diff options
author | Luis Machado <luis.machado@arm.com> | 2022-03-31 11:42:35 +0100 |
---|---|---|
committer | Luis Machado <luis.machado@arm.com> | 2022-07-19 15:24:31 +0100 |
commit | 68cffbbd4406b4efe1aa6e18460b1d7ca02549f1 (patch) | |
tree | f8a61526011db5bf0c60314f38de6fc48cd82ca0 /gdb | |
parent | d0ff5ca959df91dcef16ec57154ff199fad5a4e4 (diff) | |
download | gdb-68cffbbd4406b4efe1aa6e18460b1d7ca02549f1.zip gdb-68cffbbd4406b4efe1aa6e18460b1d7ca02549f1.tar.gz gdb-68cffbbd4406b4efe1aa6e18460b1d7ca02549f1.tar.bz2 |
[AArch64] MTE corefile support
Teach GDB how to dump memory tags for AArch64 when using the gcore command
and how to read memory tag data back from a core file generated by GDB
(via gcore) or by the Linux kernel.
The format is documented in the Linux Kernel documentation [1].
Each tagged memory range (listed in /proc/<pid>/smaps) gets dumped to its
own PT_AARCH64_MEMTAG_MTE segment. A section named ".memtag" is created for each
of those segments when reading the core file back.
To save a little bit of space, given MTE tags only take 4 bits, the memory tags
are stored packed as 2 tags per byte.
When reading the data back, the tags are unpacked.
I've added a new testcase to exercise the feature.
Build-tested with --enable-targets=all and regression tested on aarch64-linux
Ubuntu 20.04.
[1] Documentation/arm64/memory-tagging-extension.rst (Core Dump Support)
Diffstat (limited to 'gdb')
-rw-r--r-- | gdb/Makefile.in | 1 | ||||
-rw-r--r-- | gdb/NEWS | 10 | ||||
-rw-r--r-- | gdb/aarch64-linux-tdep.c | 171 | ||||
-rw-r--r-- | gdb/arch/aarch64-mte-linux.c | 56 | ||||
-rw-r--r-- | gdb/arch/aarch64-mte-linux.h | 10 | ||||
-rw-r--r-- | gdb/corelow.c | 62 | ||||
-rw-r--r-- | gdb/defs.h | 3 | ||||
-rw-r--r-- | gdb/doc/gdb.texinfo | 19 | ||||
-rw-r--r-- | gdb/gcore.c | 83 | ||||
-rw-r--r-- | gdb/gdbarch-components.py | 35 | ||||
-rw-r--r-- | gdb/gdbarch-gen.h | 26 | ||||
-rw-r--r-- | gdb/gdbarch.c | 96 | ||||
-rw-r--r-- | gdb/linux-tdep.c | 39 | ||||
-rw-r--r-- | gdb/memtag.c | 68 | ||||
-rw-r--r-- | gdb/memtag.h | 50 | ||||
-rw-r--r-- | gdb/testsuite/gdb.arch/aarch64-mte-core.c | 152 | ||||
-rw-r--r-- | gdb/testsuite/gdb.arch/aarch64-mte-core.exp | 175 |
17 files changed, 1048 insertions, 8 deletions
diff --git a/gdb/Makefile.in b/gdb/Makefile.in index 911daa2..57c29a7 100644 --- a/gdb/Makefile.in +++ b/gdb/Makefile.in @@ -1122,6 +1122,7 @@ COMMON_SFILES = \ memattr.c \ memory-map.c \ memrange.c \ + memtag.c \ minidebug.c \ minsyms.c \ mipsread.c \ @@ -3,6 +3,16 @@ *** Changes since GDB 12 +* GDB now supports dumping memory tag data for AArch64 MTE. It also supports + reading memory tag data for AArch64 MTE from core files generated by + the gcore command or the Linux kernel. + + When a process uses memory-mapped pages protected by memory tags (for + example, AArch64 MTE), this additional information will be recorded in + the core file in the event of a crash or if GDB generates a core file + from the current process state. GDB will show this additional information + automatically, or through one of the memory-tag subcommands. + * "info breakpoints" now displays enabled breakpoint locations of disabled breakpoints as in the "y-" state. For example: diff --git a/gdb/aarch64-linux-tdep.c b/gdb/aarch64-linux-tdep.c index 5ed7353..35e56b5 100644 --- a/gdb/aarch64-linux-tdep.c +++ b/gdb/aarch64-linux-tdep.c @@ -53,6 +53,9 @@ #include "gdbsupport/selftest.h" +#include "elf/common.h" +#include "elf/aarch64.h" + /* Signal frame handling. +------------+ ^ @@ -1805,6 +1808,159 @@ aarch64_linux_report_signal_info (struct gdbarch *gdbarch, } } +/* AArch64 Linux implementation of the gdbarch_create_memtag_section hook. */ + +static asection * +aarch64_linux_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd, + CORE_ADDR address, size_t size) +{ + gdb_assert (obfd != nullptr); + gdb_assert (size > 0); + + /* Create the section and associated program header. + + Make sure the section's flags has SEC_HAS_CONTENTS, otherwise BFD will + refuse to write data to this section. */ + asection *mte_section + = bfd_make_section_anyway_with_flags (obfd, "memtag", SEC_HAS_CONTENTS); + + if (mte_section == nullptr) + return nullptr; + + bfd_set_section_vma (mte_section, address); + /* The size of the memory range covered by the memory tags. We reuse the + section's rawsize field for this purpose. */ + mte_section->rawsize = size; + + /* Fetch the number of tags we need to save. */ + size_t tags_count + = aarch64_mte_get_tag_granules (address, size, AARCH64_MTE_GRANULE_SIZE); + /* Tags are stored packed as 2 tags per byte. */ + bfd_set_section_size (mte_section, (tags_count + 1) >> 1); + /* Store program header information. */ + bfd_record_phdr (obfd, PT_AARCH64_MEMTAG_MTE, 1, 0, 0, 0, 0, 0, 1, + &mte_section); + + return mte_section; +} + +/* Maximum number of tags to request. */ +#define MAX_TAGS_TO_TRANSFER 1024 + +/* AArch64 Linux implementation of the gdbarch_fill_memtag_section hook. */ + +static bool +aarch64_linux_fill_memtag_section (struct gdbarch *gdbarch, asection *osec) +{ + /* We only handle MTE tags for now. */ + + size_t segment_size = osec->rawsize; + CORE_ADDR start_address = bfd_section_vma (osec); + CORE_ADDR end_address = start_address + segment_size; + + /* Figure out how many tags we need to store in this memory range. */ + size_t granules = aarch64_mte_get_tag_granules (start_address, segment_size, + AARCH64_MTE_GRANULE_SIZE); + + /* If there are no tag granules to fetch, just return. */ + if (granules == 0) + return true; + + CORE_ADDR address = start_address; + + /* Vector of tags. */ + gdb::byte_vector tags; + + while (granules > 0) + { + /* Transfer tags in chunks. */ + gdb::byte_vector tags_read; + size_t xfer_len + = ((granules >= MAX_TAGS_TO_TRANSFER) + ? MAX_TAGS_TO_TRANSFER * AARCH64_MTE_GRANULE_SIZE + : granules * AARCH64_MTE_GRANULE_SIZE); + + if (!target_fetch_memtags (address, xfer_len, tags_read, + static_cast<int> (memtag_type::allocation))) + { + warning (_("Failed to read MTE tags from memory range [%s,%s)."), + phex_nz (start_address, sizeof (start_address)), + phex_nz (end_address, sizeof (end_address))); + return false; + } + + /* Transfer over the tags that have been read. */ + tags.insert (tags.end (), tags_read.begin (), tags_read.end ()); + + /* Adjust the remaining granules and starting address. */ + granules -= tags_read.size (); + address += tags_read.size () * AARCH64_MTE_GRANULE_SIZE; + } + + /* Pack the MTE tag bits. */ + aarch64_mte_pack_tags (tags); + + if (!bfd_set_section_contents (osec->owner, osec, tags.data (), + 0, tags.size ())) + { + warning (_("Failed to write %s bytes of corefile memory " + "tag content (%s)."), + pulongest (tags.size ()), + bfd_errmsg (bfd_get_error ())); + } + return true; +} + +/* AArch64 Linux implementation of the gdbarch_decode_memtag_section + hook. Decode a memory tag section and return the requested tags. + + The section is guaranteed to cover the [ADDRESS, ADDRESS + length) + range. */ + +static gdb::byte_vector +aarch64_linux_decode_memtag_section (struct gdbarch *gdbarch, + bfd_section *section, + int type, + CORE_ADDR address, size_t length) +{ + gdb_assert (section != nullptr); + + /* The requested address must not be less than section->vma. */ + gdb_assert (section->vma <= address); + + /* Figure out how many tags we need to fetch in this memory range. */ + size_t granules = aarch64_mte_get_tag_granules (address, length, + AARCH64_MTE_GRANULE_SIZE); + /* Sanity check. */ + gdb_assert (granules > 0); + + /* Fetch the total number of tags in the range [VMA, address + length). */ + size_t granules_from_vma + = aarch64_mte_get_tag_granules (section->vma, + address - section->vma + length, + AARCH64_MTE_GRANULE_SIZE); + + /* Adjust the tags vector to contain the exact number of packed bytes. */ + gdb::byte_vector tags (((granules - 1) >> 1) + 1); + + /* Figure out the starting offset into the packed tags data. */ + file_ptr offset = ((granules_from_vma - granules) >> 1); + + if (!bfd_get_section_contents (section->owner, section, tags.data (), + offset, tags.size ())) + error (_("Couldn't read contents from memtag section.")); + + /* At this point, the tags are packed 2 per byte. Unpack them before + returning. */ + bool skip_first = ((granules_from_vma - granules) % 2) != 0; + aarch64_mte_unpack_tags (tags, skip_first); + + /* Resize to the exact number of tags that was requested. */ + tags.resize (granules); + + return tags; +} + static void aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { @@ -1888,6 +2044,21 @@ aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) set_gdbarch_report_signal_info (gdbarch, aarch64_linux_report_signal_info); + + /* Core file helpers. */ + + /* Core file helper to create a memory tag section for a particular + PT_LOAD segment. */ + set_gdbarch_create_memtag_section + (gdbarch, aarch64_linux_create_memtag_section); + + /* Core file helper to fill a memory tag section with tag data. */ + set_gdbarch_fill_memtag_section + (gdbarch, aarch64_linux_fill_memtag_section); + + /* Core file helper to decode a memory tag section. */ + set_gdbarch_decode_memtag_section (gdbarch, + aarch64_linux_decode_memtag_section); } /* Initialize the aarch64_linux_record_tdep. */ diff --git a/gdb/arch/aarch64-mte-linux.c b/gdb/arch/aarch64-mte-linux.c index fc7a8cc..3af6f36 100644 --- a/gdb/arch/aarch64-mte-linux.c +++ b/gdb/arch/aarch64-mte-linux.c @@ -21,6 +21,62 @@ /* See arch/aarch64-mte-linux.h */ +void +aarch64_mte_pack_tags (gdb::byte_vector &tags) +{ + /* Nothing to pack? */ + if (tags.empty ()) + return; + + /* If the tags vector has an odd number of elements, add another + zeroed-out element to make it even. This facilitates packing. */ + if ((tags.size () % 2) != 0) + tags.emplace_back (0); + + for (int unpacked = 0, packed = 0; unpacked < tags.size (); + unpacked += 2, packed++) + tags[packed] = (tags[unpacked + 1] << 4) | tags[unpacked]; + + /* Now we have half the size. */ + tags.resize (tags.size () / 2); +} + +/* See arch/aarch64-mte-linux.h */ + +void +aarch64_mte_unpack_tags (gdb::byte_vector &tags, bool skip_first) +{ + /* Nothing to unpack? */ + if (tags.empty ()) + return; + + /* An unpacked MTE tags vector will have twice the number of elements + compared to an unpacked one. */ + gdb::byte_vector unpacked_tags (tags.size () * 2); + + int unpacked = 0, packed = 0; + + if (skip_first) + { + /* We are not interested in the first unpacked element, just discard + it. */ + unpacked_tags[unpacked] = (tags[packed] >> 4) & 0xf; + unpacked++; + packed++; + } + + for (; packed < tags.size (); unpacked += 2, packed++) + { + unpacked_tags[unpacked] = tags[packed] & 0xf; + unpacked_tags[unpacked + 1] = (tags[packed] >> 4) & 0xf; + } + + /* Update the original tags vector. */ + tags = std::move (unpacked_tags); +} + +/* See arch/aarch64-mte-linux.h */ + size_t aarch64_mte_get_tag_granules (CORE_ADDR addr, size_t len, size_t granule_size) { diff --git a/gdb/arch/aarch64-mte-linux.h b/gdb/arch/aarch64-mte-linux.h index fed91bb..0771ef7 100644 --- a/gdb/arch/aarch64-mte-linux.h +++ b/gdb/arch/aarch64-mte-linux.h @@ -32,6 +32,7 @@ /* We have one tag per 16 bytes of memory. */ #define AARCH64_MTE_GRANULE_SIZE 16 +#define AARCH64_MTE_TAG_BIT_SIZE 4 #define AARCH64_MTE_LOGICAL_TAG_START_BIT 56 #define AARCH64_MTE_LOGICAL_MAX_VALUE 0xf @@ -71,4 +72,13 @@ extern CORE_ADDR aarch64_mte_set_ltag (CORE_ADDR address, CORE_ADDR tag); It is always possible to get the logical tag. */ extern CORE_ADDR aarch64_mte_get_ltag (CORE_ADDR address); +/* Given a TAGS vector containing 1 MTE tag per byte, pack the data as + 2 tags per byte and resize the vector. */ +extern void aarch64_mte_pack_tags (gdb::byte_vector &tags); + +/* Given a TAGS vector containing 2 MTE tags per byte, unpack the data as + 1 tag per byte and resize the vector. If SKIP_FIRST is TRUE, skip the + first unpacked element. Otherwise leave it in the unpacked vector. */ +extern void aarch64_mte_unpack_tags (gdb::byte_vector &tags, bool skip_first); + #endif /* ARCH_AARCH64_MTE_LINUX_H */ diff --git a/gdb/corelow.c b/gdb/corelow.c index 2037ef3..293bc8d 100644 --- a/gdb/corelow.c +++ b/gdb/corelow.c @@ -52,6 +52,7 @@ #include <unordered_set> #include "gdbcmd.h" #include "xml-tdesc.h" +#include "memtag.h" #ifndef O_LARGEFILE #define O_LARGEFILE 0 @@ -101,6 +102,13 @@ public: bool info_proc (const char *, enum info_proc_what) override; + bool supports_memory_tagging () override; + + /* Core file implementation of fetch_memtags. Fetch the memory tags from + core file notes. */ + bool fetch_memtags (CORE_ADDR address, size_t len, + gdb::byte_vector &tags, int type) override; + /* A few helpers. */ /* Getter, see variable definition. */ @@ -1177,6 +1185,60 @@ core_target::info_proc (const char *args, enum info_proc_what request) return true; } +/* Implementation of the "supports_memory_tagging" target_ops method. */ + +bool +core_target::supports_memory_tagging () +{ + /* Look for memory tag sections. If they exist, that means this core file + supports memory tagging. */ + + return (bfd_get_section_by_name (core_bfd, "memtag") != nullptr); +} + +/* Implementation of the "fetch_memtags" target_ops method. */ + +bool +core_target::fetch_memtags (CORE_ADDR address, size_t len, + gdb::byte_vector &tags, int type) +{ + struct gdbarch *gdbarch = target_gdbarch (); + + /* Make sure we have a way to decode the memory tag notes. */ + if (!gdbarch_decode_memtag_section_p (gdbarch)) + error (_("gdbarch_decode_memtag_section not implemented for this " + "architecture.")); + + memtag_section_info info; + info.memtag_section = nullptr; + + while (get_next_core_memtag_section (core_bfd, info.memtag_section, + address, info)) + { + size_t adjusted_length + = (address + len < info.end_address) ? len : (info.end_address - address); + + /* Decode the memory tag note and return the tags. */ + gdb::byte_vector tags_read + = gdbarch_decode_memtag_section (gdbarch, info.memtag_section, type, + address, adjusted_length); + + /* Transfer over the tags that have been read. */ + tags.insert (tags.end (), tags_read.begin (), tags_read.end ()); + + /* ADDRESS + LEN may cross the boundaries of a particular memory tag + segment. Check if we need to fetch tags from a different section. */ + if (!tags_read.empty () && (address + len) < info.end_address) + return true; + + /* There are more tags to fetch. Update ADDRESS and LEN. */ + len -= (info.end_address - address); + address = info.end_address; + } + + return false; +} + /* Get a pointer to the current core target. If not connected to a core target, return NULL. */ @@ -345,7 +345,8 @@ extern const char *pc_prefix (CORE_ADDR); typedef int (*find_memory_region_ftype) (CORE_ADDR addr, unsigned long size, int read, int write, int exec, - int modified, void *data); + int modified, bool memory_tagged, + void *data); /* * Possible lvalue types. Like enum language, this should be in value.h, but needs to be here for the same reason. */ diff --git a/gdb/doc/gdb.texinfo b/gdb/doc/gdb.texinfo index 1c017e4..382df00 100644 --- a/gdb/doc/gdb.texinfo +++ b/gdb/doc/gdb.texinfo @@ -25765,6 +25765,25 @@ options that can be controlled at runtime and emulates the @code{prctl} option @code{PR_SET_TAGGED_ADDR_CTRL}. For further information, see the documentation in the Linux kernel. +@value{GDBN} supports dumping memory tag data to core files through the +@command{gcore} command and reading memory tag data from core files generated +by the @command{gcore} command or the Linux kernel. + +When a process uses memory-mapped pages protected by memory tags (for +example, AArch64 MTE), this additional information will be recorded in +the core file in the event of a crash or if @value{GDBN} generates a core file +from the current process state. + +The memory tag data will be used so developers can display the memory +tags from a particular memory region (using the @samp{m} modifier to the +@command{x} command, using the @command{print} command or using the various +@command{memory-tag} subcommands. + +In the case of a crash, @value{GDBN} will attempt to retrieve the memory tag +information automatically from the core file, and will show one of the above +messages depending on whether the synchronous or asynchronous mode is selected. +@xref{Memory Tagging}. @xref{Memory}. + @node i386 @subsection x86 Architecture-specific Issues diff --git a/gdb/gcore.c b/gdb/gcore.c index fdb22b7..b81ef81 100644 --- a/gdb/gcore.c +++ b/gdb/gcore.c @@ -349,6 +349,12 @@ make_output_phdrs (bfd *obfd, asection *osec) int p_flags = 0; int p_type = 0; + /* Memory tag segments have already been handled by the architecture, as + those contain arch-specific information. If we have one of those, just + return. */ + if (startswith (bfd_section_name (osec), "memtag")) + return; + /* FIXME: these constants may only be applicable for ELF. */ if (startswith (bfd_section_name (osec), "load")) p_type = PT_LOAD; @@ -371,7 +377,8 @@ make_output_phdrs (bfd *obfd, asection *osec) static int gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read, - int write, int exec, int modified, void *data) + int write, int exec, int modified, bool memory_tagged, + void *data) { bfd *obfd = (bfd *) data; asection *osec; @@ -454,6 +461,45 @@ gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read, return 0; } +/* gdbarch_find_memory_region callback for creating a memory tag section. + DATA is 'bfd *' for the core file GDB is creating. */ + +static int +gcore_create_memtag_section_callback (CORE_ADDR vaddr, unsigned long size, + int read, int write, int exec, + int modified, bool memory_tagged, + void *data) +{ + /* Are there memory tags in this particular memory map entry? */ + if (!memory_tagged) + return 0; + + bfd *obfd = (bfd *) data; + + /* Ask the architecture to create a memory tag section for this particular + memory map entry. It will be populated with contents later, as we can't + start writing the contents before we have all the sections sorted out. */ + asection *memtag_section + = gdbarch_create_memtag_section (target_gdbarch (), obfd, vaddr, size); + + if (memtag_section == nullptr) + { + warning (_("Couldn't make gcore memory tag segment: %s"), + bfd_errmsg (bfd_get_error ())); + return 1; + } + + if (info_verbose) + { + gdb_printf (gdb_stdout, "Saved memory tag segment, %s bytes " + "at %s\n", + plongest (bfd_section_size (memtag_section)), + paddress (target_gdbarch (), vaddr)); + } + + return 0; +} + int objfile_find_memory_regions (struct target_ops *self, find_memory_region_ftype func, void *obfd) @@ -483,6 +529,7 @@ objfile_find_memory_regions (struct target_ops *self, (flags & SEC_READONLY) == 0, /* Writable. */ (flags & SEC_CODE) != 0, /* Executable. */ 1, /* MODIFIED is unknown, pass it as true. */ + false, /* No memory tags in the object file. */ obfd); if (ret != 0) return ret; @@ -496,6 +543,7 @@ objfile_find_memory_regions (struct target_ops *self, 1, /* Stack section will be writable. */ 0, /* Stack section will not be executable. */ 1, /* Stack section will be modified. */ + false, /* No memory tags in the object file. */ obfd); /* Make a heap segment. */ @@ -506,6 +554,7 @@ objfile_find_memory_regions (struct target_ops *self, 1, /* Heap section will be writable. */ 0, /* Heap section will not be executable. */ 1, /* Heap section will be modified. */ + false, /* No memory tags in the object file. */ obfd); return 0; @@ -555,6 +604,20 @@ gcore_copy_callback (bfd *obfd, asection *osec) } } +/* Callback to copy contents to a particular memory tag section. */ + +static void +gcore_copy_memtag_section_callback (bfd *obfd, asection *osec) +{ + /* We are only interested in "memtag" sections. */ + if (!startswith (bfd_section_name (osec), "memtag")) + return; + + /* Fill the section with memory tag contents. */ + if (!gdbarch_fill_memtag_section (target_gdbarch (), osec)) + error (_("Failed to fill memory tag section for core file.")); +} + static int gcore_memory_sections (bfd *obfd) { @@ -567,13 +630,27 @@ gcore_memory_sections (bfd *obfd) return 0; /* FIXME: error return/msg? */ } + /* Take care of dumping memory tags, if there are any. */ + if (!gdbarch_find_memory_regions_p (target_gdbarch ()) + || gdbarch_find_memory_regions (target_gdbarch (), + gcore_create_memtag_section_callback, + obfd) != 0) + { + if (target_find_memory_regions (gcore_create_memtag_section_callback, + obfd) != 0) + return 0; + } + /* Record phdrs for section-to-segment mapping. */ for (asection *sect : gdb_bfd_sections (obfd)) make_output_phdrs (obfd, sect); - /* Copy memory region contents. */ + /* Copy memory region and memory tag contents. */ for (asection *sect : gdb_bfd_sections (obfd)) - gcore_copy_callback (obfd, sect); + { + gcore_copy_callback (obfd, sect); + gcore_copy_memtag_section_callback (obfd, sect); + } return 1; } diff --git a/gdb/gdbarch-components.py b/gdb/gdbarch-components.py index fc10e86..201dba8 100644 --- a/gdb/gdbarch-components.py +++ b/gdb/gdbarch-components.py @@ -1524,6 +1524,41 @@ Find core file memory regions Method( comment=""" +Given a bfd OBFD, segment ADDRESS and SIZE, create a memory tag section to be dumped to a core file +""", + type="asection *", + name="create_memtag_section", + params=[("bfd *", "obfd"), ("CORE_ADDR", "address"), ("size_t", "size")], + predicate=True, + invalid=True, +) + +Method( + comment=""" +Given a memory tag section OSEC, fill OSEC's contents with the appropriate tag data +""", + type="bool", + name="fill_memtag_section", + params=[("asection *", "osec")], + predicate=True, + invalid=True, +) + +Method( + comment=""" +Decode a memory tag SECTION and return the tags of type TYPE contained in +the memory range [ADDRESS, ADDRESS + LENGTH). +If no tags were found, return an empty vector. +""", + type="gdb::byte_vector", + name="decode_memtag_section", + params=[("bfd_section *", "section"), ("int", "type"), ("CORE_ADDR", "address"), ("size_t", "length")], + predicate=True, + invalid=True, +) + +Method( + comment=""" Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from core file into buffer READBUF with length LEN. Return the number of bytes read (zero indicates failure). diff --git a/gdb/gdbarch-gen.h b/gdb/gdbarch-gen.h index ddcb4c5..0504962 100644 --- a/gdb/gdbarch-gen.h +++ b/gdb/gdbarch-gen.h @@ -874,6 +874,32 @@ typedef int (gdbarch_find_memory_regions_ftype) (struct gdbarch *gdbarch, find_m extern int gdbarch_find_memory_regions (struct gdbarch *gdbarch, find_memory_region_ftype func, void *data); extern void set_gdbarch_find_memory_regions (struct gdbarch *gdbarch, gdbarch_find_memory_regions_ftype *find_memory_regions); +/* Given a bfd OBFD, segment ADDRESS and SIZE, create a memory tag section to be dumped to a core file */ + +extern bool gdbarch_create_memtag_section_p (struct gdbarch *gdbarch); + +typedef asection * (gdbarch_create_memtag_section_ftype) (struct gdbarch *gdbarch, bfd *obfd, CORE_ADDR address, size_t size); +extern asection * gdbarch_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd, CORE_ADDR address, size_t size); +extern void set_gdbarch_create_memtag_section (struct gdbarch *gdbarch, gdbarch_create_memtag_section_ftype *create_memtag_section); + +/* Given a memory tag section OSEC, fill OSEC's contents with the appropriate tag data */ + +extern bool gdbarch_fill_memtag_section_p (struct gdbarch *gdbarch); + +typedef bool (gdbarch_fill_memtag_section_ftype) (struct gdbarch *gdbarch, asection *osec); +extern bool gdbarch_fill_memtag_section (struct gdbarch *gdbarch, asection *osec); +extern void set_gdbarch_fill_memtag_section (struct gdbarch *gdbarch, gdbarch_fill_memtag_section_ftype *fill_memtag_section); + +/* Decode a memory tag SECTION and return the tags of type TYPE contained in + the memory range [ADDRESS, ADDRESS + LENGTH). + If no tags were found, return an empty vector. */ + +extern bool gdbarch_decode_memtag_section_p (struct gdbarch *gdbarch); + +typedef gdb::byte_vector (gdbarch_decode_memtag_section_ftype) (struct gdbarch *gdbarch, bfd_section *section, int type, CORE_ADDR address, size_t length); +extern gdb::byte_vector gdbarch_decode_memtag_section (struct gdbarch *gdbarch, bfd_section *section, int type, CORE_ADDR address, size_t length); +extern void set_gdbarch_decode_memtag_section (struct gdbarch *gdbarch, gdbarch_decode_memtag_section_ftype *decode_memtag_section); + /* Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from core file into buffer READBUF with length LEN. Return the number of bytes read (zero indicates failure). diff --git a/gdb/gdbarch.c b/gdb/gdbarch.c index 68ef048..5d14aec 100644 --- a/gdb/gdbarch.c +++ b/gdb/gdbarch.c @@ -171,6 +171,9 @@ struct gdbarch gdbarch_iterate_over_regset_sections_ftype *iterate_over_regset_sections; gdbarch_make_corefile_notes_ftype *make_corefile_notes; gdbarch_find_memory_regions_ftype *find_memory_regions; + gdbarch_create_memtag_section_ftype *create_memtag_section; + gdbarch_fill_memtag_section_ftype *fill_memtag_section; + gdbarch_decode_memtag_section_ftype *decode_memtag_section; gdbarch_core_xfer_shared_libraries_ftype *core_xfer_shared_libraries; gdbarch_core_xfer_shared_libraries_aix_ftype *core_xfer_shared_libraries_aix; gdbarch_core_pid_to_str_ftype *core_pid_to_str; @@ -527,6 +530,9 @@ verify_gdbarch (struct gdbarch *gdbarch) /* Skip verify of iterate_over_regset_sections, has predicate. */ /* Skip verify of make_corefile_notes, has predicate. */ /* Skip verify of find_memory_regions, has predicate. */ + /* Skip verify of create_memtag_section, has predicate. */ + /* Skip verify of fill_memtag_section, has predicate. */ + /* Skip verify of decode_memtag_section, has predicate. */ /* Skip verify of core_xfer_shared_libraries, has predicate. */ /* Skip verify of core_xfer_shared_libraries_aix, has predicate. */ /* Skip verify of core_pid_to_str, has predicate. */ @@ -1097,6 +1103,24 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file) "gdbarch_dump: find_memory_regions = <%s>\n", host_address_to_string (gdbarch->find_memory_regions)); gdb_printf (file, + "gdbarch_dump: gdbarch_create_memtag_section_p() = %d\n", + gdbarch_create_memtag_section_p (gdbarch)); + gdb_printf (file, + "gdbarch_dump: create_memtag_section = <%s>\n", + host_address_to_string (gdbarch->create_memtag_section)); + gdb_printf (file, + "gdbarch_dump: gdbarch_fill_memtag_section_p() = %d\n", + gdbarch_fill_memtag_section_p (gdbarch)); + gdb_printf (file, + "gdbarch_dump: fill_memtag_section = <%s>\n", + host_address_to_string (gdbarch->fill_memtag_section)); + gdb_printf (file, + "gdbarch_dump: gdbarch_decode_memtag_section_p() = %d\n", + gdbarch_decode_memtag_section_p (gdbarch)); + gdb_printf (file, + "gdbarch_dump: decode_memtag_section = <%s>\n", + host_address_to_string (gdbarch->decode_memtag_section)); + gdb_printf (file, "gdbarch_dump: gdbarch_core_xfer_shared_libraries_p() = %d\n", gdbarch_core_xfer_shared_libraries_p (gdbarch)); gdb_printf (file, @@ -3745,6 +3769,78 @@ set_gdbarch_find_memory_regions (struct gdbarch *gdbarch, } bool +gdbarch_create_memtag_section_p (struct gdbarch *gdbarch) +{ + gdb_assert (gdbarch != NULL); + return gdbarch->create_memtag_section != NULL; +} + +asection * +gdbarch_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd, CORE_ADDR address, size_t size) +{ + gdb_assert (gdbarch != NULL); + gdb_assert (gdbarch->create_memtag_section != NULL); + if (gdbarch_debug >= 2) + gdb_printf (gdb_stdlog, "gdbarch_create_memtag_section called\n"); + return gdbarch->create_memtag_section (gdbarch, obfd, address, size); +} + +void +set_gdbarch_create_memtag_section (struct gdbarch *gdbarch, + gdbarch_create_memtag_section_ftype create_memtag_section) +{ + gdbarch->create_memtag_section = create_memtag_section; +} + +bool +gdbarch_fill_memtag_section_p (struct gdbarch *gdbarch) +{ + gdb_assert (gdbarch != NULL); + return gdbarch->fill_memtag_section != NULL; +} + +bool +gdbarch_fill_memtag_section (struct gdbarch *gdbarch, asection *osec) +{ + gdb_assert (gdbarch != NULL); + gdb_assert (gdbarch->fill_memtag_section != NULL); + if (gdbarch_debug >= 2) + gdb_printf (gdb_stdlog, "gdbarch_fill_memtag_section called\n"); + return gdbarch->fill_memtag_section (gdbarch, osec); +} + +void +set_gdbarch_fill_memtag_section (struct gdbarch *gdbarch, + gdbarch_fill_memtag_section_ftype fill_memtag_section) +{ + gdbarch->fill_memtag_section = fill_memtag_section; +} + +bool +gdbarch_decode_memtag_section_p (struct gdbarch *gdbarch) +{ + gdb_assert (gdbarch != NULL); + return gdbarch->decode_memtag_section != NULL; +} + +gdb::byte_vector +gdbarch_decode_memtag_section (struct gdbarch *gdbarch, bfd_section *section, int type, CORE_ADDR address, size_t length) +{ + gdb_assert (gdbarch != NULL); + gdb_assert (gdbarch->decode_memtag_section != NULL); + if (gdbarch_debug >= 2) + gdb_printf (gdb_stdlog, "gdbarch_decode_memtag_section called\n"); + return gdbarch->decode_memtag_section (gdbarch, section, type, address, length); +} + +void +set_gdbarch_decode_memtag_section (struct gdbarch *gdbarch, + gdbarch_decode_memtag_section_ftype decode_memtag_section) +{ + gdbarch->decode_memtag_section = decode_memtag_section; +} + +bool gdbarch_core_xfer_shared_libraries_p (struct gdbarch *gdbarch) { gdb_assert (gdbarch != NULL); diff --git a/gdb/linux-tdep.c b/gdb/linux-tdep.c index 4e728a0..8a83ed3 100644 --- a/gdb/linux-tdep.c +++ b/gdb/linux-tdep.c @@ -42,6 +42,7 @@ #include "gcore.h" #include "gcore-elf.h" #include "solib-svr4.h" +#include "memtag.h" #include <ctype.h> #include <unordered_map> @@ -1320,6 +1321,7 @@ typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, + bool memory_tagged, const char *filename, void *data); @@ -1470,10 +1472,11 @@ parse_smaps_data (const char *data, return smaps; } -/* See linux-tdep.h. */ +/* Helper that checks if an address is in a memory tag page for a live + process. */ -bool -linux_address_in_memtag_page (CORE_ADDR address) +static bool +linux_process_address_in_memtag_page (CORE_ADDR address) { if (current_inferior ()->fake_pid_p) return false; @@ -1505,6 +1508,30 @@ linux_address_in_memtag_page (CORE_ADDR address) return false; } +/* Helper that checks if an address is in a memory tag page for a core file + process. */ + +static bool +linux_core_file_address_in_memtag_page (CORE_ADDR address) +{ + if (core_bfd == nullptr) + return false; + + memtag_section_info info; + return get_next_core_memtag_section (core_bfd, nullptr, address, info); +} + +/* See linux-tdep.h. */ + +bool +linux_address_in_memtag_page (CORE_ADDR address) +{ + if (!target_has_execution ()) + return linux_core_file_address_in_memtag_page (address); + + return linux_process_address_in_memtag_page (address); +} + /* List memory regions in the inferior for a corefile. */ static int @@ -1593,6 +1620,7 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch, map.offset, map.inode, map.read, map.write, map.exec, 1, /* MODIFIED is true because we want to dump the mapping. */ + map.vmflags.memory_tagging != 0, map.filename.c_str (), obfd); } } @@ -1621,12 +1649,14 @@ static int linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, + bool memory_tagged, const char *filename, void *arg) { struct linux_find_memory_regions_data *data = (struct linux_find_memory_regions_data *) arg; - return data->func (vaddr, size, read, write, exec, modified, data->obfd); + return data->func (vaddr, size, read, write, exec, modified, memory_tagged, + data->obfd); } /* A variant of linux_find_memory_regions_full that is suitable as the @@ -1675,6 +1705,7 @@ static int linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, + bool memory_tagged, const char *filename, void *data) { struct linux_make_mappings_data *map_data diff --git a/gdb/memtag.c b/gdb/memtag.c new file mode 100644 index 0000000..ca64569 --- /dev/null +++ b/gdb/memtag.c @@ -0,0 +1,68 @@ +/* GDB generic memory tagging functions. + + Copyright (C) 2022 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "defs.h" +#include "memtag.h" +#include "bfd.h" + +/* See memtag.h */ + +bool +get_next_core_memtag_section (bfd *abfd, asection *section, + CORE_ADDR address, memtag_section_info &info) +{ + /* If the caller provided no SECTION to start from, search from the + beginning. */ + if (section == nullptr) + section = bfd_get_section_by_name (abfd, "memtag"); + + /* Go through all the memtag sections and figure out if ADDRESS + falls within one of the memory ranges that contain tags. */ + while (section != nullptr) + { + size_t memtag_range_size = section->rawsize; + size_t tags_size = bfd_section_size (section); + + /* Empty memory range or empty tag dump should not happen. Warn about + it but keep going through the sections. */ + if (memtag_range_size == 0 || tags_size == 0) + { + warning (_("Found memtag section with empty memory " + "range or empty tag dump")); + continue; + } + else + { + CORE_ADDR start_address = bfd_section_vma (section); + CORE_ADDR end_address = start_address + memtag_range_size; + + /* Is the address within [start_address, end_address)? */ + if (address >= start_address + && address < end_address) + { + info.start_address = start_address; + info.end_address = end_address; + info.memtag_section = section; + return true; + } + } + section = bfd_get_next_section_by_name (abfd, section); + } + return false; +} diff --git a/gdb/memtag.h b/gdb/memtag.h new file mode 100644 index 0000000..fe908c1 --- /dev/null +++ b/gdb/memtag.h @@ -0,0 +1,50 @@ +/* GDB generic memory tagging definitions. + Copyright (C) 2022 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef MEMTAG_H +#define MEMTAG_H + +#include "bfd.h" + +struct memtag_section_info +{ + /* The start address of the tagged memory range. */ + CORE_ADDR start_address; + /* The final address of the tagged memory range. */ + CORE_ADDR end_address; + /* The section containing tags for the memory range + [start_address, end_address). */ + asection *memtag_section; +}; + +/* Helper function to walk through memory tag sections in a core file. + + Return TRUE if there is a "memtag" section containing ADDRESS. Return FALSE + otherwise. + + If SECTION is provided, search from that section onwards. If SECTION is + nullptr, then start a new search. + + If a "memtag" section containing ADDRESS is found, fill INFO with data + about such section. Otherwise leave it unchanged. */ + +bool get_next_core_memtag_section (bfd *abfd, asection *section, + CORE_ADDR address, + memtag_section_info &info); + +#endif /* MEMTAG_H */ diff --git a/gdb/testsuite/gdb.arch/aarch64-mte-core.c b/gdb/testsuite/gdb.arch/aarch64-mte-core.c new file mode 100644 index 0000000..4e9a6e3 --- /dev/null +++ b/gdb/testsuite/gdb.arch/aarch64-mte-core.c @@ -0,0 +1,152 @@ +/* This test program is part of GDB, the GNU debugger. + + Copyright 2022 Free Software Foundation, Inc. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +/* Exercise AArch64's Memory Tagging Extension corefile support. We allocate + multiple memory mappings with PROT_MTE and assign tag values for all the + existing MTE granules. */ + +/* This test was based on the documentation for the AArch64 Memory Tagging + Extension from the Linux Kernel, found in the sources in + Documentation/arm64/memory-tagging-extension.rst. */ + +#include <errno.h> +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <sys/auxv.h> +#include <sys/mman.h> +#include <sys/prctl.h> + +/* From arch/arm64/include/uapi/asm/hwcap.h */ +#ifndef HWCAP2_MTE +#define HWCAP2_MTE (1 << 18) +#endif + +/* From arch/arm64/include/uapi/asm/mman.h */ +#ifndef PROT_MTE +#define PROT_MTE 0x20 +#endif + +#ifndef PR_SET_TAGGED_ADDR_CTRL +#define PR_SET_TAGGED_ADDR_CTRL 55 +#define PR_TAGGED_ADDR_ENABLE (1UL << 0) +#endif + +/* From include/uapi/linux/prctl.h */ +#ifndef PR_MTE_TCF_SHIFT +#define PR_MTE_TCF_SHIFT 1 +#define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) +#define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) +#define PR_MTE_TAG_SHIFT 3 +#define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) +#endif + +#ifdef ASYNC +#define TCF_MODE PR_MTE_TCF_ASYNC +#else +#define TCF_MODE PR_MTE_TCF_SYNC +#endif + +#define NMAPS 5 + +/* We store the pointers and sizes of the memory maps we requested. Each + of them has a different size. */ +unsigned char *mmap_pointers[NMAPS]; + +/* Set the allocation tag on the destination address. */ +#define set_tag(tagged_addr) do { \ + asm volatile("stg %0, [%0]" : : "r" (tagged_addr) : "memory"); \ +} while (0) + + +uintptr_t +set_logical_tag (uintptr_t ptr, unsigned char tag) +{ + ptr &= ~0xFF00000000000000ULL; + ptr |= ((uintptr_t) tag << 56); + return ptr; +} + +void +fill_map_with_tags (unsigned char *ptr, size_t size, unsigned char *tag) +{ + for (size_t start = 0; start < size; start += 16) + { + set_tag (set_logical_tag (((uintptr_t)ptr + start) & ~(0xFULL), *tag)); + *tag = (*tag + 1) % 16; + } +} + +int +main (int argc, char **argv) +{ + unsigned char *tagged_ptr; + unsigned long page_sz = sysconf (_SC_PAGESIZE); + unsigned long hwcap2 = getauxval (AT_HWCAP2); + + /* Bail out if MTE is not supported. */ + if (!(hwcap2 & HWCAP2_MTE)) + return 1; + + /* Enable the tagged address ABI, synchronous MTE tag check faults and + allow all non-zero tags in the randomly generated set. */ + if (prctl (PR_SET_TAGGED_ADDR_CTRL, + PR_TAGGED_ADDR_ENABLE | TCF_MODE + | (0xfffe << PR_MTE_TAG_SHIFT), + 0, 0, 0)) + { + perror ("prctl () failed"); + return 1; + } + + /* Map a big area of NMAPS * 2 pages. */ + unsigned char *big_map = mmap (0, NMAPS * 2 * page_sz, PROT_NONE, + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); + + if (big_map == MAP_FAILED) + { + perror ("mmap () failed"); + return 1; + } + + /* Start with a tag of 0x1 so we can crash later. */ + unsigned char tag = 1; + + /* From that big area of NMAPS * 2 pages, go through each page and protect + alternating pages. This should prevent the kernel from merging different + mmap's and force the creation of multiple individual MTE-protected entries + in /proc/<pid>/smaps. */ + for (int i = 0; i < NMAPS; i++) + { + mmap_pointers[i] = big_map + (i * 2 * page_sz); + + /* Enable MTE on alternating pages. */ + if (mprotect (mmap_pointers[i], page_sz, + PROT_READ | PROT_WRITE | PROT_MTE)) + { + perror ("mprotect () failed"); + return 1; + } + + fill_map_with_tags (mmap_pointers[i], page_sz, &tag); + } + + /* The following line causes a crash on purpose. */ + *mmap_pointers[0] = 0x4; + + return 0; +} diff --git a/gdb/testsuite/gdb.arch/aarch64-mte-core.exp b/gdb/testsuite/gdb.arch/aarch64-mte-core.exp new file mode 100644 index 0000000..904364d --- /dev/null +++ b/gdb/testsuite/gdb.arch/aarch64-mte-core.exp @@ -0,0 +1,175 @@ +# Copyright (C) 2018-2022 Free Software Foundation, Inc. +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. + +# This file is part of the gdb testsuite. + +# Test generating and reading a core file with MTE memory tags. + +proc test_mte_core_file { core_filename mode } { + # Load the core file and make sure we see the tag violation fault + # information. + if {$mode == "sync"} { + gdb_test "core $core_filename" \ + [multi_line \ + "Core was generated by.*\." \ + "Program terminated with signal SIGSEGV, Segmentation fault" \ + "Memory tag violation while accessing address ${::hex}" \ + "Allocation tag ${::hex}" \ + "Logical tag ${::hex}\." \ + "#0.*${::hex} in main \\(.*\\) at .*" \ + ".*mmap_pointers\\\[0\\\] = 0x4;"] \ + "core file shows $mode memory tag violation" + } else { + gdb_test "core $core_filename" \ + [multi_line \ + "Core was generated by.*\." \ + "Program terminated with signal SIGSEGV, Segmentation fault" \ + "Memory tag violation" \ + "Fault address unavailable\." \ + "#0 ${::hex} in .* from .*"] \ + "core file shows $mode memory tag violation" + } + + # Make sure we have the tag_ctl register. + gdb_test "info register tag_ctl" \ + "tag_ctl.*${::hex}.*${::decimal}" \ + "tag_ctl is available" + + # In ASYNC mode, there is nothing left to test, as the program stops at + # a place where further source code inspection is not possible. + if {$mode == "async"} { + return + } + + # First, figure out the page size. + set page_size [get_valueof "" "page_sz" "0" \ + "fetch value of page size"] + + # Get the number of maps for the test + set nmaps [get_valueof "" "NMAPS" "0" \ + "fetch number of maps"] + set tag 1 + + # Iterate over all of the MTE-protected memory mappings and make sure + # GDB retrieves the correct allocation tags for each one. If the tag + # has the expected value, that means the core file was generated correctly + # and that GDB read the contents correctly. + for {set i 0} {$i < $nmaps} {incr i} { + for {set offset 0} {$offset < $page_size} {set offset [expr $offset + 16]} { + set hex_tag [format "%x" $tag] + gdb_test "memory-tag print-allocation-tag mmap_pointers\[$i\] + $offset" \ + "= 0x$hex_tag" \ + "mmap_ponters\[$i\] + $offset contains expected tag" + # Update the expected tag. The test writes tags in sequential + # order. + set tag [expr ($tag + 1) % 16] + } + } +} + +# Exercise MTE corefile support using mode MODE (Async or Sync) + +proc test_mode { mode } { + + set compile_flags {"debug" "macros" "additional_flags=-march=armv8.5-a+memtag"} + + # If we are testing async mode, we need to force the testcase to use + # such mode. + if {$mode == "async"} { + lappend compile_flags "additional_flags=-DASYNC" + } + + standard_testfile + set executable "${::testfile}-${mode}" + if {[prepare_for_testing "failed to prepare" ${executable} ${::srcfile} ${compile_flags}]} { + return -1 + } + set binfile [standard_output_file ${executable}] + + if ![runto_main] { + untested "could not run to main" + return -1 + } + + # Targets that don't support memory tagging should not execute the + # runtime memory tagging tests. + if {![supports_memtag]} { + unsupported "memory tagging unsupported" + return -1 + } + + # Run until a crash and confirm GDB displays memory tag violation + # information. + if {$mode == "sync"} { + gdb_test "continue" \ + [multi_line \ + "Program received signal SIGSEGV, Segmentation fault" \ + "Memory tag violation while accessing address ${::hex}" \ + "Allocation tag 0x1" \ + "Logical tag 0x0\." \ + "${::hex} in main \\(.*\\) at .*" \ + ".*mmap_pointers\\\[0\\\] = 0x4;"] \ + "run to memory $mode tag violation" + } else { + gdb_test "continue" \ + [multi_line \ + "Program received signal SIGSEGV, Segmentation fault" \ + "Memory tag violation" \ + "Fault address unavailable\." \ + "${::hex} in .* from .*"] \ + "run to memory $mode tag violation" + } + + # Generate the gcore core file. + set gcore_filename [standard_output_file "${executable}.gcore"] + set gcore_generated [gdb_gcore_cmd "$gcore_filename" "generate gcore file"] + + # Generate a native core file. + set core_filename [core_find ${binfile}] + set core_generated [expr {$core_filename != ""}] + + # At this point we have a couple core files, the gcore one generated by GDB + # and the native one generated by the Linux Kernel. Make sure GDB can read + # both correctly. + + if {$gcore_generated} { + clean_restart ${binfile} + with_test_prefix "gcore corefile" { + test_mte_core_file $gcore_filename $mode + } + } else { + fail "gcore corefile not generated" + } + + if {$core_generated} { + clean_restart ${binfile} + with_test_prefix "native corefile" { + test_mte_core_file $core_filename $mode + } + } else { + untested "native corefile not generated" + } + +} + +if {![is_aarch64_target]} { + verbose "Skipping ${gdb_test_file_name}." + return +} + +# Run tests +foreach_with_prefix mode {"sync" "async"} { + test_mode $mode +} |