aboutsummaryrefslogtreecommitdiff
path: root/gdb/x86-64-tdep.c
diff options
context:
space:
mode:
authorMark Kettenis <kettenis@gnu.org>2004-02-25 20:45:31 +0000
committerMark Kettenis <kettenis@gnu.org>2004-02-25 20:45:31 +0000
commit9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c (patch)
treee2207e2678b98497e5c5a01503e0998e9aa7e063 /gdb/x86-64-tdep.c
parent4b8dad4a1e2d5d5c91b6ec087211b213a18d4396 (diff)
downloadgdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.zip
gdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.tar.gz
gdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.tar.bz2
* amd64-tdep.h: Renamed from x86-64-tdep.h.
* amd64-tdep.c: Renamed from x86-64-tdep.c. Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64-linux-tdep.h: Renamed from x86-64-linux.h. * amd64-linux-tdep.c: Renamed from x86-64-linux-tdep.c. Include "amd64-tdep.h" and "amd64-linux-tdep.h" instead of "x86-64-tdep.h" and "x86-64-tdep.c". * amd64-linux-nat.c: Renamed from x86-64-linux-nat.c. Include "amd64-tdep.h" and "amd64-linux-tdep.h" instead of "x86-64-tdep.h" and "x86-64-tdep.c". * amd64bsd-nat.c: Update copyright year. Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64fbsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64fbsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64nbsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64nbsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64obsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64obsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * configure.host: (x86_64-*-linux*): Set gdb_target to linux64. * configure.tgt (x86_64-*-linux*): Set gdb_target to linux64. * Makefile.in (amd64_linux_tdep_h): Renamed from x86_64_linux_tdep_h. (amd64_tdep_h): Renamed from x86_64_tdep_h. (amd64bsd-nat.o, amd64fbsd-nat.o, amd64fbsd-tdep.o, amd64-nat.o) (amd64nbsd-nat.o, amd64nbsd-tdep.o, amd64obsd-nat.o) (amd64obsd-tdep.o): Update dependencies. (amd64-tdep.o, amd64-linux-nat.o, amd64-linux-tdep.o): New dependencies. (x86-64-linux-nat.o, x86-64-linux-tdep.o, x86-64-tdep.o): Remove dependencies. (ALLDEPFILES): Add amd64-tdep.c, amd64obsd-nat.c, amd64obsd-nat.c, amd64-linux-nat.c amd64-linux-tdep.c. * config/i386/tm-linux64.h: Renamed from tm-x86-64linux.h * config/i386/nm-linux64.h: Renamed from nm-x86-64linux.h. * config/i386/linux64.mt: Renamed from x86-64linux.mt. (TDEPFILES): Replace x86-64-tdep.o and x86-64-linux-tdep.o with amd64-tdep.o and amd64-linux-tdep.o. (TM_FILE): Set to tm-linux64.h. * config/i386/linux64.mh: Renamed from x86-64linux.mh. (NAT_FILE): Set to nm-linux64.h. (NATDEPFILES): Replace x86-64-linux-nat.o with amd64-linux-nat.o. * config/i386/fbsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o. * config/i386/nbsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o. * config/i386/obsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o.
Diffstat (limited to 'gdb/x86-64-tdep.c')
-rw-r--r--gdb/x86-64-tdep.c1186
1 files changed, 0 insertions, 1186 deletions
diff --git a/gdb/x86-64-tdep.c b/gdb/x86-64-tdep.c
deleted file mode 100644
index 451c4af..0000000
--- a/gdb/x86-64-tdep.c
+++ /dev/null
@@ -1,1186 +0,0 @@
-/* Target-dependent code for AMD64.
-
- Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
- Contributed by Jiri Smid, SuSE Labs.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "arch-utils.h"
-#include "block.h"
-#include "dummy-frame.h"
-#include "frame.h"
-#include "frame-base.h"
-#include "frame-unwind.h"
-#include "inferior.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "objfiles.h"
-#include "regcache.h"
-#include "regset.h"
-#include "symfile.h"
-
-#include "gdb_assert.h"
-
-#include "x86-64-tdep.h"
-#include "i387-tdep.h"
-
-/* Note that the AMD64 architecture was previously known as x86-64.
- The latter is (forever) engraved into the canonical system name as
- returned by config.guess, and used as the name for the AMD64 port
- of GNU/Linux. The BSD's have renamed their ports to amd64; they
- don't like to shout. For GDB we prefer the amd64_-prefix over the
- x86_64_-prefix since it's so much easier to type. */
-
-/* Register information. */
-
-struct amd64_register_info
-{
- char *name;
- struct type **type;
-};
-
-static struct amd64_register_info amd64_register_info[] =
-{
- { "rax", &builtin_type_int64 },
- { "rbx", &builtin_type_int64 },
- { "rcx", &builtin_type_int64 },
- { "rdx", &builtin_type_int64 },
- { "rsi", &builtin_type_int64 },
- { "rdi", &builtin_type_int64 },
- { "rbp", &builtin_type_void_data_ptr },
- { "rsp", &builtin_type_void_data_ptr },
-
- /* %r8 is indeed register number 8. */
- { "r8", &builtin_type_int64 },
- { "r9", &builtin_type_int64 },
- { "r10", &builtin_type_int64 },
- { "r11", &builtin_type_int64 },
- { "r12", &builtin_type_int64 },
- { "r13", &builtin_type_int64 },
- { "r14", &builtin_type_int64 },
- { "r15", &builtin_type_int64 },
- { "rip", &builtin_type_void_func_ptr },
- { "eflags", &builtin_type_int32 },
- { "cs", &builtin_type_int32 },
- { "ss", &builtin_type_int32 },
- { "ds", &builtin_type_int32 },
- { "es", &builtin_type_int32 },
- { "fs", &builtin_type_int32 },
- { "gs", &builtin_type_int32 },
-
- /* %st0 is register number 24. */
- { "st0", &builtin_type_i387_ext },
- { "st1", &builtin_type_i387_ext },
- { "st2", &builtin_type_i387_ext },
- { "st3", &builtin_type_i387_ext },
- { "st4", &builtin_type_i387_ext },
- { "st5", &builtin_type_i387_ext },
- { "st6", &builtin_type_i387_ext },
- { "st7", &builtin_type_i387_ext },
- { "fctrl", &builtin_type_int32 },
- { "fstat", &builtin_type_int32 },
- { "ftag", &builtin_type_int32 },
- { "fiseg", &builtin_type_int32 },
- { "fioff", &builtin_type_int32 },
- { "foseg", &builtin_type_int32 },
- { "fooff", &builtin_type_int32 },
- { "fop", &builtin_type_int32 },
-
- /* %xmm0 is register number 40. */
- { "xmm0", &builtin_type_v4sf },
- { "xmm1", &builtin_type_v4sf },
- { "xmm2", &builtin_type_v4sf },
- { "xmm3", &builtin_type_v4sf },
- { "xmm4", &builtin_type_v4sf },
- { "xmm5", &builtin_type_v4sf },
- { "xmm6", &builtin_type_v4sf },
- { "xmm7", &builtin_type_v4sf },
- { "xmm8", &builtin_type_v4sf },
- { "xmm9", &builtin_type_v4sf },
- { "xmm10", &builtin_type_v4sf },
- { "xmm11", &builtin_type_v4sf },
- { "xmm12", &builtin_type_v4sf },
- { "xmm13", &builtin_type_v4sf },
- { "xmm14", &builtin_type_v4sf },
- { "xmm15", &builtin_type_v4sf },
- { "mxcsr", &builtin_type_int32 }
-};
-
-/* Total number of registers. */
-#define AMD64_NUM_REGS \
- (sizeof (amd64_register_info) / sizeof (amd64_register_info[0]))
-
-/* Return the name of register REGNUM. */
-
-static const char *
-amd64_register_name (int regnum)
-{
- if (regnum >= 0 && regnum < AMD64_NUM_REGS)
- return amd64_register_info[regnum].name;
-
- return NULL;
-}
-
-/* Return the GDB type object for the "standard" data type of data in
- register REGNUM. */
-
-static struct type *
-amd64_register_type (struct gdbarch *gdbarch, int regnum)
-{
- gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
-
- return *amd64_register_info[regnum].type;
-}
-
-/* DWARF Register Number Mapping as defined in the System V psABI,
- section 3.6. */
-
-static int amd64_dwarf_regmap[] =
-{
- /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
- AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
- AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
- AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
-
- /* Frame Pointer Register RBP. */
- AMD64_RBP_REGNUM,
-
- /* Stack Pointer Register RSP. */
- AMD64_RSP_REGNUM,
-
- /* Extended Integer Registers 8 - 15. */
- 8, 9, 10, 11, 12, 13, 14, 15,
-
- /* Return Address RA. Mapped to RIP. */
- AMD64_RIP_REGNUM,
-
- /* SSE Registers 0 - 7. */
- AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
- AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
- AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
- AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
-
- /* Extended SSE Registers 8 - 15. */
- AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
- AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
- AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
- AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
-
- /* Floating Point Registers 0-7. */
- AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
- AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
- AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
- AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7
-};
-
-static const int amd64_dwarf_regmap_len =
- (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
-
-/* Convert DWARF register number REG to the appropriate register
- number used by GDB. */
-
-static int
-amd64_dwarf_reg_to_regnum (int reg)
-{
- int regnum = -1;
-
- if (reg >= 0 || reg < amd64_dwarf_regmap_len)
- regnum = amd64_dwarf_regmap[reg];
-
- if (regnum == -1)
- warning ("Unmapped DWARF Register #%d encountered\n", reg);
-
- return regnum;
-}
-
-/* Return nonzero if a value of type TYPE stored in register REGNUM
- needs any special handling. */
-
-static int
-amd64_convert_register_p (int regnum, struct type *type)
-{
- return i386_fp_regnum_p (regnum);
-}
-
-
-/* Register classes as defined in the psABI. */
-
-enum amd64_reg_class
-{
- AMD64_INTEGER,
- AMD64_SSE,
- AMD64_SSEUP,
- AMD64_X87,
- AMD64_X87UP,
- AMD64_COMPLEX_X87,
- AMD64_NO_CLASS,
- AMD64_MEMORY
-};
-
-/* Return the union class of CLASS1 and CLASS2. See the psABI for
- details. */
-
-static enum amd64_reg_class
-amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
-{
- /* Rule (a): If both classes are equal, this is the resulting class. */
- if (class1 == class2)
- return class1;
-
- /* Rule (b): If one of the classes is NO_CLASS, the resulting class
- is the other class. */
- if (class1 == AMD64_NO_CLASS)
- return class2;
- if (class2 == AMD64_NO_CLASS)
- return class1;
-
- /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
- if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
- return AMD64_MEMORY;
-
- /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
- if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
- return AMD64_INTEGER;
-
- /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
- MEMORY is used as class. */
- if (class1 == AMD64_X87 || class1 == AMD64_X87UP
- || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
- || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
- return AMD64_MEMORY;
-
- /* Rule (f): Otherwise class SSE is used. */
- return AMD64_SSE;
-}
-
-static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
-
-/* Return non-zero if TYPE is a non-POD structure or union type. */
-
-static int
-amd64_non_pod_p (struct type *type)
-{
- /* ??? A class with a base class certainly isn't POD, but does this
- catch all non-POD structure types? */
- if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
- return 1;
-
- return 0;
-}
-
-/* Classify TYPE according to the rules for aggregate (structures and
- arrays) and union types, and store the result in CLASS. */
-
-static void
-amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
-{
- int len = TYPE_LENGTH (type);
-
- /* 1. If the size of an object is larger than two eightbytes, or in
- C++, is a non-POD structure or union type, or contains
- unaligned fields, it has class memory. */
- if (len > 16 || amd64_non_pod_p (type))
- {
- class[0] = class[1] = AMD64_MEMORY;
- return;
- }
-
- /* 2. Both eightbytes get initialized to class NO_CLASS. */
- class[0] = class[1] = AMD64_NO_CLASS;
-
- /* 3. Each field of an object is classified recursively so that
- always two fields are considered. The resulting class is
- calculated according to the classes of the fields in the
- eightbyte: */
-
- if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
- {
- struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
-
- /* All fields in an array have the same type. */
- amd64_classify (subtype, class);
- if (len > 8 && class[1] == AMD64_NO_CLASS)
- class[1] = class[0];
- }
- else
- {
- int i;
-
- /* Structure or union. */
- gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION);
-
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
- int pos = TYPE_FIELD_BITPOS (type, i) / 64;
- enum amd64_reg_class subclass[2];
-
- /* Ignore static fields. */
- if (TYPE_FIELD_STATIC (type, i))
- continue;
-
- gdb_assert (pos == 0 || pos == 1);
-
- amd64_classify (subtype, subclass);
- class[pos] = amd64_merge_classes (class[pos], subclass[0]);
- if (pos == 0)
- class[1] = amd64_merge_classes (class[1], subclass[1]);
- }
- }
-
- /* 4. Then a post merger cleanup is done: */
-
- /* Rule (a): If one of the classes is MEMORY, the whole argument is
- passed in memory. */
- if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
- class[0] = class[1] = AMD64_MEMORY;
-
- /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
- SSE. */
- if (class[0] == AMD64_SSEUP)
- class[0] = AMD64_SSE;
- if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
- class[1] = AMD64_SSE;
-}
-
-/* Classify TYPE, and store the result in CLASS. */
-
-static void
-amd64_classify (struct type *type, enum amd64_reg_class class[2])
-{
- enum type_code code = TYPE_CODE (type);
- int len = TYPE_LENGTH (type);
-
- class[0] = class[1] = AMD64_NO_CLASS;
-
- /* Arguments of types (signed and unsigned) _Bool, char, short, int,
- long, long long, and pointers are in the INTEGER class. */
- if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
- || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
- && (len == 1 || len == 2 || len == 4 || len == 8))
- class[0] = AMD64_INTEGER;
-
- /* Arguments of types float, double and __m64 are in class SSE. */
- else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
- /* FIXME: __m64 . */
- class[0] = AMD64_SSE;
-
- /* Arguments of types __float128 and __m128 are split into two
- halves. The least significant ones belong to class SSE, the most
- significant one to class SSEUP. */
- /* FIXME: __float128, __m128. */
-
- /* The 64-bit mantissa of arguments of type long double belongs to
- class X87, the 16-bit exponent plus 6 bytes of padding belongs to
- class X87UP. */
- else if (code == TYPE_CODE_FLT && len == 16)
- /* Class X87 and X87UP. */
- class[0] = AMD64_X87, class[1] = AMD64_X87UP;
-
- /* Aggregates. */
- else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
- || code == TYPE_CODE_UNION)
- amd64_classify_aggregate (type, class);
-}
-
-static enum return_value_convention
-amd64_return_value (struct gdbarch *gdbarch, struct type *type,
- struct regcache *regcache,
- void *readbuf, const void *writebuf)
-{
- enum amd64_reg_class class[2];
- int len = TYPE_LENGTH (type);
- static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
- static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
- int integer_reg = 0;
- int sse_reg = 0;
- int i;
-
- gdb_assert (!(readbuf && writebuf));
-
- /* 1. Classify the return type with the classification algorithm. */
- amd64_classify (type, class);
-
- /* 2. If the type has class MEMORY, then the caller provides space
- for the return value and passes the address of this storage in
- %rdi as if it were the first argument to the function. In
- effect, this address becomes a hidden first argument. */
- if (class[0] == AMD64_MEMORY)
- return RETURN_VALUE_STRUCT_CONVENTION;
-
- gdb_assert (class[1] != AMD64_MEMORY);
- gdb_assert (len <= 16);
-
- for (i = 0; len > 0; i++, len -= 8)
- {
- int regnum = -1;
- int offset = 0;
-
- switch (class[i])
- {
- case AMD64_INTEGER:
- /* 3. If the class is INTEGER, the next available register
- of the sequence %rax, %rdx is used. */
- regnum = integer_regnum[integer_reg++];
- break;
-
- case AMD64_SSE:
- /* 4. If the class is SSE, the next available SSE register
- of the sequence %xmm0, %xmm1 is used. */
- regnum = sse_regnum[sse_reg++];
- break;
-
- case AMD64_SSEUP:
- /* 5. If the class is SSEUP, the eightbyte is passed in the
- upper half of the last used SSE register. */
- gdb_assert (sse_reg > 0);
- regnum = sse_regnum[sse_reg - 1];
- offset = 8;
- break;
-
- case AMD64_X87:
- /* 6. If the class is X87, the value is returned on the X87
- stack in %st0 as 80-bit x87 number. */
- regnum = AMD64_ST0_REGNUM;
- if (writebuf)
- i387_return_value (gdbarch, regcache);
- break;
-
- case AMD64_X87UP:
- /* 7. If the class is X87UP, the value is returned together
- with the previous X87 value in %st0. */
- gdb_assert (i > 0 && class[0] == AMD64_X87);
- regnum = AMD64_ST0_REGNUM;
- offset = 8;
- len = 2;
- break;
-
- case AMD64_NO_CLASS:
- continue;
-
- default:
- gdb_assert (!"Unexpected register class.");
- }
-
- gdb_assert (regnum != -1);
-
- if (readbuf)
- regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
- (char *) readbuf + i * 8);
- if (writebuf)
- regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
- (const char *) writebuf + i * 8);
- }
-
- return RETURN_VALUE_REGISTER_CONVENTION;
-}
-
-
-static CORE_ADDR
-amd64_push_arguments (struct regcache *regcache, int nargs,
- struct value **args, CORE_ADDR sp, int struct_return)
-{
- static int integer_regnum[] =
- {
- AMD64_RDI_REGNUM, /* %rdi */
- AMD64_RSI_REGNUM, /* %rsi */
- AMD64_RDX_REGNUM, /* %rdx */
- AMD64_RCX_REGNUM, /* %rcx */
- 8, /* %r8 */
- 9 /* %r9 */
- };
- static int sse_regnum[] =
- {
- /* %xmm0 ... %xmm7 */
- AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
- AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
- AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
- AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
- };
- struct value **stack_args = alloca (nargs * sizeof (struct value *));
- int num_stack_args = 0;
- int num_elements = 0;
- int element = 0;
- int integer_reg = 0;
- int sse_reg = 0;
- int i;
-
- /* Reserve a register for the "hidden" argument. */
- if (struct_return)
- integer_reg++;
-
- for (i = 0; i < nargs; i++)
- {
- struct type *type = VALUE_TYPE (args[i]);
- int len = TYPE_LENGTH (type);
- enum amd64_reg_class class[2];
- int needed_integer_regs = 0;
- int needed_sse_regs = 0;
- int j;
-
- /* Classify argument. */
- amd64_classify (type, class);
-
- /* Calculate the number of integer and SSE registers needed for
- this argument. */
- for (j = 0; j < 2; j++)
- {
- if (class[j] == AMD64_INTEGER)
- needed_integer_regs++;
- else if (class[j] == AMD64_SSE)
- needed_sse_regs++;
- }
-
- /* Check whether enough registers are available, and if the
- argument should be passed in registers at all. */
- if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
- || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
- || (needed_integer_regs == 0 && needed_sse_regs == 0))
- {
- /* The argument will be passed on the stack. */
- num_elements += ((len + 7) / 8);
- stack_args[num_stack_args++] = args[i];
- }
- else
- {
- /* The argument will be passed in registers. */
- char *valbuf = VALUE_CONTENTS (args[i]);
- char buf[8];
-
- gdb_assert (len <= 16);
-
- for (j = 0; len > 0; j++, len -= 8)
- {
- int regnum = -1;
- int offset = 0;
-
- switch (class[j])
- {
- case AMD64_INTEGER:
- regnum = integer_regnum[integer_reg++];
- break;
-
- case AMD64_SSE:
- regnum = sse_regnum[sse_reg++];
- break;
-
- case AMD64_SSEUP:
- gdb_assert (sse_reg > 0);
- regnum = sse_regnum[sse_reg - 1];
- offset = 8;
- break;
-
- default:
- gdb_assert (!"Unexpected register class.");
- }
-
- gdb_assert (regnum != -1);
- memset (buf, 0, sizeof buf);
- memcpy (buf, valbuf + j * 8, min (len, 8));
- regcache_raw_write_part (regcache, regnum, offset, 8, buf);
- }
- }
- }
-
- /* Allocate space for the arguments on the stack. */
- sp -= num_elements * 8;
-
- /* The psABI says that "The end of the input argument area shall be
- aligned on a 16 byte boundary." */
- sp &= ~0xf;
-
- /* Write out the arguments to the stack. */
- for (i = 0; i < num_stack_args; i++)
- {
- struct type *type = VALUE_TYPE (stack_args[i]);
- char *valbuf = VALUE_CONTENTS (stack_args[i]);
- int len = TYPE_LENGTH (type);
-
- write_memory (sp + element * 8, valbuf, len);
- element += ((len + 7) / 8);
- }
-
- /* The psABI says that "For calls that may call functions that use
- varargs or stdargs (prototype-less calls or calls to functions
- containing ellipsis (...) in the declaration) %al is used as
- hidden argument to specify the number of SSE registers used. */
- regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
- return sp;
-}
-
-static CORE_ADDR
-amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- char buf[8];
-
- /* Pass arguments. */
- sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
-
- /* Pass "hidden" argument". */
- if (struct_return)
- {
- store_unsigned_integer (buf, 8, struct_addr);
- regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
- }
-
- /* Store return address. */
- sp -= 8;
- store_unsigned_integer (buf, 8, bp_addr);
- write_memory (sp, buf, 8);
-
- /* Finally, update the stack pointer... */
- store_unsigned_integer (buf, 8, sp);
- regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
-
- /* ...and fake a frame pointer. */
- regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
-
- return sp + 16;
-}
-
-
-/* The maximum number of saved registers. This should include %rip. */
-#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
-
-struct amd64_frame_cache
-{
- /* Base address. */
- CORE_ADDR base;
- CORE_ADDR sp_offset;
- CORE_ADDR pc;
-
- /* Saved registers. */
- CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
- CORE_ADDR saved_sp;
-
- /* Do we have a frame? */
- int frameless_p;
-};
-
-/* Allocate and initialize a frame cache. */
-
-static struct amd64_frame_cache *
-amd64_alloc_frame_cache (void)
-{
- struct amd64_frame_cache *cache;
- int i;
-
- cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
-
- /* Base address. */
- cache->base = 0;
- cache->sp_offset = -8;
- cache->pc = 0;
-
- /* Saved registers. We initialize these to -1 since zero is a valid
- offset (that's where %rbp is supposed to be stored). */
- for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
- cache->saved_regs[i] = -1;
- cache->saved_sp = 0;
-
- /* Frameless until proven otherwise. */
- cache->frameless_p = 1;
-
- return cache;
-}
-
-/* Do a limited analysis of the prologue at PC and update CACHE
- accordingly. Bail out early if CURRENT_PC is reached. Return the
- address where the analysis stopped.
-
- We will handle only functions beginning with:
-
- pushq %rbp 0x55
- movq %rsp, %rbp 0x48 0x89 0xe5
-
- Any function that doesn't start with this sequence will be assumed
- to have no prologue and thus no valid frame pointer in %rbp. */
-
-static CORE_ADDR
-amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
- struct amd64_frame_cache *cache)
-{
- static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
- unsigned char buf[3];
- unsigned char op;
-
- if (current_pc <= pc)
- return current_pc;
-
- op = read_memory_unsigned_integer (pc, 1);
-
- if (op == 0x55) /* pushq %rbp */
- {
- /* Take into account that we've executed the `pushq %rbp' that
- starts this instruction sequence. */
- cache->saved_regs[AMD64_RBP_REGNUM] = 0;
- cache->sp_offset += 8;
-
- /* If that's all, return now. */
- if (current_pc <= pc + 1)
- return current_pc;
-
- /* Check for `movq %rsp, %rbp'. */
- read_memory (pc + 1, buf, 3);
- if (memcmp (buf, proto, 3) != 0)
- return pc + 1;
-
- /* OK, we actually have a frame. */
- cache->frameless_p = 0;
- return pc + 4;
- }
-
- return pc;
-}
-
-/* Return PC of first real instruction. */
-
-static CORE_ADDR
-amd64_skip_prologue (CORE_ADDR start_pc)
-{
- struct amd64_frame_cache cache;
- CORE_ADDR pc;
-
- pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
- if (cache.frameless_p)
- return start_pc;
-
- return pc;
-}
-
-
-/* Normal frames. */
-
-static struct amd64_frame_cache *
-amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
-{
- struct amd64_frame_cache *cache;
- char buf[8];
- int i;
-
- if (*this_cache)
- return *this_cache;
-
- cache = amd64_alloc_frame_cache ();
- *this_cache = cache;
-
- cache->pc = frame_func_unwind (next_frame);
- if (cache->pc != 0)
- amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
-
- if (cache->frameless_p)
- {
- /* We didn't find a valid frame, which means that CACHE->base
- currently holds the frame pointer for our calling frame. If
- we're at the start of a function, or somewhere half-way its
- prologue, the function's frame probably hasn't been fully
- setup yet. Try to reconstruct the base address for the stack
- frame by looking at the stack pointer. For truly "frameless"
- functions this might work too. */
-
- frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
- cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
- }
- else
- {
- frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
- cache->base = extract_unsigned_integer (buf, 8);
- }
-
- /* Now that we have the base address for the stack frame we can
- calculate the value of %rsp in the calling frame. */
- cache->saved_sp = cache->base + 16;
-
- /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
- frame we find it at the same offset from the reconstructed base
- address. */
- cache->saved_regs[AMD64_RIP_REGNUM] = 8;
-
- /* Adjust all the saved registers such that they contain addresses
- instead of offsets. */
- for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
- if (cache->saved_regs[i] != -1)
- cache->saved_regs[i] += cache->base;
-
- return cache;
-}
-
-static void
-amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
- struct frame_id *this_id)
-{
- struct amd64_frame_cache *cache =
- amd64_frame_cache (next_frame, this_cache);
-
- /* This marks the outermost frame. */
- if (cache->base == 0)
- return;
-
- (*this_id) = frame_id_build (cache->base + 16, cache->pc);
-}
-
-static void
-amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
- int regnum, int *optimizedp,
- enum lval_type *lvalp, CORE_ADDR *addrp,
- int *realnump, void *valuep)
-{
- struct amd64_frame_cache *cache =
- amd64_frame_cache (next_frame, this_cache);
-
- gdb_assert (regnum >= 0);
-
- if (regnum == SP_REGNUM && cache->saved_sp)
- {
- *optimizedp = 0;
- *lvalp = not_lval;
- *addrp = 0;
- *realnump = -1;
- if (valuep)
- {
- /* Store the value. */
- store_unsigned_integer (valuep, 8, cache->saved_sp);
- }
- return;
- }
-
- if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
- {
- *optimizedp = 0;
- *lvalp = lval_memory;
- *addrp = cache->saved_regs[regnum];
- *realnump = -1;
- if (valuep)
- {
- /* Read the value in from memory. */
- read_memory (*addrp, valuep,
- register_size (current_gdbarch, regnum));
- }
- return;
- }
-
- frame_register_unwind (next_frame, regnum,
- optimizedp, lvalp, addrp, realnump, valuep);
-}
-
-static const struct frame_unwind amd64_frame_unwind =
-{
- NORMAL_FRAME,
- amd64_frame_this_id,
- amd64_frame_prev_register
-};
-
-static const struct frame_unwind *
-amd64_frame_sniffer (struct frame_info *next_frame)
-{
- return &amd64_frame_unwind;
-}
-
-
-/* Signal trampolines. */
-
-/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
- 64-bit variants. This would require using identical frame caches
- on both platforms. */
-
-static struct amd64_frame_cache *
-amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
-{
- struct amd64_frame_cache *cache;
- struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
- CORE_ADDR addr;
- char buf[8];
- int i;
-
- if (*this_cache)
- return *this_cache;
-
- cache = amd64_alloc_frame_cache ();
-
- frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
- cache->base = extract_unsigned_integer (buf, 8) - 8;
-
- addr = tdep->sigcontext_addr (next_frame);
- gdb_assert (tdep->sc_reg_offset);
- gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
- for (i = 0; i < tdep->sc_num_regs; i++)
- if (tdep->sc_reg_offset[i] != -1)
- cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
-
- *this_cache = cache;
- return cache;
-}
-
-static void
-amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
- void **this_cache, struct frame_id *this_id)
-{
- struct amd64_frame_cache *cache =
- amd64_sigtramp_frame_cache (next_frame, this_cache);
-
- (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
-}
-
-static void
-amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
- void **this_cache,
- int regnum, int *optimizedp,
- enum lval_type *lvalp, CORE_ADDR *addrp,
- int *realnump, void *valuep)
-{
- /* Make sure we've initialized the cache. */
- amd64_sigtramp_frame_cache (next_frame, this_cache);
-
- amd64_frame_prev_register (next_frame, this_cache, regnum,
- optimizedp, lvalp, addrp, realnump, valuep);
-}
-
-static const struct frame_unwind amd64_sigtramp_frame_unwind =
-{
- SIGTRAMP_FRAME,
- amd64_sigtramp_frame_this_id,
- amd64_sigtramp_frame_prev_register
-};
-
-static const struct frame_unwind *
-amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
-{
- CORE_ADDR pc = frame_pc_unwind (next_frame);
- char *name;
-
- find_pc_partial_function (pc, &name, NULL, NULL);
- if (PC_IN_SIGTRAMP (pc, name))
- {
- gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
-
- return &amd64_sigtramp_frame_unwind;
- }
-
- return NULL;
-}
-
-
-static CORE_ADDR
-amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
-{
- struct amd64_frame_cache *cache =
- amd64_frame_cache (next_frame, this_cache);
-
- return cache->base;
-}
-
-static const struct frame_base amd64_frame_base =
-{
- &amd64_frame_unwind,
- amd64_frame_base_address,
- amd64_frame_base_address,
- amd64_frame_base_address
-};
-
-static struct frame_id
-amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- char buf[8];
- CORE_ADDR fp;
-
- frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
- fp = extract_unsigned_integer (buf, 8);
-
- return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
-}
-
-/* 16 byte align the SP per frame requirements. */
-
-static CORE_ADDR
-amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
-{
- return sp & -(CORE_ADDR)16;
-}
-
-
-/* Supply register REGNUM from the floating-point register set REGSET
- to register cache REGCACHE. If REGNUM is -1, do this for all
- registers in REGSET. */
-
-static void
-amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
- int regnum, const void *fpregs, size_t len)
-{
- const struct gdbarch_tdep *tdep = regset->descr;
-
- gdb_assert (len == tdep->sizeof_fpregset);
- amd64_supply_fxsave (regcache, regnum, fpregs);
-}
-
-/* Return the appropriate register set for the core section identified
- by SECT_NAME and SECT_SIZE. */
-
-static const struct regset *
-amd64_regset_from_core_section (struct gdbarch *gdbarch,
- const char *sect_name, size_t sect_size)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
- {
- if (tdep->fpregset == NULL)
- {
- tdep->fpregset = XMALLOC (struct regset);
- tdep->fpregset->descr = tdep;
- tdep->fpregset->supply_regset = amd64_supply_fpregset;
- }
-
- return tdep->fpregset;
- }
-
- return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
-}
-
-
-void
-amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
- floating-point registers. */
- tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
-
- /* AMD64 has an FPU and 16 SSE registers. */
- tdep->st0_regnum = AMD64_ST0_REGNUM;
- tdep->num_xmm_regs = 16;
-
- /* This is what all the fuss is about. */
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
-
- /* In contrast to the i386, on AMD64 a `long double' actually takes
- up 128 bits, even though it's still based on the i387 extended
- floating-point format which has only 80 significant bits. */
- set_gdbarch_long_double_bit (gdbarch, 128);
-
- set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
- set_gdbarch_register_name (gdbarch, amd64_register_name);
- set_gdbarch_register_type (gdbarch, amd64_register_type);
-
- /* Register numbers of various important registers. */
- set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
- set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
- set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
- set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
-
- /* The "default" register numbering scheme for AMD64 is referred to
- as the "DWARF Register Number Mapping" in the System V psABI.
- The preferred debugging format for all known AMD64 targets is
- actually DWARF2, and GCC doesn't seem to support DWARF (that is
- DWARF-1), but we provide the same mapping just in case. This
- mapping is also used for stabs, which GCC does support. */
- set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
- set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
- set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
-
- /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
- be in use on any of the supported AMD64 targets. */
-
- /* Call dummy code. */
- set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
- set_gdbarch_frame_align (gdbarch, amd64_frame_align);
- set_gdbarch_frame_red_zone_size (gdbarch, 128);
-
- set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
- set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
- set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
-
- set_gdbarch_return_value (gdbarch, amd64_return_value);
-
- set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
-
- /* Avoid wiring in the MMX registers for now. */
- set_gdbarch_num_pseudo_regs (gdbarch, 0);
- tdep->mm0_regnum = -1;
-
- set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
-
- /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
- since all supported AMD64 targets are ELF, but that might change
- in the future. */
- set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
-
- frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
- frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
- frame_base_set_default (gdbarch, &amd64_frame_base);
-
- /* If we have a register mapping, enable the generic core file support. */
- if (tdep->gregset_reg_offset)
- set_gdbarch_regset_from_core_section (gdbarch,
- amd64_regset_from_core_section);
-}
-
-
-#define I387_ST0_REGNUM AMD64_ST0_REGNUM
-
-/* The 64-bit FXSAVE format differs from the 32-bit format in the
- sense that the instruction pointer and data pointer are simply
- 64-bit offsets into the code segment and the data segment instead
- of a selector offset pair. The functions below store the upper 32
- bits of these pointers (instead of just the 16-bits of the segment
- selector). */
-
-/* Fill register REGNUM in REGCACHE with the appropriate
- floating-point or SSE register value from *FXSAVE. If REGNUM is
- -1, do this for all registers. This function masks off any of the
- reserved bits in *FXSAVE. */
-
-void
-amd64_supply_fxsave (struct regcache *regcache, int regnum,
- const void *fxsave)
-{
- i387_supply_fxsave (regcache, regnum, fxsave);
-
- if (fxsave)
- {
- const char *regs = fxsave;
-
- if (regnum == -1 || regnum == I387_FISEG_REGNUM)
- regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
- if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
- regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
- }
-}
-
-/* Fill register REGNUM (if it is a floating-point or SSE register) in
- *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
- this for all registers. This function doesn't touch any of the
- reserved bits in *FXSAVE. */
-
-void
-amd64_fill_fxsave (char *fxsave, int regnum)
-{
- i387_fill_fxsave (fxsave, regnum);
-
- if (regnum == -1 || regnum == I387_FISEG_REGNUM)
- regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
- if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
- regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
-}