects the format of the profile data files. Recognized formats are
+\&\fBauto\fR (the default), \fBbsd\fR, \fB4.4bsd\fR, \fBmagic\fR, and
+\&\fBprof\fR (not yet supported).
+.ie n .IP """\-s""" 4
+.el .IP "\f(CW\-s\fR" 4
+.IX Item "-s"
+.PD 0
+.ie n .IP """\-\-sum""" 4
+.el .IP "\f(CW\-\-sum\fR" 4
+.IX Item "--sum"
+.PD
+The \fB\-s\fR option causes \f(CW\*(C`gprof\*(C'\fR to summarize the information
+in the profile data files it read in, and write out a profile data
+file called \fIgmon.sum\fR, which contains all the information from
+the profile data files that \f(CW\*(C`gprof\*(C'\fR read in. The file \fIgmon.sum\fR
+may be one of the specified input files; the effect of this is to
+merge the data in the other input files into \fIgmon.sum\fR.
+.Sp
+Eventually you can run \f(CW\*(C`gprof\*(C'\fR again without \fB\-s\fR to analyze the
+cumulative data in the file \fIgmon.sum\fR.
+.ie n .IP """\-v""" 4
+.el .IP "\f(CW\-v\fR" 4
+.IX Item "-v"
+.PD 0
+.ie n .IP """\-\-version""" 4
+.el .IP "\f(CW\-\-version\fR" 4
+.IX Item "--version"
+.PD
+The \fB\-v\fR flag causes \f(CW\*(C`gprof\*(C'\fR to print the current version
+number, and then exit.
+.Sh "Deprecated Options"
+.IX Subsection "Deprecated Options"
+.RS 4
+These options have been replaced with newer versions that use symspecs.
+.RE
+.ie n .IP """\-e \f(CIfunction_name\f(CW""" 4
+.el .IP "\f(CW\-e \f(CIfunction_name\f(CW\fR" 4
+.IX Item "-e function_name"
+The \fB\-e\fR \fIfunction\fR option tells \f(CW\*(C`gprof\*(C'\fR to not print
+information about the function \fIfunction_name\fR (and its
+children...) in the call graph. The function will still be listed
+as a child of any functions that call it, but its index number will be
+shown as \fB[not printed]\fR. More than one \fB\-e\fR option may be
+given; only one \fIfunction_name\fR may be indicated with each \fB\-e\fR
+option.
+.ie n .IP """\-E \f(CIfunction_name\f(CW""" 4
+.el .IP "\f(CW\-E \f(CIfunction_name\f(CW\fR" 4
+.IX Item "-E function_name"
+The \f(CW\*(C`\-E \f(CIfunction\f(CW\*(C'\fR option works like the \f(CW\*(C`\-e\*(C'\fR option, but
+time spent in the function (and children who were not called from
+anywhere else), will not be used to compute the percentages-of-time for
+the call graph. More than one \fB\-E\fR option may be given; only one
+\&\fIfunction_name\fR may be indicated with each \fB\-E\fR option.
+.ie n .IP """\-f \f(CIfunction_name\f(CW""" 4
+.el .IP "\f(CW\-f \f(CIfunction_name\f(CW\fR" 4
+.IX Item "-f function_name"
+The \fB\-f\fR \fIfunction\fR option causes \f(CW\*(C`gprof\*(C'\fR to limit the
+call graph to the function \fIfunction_name\fR and its children (and
+their children...). More than one \fB\-f\fR option may be given;
+only one \fIfunction_name\fR may be indicated with each \fB\-f\fR
+option.
+.ie n .IP """\-F \f(CIfunction_name\f(CW""" 4
+.el .IP "\f(CW\-F \f(CIfunction_name\f(CW\fR" 4
+.IX Item "-F function_name"
+The \fB\-F\fR \fIfunction\fR option works like the \f(CW\*(C`\-f\*(C'\fR option, but
+only time spent in the function and its children (and their
+children...) will be used to determine total-time and
+percentages-of-time for the call graph. More than one \fB\-F\fR option
+may be given; only one \fIfunction_name\fR may be indicated with each
+\&\fB\-F\fR option. The \fB\-F\fR option overrides the \fB\-E\fR option.
+.SH "FILES"
+.IX Header "FILES"
+.ie n .IP """\f(CIa.out\f(CW""" 4
+.el .IP "\f(CW\f(CIa.out\f(CW\fR" 4
+.IX Item "a.out"
+the namelist and text space.
+.ie n .IP """\f(CIgmon.out\f(CW""" 4
+.el .IP "\f(CW\f(CIgmon.out\f(CW\fR" 4
+.IX Item "gmon.out"
+dynamic call graph and profile.
+.ie n .IP """\f(CIgmon.sum\f(CW""" 4
+.el .IP "\f(CW\f(CIgmon.sum\f(CW\fR" 4
+.IX Item "gmon.sum"
+summarized dynamic call graph and profile.
+.SH "BUGS"
+.IX Header "BUGS"
+The granularity of the sampling is shown, but remains
+statistical at best.
+We assume that the time for each execution of a function
+can be expressed by the total time for the function divided
+by the number of times the function is called.
+Thus the time propagated along the call graph arcs to the function's
+parents is directly proportional to the number of times that
+arc is traversed.
+.PP
+Parents that are not themselves profiled will have the time of
+their profiled children propagated to them, but they will appear
+to be spontaneously invoked in the call graph listing, and will
+not have their time propagated further.
+Similarly, signal catchers, even though profiled, will appear
+to be spontaneous (although for more obscure reasons).
+Any profiled children of signal catchers should have their times
+propagated properly, unless the signal catcher was invoked during
+the execution of the profiling routine, in which case all is lost.
+.PP
+The profiled program must call \f(CW\*(C`exit\*(C'\fR(2)
+or return normally for the profiling information to be saved
+in the \fIgmon.out\fR file.
+.SH "SEE ALSO"
+.IX Header "SEE ALSO"
+\&\fImonitor\fR\|(3), \fIprofil\fR\|(2), \fIcc\fR\|(1), \fIprof\fR\|(1), and the Info entry for \fIgprof\fR.
+.PP
+``An Execution Profiler for Modular Programs'',
+by S. Graham, P. Kessler, M. McKusick;
+Software \- Practice and Experience,
+Vol. 13, pp. 671\-685, 1983.
+.PP
+``gprof: A Call Graph Execution Profiler'',
+by S. Graham, P. Kessler, M. McKusick;
+Proceedings of the \s-1SIGPLAN\s0 '82 Symposium on Compiler Construction,
+\&\s-1SIGPLAN\s0 Notices, Vol. 17, No 6, pp. 120\-126, June 1982.
+.SH "COPYRIGHT"
+.IX Header "COPYRIGHT"
+Copyright (C) 1988, 92, 97, 98, 99, 2000, 2001 Free Software Foundation, Inc.
+.PP
+Permission is granted to copy, distribute and/or modify this document
+under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.1
+or any later version published by the Free Software Foundation;
+with no Invariant Sections, with no Front-Cover Texts, and with no
+Back-Cover Texts. A copy of the license is included in the
+section entitled \*(L"\s-1GNU\s0 Free Documentation License\*(R".
diff --git a/gprof/gprof.info b/gprof/gprof.info
new file mode 100644
index 0000000..adec199
--- /dev/null
+++ b/gprof/gprof.info
@@ -0,0 +1,58 @@
+This is gprof.info, produced by makeinfo version 4.3 from gprof.texi.
+
+START-INFO-DIR-ENTRY
+* gprof: (gprof). Profiling your program's execution
+END-INFO-DIR-ENTRY
+
+ This file documents the gprof profiler of the GNU system.
+
+ Copyright (C) 1988, 92, 97, 98, 99, 2000, 2001 Free Software
+Foundation, Inc.
+
+ Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU Free Documentation License, Version 1.1 or
+any later version published by the Free Software Foundation; with no
+Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
+Texts. A copy of the license is included in the section entitled "GNU
+Free Documentation License".
+
+
+Indirect:
+gprof.info-1: 707
+gprof.info-2: 48575
+gprof.info-3: 82712
+
+Tag Table:
+(Indirect)
+Node: Top707
+Node: Introduction1949
+Node: Compiling4278
+Node: Executing6939
+Node: Invoking9729
+Node: Output Options11143
+Node: Analysis Options17955
+Node: Miscellaneous Options21148
+Node: Deprecated Options22309
+Node: Symspecs24379
+Node: Output26200
+Node: Flat Profile27225
+Node: Call Graph32155
+Node: Primary35370
+Node: Callers37902
+Node: Subroutines40010
+Node: Cycles41810
+Node: Line-by-line48575
+Node: Annotated Source52374
+Node: Inaccuracy55235
+Node: Sampling Error55489
+Node: Assumptions58054
+Node: How do I?59522
+Node: Incompatibilities60740
+Node: Details62207
+Node: Implementation62596
+Node: File Format68488
+Node: Internals72746
+Node: Debugging81116
+Node: GNU Free Documentation License82712
+
+End Tag Table
diff --git a/gprof/gprof.info-1 b/gprof/gprof.info-1
new file mode 100644
index 0000000..f5a0595
--- /dev/null
+++ b/gprof/gprof.info-1
@@ -0,0 +1,1132 @@
+This is gprof.info, produced by makeinfo version 4.3 from gprof.texi.
+
+START-INFO-DIR-ENTRY
+* gprof: (gprof). Profiling your program's execution
+END-INFO-DIR-ENTRY
+
+ This file documents the gprof profiler of the GNU system.
+
+ Copyright (C) 1988, 92, 97, 98, 99, 2000, 2001 Free Software
+Foundation, Inc.
+
+ Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU Free Documentation License, Version 1.1 or
+any later version published by the Free Software Foundation; with no
+Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
+Texts. A copy of the license is included in the section entitled "GNU
+Free Documentation License".
+
+
+File: gprof.info, Node: Top, Next: Introduction, Up: (dir)
+
+Profiling a Program: Where Does It Spend Its Time?
+**************************************************
+
+ This manual describes the GNU profiler, `gprof', and how you can use
+it to determine which parts of a program are taking most of the
+execution time. We assume that you know how to write, compile, and
+execute programs. GNU `gprof' was written by Jay Fenlason.
+
+ This document is distributed under the terms of the GNU Free
+Documentation License. A copy of the license is included in the
+section entitled "GNU Free Documentation License".
+
+* Menu:
+
+* Introduction:: What profiling means, and why it is useful.
+
+* Compiling:: How to compile your program for profiling.
+* Executing:: Executing your program to generate profile data
+* Invoking:: How to run `gprof', and its options
+
+* Output:: Interpreting `gprof''s output
+
+* Inaccuracy:: Potential problems you should be aware of
+* How do I?:: Answers to common questions
+* Incompatibilities:: (between GNU `gprof' and Unix `gprof'.)
+* Details:: Details of how profiling is done
+* GNU Free Documentation License:: GNU Free Documentation License
+
+
+File: gprof.info, Node: Introduction, Next: Compiling, Prev: Top, Up: Top
+
+Introduction to Profiling
+*************************
+
+ Profiling allows you to learn where your program spent its time and
+which functions called which other functions while it was executing.
+This information can show you which pieces of your program are slower
+than you expected, and might be candidates for rewriting to make your
+program execute faster. It can also tell you which functions are being
+called more or less often than you expected. This may help you spot
+bugs that had otherwise been unnoticed.
+
+ Since the profiler uses information collected during the actual
+execution of your program, it can be used on programs that are too
+large or too complex to analyze by reading the source. However, how
+your program is run will affect the information that shows up in the
+profile data. If you don't use some feature of your program while it
+is being profiled, no profile information will be generated for that
+feature.
+
+ Profiling has several steps:
+
+ * You must compile and link your program with profiling enabled.
+ *Note Compiling::.
+
+ * You must execute your program to generate a profile data file.
+ *Note Executing::.
+
+ * You must run `gprof' to analyze the profile data. *Note
+ Invoking::.
+
+ The next three chapters explain these steps in greater detail.
+
+ Several forms of output are available from the analysis.
+
+ The "flat profile" shows how much time your program spent in each
+function, and how many times that function was called. If you simply
+want to know which functions burn most of the cycles, it is stated
+concisely here. *Note Flat Profile::.
+
+ The "call graph" shows, for each function, which functions called
+it, which other functions it called, and how many times. There is also
+an estimate of how much time was spent in the subroutines of each
+function. This can suggest places where you might try to eliminate
+function calls that use a lot of time. *Note Call Graph::.
+
+ The "annotated source" listing is a copy of the program's source
+code, labeled with the number of times each line of the program was
+executed. *Note Annotated Source::.
+
+ To better understand how profiling works, you may wish to read a
+description of its implementation. *Note Implementation::.
+
+
+File: gprof.info, Node: Compiling, Next: Executing, Prev: Introduction, Up: Top
+
+Compiling a Program for Profiling
+*********************************
+
+ The first step in generating profile information for your program is
+to compile and link it with profiling enabled.
+
+ To compile a source file for profiling, specify the `-pg' option when
+you run the compiler. (This is in addition to the options you normally
+use.)
+
+ To link the program for profiling, if you use a compiler such as `cc'
+to do the linking, simply specify `-pg' in addition to your usual
+options. The same option, `-pg', alters either compilation or linking
+to do what is necessary for profiling. Here are examples:
+
+ cc -g -c myprog.c utils.c -pg
+ cc -o myprog myprog.o utils.o -pg
+
+ The `-pg' option also works with a command that both compiles and
+links:
+
+ cc -o myprog myprog.c utils.c -g -pg
+
+ If you run the linker `ld' directly instead of through a compiler
+such as `cc', you may have to specify a profiling startup file
+`gcrt0.o' as the first input file instead of the usual startup file
+`crt0.o'. In addition, you would probably want to specify the
+profiling C library, `libc_p.a', by writing `-lc_p' instead of the
+usual `-lc'. This is not absolutely necessary, but doing this gives
+you number-of-calls information for standard library functions such as
+`read' and `open'. For example:
+
+ ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
+
+ If you compile only some of the modules of the program with `-pg',
+you can still profile the program, but you won't get complete
+information about the modules that were compiled without `-pg'. The
+only information you get for the functions in those modules is the
+total time spent in them; there is no record of how many times they
+were called, or from where. This will not affect the flat profile
+(except that the `calls' field for the functions will be blank), but
+will greatly reduce the usefulness of the call graph.
+
+ If you wish to perform line-by-line profiling, you will also need to
+specify the `-g' option, instructing the compiler to insert debugging
+symbols into the program that match program addresses to source code
+lines. *Note Line-by-line::.
+
+ In addition to the `-pg' and `-g' options, you may also wish to
+specify the `-a' option when compiling. This will instrument the
+program to perform basic-block counting. As the program runs, it will
+count how many times it executed each branch of each `if' statement,
+each iteration of each `do' loop, etc. This will enable `gprof' to
+construct an annotated source code listing showing how many times each
+line of code was executed.
+
+
+File: gprof.info, Node: Executing, Next: Invoking, Prev: Compiling, Up: Top
+
+Executing the Program
+*********************
+
+ Once the program is compiled for profiling, you must run it in order
+to generate the information that `gprof' needs. Simply run the program
+as usual, using the normal arguments, file names, etc. The program
+should run normally, producing the same output as usual. It will,
+however, run somewhat slower than normal because of the time spent
+collecting and the writing the profile data.
+
+ The way you run the program--the arguments and input that you give
+it--may have a dramatic effect on what the profile information shows.
+The profile data will describe the parts of the program that were
+activated for the particular input you use. For example, if the first
+command you give to your program is to quit, the profile data will show
+the time used in initialization and in cleanup, but not much else.
+
+ Your program will write the profile data into a file called
+`gmon.out' just before exiting. If there is already a file called
+`gmon.out', its contents are overwritten. There is currently no way to
+tell the program to write the profile data under a different name, but
+you can rename the file afterward if you are concerned that it may be
+overwritten.
+
+ In order to write the `gmon.out' file properly, your program must
+exit normally: by returning from `main' or by calling `exit'. Calling
+the low-level function `_exit' does not write the profile data, and
+neither does abnormal termination due to an unhandled signal.
+
+ The `gmon.out' file is written in the program's _current working
+directory_ at the time it exits. This means that if your program calls
+`chdir', the `gmon.out' file will be left in the last directory your
+program `chdir''d to. If you don't have permission to write in this
+directory, the file is not written, and you will get an error message.
+
+ Older versions of the GNU profiling library may also write a file
+called `bb.out'. This file, if present, contains an human-readable
+listing of the basic-block execution counts. Unfortunately, the
+appearance of a human-readable `bb.out' means the basic-block counts
+didn't get written into `gmon.out'. The Perl script `bbconv.pl',
+included with the `gprof' source distribution, will convert a `bb.out'
+file into a format readable by `gprof'. Invoke it like this:
+
+ bbconv.pl < bb.out > BH-DATA
+
+ This translates the information in `bb.out' into a form that `gprof'
+can understand. But you still need to tell `gprof' about the existence
+of this translated information. To do that, include BB-DATA on the
+`gprof' command line, _along with `gmon.out'_, like this:
+
+ gprof OPTIONS EXECUTABLE-FILE gmon.out BB-DATA [YET-MORE-PROFILE-DATA-FILES...] [> OUTFILE]
+
+
+File: gprof.info, Node: Invoking, Next: Output, Prev: Executing, Up: Top
+
+`gprof' Command Summary
+***********************
+
+ After you have a profile data file `gmon.out', you can run `gprof'
+to interpret the information in it. The `gprof' program prints a flat
+profile and a call graph on standard output. Typically you would
+redirect the output of `gprof' into a file with `>'.
+
+ You run `gprof' like this:
+
+ gprof OPTIONS [EXECUTABLE-FILE [PROFILE-DATA-FILES...]] [> OUTFILE]
+
+Here square-brackets indicate optional arguments.
+
+ If you omit the executable file name, the file `a.out' is used. If
+you give no profile data file name, the file `gmon.out' is used. If
+any file is not in the proper format, or if the profile data file does
+not appear to belong to the executable file, an error message is
+printed.
+
+ You can give more than one profile data file by entering all their
+names after the executable file name; then the statistics in all the
+data files are summed together.
+
+ The order of these options does not matter.
+
+* Menu:
+
+* Output Options:: Controlling `gprof''s output style
+* Analysis Options:: Controlling how `gprof' analyses its data
+* Miscellaneous Options::
+* Deprecated Options:: Options you no longer need to use, but which
+ have been retained for compatibility
+* Symspecs:: Specifying functions to include or exclude
+
+
+File: gprof.info, Node: Output Options, Next: Analysis Options, Up: Invoking
+
+Output Options
+==============
+
+ These options specify which of several output formats `gprof' should
+produce.
+
+ Many of these options take an optional "symspec" to specify
+functions to be included or excluded. These options can be specified
+multiple times, with different symspecs, to include or exclude sets of
+symbols. *Note Symspecs::.
+
+ Specifying any of these options overrides the default (`-p -q'),
+which prints a flat profile and call graph analysis for all functions.
+
+`-A[SYMSPEC]'
+`--annotated-source[=SYMSPEC]'
+ The `-A' option causes `gprof' to print annotated source code. If
+ SYMSPEC is specified, print output only for matching symbols.
+ *Note Annotated Source::.
+
+`-b'
+`--brief'
+ If the `-b' option is given, `gprof' doesn't print the verbose
+ blurbs that try to explain the meaning of all of the fields in the
+ tables. This is useful if you intend to print out the output, or
+ are tired of seeing the blurbs.
+
+`-C[SYMSPEC]'
+`--exec-counts[=SYMSPEC]'
+ The `-C' option causes `gprof' to print a tally of functions and
+ the number of times each was called. If SYMSPEC is specified,
+ print tally only for matching symbols.
+
+ If the profile data file contains basic-block count records,
+ specifying the `-l' option, along with `-C', will cause basic-block
+ execution counts to be tallied and displayed.
+
+`-i'
+`--file-info'
+ The `-i' option causes `gprof' to display summary information
+ about the profile data file(s) and then exit. The number of
+ histogram, call graph, and basic-block count records is displayed.
+
+`-I DIRS'
+`--directory-path=DIRS'
+ The `-I' option specifies a list of search directories in which to
+ find source files. Environment variable GPROF_PATH can also be
+ used to convey this information. Used mostly for annotated source
+ output.
+
+`-J[SYMSPEC]'
+`--no-annotated-source[=SYMSPEC]'
+ The `-J' option causes `gprof' not to print annotated source code.
+ If SYMSPEC is specified, `gprof' prints annotated source, but
+ excludes matching symbols.
+
+`-L'
+`--print-path'
+ Normally, source filenames are printed with the path component
+ suppressed. The `-L' option causes `gprof' to print the full
+ pathname of source filenames, which is determined from symbolic
+ debugging information in the image file and is relative to the
+ directory in which the compiler was invoked.
+
+`-p[SYMSPEC]'
+`--flat-profile[=SYMSPEC]'
+ The `-p' option causes `gprof' to print a flat profile. If
+ SYMSPEC is specified, print flat profile only for matching symbols.
+ *Note Flat Profile::.
+
+`-P[SYMSPEC]'
+`--no-flat-profile[=SYMSPEC]'
+ The `-P' option causes `gprof' to suppress printing a flat profile.
+ If SYMSPEC is specified, `gprof' prints a flat profile, but
+ excludes matching symbols.
+
+`-q[SYMSPEC]'
+`--graph[=SYMSPEC]'
+ The `-q' option causes `gprof' to print the call graph analysis.
+ If SYMSPEC is specified, print call graph only for matching symbols
+ and their children. *Note Call Graph::.
+
+`-Q[SYMSPEC]'
+`--no-graph[=SYMSPEC]'
+ The `-Q' option causes `gprof' to suppress printing the call graph.
+ If SYMSPEC is specified, `gprof' prints a call graph, but excludes
+ matching symbols.
+
+`-y'
+`--separate-files'
+ This option affects annotated source output only. Normally,
+ `gprof' prints annotated source files to standard-output. If this
+ option is specified, annotated source for a file named
+ `path/FILENAME' is generated in the file `FILENAME-ann'. If the
+ underlying filesystem would truncate `FILENAME-ann' so that it
+ overwrites the original `FILENAME', `gprof' generates annotated
+ source in the file `FILENAME.ann' instead (if the original file
+ name has an extension, that extension is _replaced_ with `.ann').
+
+`-Z[SYMSPEC]'
+`--no-exec-counts[=SYMSPEC]'
+ The `-Z' option causes `gprof' not to print a tally of functions
+ and the number of times each was called. If SYMSPEC is specified,
+ print tally, but exclude matching symbols.
+
+`--function-ordering'
+ The `--function-ordering' option causes `gprof' to print a
+ suggested function ordering for the program based on profiling
+ data. This option suggests an ordering which may improve paging,
+ tlb and cache behavior for the program on systems which support
+ arbitrary ordering of functions in an executable.
+
+ The exact details of how to force the linker to place functions in
+ a particular order is system dependent and out of the scope of this
+ manual.
+
+`--file-ordering MAP_FILE'
+ The `--file-ordering' option causes `gprof' to print a suggested
+ .o link line ordering for the program based on profiling data.
+ This option suggests an ordering which may improve paging, tlb and
+ cache behavior for the program on systems which do not support
+ arbitrary ordering of functions in an executable.
+
+ Use of the `-a' argument is highly recommended with this option.
+
+ The MAP_FILE argument is a pathname to a file which provides
+ function name to object file mappings. The format of the file is
+ similar to the output of the program `nm'.
+
+ c-parse.o:00000000 T yyparse
+ c-parse.o:00000004 C yyerrflag
+ c-lang.o:00000000 T maybe_objc_method_name
+ c-lang.o:00000000 T print_lang_statistics
+ c-lang.o:00000000 T recognize_objc_keyword
+ c-decl.o:00000000 T print_lang_identifier
+ c-decl.o:00000000 T print_lang_type
+ ...
+
+ To create a MAP_FILE with GNU `nm', type a command like `nm
+ --extern-only --defined-only -v --print-file-name program-name'.
+
+`-T'
+`--traditional'
+ The `-T' option causes `gprof' to print its output in
+ "traditional" BSD style.
+
+`-w WIDTH'
+`--width=WIDTH'
+ Sets width of output lines to WIDTH. Currently only used when
+ printing the function index at the bottom of the call graph.
+
+`-x'
+`--all-lines'
+ This option affects annotated source output only. By default,
+ only the lines at the beginning of a basic-block are annotated.
+ If this option is specified, every line in a basic-block is
+ annotated by repeating the annotation for the first line. This
+ behavior is similar to `tcov''s `-a'.
+
+`--demangle[=STYLE]'
+`--no-demangle'
+ These options control whether C++ symbol names should be demangled
+ when printing output. The default is to demangle symbols. The
+ `--no-demangle' option may be used to turn off demangling.
+ Different compilers have different mangling styles. The optional
+ demangling style argument can be used to choose an appropriate
+ demangling style for your compiler.
+
+
+File: gprof.info, Node: Analysis Options, Next: Miscellaneous Options, Prev: Output Options, Up: Invoking
+
+Analysis Options
+================
+
+`-a'
+`--no-static'
+ The `-a' option causes `gprof' to suppress the printing of
+ statically declared (private) functions. (These are functions
+ whose names are not listed as global, and which are not visible
+ outside the file/function/block where they were defined.) Time
+ spent in these functions, calls to/from them, etc, will all be
+ attributed to the function that was loaded directly before it in
+ the executable file. This option affects both the flat profile
+ and the call graph.
+
+`-c'
+`--static-call-graph'
+ The `-c' option causes the call graph of the program to be
+ augmented by a heuristic which examines the text space of the
+ object file and identifies function calls in the binary machine
+ code. Since normal call graph records are only generated when
+ functions are entered, this option identifies children that could
+ have been called, but never were. Calls to functions that were
+ not compiled with profiling enabled are also identified, but only
+ if symbol table entries are present for them. Calls to dynamic
+ library routines are typically _not_ found by this option.
+ Parents or children identified via this heuristic are indicated in
+ the call graph with call counts of `0'.
+
+`-D'
+`--ignore-non-functions'
+ The `-D' option causes `gprof' to ignore symbols which are not
+ known to be functions. This option will give more accurate
+ profile data on systems where it is supported (Solaris and HPUX for
+ example).
+
+`-k FROM/TO'
+ The `-k' option allows you to delete from the call graph any arcs
+ from symbols matching symspec FROM to those matching symspec TO.
+
+`-l'
+`--line'
+ The `-l' option enables line-by-line profiling, which causes
+ histogram hits to be charged to individual source code lines,
+ instead of functions. If the program was compiled with
+ basic-block counting enabled, this option will also identify how
+ many times each line of code was executed. While line-by-line
+ profiling can help isolate where in a large function a program is
+ spending its time, it also significantly increases the running
+ time of `gprof', and magnifies statistical inaccuracies. *Note
+ Sampling Error::.
+
+`-m NUM'
+`--min-count=NUM'
+ This option affects execution count output only. Symbols that are
+ executed less than NUM times are suppressed.
+
+`-n[SYMSPEC]'
+`--time[=SYMSPEC]'
+ The `-n' option causes `gprof', in its call graph analysis, to
+ only propagate times for symbols matching SYMSPEC.
+
+`-N[SYMSPEC]'
+`--no-time[=SYMSPEC]'
+ The `-n' option causes `gprof', in its call graph analysis, not to
+ propagate times for symbols matching SYMSPEC.
+
+`-z'
+`--display-unused-functions'
+ If you give the `-z' option, `gprof' will mention all functions in
+ the flat profile, even those that were never called, and that had
+ no time spent in them. This is useful in conjunction with the
+ `-c' option for discovering which routines were never called.
+
+
+File: gprof.info, Node: Miscellaneous Options, Next: Deprecated Options, Prev: Analysis Options, Up: Invoking
+
+Miscellaneous Options
+=====================
+
+`-d[NUM]'
+`--debug[=NUM]'
+ The `-d NUM' option specifies debugging options. If NUM is not
+ specified, enable all debugging. *Note Debugging::.
+
+`-ONAME'
+`--file-format=NAME'
+ Selects the format of the profile data files. Recognized formats
+ are `auto' (the default), `bsd', `4.4bsd', `magic', and `prof'
+ (not yet supported).
+
+`-s'
+`--sum'
+ The `-s' option causes `gprof' to summarize the information in the
+ profile data files it read in, and write out a profile data file
+ called `gmon.sum', which contains all the information from the
+ profile data files that `gprof' read in. The file `gmon.sum' may
+ be one of the specified input files; the effect of this is to
+ merge the data in the other input files into `gmon.sum'.
+
+ Eventually you can run `gprof' again without `-s' to analyze the
+ cumulative data in the file `gmon.sum'.
+
+`-v'
+`--version'
+ The `-v' flag causes `gprof' to print the current version number,
+ and then exit.
+
+
+File: gprof.info, Node: Deprecated Options, Next: Symspecs, Prev: Miscellaneous Options, Up: Invoking
+
+Deprecated Options
+==================
+
+ These options have been replaced with newer versions that use
+ symspecs.
+
+`-e FUNCTION_NAME'
+ The `-e FUNCTION' option tells `gprof' to not print information
+ about the function FUNCTION_NAME (and its children...) in the call
+ graph. The function will still be listed as a child of any
+ functions that call it, but its index number will be shown as
+ `[not printed]'. More than one `-e' option may be given; only one
+ FUNCTION_NAME may be indicated with each `-e' option.
+
+`-E FUNCTION_NAME'
+ The `-E FUNCTION' option works like the `-e' option, but time
+ spent in the function (and children who were not called from
+ anywhere else), will not be used to compute the
+ percentages-of-time for the call graph. More than one `-E' option
+ may be given; only one FUNCTION_NAME may be indicated with each
+ `-E' option.
+
+`-f FUNCTION_NAME'
+ The `-f FUNCTION' option causes `gprof' to limit the call graph to
+ the function FUNCTION_NAME and its children (and their
+ children...). More than one `-f' option may be given; only one
+ FUNCTION_NAME may be indicated with each `-f' option.
+
+`-F FUNCTION_NAME'
+ The `-F FUNCTION' option works like the `-f' option, but only time
+ spent in the function and its children (and their children...)
+ will be used to determine total-time and percentages-of-time for
+ the call graph. More than one `-F' option may be given; only one
+ FUNCTION_NAME may be indicated with each `-F' option. The `-F'
+ option overrides the `-E' option.
+
+ Note that only one function can be specified with each `-e', `-E',
+`-f' or `-F' option. To specify more than one function, use multiple
+options. For example, this command:
+
+ gprof -e boring -f foo -f bar myprogram > gprof.output
+
+lists in the call graph all functions that were reached from either
+`foo' or `bar' and were not reachable from `boring'.
+
+
+File: gprof.info, Node: Symspecs, Prev: Deprecated Options, Up: Invoking
+
+Symspecs
+========
+
+ Many of the output options allow functions to be included or excluded
+using "symspecs" (symbol specifications), which observe the following
+syntax:
+
+ filename_containing_a_dot
+ | funcname_not_containing_a_dot
+ | linenumber
+ | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
+
+ Here are some sample symspecs:
+
+`main.c'
+ Selects everything in file `main.c'--the dot in the string tells
+ `gprof' to interpret the string as a filename, rather than as a
+ function name. To select a file whose name does not contain a
+ dot, a trailing colon should be specified. For example, `odd:' is
+ interpreted as the file named `odd'.
+
+`main'
+ Selects all functions named `main'.
+
+ Note that there may be multiple instances of the same function name
+ because some of the definitions may be local (i.e., static).
+ Unless a function name is unique in a program, you must use the
+ colon notation explained below to specify a function from a
+ specific source file.
+
+ Sometimes, function names contain dots. In such cases, it is
+ necessary to add a leading colon to the name. For example,
+ `:.mul' selects function `.mul'.
+
+ In some object file formats, symbols have a leading underscore.
+ `gprof' will normally not print these underscores. When you name a
+ symbol in a symspec, you should type it exactly as `gprof' prints
+ it in its output. For example, if the compiler produces a symbol
+ `_main' from your `main' function, `gprof' still prints it as
+ `main' in its output, so you should use `main' in symspecs.
+
+`main.c:main'
+ Selects function `main' in file `main.c'.
+
+`main.c:134'
+ Selects line 134 in file `main.c'.
+
+
+File: gprof.info, Node: Output, Next: Inaccuracy, Prev: Invoking, Up: Top
+
+Interpreting `gprof''s Output
+*****************************
+
+ `gprof' can produce several different output styles, the most
+important of which are described below. The simplest output styles
+(file information, execution count, and function and file ordering) are
+not described here, but are documented with the respective options that
+trigger them. *Note Output Options::.
+
+* Menu:
+
+* Flat Profile:: The flat profile shows how much time was spent
+ executing directly in each function.
+* Call Graph:: The call graph shows which functions called which
+ others, and how much time each function used
+ when its subroutine calls are included.
+* Line-by-line:: `gprof' can analyze individual source code lines
+* Annotated Source:: The annotated source listing displays source code
+ labeled with execution counts
+
+
+File: gprof.info, Node: Flat Profile, Next: Call Graph, Up: Output
+
+The Flat Profile
+================
+
+ The "flat profile" shows the total amount of time your program spent
+executing each function. Unless the `-z' option is given, functions
+with no apparent time spent in them, and no apparent calls to them, are
+not mentioned. Note that if a function was not compiled for profiling,
+and didn't run long enough to show up on the program counter histogram,
+it will be indistinguishable from a function that was never called.
+
+ This is part of a flat profile for a small program:
+
+ Flat profile:
+
+ Each sample counts as 0.01 seconds.
+ % cumulative self self total
+ time seconds seconds calls ms/call ms/call name
+ 33.34 0.02 0.02 7208 0.00 0.00 open
+ 16.67 0.03 0.01 244 0.04 0.12 offtime
+ 16.67 0.04 0.01 8 1.25 1.25 memccpy
+ 16.67 0.05 0.01 7 1.43 1.43 write
+ 16.67 0.06 0.01 mcount
+ 0.00 0.06 0.00 236 0.00 0.00 tzset
+ 0.00 0.06 0.00 192 0.00 0.00 tolower
+ 0.00 0.06 0.00 47 0.00 0.00 strlen
+ 0.00 0.06 0.00 45 0.00 0.00 strchr
+ 0.00 0.06 0.00 1 0.00 50.00 main
+ 0.00 0.06 0.00 1 0.00 0.00 memcpy
+ 0.00 0.06 0.00 1 0.00 10.11 print
+ 0.00 0.06 0.00 1 0.00 0.00 profil
+ 0.00 0.06 0.00 1 0.00 50.00 report
+ ...
+
+The functions are sorted by first by decreasing run-time spent in them,
+then by decreasing number of calls, then alphabetically by name. The
+functions `mcount' and `profil' are part of the profiling apparatus and
+appear in every flat profile; their time gives a measure of the amount
+of overhead due to profiling.
+
+ Just before the column headers, a statement appears indicating how
+much time each sample counted as. This "sampling period" estimates the
+margin of error in each of the time figures. A time figure that is not
+much larger than this is not reliable. In this example, each sample
+counted as 0.01 seconds, suggesting a 100 Hz sampling rate. The
+program's total execution time was 0.06 seconds, as indicated by the
+`cumulative seconds' field. Since each sample counted for 0.01
+seconds, this means only six samples were taken during the run. Two of
+the samples occurred while the program was in the `open' function, as
+indicated by the `self seconds' field. Each of the other four samples
+occurred one each in `offtime', `memccpy', `write', and `mcount'.
+Since only six samples were taken, none of these values can be regarded
+as particularly reliable. In another run, the `self seconds' field for
+`mcount' might well be `0.00' or `0.02'. *Note Sampling Error::, for a
+complete discussion.
+
+ The remaining functions in the listing (those whose `self seconds'
+field is `0.00') didn't appear in the histogram samples at all.
+However, the call graph indicated that they were called, so therefore
+they are listed, sorted in decreasing order by the `calls' field.
+Clearly some time was spent executing these functions, but the paucity
+of histogram samples prevents any determination of how much time each
+took.
+
+ Here is what the fields in each line mean:
+
+`% time'
+ This is the percentage of the total execution time your program
+ spent in this function. These should all add up to 100%.
+
+`cumulative seconds'
+ This is the cumulative total number of seconds the computer spent
+ executing this functions, plus the time spent in all the functions
+ above this one in this table.
+
+`self seconds'
+ This is the number of seconds accounted for by this function alone.
+ The flat profile listing is sorted first by this number.
+
+`calls'
+ This is the total number of times the function was called. If the
+ function was never called, or the number of times it was called
+ cannot be determined (probably because the function was not
+ compiled with profiling enabled), the "calls" field is blank.
+
+`self ms/call'
+ This represents the average number of milliseconds spent in this
+ function per call, if this function is profiled. Otherwise, this
+ field is blank for this function.
+
+`total ms/call'
+ This represents the average number of milliseconds spent in this
+ function and its descendants per call, if this function is
+ profiled. Otherwise, this field is blank for this function. This
+ is the only field in the flat profile that uses call graph
+ analysis.
+
+`name'
+ This is the name of the function. The flat profile is sorted by
+ this field alphabetically after the "self seconds" and "calls"
+ fields are sorted.
+
+
+File: gprof.info, Node: Call Graph, Next: Line-by-line, Prev: Flat Profile, Up: Output
+
+The Call Graph
+==============
+
+ The "call graph" shows how much time was spent in each function and
+its children. From this information, you can find functions that,
+while they themselves may not have used much time, called other
+functions that did use unusual amounts of time.
+
+ Here is a sample call from a small program. This call came from the
+same `gprof' run as the flat profile example in the previous chapter.
+
+ granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
+
+ index % time self children called name
+ <spontaneous>
+ [1] 100.0 0.00 0.05 start [1]
+ 0.00 0.05 1/1 main [2]
+ 0.00 0.00 1/2 on_exit [28]
+ 0.00 0.00 1/1 exit [59]
+ -----------------------------------------------
+ 0.00 0.05 1/1 start [1]
+ [2] 100.0 0.00 0.05 1 main [2]
+ 0.00 0.05 1/1 report [3]
+ -----------------------------------------------
+ 0.00 0.05 1/1 main [2]
+ [3] 100.0 0.00 0.05 1 report [3]
+ 0.00 0.03 8/8 timelocal [6]
+ 0.00 0.01 1/1 print [9]
+ 0.00 0.01 9/9 fgets [12]
+ 0.00 0.00 12/34 strncmp <cycle 1> [40]
+ 0.00 0.00 8/8 lookup [20]
+ 0.00 0.00 1/1 fopen [21]
+ 0.00 0.00 8/8 chewtime [24]
+ 0.00 0.00 8/16 skipspace [44]
+ -----------------------------------------------
+ [4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]
+ 0.01 0.02 244+260 offtime <cycle 2> [7]
+ 0.00 0.00 236+1 tzset <cycle 2> [26]
+ -----------------------------------------------
+
+ The lines full of dashes divide this table into "entries", one for
+each function. Each entry has one or more lines.
+
+ In each entry, the primary line is the one that starts with an index
+number in square brackets. The end of this line says which function
+the entry is for. The preceding lines in the entry describe the
+callers of this function and the following lines describe its
+subroutines (also called "children" when we speak of the call graph).
+
+ The entries are sorted by time spent in the function and its
+subroutines.
+
+ The internal profiling function `mcount' (*note Flat Profile::) is
+never mentioned in the call graph.
+
+* Menu:
+
+* Primary:: Details of the primary line's contents.
+* Callers:: Details of caller-lines' contents.
+* Subroutines:: Details of subroutine-lines' contents.
+* Cycles:: When there are cycles of recursion,
+ such as `a' calls `b' calls `a'...
+
+
+File: gprof.info, Node: Primary, Next: Callers, Up: Call Graph
+
+The Primary Line
+----------------
+
+ The "primary line" in a call graph entry is the line that describes
+the function which the entry is about and gives the overall statistics
+for this function.
+
+ For reference, we repeat the primary line from the entry for function
+`report' in our main example, together with the heading line that shows
+the names of the fields:
+
+ index % time self children called name
+ ...
+ [3] 100.0 0.00 0.05 1 report [3]
+
+ Here is what the fields in the primary line mean:
+
+`index'
+ Entries are numbered with consecutive integers. Each function
+ therefore has an index number, which appears at the beginning of
+ its primary line.
+
+ Each cross-reference to a function, as a caller or subroutine of
+ another, gives its index number as well as its name. The index
+ number guides you if you wish to look for the entry for that
+ function.
+
+`% time'
+ This is the percentage of the total time that was spent in this
+ function, including time spent in subroutines called from this
+ function.
+
+ The time spent in this function is counted again for the callers of
+ this function. Therefore, adding up these percentages is
+ meaningless.
+
+`self'
+ This is the total amount of time spent in this function. This
+ should be identical to the number printed in the `seconds' field
+ for this function in the flat profile.
+
+`children'
+ This is the total amount of time spent in the subroutine calls
+ made by this function. This should be equal to the sum of all the
+ `self' and `children' entries of the children listed directly
+ below this function.
+
+`called'
+ This is the number of times the function was called.
+
+ If the function called itself recursively, there are two numbers,
+ separated by a `+'. The first number counts non-recursive calls,
+ and the second counts recursive calls.
+
+ In the example above, the function `report' was called once from
+ `main'.
+
+`name'
+ This is the name of the current function. The index number is
+ repeated after it.
+
+ If the function is part of a cycle of recursion, the cycle number
+ is printed between the function's name and the index number (*note
+ Cycles::). For example, if function `gnurr' is part of cycle
+ number one, and has index number twelve, its primary line would be
+ end like this:
+
+ gnurr <cycle 1> [12]
+
+
+File: gprof.info, Node: Callers, Next: Subroutines, Prev: Primary, Up: Call Graph
+
+Lines for a Function's Callers
+------------------------------
+
+ A function's entry has a line for each function it was called by.
+These lines' fields correspond to the fields of the primary line, but
+their meanings are different because of the difference in context.
+
+ For reference, we repeat two lines from the entry for the function
+`report', the primary line and one caller-line preceding it, together
+with the heading line that shows the names of the fields:
+
+ index % time self children called name
+ ...
+ 0.00 0.05 1/1 main [2]
+ [3] 100.0 0.00 0.05 1 report [3]
+
+ Here are the meanings of the fields in the caller-line for `report'
+called from `main':
+
+`self'
+ An estimate of the amount of time spent in `report' itself when it
+ was called from `main'.
+
+`children'
+ An estimate of the amount of time spent in subroutines of `report'
+ when `report' was called from `main'.
+
+ The sum of the `self' and `children' fields is an estimate of the
+ amount of time spent within calls to `report' from `main'.
+
+`called'
+ Two numbers: the number of times `report' was called from `main',
+ followed by the total number of non-recursive calls to `report'
+ from all its callers.
+
+`name and index number'
+ The name of the caller of `report' to which this line applies,
+ followed by the caller's index number.
+
+ Not all functions have entries in the call graph; some options to
+ `gprof' request the omission of certain functions. When a caller
+ has no entry of its own, it still has caller-lines in the entries
+ of the functions it calls.
+
+ If the caller is part of a recursion cycle, the cycle number is
+ printed between the name and the index number.
+
+ If the identity of the callers of a function cannot be determined, a
+dummy caller-line is printed which has `<spontaneous>' as the "caller's
+name" and all other fields blank. This can happen for signal handlers.
+
+
+File: gprof.info, Node: Subroutines, Next: Cycles, Prev: Callers, Up: Call Graph
+
+Lines for a Function's Subroutines
+----------------------------------
+
+ A function's entry has a line for each of its subroutines--in other
+words, a line for each other function that it called. These lines'
+fields correspond to the fields of the primary line, but their meanings
+are different because of the difference in context.
+
+ For reference, we repeat two lines from the entry for the function
+`main', the primary line and a line for a subroutine, together with the
+heading line that shows the names of the fields:
+
+ index % time self children called name
+ ...
+ [2] 100.0 0.00 0.05 1 main [2]
+ 0.00 0.05 1/1 report [3]
+
+ Here are the meanings of the fields in the subroutine-line for `main'
+calling `report':
+
+`self'
+ An estimate of the amount of time spent directly within `report'
+ when `report' was called from `main'.
+
+`children'
+ An estimate of the amount of time spent in subroutines of `report'
+ when `report' was called from `main'.
+
+ The sum of the `self' and `children' fields is an estimate of the
+ total time spent in calls to `report' from `main'.
+
+`called'
+ Two numbers, the number of calls to `report' from `main' followed
+ by the total number of non-recursive calls to `report'. This
+ ratio is used to determine how much of `report''s `self' and
+ `children' time gets credited to `main'. *Note Assumptions::.
+
+`name'
+ The name of the subroutine of `main' to which this line applies,
+ followed by the subroutine's index number.
+
+ If the caller is part of a recursion cycle, the cycle number is
+ printed between the name and the index number.
+
+
+File: gprof.info, Node: Cycles, Prev: Subroutines, Up: Call Graph
+
+How Mutually Recursive Functions Are Described
+----------------------------------------------
+
+ The graph may be complicated by the presence of "cycles of
+recursion" in the call graph. A cycle exists if a function calls
+another function that (directly or indirectly) calls (or appears to
+call) the original function. For example: if `a' calls `b', and `b'
+calls `a', then `a' and `b' form a cycle.
+
+ Whenever there are call paths both ways between a pair of functions,
+they belong to the same cycle. If `a' and `b' call each other and `b'
+and `c' call each other, all three make one cycle. Note that even if
+`b' only calls `a' if it was not called from `a', `gprof' cannot
+determine this, so `a' and `b' are still considered a cycle.
+
+ The cycles are numbered with consecutive integers. When a function
+belongs to a cycle, each time the function name appears in the call
+graph it is followed by `<cycle NUMBER>'.
+
+ The reason cycles matter is that they make the time values in the
+call graph paradoxical. The "time spent in children" of `a' should
+include the time spent in its subroutine `b' and in `b''s
+subroutines--but one of `b''s subroutines is `a'! How much of `a''s
+time should be included in the children of `a', when `a' is indirectly
+recursive?
+
+ The way `gprof' resolves this paradox is by creating a single entry
+for the cycle as a whole. The primary line of this entry describes the
+total time spent directly in the functions of the cycle. The
+"subroutines" of the cycle are the individual functions of the cycle,
+and all other functions that were called directly by them. The
+"callers" of the cycle are the functions, outside the cycle, that
+called functions in the cycle.
+
+ Here is an example portion of a call graph which shows a cycle
+containing functions `a' and `b'. The cycle was entered by a call to
+`a' from `main'; both `a' and `b' called `c'.
+
+ index % time self children called name
+ ----------------------------------------
+ 1.77 0 1/1 main [2]
+ [3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
+ 1.02 0 3 b <cycle 1> [4]
+ 0.75 0 2 a <cycle 1> [5]
+ ----------------------------------------
+ 3 a <cycle 1> [5]
+ [4] 52.85 1.02 0 0 b <cycle 1> [4]
+ 2 a <cycle 1> [5]
+ 0 0 3/6 c [6]
+ ----------------------------------------
+ 1.77 0 1/1 main [2]
+ 2 b <cycle 1> [4]
+ [5] 38.86 0.75 0 1 a <cycle 1> [5]
+ 3 b <cycle 1> [4]
+ 0 0 3/6 c [6]
+ ----------------------------------------
+
+(The entire call graph for this program contains in addition an entry
+for `main', which calls `a', and an entry for `c', with callers `a' and
+`b'.)
+
+ index % time self children called name
+ <spontaneous>
+ [1] 100.00 0 1.93 0 start [1]
+ 0.16 1.77 1/1 main [2]
+ ----------------------------------------
+ 0.16 1.77 1/1 start [1]
+ [2] 100.00 0.16 1.77 1 main [2]
+ 1.77 0 1/1 a <cycle 1> [5]
+ ----------------------------------------
+ 1.77 0 1/1 main [2]
+ [3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
+ 1.02 0 3 b <cycle 1> [4]
+ 0.75 0 2 a <cycle 1> [5]
+ 0 0 6/6 c [6]
+ ----------------------------------------
+ 3 a <cycle 1> [5]
+ [4] 52.85 1.02 0 0 b <cycle 1> [4]
+ 2 a <cycle 1> [5]
+ 0 0 3/6 c [6]
+ ----------------------------------------
+ 1.77 0 1/1 main [2]
+ 2 b <cycle 1> [4]
+ [5] 38.86 0.75 0 1 a <cycle 1> [5]
+ 3 b <cycle 1> [4]
+ 0 0 3/6 c [6]
+ ----------------------------------------
+ 0 0 3/6 b <cycle 1> [4]
+ 0 0 3/6 a <cycle 1> [5]
+ [6] 0.00 0 0 6 c [6]
+ ----------------------------------------
+
+ The `self' field of the cycle's primary line is the total time spent
+in all the functions of the cycle. It equals the sum of the `self'
+fields for the individual functions in the cycle, found in the entry in
+the subroutine lines for these functions.
+
+ The `children' fields of the cycle's primary line and subroutine
+lines count only subroutines outside the cycle. Even though `a' calls
+`b', the time spent in those calls to `b' is not counted in `a''s
+`children' time. Thus, we do not encounter the problem of what to do
+when the time in those calls to `b' includes indirect recursive calls
+back to `a'.
+
+ The `children' field of a caller-line in the cycle's entry estimates
+the amount of time spent _in the whole cycle_, and its other
+subroutines, on the times when that caller called a function in the
+cycle.
+
+ The `calls' field in the primary line for the cycle has two numbers:
+first, the number of times functions in the cycle were called by
+functions outside the cycle; second, the number of times they were
+called by functions in the cycle (including times when a function in
+the cycle calls itself). This is a generalization of the usual split
+into non-recursive and recursive calls.
+
+ The `calls' field of a subroutine-line for a cycle member in the
+cycle's entry says how many time that function was called from
+functions in the cycle. The total of all these is the second number in
+the primary line's `calls' field.
+
+ In the individual entry for a function in a cycle, the other
+functions in the same cycle can appear as subroutines and as callers.
+These lines show how many times each function in the cycle called or
+was called from each other function in the cycle. The `self' and
+`children' fields in these lines are blank because of the difficulty of
+defining meanings for them when recursion is going on.
+
diff --git a/gprof/gprof.info-2 b/gprof/gprof.info-2
new file mode 100644
index 0000000..82c2995
--- /dev/null
+++ b/gprof/gprof.info-2
@@ -0,0 +1,753 @@
+This is gprof.info, produced by makeinfo version 4.3 from gprof.texi.
+
+START-INFO-DIR-ENTRY
+* gprof: (gprof). Profiling your program's execution
+END-INFO-DIR-ENTRY
+
+ This file documents the gprof profiler of the GNU system.
+
+ Copyright (C) 1988, 92, 97, 98, 99, 2000, 2001 Free Software
+Foundation, Inc.
+
+ Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU Free Documentation License, Version 1.1 or
+any later version published by the Free Software Foundation; with no
+Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
+Texts. A copy of the license is included in the section entitled "GNU
+Free Documentation License".
+
+
+File: gprof.info, Node: Line-by-line, Next: Annotated Source, Prev: Call Graph, Up: Output
+
+Line-by-line Profiling
+======================
+
+ `gprof''s `-l' option causes the program to perform "line-by-line"
+profiling. In this mode, histogram samples are assigned not to
+functions, but to individual lines of source code. The program usually
+must be compiled with a `-g' option, in addition to `-pg', in order to
+generate debugging symbols for tracking source code lines.
+
+ The flat profile is the most useful output table in line-by-line
+mode. The call graph isn't as useful as normal, since the current
+version of `gprof' does not propagate call graph arcs from source code
+lines to the enclosing function. The call graph does, however, show
+each line of code that called each function, along with a count.
+
+ Here is a section of `gprof''s output, without line-by-line
+profiling. Note that `ct_init' accounted for four histogram hits, and
+13327 calls to `init_block'.
+
+ Flat profile:
+
+ Each sample counts as 0.01 seconds.
+ % cumulative self self total
+ time seconds seconds calls us/call us/call name
+ 30.77 0.13 0.04 6335 6.31 6.31 ct_init
+
+
+ Call graph (explanation follows)
+
+
+ granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
+
+ index % time self children called name
+
+ 0.00 0.00 1/13496 name_too_long
+ 0.00 0.00 40/13496 deflate
+ 0.00 0.00 128/13496 deflate_fast
+ 0.00 0.00 13327/13496 ct_init
+ [7] 0.0 0.00 0.00 13496 init_block
+
+ Now let's look at some of `gprof''s output from the same program run,
+this time with line-by-line profiling enabled. Note that `ct_init''s
+four histogram hits are broken down into four lines of source code -
+one hit occurred on each of lines 349, 351, 382 and 385. In the call
+graph, note how `ct_init''s 13327 calls to `init_block' are broken down
+into one call from line 396, 3071 calls from line 384, 3730 calls from
+line 385, and 6525 calls from 387.
+
+ Flat profile:
+
+ Each sample counts as 0.01 seconds.
+ % cumulative self
+ time seconds seconds calls name
+ 7.69 0.10 0.01 ct_init (trees.c:349)
+ 7.69 0.11 0.01 ct_init (trees.c:351)
+ 7.69 0.12 0.01 ct_init (trees.c:382)
+ 7.69 0.13 0.01 ct_init (trees.c:385)
+
+
+ Call graph (explanation follows)
+
+
+ granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
+
+ % time self children called name
+
+ 0.00 0.00 1/13496 name_too_long (gzip.c:1440)
+ 0.00 0.00 1/13496 deflate (deflate.c:763)
+ 0.00 0.00 1/13496 ct_init (trees.c:396)
+ 0.00 0.00 2/13496 deflate (deflate.c:727)
+ 0.00 0.00 4/13496 deflate (deflate.c:686)
+ 0.00 0.00 5/13496 deflate (deflate.c:675)
+ 0.00 0.00 12/13496 deflate (deflate.c:679)
+ 0.00 0.00 16/13496 deflate (deflate.c:730)
+ 0.00 0.00 128/13496 deflate_fast (deflate.c:654)
+ 0.00 0.00 3071/13496 ct_init (trees.c:384)
+ 0.00 0.00 3730/13496 ct_init (trees.c:385)
+ 0.00 0.00 6525/13496 ct_init (trees.c:387)
+ [6] 0.0 0.00 0.00 13496 init_block (trees.c:408)
+
+
+File: gprof.info, Node: Annotated Source, Prev: Line-by-line, Up: Output
+
+The Annotated Source Listing
+============================
+
+ `gprof''s `-A' option triggers an annotated source listing, which
+lists the program's source code, each function labeled with the number
+of times it was called. You may also need to specify the `-I' option,
+if `gprof' can't find the source code files.
+
+ Compiling with `gcc ... -g -pg -a' augments your program with
+basic-block counting code, in addition to function counting code. This
+enables `gprof' to determine how many times each line of code was
+executed. For example, consider the following function, taken from
+gzip, with line numbers added:
+
+ 1 ulg updcrc(s, n)
+ 2 uch *s;
+ 3 unsigned n;
+ 4 {
+ 5 register ulg c;
+ 6
+ 7 static ulg crc = (ulg)0xffffffffL;
+ 8
+ 9 if (s == NULL) {
+ 10 c = 0xffffffffL;
+ 11 } else {
+ 12 c = crc;
+ 13 if (n) do {
+ 14 c = crc_32_tab[...];
+ 15 } while (--n);
+ 16 }
+ 17 crc = c;
+ 18 return c ^ 0xffffffffL;
+ 19 }
+
+ `updcrc' has at least five basic-blocks. One is the function
+itself. The `if' statement on line 9 generates two more basic-blocks,
+one for each branch of the `if'. A fourth basic-block results from the
+`if' on line 13, and the contents of the `do' loop form the fifth
+basic-block. The compiler may also generate additional basic-blocks to
+handle various special cases.
+
+ A program augmented for basic-block counting can be analyzed with
+`gprof -l -A'. I also suggest use of the `-x' option, which ensures
+that each line of code is labeled at least once. Here is `updcrc''s
+annotated source listing for a sample `gzip' run:
+
+ ulg updcrc(s, n)
+ uch *s;
+ unsigned n;
+ 2 ->{
+ register ulg c;
+
+ static ulg crc = (ulg)0xffffffffL;
+
+ 2 -> if (s == NULL) {
+ 1 -> c = 0xffffffffL;
+ 1 -> } else {
+ 1 -> c = crc;
+ 1 -> if (n) do {
+ 26312 -> c = crc_32_tab[...];
+ 26312,1,26311 -> } while (--n);
+ }
+ 2 -> crc = c;
+ 2 -> return c ^ 0xffffffffL;
+ 2 ->}
+
+ In this example, the function was called twice, passing once through
+each branch of the `if' statement. The body of the `do' loop was
+executed a total of 26312 times. Note how the `while' statement is
+annotated. It began execution 26312 times, once for each iteration
+through the loop. One of those times (the last time) it exited, while
+it branched back to the beginning of the loop 26311 times.
+
+
+File: gprof.info, Node: Inaccuracy, Next: How do I?, Prev: Output, Up: Top
+
+Inaccuracy of `gprof' Output
+****************************
+
+* Menu:
+
+* Sampling Error:: Statistical margins of error
+* Assumptions:: Estimating children times
+
+
+File: gprof.info, Node: Sampling Error, Next: Assumptions, Up: Inaccuracy
+
+Statistical Sampling Error
+==========================
+
+ The run-time figures that `gprof' gives you are based on a sampling
+process, so they are subject to statistical inaccuracy. If a function
+runs only a small amount of time, so that on the average the sampling
+process ought to catch that function in the act only once, there is a
+pretty good chance it will actually find that function zero times, or
+twice.
+
+ By contrast, the number-of-calls and basic-block figures are derived
+by counting, not sampling. They are completely accurate and will not
+vary from run to run if your program is deterministic.
+
+ The "sampling period" that is printed at the beginning of the flat
+profile says how often samples are taken. The rule of thumb is that a
+run-time figure is accurate if it is considerably bigger than the
+sampling period.
+
+ The actual amount of error can be predicted. For N samples, the
+_expected_ error is the square-root of N. For example, if the sampling
+period is 0.01 seconds and `foo''s run-time is 1 second, N is 100
+samples (1 second/0.01 seconds), sqrt(N) is 10 samples, so the expected
+error in `foo''s run-time is 0.1 seconds (10*0.01 seconds), or ten
+percent of the observed value. Again, if the sampling period is 0.01
+seconds and `bar''s run-time is 100 seconds, N is 10000 samples,
+sqrt(N) is 100 samples, so the expected error in `bar''s run-time is 1
+second, or one percent of the observed value. It is likely to vary
+this much _on the average_ from one profiling run to the next.
+(_Sometimes_ it will vary more.)
+
+ This does not mean that a small run-time figure is devoid of
+information. If the program's _total_ run-time is large, a small
+run-time for one function does tell you that that function used an
+insignificant fraction of the whole program's time. Usually this means
+it is not worth optimizing.
+
+ One way to get more accuracy is to give your program more (but
+similar) input data so it will take longer. Another way is to combine
+the data from several runs, using the `-s' option of `gprof'. Here is
+how:
+
+ 1. Run your program once.
+
+ 2. Issue the command `mv gmon.out gmon.sum'.
+
+ 3. Run your program again, the same as before.
+
+ 4. Merge the new data in `gmon.out' into `gmon.sum' with this command:
+
+ gprof -s EXECUTABLE-FILE gmon.out gmon.sum
+
+ 5. Repeat the last two steps as often as you wish.
+
+ 6. Analyze the cumulative data using this command:
+
+ gprof EXECUTABLE-FILE gmon.sum > OUTPUT-FILE
+
+
+File: gprof.info, Node: Assumptions, Prev: Sampling Error, Up: Inaccuracy
+
+Estimating `children' Times
+===========================
+
+ Some of the figures in the call graph are estimates--for example, the
+`children' time values and all the the time figures in caller and
+subroutine lines.
+
+ There is no direct information about these measurements in the
+profile data itself. Instead, `gprof' estimates them by making an
+assumption about your program that might or might not be true.
+
+ The assumption made is that the average time spent in each call to
+any function `foo' is not correlated with who called `foo'. If `foo'
+used 5 seconds in all, and 2/5 of the calls to `foo' came from `a',
+then `foo' contributes 2 seconds to `a''s `children' time, by
+assumption.
+
+ This assumption is usually true enough, but for some programs it is
+far from true. Suppose that `foo' returns very quickly when its
+argument is zero; suppose that `a' always passes zero as an argument,
+while other callers of `foo' pass other arguments. In this program,
+all the time spent in `foo' is in the calls from callers other than `a'.
+But `gprof' has no way of knowing this; it will blindly and incorrectly
+charge 2 seconds of time in `foo' to the children of `a'.
+
+ We hope some day to put more complete data into `gmon.out', so that
+this assumption is no longer needed, if we can figure out how. For the
+nonce, the estimated figures are usually more useful than misleading.
+
+
+File: gprof.info, Node: How do I?, Next: Incompatibilities, Prev: Inaccuracy, Up: Top
+
+Answers to Common Questions
+***************************
+
+How do I find which lines in my program were executed the most times?
+ Compile your program with basic-block counting enabled, run it,
+ then use the following pipeline:
+
+ gprof -l -C OBJFILE | sort -k 3 -n -r
+
+ This listing will show you the lines in your code executed most
+ often, but not necessarily those that consumed the most time.
+
+How do I find which lines in my program called a particular function?
+ Use `gprof -l' and lookup the function in the call graph. The
+ callers will be broken down by function and line number.
+
+How do I analyze a program that runs for less than a second?
+ Try using a shell script like this one:
+
+ for i in `seq 1 100`; do
+ fastprog
+ mv gmon.out gmon.out.$i
+ done
+
+ gprof -s fastprog gmon.out.*
+
+ gprof fastprog gmon.sum
+
+ If your program is completely deterministic, all the call counts
+ will be simple multiples of 100 (i.e. a function called once in
+ each run will appear with a call count of 100).
+
+
+File: gprof.info, Node: Incompatibilities, Next: Details, Prev: How do I?, Up: Top
+
+Incompatibilities with Unix `gprof'
+***********************************
+
+ GNU `gprof' and Berkeley Unix `gprof' use the same data file
+`gmon.out', and provide essentially the same information. But there
+are a few differences.
+
+ * GNU `gprof' uses a new, generalized file format with support for
+ basic-block execution counts and non-realtime histograms. A magic
+ cookie and version number allows `gprof' to easily identify new
+ style files. Old BSD-style files can still be read. *Note File
+ Format::.
+
+ * For a recursive function, Unix `gprof' lists the function as a
+ parent and as a child, with a `calls' field that lists the number
+ of recursive calls. GNU `gprof' omits these lines and puts the
+ number of recursive calls in the primary line.
+
+ * When a function is suppressed from the call graph with `-e', GNU
+ `gprof' still lists it as a subroutine of functions that call it.
+
+ * GNU `gprof' accepts the `-k' with its argument in the form
+ `from/to', instead of `from to'.
+
+ * In the annotated source listing, if there are multiple basic
+ blocks on the same line, GNU `gprof' prints all of their counts,
+ separated by commas.
+
+ * The blurbs, field widths, and output formats are different. GNU
+ `gprof' prints blurbs after the tables, so that you can see the
+ tables without skipping the blurbs.
+
+
+File: gprof.info, Node: Details, Next: GNU Free Documentation License, Prev: Incompatibilities, Up: Top
+
+Details of Profiling
+********************
+
+* Menu:
+
+* Implementation:: How a program collects profiling information
+* File Format:: Format of `gmon.out' files
+* Internals:: `gprof''s internal operation
+* Debugging:: Using `gprof''s `-d' option
+
+
+File: gprof.info, Node: Implementation, Next: File Format, Up: Details
+
+Implementation of Profiling
+===========================
+
+ Profiling works by changing how every function in your program is
+compiled so that when it is called, it will stash away some information
+about where it was called from. From this, the profiler can figure out
+what function called it, and can count how many times it was called.
+This change is made by the compiler when your program is compiled with
+the `-pg' option, which causes every function to call `mcount' (or
+`_mcount', or `__mcount', depending on the OS and compiler) as one of
+its first operations.
+
+ The `mcount' routine, included in the profiling library, is
+responsible for recording in an in-memory call graph table both its
+parent routine (the child) and its parent's parent. This is typically
+done by examining the stack frame to find both the address of the
+child, and the return address in the original parent. Since this is a
+very machine-dependent operation, `mcount' itself is typically a short
+assembly-language stub routine that extracts the required information,
+and then calls `__mcount_internal' (a normal C function) with two
+arguments - `frompc' and `selfpc'. `__mcount_internal' is responsible
+for maintaining the in-memory call graph, which records `frompc',
+`selfpc', and the number of times each of these call arcs was traversed.
+
+ GCC Version 2 provides a magical function
+(`__builtin_return_address'), which allows a generic `mcount' function
+to extract the required information from the stack frame. However, on
+some architectures, most notably the SPARC, using this builtin can be
+very computationally expensive, and an assembly language version of
+`mcount' is used for performance reasons.
+
+ Number-of-calls information for library routines is collected by
+using a special version of the C library. The programs in it are the
+same as in the usual C library, but they were compiled with `-pg'. If
+you link your program with `gcc ... -pg', it automatically uses the
+profiling version of the library.
+
+ Profiling also involves watching your program as it runs, and
+keeping a histogram of where the program counter happens to be every
+now and then. Typically the program counter is looked at around 100
+times per second of run time, but the exact frequency may vary from
+system to system.
+
+ This is done is one of two ways. Most UNIX-like operating systems
+provide a `profil()' system call, which registers a memory array with
+the kernel, along with a scale factor that determines how the program's
+address space maps into the array. Typical scaling values cause every
+2 to 8 bytes of address space to map into a single array slot. On
+every tick of the system clock (assuming the profiled program is
+running), the value of the program counter is examined and the
+corresponding slot in the memory array is incremented. Since this is
+done in the kernel, which had to interrupt the process anyway to handle
+the clock interrupt, very little additional system overhead is required.
+
+ However, some operating systems, most notably Linux 2.0 (and
+earlier), do not provide a `profil()' system call. On such a system,
+arrangements are made for the kernel to periodically deliver a signal
+to the process (typically via `setitimer()'), which then performs the
+same operation of examining the program counter and incrementing a slot
+in the memory array. Since this method requires a signal to be
+delivered to user space every time a sample is taken, it uses
+considerably more overhead than kernel-based profiling. Also, due to
+the added delay required to deliver the signal, this method is less
+accurate as well.
+
+ A special startup routine allocates memory for the histogram and
+either calls `profil()' or sets up a clock signal handler. This
+routine (`monstartup') can be invoked in several ways. On Linux
+systems, a special profiling startup file `gcrt0.o', which invokes
+`monstartup' before `main', is used instead of the default `crt0.o'.
+Use of this special startup file is one of the effects of using `gcc
+... -pg' to link. On SPARC systems, no special startup files are used.
+Rather, the `mcount' routine, when it is invoked for the first time
+(typically when `main' is called), calls `monstartup'.
+
+ If the compiler's `-a' option was used, basic-block counting is also
+enabled. Each object file is then compiled with a static array of
+counts, initially zero. In the executable code, every time a new
+basic-block begins (i.e. when an `if' statement appears), an extra
+instruction is inserted to increment the corresponding count in the
+array. At compile time, a paired array was constructed that recorded
+the starting address of each basic-block. Taken together, the two
+arrays record the starting address of every basic-block, along with the
+number of times it was executed.
+
+ The profiling library also includes a function (`mcleanup') which is
+typically registered using `atexit()' to be called as the program
+exits, and is responsible for writing the file `gmon.out'. Profiling
+is turned off, various headers are output, and the histogram is
+written, followed by the call-graph arcs and the basic-block counts.
+
+ The output from `gprof' gives no indication of parts of your program
+that are limited by I/O or swapping bandwidth. This is because samples
+of the program counter are taken at fixed intervals of the program's
+run time. Therefore, the time measurements in `gprof' output say
+nothing about time that your program was not running. For example, a
+part of the program that creates so much data that it cannot all fit in
+physical memory at once may run very slowly due to thrashing, but
+`gprof' will say it uses little time. On the other hand, sampling by
+run time has the advantage that the amount of load due to other users
+won't directly affect the output you get.
+
+
+File: gprof.info, Node: File Format, Next: Internals, Prev: Implementation, Up: Details
+
+Profiling Data File Format
+==========================
+
+ The old BSD-derived file format used for profile data does not
+contain a magic cookie that allows to check whether a data file really
+is a `gprof' file. Furthermore, it does not provide a version number,
+thus rendering changes to the file format almost impossible. GNU
+`gprof' uses a new file format that provides these features. For
+backward compatibility, GNU `gprof' continues to support the old
+BSD-derived format, but not all features are supported with it. For
+example, basic-block execution counts cannot be accommodated by the old
+file format.
+
+ The new file format is defined in header file `gmon_out.h'. It
+consists of a header containing the magic cookie and a version number,
+as well as some spare bytes available for future extensions. All data
+in a profile data file is in the native format of the target for which
+the profile was collected. GNU `gprof' adapts automatically to the
+byte-order in use.
+
+ In the new file format, the header is followed by a sequence of
+records. Currently, there are three different record types: histogram
+records, call-graph arc records, and basic-block execution count
+records. Each file can contain any number of each record type. When
+reading a file, GNU `gprof' will ensure records of the same type are
+compatible with each other and compute the union of all records. For
+example, for basic-block execution counts, the union is simply the sum
+of all execution counts for each basic-block.
+
+Histogram Records
+-----------------
+
+ Histogram records consist of a header that is followed by an array of
+bins. The header contains the text-segment range that the histogram
+spans, the size of the histogram in bytes (unlike in the old BSD
+format, this does not include the size of the header), the rate of the
+profiling clock, and the physical dimension that the bin counts
+represent after being scaled by the profiling clock rate. The physical
+dimension is specified in two parts: a long name of up to 15 characters
+and a single character abbreviation. For example, a histogram
+representing real-time would specify the long name as "seconds" and the
+abbreviation as "s". This feature is useful for architectures that
+support performance monitor hardware (which, fortunately, is becoming
+increasingly common). For example, under DEC OSF/1, the "uprofile"
+command can be used to produce a histogram of, say, instruction cache
+misses. In this case, the dimension in the histogram header could be
+set to "i-cache misses" and the abbreviation could be set to "1"
+(because it is simply a count, not a physical dimension). Also, the
+profiling rate would have to be set to 1 in this case.
+
+ Histogram bins are 16-bit numbers and each bin represent an equal
+amount of text-space. For example, if the text-segment is one thousand
+bytes long and if there are ten bins in the histogram, each bin
+represents one hundred bytes.
+
+Call-Graph Records
+------------------
+
+ Call-graph records have a format that is identical to the one used in
+the BSD-derived file format. It consists of an arc in the call graph
+and a count indicating the number of times the arc was traversed during
+program execution. Arcs are specified by a pair of addresses: the
+first must be within caller's function and the second must be within
+the callee's function. When performing profiling at the function
+level, these addresses can point anywhere within the respective
+function. However, when profiling at the line-level, it is better if
+the addresses are as close to the call-site/entry-point as possible.
+This will ensure that the line-level call-graph is able to identify
+exactly which line of source code performed calls to a function.
+
+Basic-Block Execution Count Records
+-----------------------------------
+
+ Basic-block execution count records consist of a header followed by a
+sequence of address/count pairs. The header simply specifies the
+length of the sequence. In an address/count pair, the address
+identifies a basic-block and the count specifies the number of times
+that basic-block was executed. Any address within the basic-address can
+be used.
+
+
+File: gprof.info, Node: Internals, Next: Debugging, Prev: File Format, Up: Details
+
+`gprof''s Internal Operation
+============================
+
+ Like most programs, `gprof' begins by processing its options.
+During this stage, it may building its symspec list
+(`sym_ids.c:sym_id_add'), if options are specified which use symspecs.
+`gprof' maintains a single linked list of symspecs, which will
+eventually get turned into 12 symbol tables, organized into six
+include/exclude pairs - one pair each for the flat profile
+(INCL_FLAT/EXCL_FLAT), the call graph arcs (INCL_ARCS/EXCL_ARCS),
+printing in the call graph (INCL_GRAPH/EXCL_GRAPH), timing propagation
+in the call graph (INCL_TIME/EXCL_TIME), the annotated source listing
+(INCL_ANNO/EXCL_ANNO), and the execution count listing
+(INCL_EXEC/EXCL_EXEC).
+
+ After option processing, `gprof' finishes building the symspec list
+by adding all the symspecs in `default_excluded_list' to the exclude
+lists EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is
+specified, EXCL_FLAT as well. These default excludes are not added to
+EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
+
+ Next, the BFD library is called to open the object file, verify that
+it is an object file, and read its symbol table (`core.c:core_init'),
+using `bfd_canonicalize_symtab' after mallocing an appropriately sized
+array of symbols. At this point, function mappings are read (if the
+`--file-ordering' option has been specified), and the core text space
+is read into memory (if the `-c' option was given).
+
+ `gprof''s own symbol table, an array of Sym structures, is now built.
+This is done in one of two ways, by one of two routines, depending on
+whether line-by-line profiling (`-l' option) has been enabled. For
+normal profiling, the BFD canonical symbol table is scanned. For
+line-by-line profiling, every text space address is examined, and a new
+symbol table entry gets created every time the line number changes. In
+either case, two passes are made through the symbol table - one to
+count the size of the symbol table required, and the other to actually
+read the symbols. In between the two passes, a single array of type
+`Sym' is created of the appropriate length. Finally,
+`symtab.c:symtab_finalize' is called to sort the symbol table and
+remove duplicate entries (entries with the same memory address).
+
+ The symbol table must be a contiguous array for two reasons. First,
+the `qsort' library function (which sorts an array) will be used to
+sort the symbol table. Also, the symbol lookup routine
+(`symtab.c:sym_lookup'), which finds symbols based on memory address,
+uses a binary search algorithm which requires the symbol table to be a
+sorted array. Function symbols are indicated with an `is_func' flag.
+Line number symbols have no special flags set. Additionally, a symbol
+can have an `is_static' flag to indicate that it is a local symbol.
+
+ With the symbol table read, the symspecs can now be translated into
+Syms (`sym_ids.c:sym_id_parse'). Remember that a single symspec can
+match multiple symbols. An array of symbol tables (`syms') is created,
+each entry of which is a symbol table of Syms to be included or
+excluded from a particular listing. The master symbol table and the
+symspecs are examined by nested loops, and every symbol that matches a
+symspec is inserted into the appropriate syms table. This is done
+twice, once to count the size of each required symbol table, and again
+to build the tables, which have been malloced between passes. From now
+on, to determine whether a symbol is on an include or exclude symspec
+list, `gprof' simply uses its standard symbol lookup routine on the
+appropriate table in the `syms' array.
+
+ Now the profile data file(s) themselves are read
+(`gmon_io.c:gmon_out_read'), first by checking for a new-style
+`gmon.out' header, then assuming this is an old-style BSD `gmon.out' if
+the magic number test failed.
+
+ New-style histogram records are read by `hist.c:hist_read_rec'. For
+the first histogram record, allocate a memory array to hold all the
+bins, and read them in. When multiple profile data files (or files
+with multiple histogram records) are read, the starting address, ending
+address, number of bins and sampling rate must match between the
+various histograms, or a fatal error will result. If everything
+matches, just sum the additional histograms into the existing in-memory
+array.
+
+ As each call graph record is read (`call_graph.c:cg_read_rec'), the
+parent and child addresses are matched to symbol table entries, and a
+call graph arc is created by `cg_arcs.c:arc_add', unless the arc fails
+a symspec check against INCL_ARCS/EXCL_ARCS. As each arc is added, a
+linked list is maintained of the parent's child arcs, and of the child's
+parent arcs. Both the child's call count and the arc's call count are
+incremented by the record's call count.
+
+ Basic-block records are read (`basic_blocks.c:bb_read_rec'), but
+only if line-by-line profiling has been selected. Each basic-block
+address is matched to a corresponding line symbol in the symbol table,
+and an entry made in the symbol's bb_addr and bb_calls arrays. Again,
+if multiple basic-block records are present for the same address, the
+call counts are cumulative.
+
+ A gmon.sum file is dumped, if requested (`gmon_io.c:gmon_out_write').
+
+ If histograms were present in the data files, assign them to symbols
+(`hist.c:hist_assign_samples') by iterating over all the sample bins
+and assigning them to symbols. Since the symbol table is sorted in
+order of ascending memory addresses, we can simple follow along in the
+symbol table as we make our pass over the sample bins. This step
+includes a symspec check against INCL_FLAT/EXCL_FLAT. Depending on the
+histogram scale factor, a sample bin may span multiple symbols, in
+which case a fraction of the sample count is allocated to each symbol,
+proportional to the degree of overlap. This effect is rare for normal
+profiling, but overlaps are more common during line-by-line profiling,
+and can cause each of two adjacent lines to be credited with half a
+hit, for example.
+
+ If call graph data is present, `cg_arcs.c:cg_assemble' is called.
+First, if `-c' was specified, a machine-dependent routine (`find_call')
+scans through each symbol's machine code, looking for subroutine call
+instructions, and adding them to the call graph with a zero call count.
+A topological sort is performed by depth-first numbering all the
+symbols (`cg_dfn.c:cg_dfn'), so that children are always numbered less
+than their parents, then making a array of pointers into the symbol
+table and sorting it into numerical order, which is reverse topological
+order (children appear before parents). Cycles are also detected at
+this point, all members of which are assigned the same topological
+number. Two passes are now made through this sorted array of symbol
+pointers. The first pass, from end to beginning (parents to children),
+computes the fraction of child time to propagate to each parent and a
+print flag. The print flag reflects symspec handling of
+INCL_GRAPH/EXCL_GRAPH, with a parent's include or exclude (print or no
+print) property being propagated to its children, unless they
+themselves explicitly appear in INCL_GRAPH or EXCL_GRAPH. A second
+pass, from beginning to end (children to parents) actually propagates
+the timings along the call graph, subject to a check against
+INCL_TIME/EXCL_TIME. With the print flag, fractions, and timings now
+stored in the symbol structures, the topological sort array is now
+discarded, and a new array of pointers is assembled, this time sorted
+by propagated time.
+
+ Finally, print the various outputs the user requested, which is now
+fairly straightforward. The call graph (`cg_print.c:cg_print') and
+flat profile (`hist.c:hist_print') are regurgitations of values already
+computed. The annotated source listing
+(`basic_blocks.c:print_annotated_source') uses basic-block information,
+if present, to label each line of code with call counts, otherwise only
+the function call counts are presented.
+
+ The function ordering code is marginally well documented in the
+source code itself (`cg_print.c'). Basically, the functions with the
+most use and the most parents are placed first, followed by other
+functions with the most use, followed by lower use functions, followed
+by unused functions at the end.
+
+
+File: gprof.info, Node: Debugging, Prev: Internals, Up: Details
+
+Debugging `gprof'
+-----------------
+
+ If `gprof' was compiled with debugging enabled, the `-d' option
+triggers debugging output (to stdout) which can be helpful in
+understanding its operation. The debugging number specified is
+interpreted as a sum of the following options:
+
+2 - Topological sort
+ Monitor depth-first numbering of symbols during call graph analysis
+
+4 - Cycles
+ Shows symbols as they are identified as cycle heads
+
+16 - Tallying
+ As the call graph arcs are read, show each arc and how the total
+ calls to each function are tallied
+
+32 - Call graph arc sorting
+ Details sorting individual parents/children within each call graph
+ entry
+
+64 - Reading histogram and call graph records
+ Shows address ranges of histograms as they are read, and each call
+ graph arc
+
+128 - Symbol table
+ Reading, classifying, and sorting the symbol table from the object
+ file. For line-by-line profiling (`-l' option), also shows line
+ numbers being assigned to memory addresses.
+
+256 - Static call graph
+ Trace operation of `-c' option
+
+512 - Symbol table and arc table lookups
+ Detail operation of lookup routines
+
+1024 - Call graph propagation
+ Shows how function times are propagated along the call graph
+
+2048 - Basic-blocks
+ Shows basic-block records as they are read from profile data (only
+ meaningful with `-l' option)
+
+4096 - Symspecs
+ Shows symspec-to-symbol pattern matching operation
+
+8192 - Annotate source
+ Tracks operation of `-A' option
+
diff --git a/gprof/gprof.info-3 b/gprof/gprof.info-3
new file mode 100644
index 0000000..aa980fe
--- /dev/null
+++ b/gprof/gprof.info-3
@@ -0,0 +1,369 @@
+This is gprof.info, produced by makeinfo version 4.3 from gprof.texi.
+
+START-INFO-DIR-ENTRY
+* gprof: (gprof). Profiling your program's execution
+END-INFO-DIR-ENTRY
+
+ This file documents the gprof profiler of the GNU system.
+
+ Copyright (C) 1988, 92, 97, 98, 99, 2000, 2001 Free Software
+Foundation, Inc.
+
+ Permission is granted to copy, distribute and/or modify this document
+under the terms of the GNU Free Documentation License, Version 1.1 or
+any later version published by the Free Software Foundation; with no
+Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
+Texts. A copy of the license is included in the section entitled "GNU
+Free Documentation License".
+
+
+File: gprof.info, Node: GNU Free Documentation License, Prev: Details, Up: Top
+
+GNU Free Documentation License
+******************************
+
+ GNU Free Documentation License
+
+ Version 1.1, March 2000
+
+ Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple
+Place, Suite 330, Boston, MA 02111-1307 USA
+
+ Everyone is permitted to copy and distribute verbatim copies of
+this license document, but changing it is not allowed.
+
+ 0. PREAMBLE
+
+ The purpose of this License is to make a manual, textbook, or other
+written document "free" in the sense of freedom: to assure everyone the
+effective freedom to copy and redistribute it, with or without
+modifying it, either commercially or noncommercially. Secondarily,
+this License preserves for the author and publisher a way to get credit
+for their work, while not being considered responsible for
+modifications made by others.
+
+ This License is a kind of "copyleft", which means that derivative
+works of the document must themselves be free in the same sense. It
+complements the GNU General Public License, which is a copyleft license
+designed for free software.
+
+ We have designed this License in order to use it for manuals for free
+software, because free software needs free documentation: a free
+program should come with manuals providing the same freedoms that the
+software does. But this License is not limited to software manuals; it
+can be used for any textual work, regardless of subject matter or
+whether it is published as a printed book. We recommend this License
+principally for works whose purpose is instruction or reference.
+
+ 1. APPLICABILITY AND DEFINITIONS
+
+ This License applies to any manual or other work that contains a
+notice placed by the copyright holder saying it can be distributed
+under the terms of this License. The "Document", below, refers to any
+such manual or work. Any member of the public is a licensee, and is
+addressed as "you".
+
+ A "Modified Version" of the Document means any work containing the
+Document or a portion of it, either copied verbatim, or with
+modifications and/or translated into another language.
+
+ A "Secondary Section" is a named appendix or a front-matter section
+of the Document that deals exclusively with the relationship of the
+publishers or authors of the Document to the Document's overall subject
+(or to related matters) and contains nothing that could fall directly
+within that overall subject. (For example, if the Document is in part a
+textbook of mathematics, a Secondary Section may not explain any
+mathematics.) The relationship could be a matter of historical
+connection with the subject or with related matters, or of legal,
+commercial, philosophical, ethical or political position regarding them.
+
+ The "Invariant Sections" are certain Secondary Sections whose titles
+are designated, as being those of Invariant Sections, in the notice
+that says that the Document is released under this License.
+
+ The "Cover Texts" are certain short passages of text that are listed,
+as Front-Cover Texts or Back-Cover Texts, in the notice that says that
+the Document is released under this License.
+
+ A "Transparent" copy of the Document means a machine-readable copy,
+represented in a format whose specification is available to the general
+public, whose contents can be viewed and edited directly and
+straightforwardly with generic text editors or (for images composed of
+pixels) generic paint programs or (for drawings) some widely available
+drawing editor, and that is suitable for input to text formatters or
+for automatic translation to a variety of formats suitable for input to
+text formatters. A copy made in an otherwise Transparent file format
+whose markup has been designed to thwart or discourage subsequent
+modification by readers is not Transparent. A copy that is not
+"Transparent" is called "Opaque".
+
+ Examples of suitable formats for Transparent copies include plain
+ASCII without markup, Texinfo input format, LaTeX input format, SGML or
+XML using a publicly available DTD, and standard-conforming simple HTML
+designed for human modification. Opaque formats include PostScript,
+PDF, proprietary formats that can be read and edited only by
+proprietary word processors, SGML or XML for which the DTD and/or
+processing tools are not generally available, and the machine-generated
+HTML produced by some word processors for output purposes only.
+
+ The "Title Page" means, for a printed book, the title page itself,
+plus such following pages as are needed to hold, legibly, the material
+this License requires to appear in the title page. For works in
+formats which do not have any title page as such, "Title Page" means
+the text near the most prominent appearance of the work's title,
+preceding the beginning of the body of the text.
+
+ 2. VERBATIM COPYING
+
+ You may copy and distribute the Document in any medium, either
+commercially or noncommercially, provided that this License, the
+copyright notices, and the license notice saying this License applies
+to the Document are reproduced in all copies, and that you add no other
+conditions whatsoever to those of this License. You may not use
+technical measures to obstruct or control the reading or further
+copying of the copies you make or distribute. However, you may accept
+compensation in exchange for copies. If you distribute a large enough
+number of copies you must also follow the conditions in section 3.
+
+ You may also lend copies, under the same conditions stated above, and
+you may publicly display copies.
+
+ 3. COPYING IN QUANTITY
+
+ If you publish printed copies of the Document numbering more than
+100, and the Document's license notice requires Cover Texts, you must
+enclose the copies in covers that carry, clearly and legibly, all these
+Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
+on the back cover. Both covers must also clearly and legibly identify
+you as the publisher of these copies. The front cover must present the
+full title with all words of the title equally prominent and visible.
+You may add other material on the covers in addition. Copying with
+changes limited to the covers, as long as they preserve the title of
+the Document and satisfy these conditions, can be treated as verbatim
+copying in other respects.
+
+ If the required texts for either cover are too voluminous to fit
+legibly, you should put the first ones listed (as many as fit
+reasonably) on the actual cover, and continue the rest onto adjacent
+pages.
+
+ If you publish or distribute Opaque copies of the Document numbering
+more than 100, you must either include a machine-readable Transparent
+copy along with each Opaque copy, or state in or with each Opaque copy
+a publicly-accessible computer-network location containing a complete
+Transparent copy of the Document, free of added material, which the
+general network-using public has access to download anonymously at no
+charge using public-standard network protocols. If you use the latter
+option, you must take reasonably prudent steps, when you begin
+distribution of Opaque copies in quantity, to ensure that this
+Transparent copy will remain thus accessible at the stated location
+until at least one year after the last time you distribute an Opaque
+copy (directly or through your agents or retailers) of that edition to
+the public.
+
+ It is requested, but not required, that you contact the authors of
+the Document well before redistributing any large number of copies, to
+give them a chance to provide you with an updated version of the
+Document.
+
+ 4. MODIFICATIONS
+
+ You may copy and distribute a Modified Version of the Document under
+the conditions of sections 2 and 3 above, provided that you release the
+Modified Version under precisely this License, with the Modified
+Version filling the role of the Document, thus licensing distribution
+and modification of the Modified Version to whoever possesses a copy of
+it. In addition, you must do these things in the Modified Version:
+
+ A. Use in the Title Page (and on the covers, if any) a title distinct
+ from that of the Document, and from those of previous versions
+(which should, if there were any, be listed in the History section
+of the Document). You may use the same title as a previous version
+if the original publisher of that version gives permission. B. List on
+the Title Page, as authors, one or more persons or entities
+responsible for authorship of the modifications in the Modified
+Version, together with at least five of the principal authors of the
+Document (all of its principal authors, if it has less than five). C.
+State on the Title page the name of the publisher of the Modified
+Version, as the publisher. D. Preserve all the copyright notices of
+the Document. E. Add an appropriate copyright notice for your
+modifications adjacent to the other copyright notices. F. Include,
+immediately after the copyright notices, a license notice giving the
+public permission to use the Modified Version under the terms of
+this License, in the form shown in the Addendum below. G. Preserve in
+that license notice the full lists of Invariant Sections and
+required Cover Texts given in the Document's license notice. H.
+Include an unaltered copy of this License. I. Preserve the section
+entitled "History", and its title, and add to it an item stating at
+least the title, year, new authors, and publisher of the Modified
+Version as given on the Title Page. If there is no section entitled
+"History" in the Document, create one stating the title, year,
+authors, and publisher of the Document as given on its Title Page,
+then add an item describing the Modified Version as stated in the
+previous sentence. J. Preserve the network location, if any, given in
+the Document for public access to a Transparent copy of the
+Document, and likewise the network locations given in the Document
+for previous versions it was based on. These may be placed in the
+"History" section. You may omit a network location for a work that
+was published at least four years before the Document itself, or if
+the original publisher of the version it refers to gives permission.
+K. In any section entitled "Acknowledgements" or "Dedications",
+preserve the section's title, and preserve in the section all the
+substance and tone of each of the contributor acknowledgements
+and/or dedications given therein. L. Preserve all the Invariant
+Sections of the Document, unaltered in their text and in their
+titles. Section numbers or the equivalent are not considered part
+of the section titles. M. Delete any section entitled "Endorsements".
+Such a section may not be included in the Modified Version. N. Do
+not retitle any existing section as "Endorsements" or to conflict in
+title with any Invariant Section.
+
+ If the Modified Version includes new front-matter sections or
+appendices that qualify as Secondary Sections and contain no material
+copied from the Document, you may at your option designate some or all
+of these sections as invariant. To do this, add their titles to the
+list of Invariant Sections in the Modified Version's license notice.
+These titles must be distinct from any other section titles.
+
+ You may add a section entitled "Endorsements", provided it contains
+nothing but endorsements of your Modified Version by various
+parties-for example, statements of peer review or that the text has
+been approved by an organization as the authoritative definition of a
+standard.
+
+ You may add a passage of up to five words as a Front-Cover Text, and
+a passage of up to 25 words as a Back-Cover Text, to the end of the list
+of Cover Texts in the Modified Version. Only one passage of
+Front-Cover Text and one of Back-Cover Text may be added by (or through
+arrangements made by) any one entity. If the Document already includes
+a cover text for the same cover, previously added by you or by
+arrangement made by the same entity you are acting on behalf of, you
+may not add another; but you may replace the old one, on explicit
+permission from the previous publisher that added the old one.
+
+ The author(s) and publisher(s) of the Document do not by this License
+give permission to use their names for publicity for or to assert or
+imply endorsement of any Modified Version.
+
+ 5. COMBINING DOCUMENTS
+
+ You may combine the Document with other documents released under this
+License, under the terms defined in section 4 above for modified
+versions, provided that you include in the combination all of the
+Invariant Sections of all of the original documents, unmodified, and
+list them all as Invariant Sections of your combined work in its
+license notice.
+
+ The combined work need only contain one copy of this License, and
+multiple identical Invariant Sections may be replaced with a single
+copy. If there are multiple Invariant Sections with the same name but
+different contents, make the title of each such section unique by
+adding at the end of it, in parentheses, the name of the original
+author or publisher of that section if known, or else a unique number.
+Make the same adjustment to the section titles in the list of Invariant
+Sections in the license notice of the combined work.
+
+ In the combination, you must combine any sections entitled "History"
+in the various original documents, forming one section entitled
+"History"; likewise combine any sections entitled "Acknowledgements",
+and any sections entitled "Dedications". You must delete all sections
+entitled "Endorsements."
+
+ 6. COLLECTIONS OF DOCUMENTS
+
+ You may make a collection consisting of the Document and other
+documents released under this License, and replace the individual
+copies of this License in the various documents with a single copy that
+is included in the collection, provided that you follow the rules of
+this License for verbatim copying of each of the documents in all other
+respects.
+
+ You may extract a single document from such a collection, and
+distribute it individually under this License, provided you insert a
+copy of this License into the extracted document, and follow this
+License in all other respects regarding verbatim copying of that
+document.
+
+ 7. AGGREGATION WITH INDEPENDENT WORKS
+
+ A compilation of the Document or its derivatives with other separate
+and independent documents or works, in or on a volume of a storage or
+distribution medium, does not as a whole count as a Modified Version of
+the Document, provided no compilation copyright is claimed for the
+compilation. Such a compilation is called an "aggregate", and this
+License does not apply to the other self-contained works thus compiled
+with the Document, on account of their being thus compiled, if they are
+not themselves derivative works of the Document.
+
+ If the Cover Text requirement of section 3 is applicable to these
+copies of the Document, then if the Document is less than one quarter
+of the entire aggregate, the Document's Cover Texts may be placed on
+covers that surround only the Document within the aggregate. Otherwise
+they must appear on covers around the whole aggregate.
+
+ 8. TRANSLATION
+
+ Translation is considered a kind of modification, so you may
+distribute translations of the Document under the terms of section 4.
+Replacing Invariant Sections with translations requires special
+permission from their copyright holders, but you may include
+translations of some or all Invariant Sections in addition to the
+original versions of these Invariant Sections. You may include a
+translation of this License provided that you also include the original
+English version of this License. In case of a disagreement between the
+translation and the original English version of this License, the
+original English version will prevail.
+
+ 9. TERMINATION
+
+ You may not copy, modify, sublicense, or distribute the Document
+except as expressly provided for under this License. Any other attempt
+to copy, modify, sublicense or distribute the Document is void, and will
+automatically terminate your rights under this License. However,
+parties who have received copies, or rights, from you under this
+License will not have their licenses terminated so long as such parties
+remain in full compliance.
+
+ 10. FUTURE REVISIONS OF THIS LICENSE
+
+ The Free Software Foundation may publish new, revised versions of
+the GNU Free Documentation License from time to time. Such new
+versions will be similar in spirit to the present version, but may
+differ in detail to address new problems or concerns. See
+http://www.gnu.org/copyleft/.
+
+ Each version of the License is given a distinguishing version number.
+If the Document specifies that a particular numbered version of this
+License "or any later version" applies to it, you have the option of
+following the terms and conditions either of that specified version or
+of any later version that has been published (not as a draft) by the
+Free Software Foundation. If the Document does not specify a version
+number of this License, you may choose any version ever published (not
+as a draft) by the Free Software Foundation.
+
+ ADDENDUM: How to use this License for your documents
+
+ To use this License in a document you have written, include a copy of
+the License in the document and put the following copyright and license
+notices just after the title page:
+
+ Copyright (c) YEAR YOUR NAME.
+ Permission is granted to copy, distribute and/or modify this document
+ under the terms of the GNU Free Documentation License, Version 1.1
+ or any later version published by the Free Software Foundation;
+ with the Invariant Sections being LIST THEIR TITLES, with the
+ Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
+ A copy of the license is included in the section entitled "GNU
+ Free Documentation License".
+
+ If you have no Invariant Sections, write "with no Invariant Sections"
+instead of saying which ones are invariant. If you have no Front-Cover
+Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
+LIST"; likewise for Back-Cover Texts.
+
+ If your document contains nontrivial examples of program code, we
+recommend releasing these examples in parallel under your choice of
+free software license, such as the GNU General Public License, to
+permit their use in free software.
+
+
diff --git a/gprof/po/da.gmo b/gprof/po/da.gmo
new file mode 100644
index 0000000..d2bfe78
--- /dev/null
+++ b/gprof/po/da.gmo
Binary files differ
diff --git a/gprof/po/es.gmo b/gprof/po/es.gmo
new file mode 100644
index 0000000..537d822
--- /dev/null
+++ b/gprof/po/es.gmo
Binary files differ
diff --git a/gprof/po/fr.gmo b/gprof/po/fr.gmo
new file mode 100644
index 0000000..fa3e4f3
--- /dev/null
+++ b/gprof/po/fr.gmo
Binary files differ
diff --git a/gprof/po/id.gmo b/gprof/po/id.gmo
new file mode 100644
index 0000000..bbf145e
--- /dev/null
+++ b/gprof/po/id.gmo
Binary files differ
diff --git a/gprof/po/pt_BR.gmo b/gprof/po/pt_BR.gmo
new file mode 100644
index 0000000..32876f7
--- /dev/null
+++ b/gprof/po/pt_BR.gmo
Binary files differ
diff --git a/gprof/po/sv.gmo b/gprof/po/sv.gmo
new file mode 100644
index 0000000..e445337
--- /dev/null
+++ b/gprof/po/sv.gmo
Binary files differ
diff --git a/gprof/po/tr.gmo b/gprof/po/tr.gmo
new file mode 100644
index 0000000..4034cbf
--- /dev/null
+++ b/gprof/po/tr.gmo
Binary files differ