aboutsummaryrefslogtreecommitdiff
path: root/gdb/symmisc.c
diff options
context:
space:
mode:
authorJason Molenda <jmolenda@apple.com>1999-07-07 20:19:36 +0000
committerJason Molenda <jmolenda@apple.com>1999-07-07 20:19:36 +0000
commitc5aa993b1f4add48fbdc6cc3117059f616e49875 (patch)
treec809d06515a34428cc8df5f758fbc1b6117d4c30 /gdb/symmisc.c
parent3a4b77d8bee950afce6f9702aa65dc0e60817a82 (diff)
downloadgdb-c5aa993b1f4add48fbdc6cc3117059f616e49875.zip
gdb-c5aa993b1f4add48fbdc6cc3117059f616e49875.tar.gz
gdb-c5aa993b1f4add48fbdc6cc3117059f616e49875.tar.bz2
import gdb-1999-07-07 post reformat
Diffstat (limited to 'gdb/symmisc.c')
-rw-r--r--gdb/symmisc.c502
1 files changed, 252 insertions, 250 deletions
diff --git a/gdb/symmisc.c b/gdb/symmisc.c
index c615bfc..ca40a69 100644
--- a/gdb/symmisc.c
+++ b/gdb/symmisc.c
@@ -2,21 +2,22 @@
Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 1998
Free Software Foundation, Inc.
-This file is part of GDB.
+ This file is part of GDB.
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
@@ -48,11 +49,11 @@ FILE *std_err;
/* Prototypes for local functions */
-static void dump_symtab PARAMS ((struct objfile *, struct symtab *,
- GDB_FILE *));
+static void dump_symtab PARAMS ((struct objfile *, struct symtab *,
+ GDB_FILE *));
-static void dump_psymtab PARAMS ((struct objfile *, struct partial_symtab *,
- GDB_FILE *));
+static void dump_psymtab PARAMS ((struct objfile *, struct partial_symtab *,
+ GDB_FILE *));
static void dump_msymbols PARAMS ((struct objfile *, GDB_FILE *));
@@ -60,25 +61,26 @@ static void dump_objfile PARAMS ((struct objfile *));
static int block_depth PARAMS ((struct block *));
-static void print_partial_symbols PARAMS ((struct partial_symbol **, int,
- char *, GDB_FILE *));
+static void print_partial_symbols PARAMS ((struct partial_symbol **, int,
+ char *, GDB_FILE *));
static void free_symtab_block PARAMS ((struct objfile *, struct block *));
void _initialize_symmisc PARAMS ((void));
-struct print_symbol_args {
- struct symbol *symbol;
- int depth;
- GDB_FILE *outfile;
-};
+struct print_symbol_args
+ {
+ struct symbol *symbol;
+ int depth;
+ GDB_FILE *outfile;
+ };
static int print_symbol PARAMS ((PTR));
static void
free_symtab_block PARAMS ((struct objfile *, struct block *));
-
+
/* Free a struct block <- B and all the symbols defined in that block. */
static void
@@ -90,10 +92,10 @@ free_symtab_block (objfile, b)
n = BLOCK_NSYMS (b);
for (i = 0; i < n; i++)
{
- mfree (objfile -> md, SYMBOL_NAME (BLOCK_SYM (b, i)));
- mfree (objfile -> md, (PTR) BLOCK_SYM (b, i));
+ mfree (objfile->md, SYMBOL_NAME (BLOCK_SYM (b, i)));
+ mfree (objfile->md, (PTR) BLOCK_SYM (b, i));
}
- mfree (objfile -> md, (PTR) b);
+ mfree (objfile->md, (PTR) b);
}
/* Free all the storage associated with the struct symtab <- S.
@@ -115,43 +117,43 @@ free_symtab (s)
{
case free_nothing:
/* All the contents are part of a big block of memory (an obstack),
- and some other symtab is in charge of freeing that block.
- Therefore, do nothing. */
+ and some other symtab is in charge of freeing that block.
+ Therefore, do nothing. */
break;
case free_contents:
/* Here all the contents were malloc'ed structure by structure
- and must be freed that way. */
+ and must be freed that way. */
/* First free the blocks (and their symbols. */
bv = BLOCKVECTOR (s);
n = BLOCKVECTOR_NBLOCKS (bv);
for (i = 0; i < n; i++)
- free_symtab_block (s -> objfile, BLOCKVECTOR_BLOCK (bv, i));
+ free_symtab_block (s->objfile, BLOCKVECTOR_BLOCK (bv, i));
/* Free the blockvector itself. */
- mfree (s -> objfile -> md, (PTR) bv);
+ mfree (s->objfile->md, (PTR) bv);
/* Also free the linetable. */
-
+
case free_linetable:
/* Everything will be freed either by our `free_ptr'
- or by some other symtab, except for our linetable.
- Free that now. */
+ or by some other symtab, except for our linetable.
+ Free that now. */
if (LINETABLE (s))
- mfree (s -> objfile -> md, (PTR) LINETABLE (s));
+ mfree (s->objfile->md, (PTR) LINETABLE (s));
break;
}
/* If there is a single block of memory to free, free it. */
- if (s -> free_ptr != NULL)
- mfree (s -> objfile -> md, s -> free_ptr);
+ if (s->free_ptr != NULL)
+ mfree (s->objfile->md, s->free_ptr);
/* Free source-related stuff */
- if (s -> line_charpos != NULL)
- mfree (s -> objfile -> md, (PTR) s -> line_charpos);
- if (s -> fullname != NULL)
- mfree (s -> objfile -> md, s -> fullname);
- if (s -> debugformat != NULL)
- mfree (s -> objfile -> md, s -> debugformat);
- mfree (s -> objfile -> md, (PTR) s);
+ if (s->line_charpos != NULL)
+ mfree (s->objfile->md, (PTR) s->line_charpos);
+ if (s->fullname != NULL)
+ mfree (s->objfile->md, s->fullname);
+ if (s->debugformat != NULL)
+ mfree (s->objfile->md, s->debugformat);
+ mfree (s->objfile->md, (PTR) s);
}
void
@@ -161,10 +163,10 @@ print_symbol_bcache_statistics ()
immediate_quit++;
ALL_OBJFILES (objfile)
- {
- printf_filtered ("Byte cache statistics for '%s':\n", objfile -> name);
- print_bcache_statistics (&objfile -> psymbol_cache, "partial symbol cache");
- }
+ {
+ printf_filtered ("Byte cache statistics for '%s':\n", objfile->name);
+ print_bcache_statistics (&objfile->psymbol_cache, "partial symbol cache");
+ }
immediate_quit--;
}
@@ -175,46 +177,46 @@ print_objfile_statistics ()
immediate_quit++;
ALL_OBJFILES (objfile)
- {
- printf_filtered ("Statistics for '%s':\n", objfile -> name);
- if (OBJSTAT (objfile, n_stabs) > 0)
- printf_filtered (" Number of \"stab\" symbols read: %d\n",
- OBJSTAT (objfile, n_stabs));
- if (OBJSTAT (objfile, n_minsyms) > 0)
- printf_filtered (" Number of \"minimal\" symbols read: %d\n",
- OBJSTAT (objfile, n_minsyms));
- if (OBJSTAT (objfile, n_psyms) > 0)
- printf_filtered (" Number of \"partial\" symbols read: %d\n",
- OBJSTAT (objfile, n_psyms));
- if (OBJSTAT (objfile, n_syms) > 0)
- printf_filtered (" Number of \"full\" symbols read: %d\n",
- OBJSTAT (objfile, n_syms));
- if (OBJSTAT (objfile, n_types) > 0)
- printf_filtered (" Number of \"types\" defined: %d\n",
- OBJSTAT (objfile, n_types));
- if (OBJSTAT (objfile, sz_strtab) > 0)
- printf_filtered (" Space used by a.out string tables: %d\n",
- OBJSTAT (objfile, sz_strtab));
- printf_filtered (" Total memory used for psymbol obstack: %d\n",
- obstack_memory_used (&objfile -> psymbol_obstack));
- printf_filtered (" Total memory used for psymbol cache: %d\n",
- obstack_memory_used (&objfile -> psymbol_cache.cache));
- printf_filtered (" Total memory used for symbol obstack: %d\n",
- obstack_memory_used (&objfile -> symbol_obstack));
- printf_filtered (" Total memory used for type obstack: %d\n",
- obstack_memory_used (&objfile -> type_obstack));
- }
+ {
+ printf_filtered ("Statistics for '%s':\n", objfile->name);
+ if (OBJSTAT (objfile, n_stabs) > 0)
+ printf_filtered (" Number of \"stab\" symbols read: %d\n",
+ OBJSTAT (objfile, n_stabs));
+ if (OBJSTAT (objfile, n_minsyms) > 0)
+ printf_filtered (" Number of \"minimal\" symbols read: %d\n",
+ OBJSTAT (objfile, n_minsyms));
+ if (OBJSTAT (objfile, n_psyms) > 0)
+ printf_filtered (" Number of \"partial\" symbols read: %d\n",
+ OBJSTAT (objfile, n_psyms));
+ if (OBJSTAT (objfile, n_syms) > 0)
+ printf_filtered (" Number of \"full\" symbols read: %d\n",
+ OBJSTAT (objfile, n_syms));
+ if (OBJSTAT (objfile, n_types) > 0)
+ printf_filtered (" Number of \"types\" defined: %d\n",
+ OBJSTAT (objfile, n_types));
+ if (OBJSTAT (objfile, sz_strtab) > 0)
+ printf_filtered (" Space used by a.out string tables: %d\n",
+ OBJSTAT (objfile, sz_strtab));
+ printf_filtered (" Total memory used for psymbol obstack: %d\n",
+ obstack_memory_used (&objfile->psymbol_obstack));
+ printf_filtered (" Total memory used for psymbol cache: %d\n",
+ obstack_memory_used (&objfile->psymbol_cache.cache));
+ printf_filtered (" Total memory used for symbol obstack: %d\n",
+ obstack_memory_used (&objfile->symbol_obstack));
+ printf_filtered (" Total memory used for type obstack: %d\n",
+ obstack_memory_used (&objfile->type_obstack));
+ }
immediate_quit--;
}
-static void
+static void
dump_objfile (objfile)
struct objfile *objfile;
{
struct symtab *symtab;
struct partial_symtab *psymtab;
- printf_filtered ("\nObject file %s: ", objfile -> name);
+ printf_filtered ("\nObject file %s: ", objfile->name);
printf_filtered ("Objfile at ");
gdb_print_address (objfile, gdb_stdout);
printf_filtered (", bfd at ");
@@ -222,18 +224,18 @@ dump_objfile (objfile)
printf_filtered (", %d minsyms\n\n",
objfile->minimal_symbol_count);
- if (objfile -> psymtabs)
+ if (objfile->psymtabs)
{
printf_filtered ("Psymtabs:\n");
- for (psymtab = objfile -> psymtabs;
+ for (psymtab = objfile->psymtabs;
psymtab != NULL;
- psymtab = psymtab -> next)
+ psymtab = psymtab->next)
{
printf_filtered ("%s at ",
- psymtab -> filename);
+ psymtab->filename);
gdb_print_address (psymtab, gdb_stdout);
printf_filtered (", ");
- if (psymtab -> objfile != objfile)
+ if (psymtab->objfile != objfile)
{
printf_filtered ("NOT ON CHAIN! ");
}
@@ -242,17 +244,17 @@ dump_objfile (objfile)
printf_filtered ("\n\n");
}
- if (objfile -> symtabs)
+ if (objfile->symtabs)
{
printf_filtered ("Symtabs:\n");
- for (symtab = objfile -> symtabs;
+ for (symtab = objfile->symtabs;
symtab != NULL;
symtab = symtab->next)
{
- printf_filtered ("%s at ", symtab -> filename);
+ printf_filtered ("%s at ", symtab->filename);
gdb_print_address (symtab, gdb_stdout);
printf_filtered (", ");
- if (symtab -> objfile != objfile)
+ if (symtab->objfile != objfile)
{
printf_filtered ("NOT ON CHAIN! ");
}
@@ -263,8 +265,8 @@ dump_objfile (objfile)
}
/* Print minimal symbols from this objfile. */
-
-static void
+
+static void
dump_msymbols (objfile, outfile)
struct objfile *objfile;
GDB_FILE *outfile;
@@ -272,48 +274,48 @@ dump_msymbols (objfile, outfile)
struct minimal_symbol *msymbol;
int index;
char ms_type;
-
- fprintf_filtered (outfile, "\nObject file %s:\n\n", objfile -> name);
- if (objfile -> minimal_symbol_count == 0)
+
+ fprintf_filtered (outfile, "\nObject file %s:\n\n", objfile->name);
+ if (objfile->minimal_symbol_count == 0)
{
fprintf_filtered (outfile, "No minimal symbols found.\n");
return;
}
- for (index = 0, msymbol = objfile -> msymbols;
+ for (index = 0, msymbol = objfile->msymbols;
SYMBOL_NAME (msymbol) != NULL; msymbol++, index++)
{
- switch (msymbol -> type)
+ switch (msymbol->type)
{
- case mst_unknown:
- ms_type = 'u';
- break;
- case mst_text:
- ms_type = 'T';
- break;
- case mst_solib_trampoline:
- ms_type = 'S';
- break;
- case mst_data:
- ms_type = 'D';
- break;
- case mst_bss:
- ms_type = 'B';
- break;
- case mst_abs:
- ms_type = 'A';
- break;
- case mst_file_text:
- ms_type = 't';
- break;
- case mst_file_data:
- ms_type = 'd';
- break;
- case mst_file_bss:
- ms_type = 'b';
- break;
- default:
- ms_type = '?';
- break;
+ case mst_unknown:
+ ms_type = 'u';
+ break;
+ case mst_text:
+ ms_type = 'T';
+ break;
+ case mst_solib_trampoline:
+ ms_type = 'S';
+ break;
+ case mst_data:
+ ms_type = 'D';
+ break;
+ case mst_bss:
+ ms_type = 'B';
+ break;
+ case mst_abs:
+ ms_type = 'A';
+ break;
+ case mst_file_text:
+ ms_type = 't';
+ break;
+ case mst_file_data:
+ ms_type = 'd';
+ break;
+ case mst_file_bss:
+ ms_type = 'b';
+ break;
+ default:
+ ms_type = '?';
+ break;
}
fprintf_filtered (outfile, "[%2d] %c ", index, ms_type);
print_address_numeric (SYMBOL_VALUE_ADDRESS (msymbol), 1, outfile);
@@ -332,10 +334,10 @@ dump_msymbols (objfile, outfile)
#endif
fputs_filtered ("\n", outfile);
}
- if (objfile -> minimal_symbol_count != index)
+ if (objfile->minimal_symbol_count != index)
{
warning ("internal error: minimal symbol count %d != %d",
- objfile -> minimal_symbol_count, index);
+ objfile->minimal_symbol_count, index);
}
fprintf_filtered (outfile, "\n");
}
@@ -349,22 +351,22 @@ dump_psymtab (objfile, psymtab, outfile)
int i;
fprintf_filtered (outfile, "\nPartial symtab for source file %s ",
- psymtab -> filename);
+ psymtab->filename);
fprintf_filtered (outfile, "(object ");
gdb_print_address (psymtab, outfile);
fprintf_filtered (outfile, ")\n\n");
fprintf_unfiltered (outfile, " Read from object file %s (",
- objfile -> name);
+ objfile->name);
gdb_print_address (objfile, outfile);
fprintf_unfiltered (outfile, ")\n");
- if (psymtab -> readin)
+ if (psymtab->readin)
{
fprintf_filtered (outfile,
- " Full symtab was read (at ");
+ " Full symtab was read (at ");
gdb_print_address (psymtab->symtab, outfile);
fprintf_filtered (outfile, " by function at ");
- gdb_print_address ((PTR)psymtab->read_symtab, outfile);
+ gdb_print_address ((PTR) psymtab->read_symtab, outfile);
fprintf_filtered (outfile, ")\n");
}
@@ -386,30 +388,30 @@ dump_psymtab (objfile, psymtab, outfile)
print_address_numeric (psymtab->texthigh, 1, outfile);
fprintf_filtered (outfile, "\n");
fprintf_filtered (outfile, " Depends on %d other partial symtabs.\n",
- psymtab -> number_of_dependencies);
- for (i = 0; i < psymtab -> number_of_dependencies; i++)
+ psymtab->number_of_dependencies);
+ for (i = 0; i < psymtab->number_of_dependencies; i++)
{
fprintf_filtered (outfile, " %d ", i);
- gdb_print_address (psymtab -> dependencies[i], outfile);
+ gdb_print_address (psymtab->dependencies[i], outfile);
fprintf_filtered (outfile, " %s\n",
- psymtab -> dependencies[i] -> filename);
+ psymtab->dependencies[i]->filename);
}
- if (psymtab -> n_global_syms > 0)
+ if (psymtab->n_global_syms > 0)
{
- print_partial_symbols (objfile -> global_psymbols.list
- + psymtab -> globals_offset,
- psymtab -> n_global_syms, "Global", outfile);
+ print_partial_symbols (objfile->global_psymbols.list
+ + psymtab->globals_offset,
+ psymtab->n_global_syms, "Global", outfile);
}
- if (psymtab -> n_static_syms > 0)
+ if (psymtab->n_static_syms > 0)
{
- print_partial_symbols (objfile -> static_psymbols.list
- + psymtab -> statics_offset,
- psymtab -> n_static_syms, "Static", outfile);
+ print_partial_symbols (objfile->static_psymbols.list
+ + psymtab->statics_offset,
+ psymtab->n_static_syms, "Static", outfile);
}
fprintf_filtered (outfile, "\n");
}
-static void
+static void
dump_symtab (objfile, symtab, outfile)
struct objfile *objfile;
struct symtab *symtab;
@@ -446,7 +448,7 @@ dump_symtab (objfile, symtab, outfile)
}
/* Now print the block info, but only for primary symtabs since we will
print lots of duplicate info otherwise. */
- if (symtab -> primary)
+ if (symtab->primary)
{
fprintf_filtered (outfile, "\nBlockvector:\n\n");
bv = BLOCKVECTOR (symtab);
@@ -474,11 +476,11 @@ dump_symtab (objfile, symtab, outfile)
if (SYMBOL_DEMANGLED_NAME (BLOCK_FUNCTION (b)) != NULL)
{
fprintf_filtered (outfile, ", %s",
- SYMBOL_DEMANGLED_NAME (BLOCK_FUNCTION (b)));
+ SYMBOL_DEMANGLED_NAME (BLOCK_FUNCTION (b)));
}
}
- if (BLOCK_GCC_COMPILED(b))
- fprintf_filtered (outfile, ", compiled with gcc%d", BLOCK_GCC_COMPILED(b));
+ if (BLOCK_GCC_COMPILED (b))
+ fprintf_filtered (outfile, ", compiled with gcc%d", BLOCK_GCC_COMPILED (b));
fprintf_filtered (outfile, "\n");
/* Now print each symbol in this block */
for (j = 0; j < blen; j++)
@@ -537,7 +539,7 @@ Arguments missing: an output file name and an optional symbol file name");
filename = tilde_expand (filename);
make_cleanup (free, filename);
-
+
outfile = gdb_fopen (filename, FOPEN_WT);
if (outfile == 0)
perror_with_name (filename);
@@ -545,8 +547,8 @@ Arguments missing: an output file name and an optional symbol file name");
immediate_quit++;
ALL_SYMTABS (objfile, s)
- if (symname == NULL || (STREQ (symname, s -> filename)))
- dump_symtab (objfile, s, outfile);
+ if (symname == NULL || (STREQ (symname, s->filename)))
+ dump_symtab (objfile, s, outfile);
immediate_quit--;
do_cleanups (cleanups);
}
@@ -560,9 +562,9 @@ static int
print_symbol (args)
PTR args;
{
- struct symbol *symbol = ((struct print_symbol_args *)args)->symbol;
- int depth = ((struct print_symbol_args *)args)->depth;
- GDB_FILE *outfile = ((struct print_symbol_args *)args)->outfile;
+ struct symbol *symbol = ((struct print_symbol_args *) args)->symbol;
+ int depth = ((struct print_symbol_args *) args)->depth;
+ GDB_FILE *outfile = ((struct print_symbol_args *) args)->outfile;
print_spaces (depth, outfile);
if (SYMBOL_NAMESPACE (symbol) == LABEL_NAMESPACE)
@@ -571,8 +573,8 @@ print_symbol (args)
print_address_numeric (SYMBOL_VALUE_ADDRESS (symbol), 1, outfile);
if (SYMBOL_BFD_SECTION (symbol))
fprintf_filtered (outfile, " section %s\n",
- bfd_section_name (SYMBOL_BFD_SECTION (symbol)->owner,
- SYMBOL_BFD_SECTION (symbol)));
+ bfd_section_name (SYMBOL_BFD_SECTION (symbol)->owner,
+ SYMBOL_BFD_SECTION (symbol)));
else
fprintf_filtered (outfile, "\n");
return 1;
@@ -586,11 +588,11 @@ print_symbol (args)
else
{
fprintf_filtered (outfile, "%s %s = ",
- (TYPE_CODE (SYMBOL_TYPE (symbol)) == TYPE_CODE_ENUM
- ? "enum"
- : (TYPE_CODE (SYMBOL_TYPE (symbol)) == TYPE_CODE_STRUCT
- ? "struct" : "union")),
- SYMBOL_NAME (symbol));
+ (TYPE_CODE (SYMBOL_TYPE (symbol)) == TYPE_CODE_ENUM
+ ? "enum"
+ : (TYPE_CODE (SYMBOL_TYPE (symbol)) == TYPE_CODE_STRUCT
+ ? "struct" : "union")),
+ SYMBOL_NAME (symbol));
LA_PRINT_TYPE (SYMBOL_TYPE (symbol), "", outfile, 1, depth);
}
fprintf_filtered (outfile, ";\n");
@@ -627,13 +629,13 @@ print_symbol (args)
TYPE_LENGTH (type));
for (i = 0; i < TYPE_LENGTH (type); i++)
fprintf_filtered (outfile, " %02x",
- (unsigned)SYMBOL_VALUE_BYTES (symbol) [i]);
+ (unsigned) SYMBOL_VALUE_BYTES (symbol)[i]);
}
break;
case LOC_STATIC:
fprintf_filtered (outfile, "static at ");
- print_address_numeric (SYMBOL_VALUE_ADDRESS (symbol), 1,outfile);
+ print_address_numeric (SYMBOL_VALUE_ADDRESS (symbol), 1, outfile);
if (SYMBOL_BFD_SECTION (symbol))
fprintf_filtered (outfile, " section %s",
bfd_section_name
@@ -643,7 +645,7 @@ print_symbol (args)
case LOC_INDIRECT:
fprintf_filtered (outfile, "extern global at *(");
- print_address_numeric (SYMBOL_VALUE_ADDRESS (symbol), 1,outfile);
+ print_address_numeric (SYMBOL_VALUE_ADDRESS (symbol), 1, outfile);
fprintf_filtered (outfile, "),");
break;
@@ -658,7 +660,7 @@ print_symbol (args)
case LOC_LOCAL_ARG:
fprintf_filtered (outfile, "arg at offset 0x%lx from fp",
- SYMBOL_VALUE (symbol));
+ SYMBOL_VALUE (symbol));
break;
case LOC_REF_ARG:
@@ -680,12 +682,12 @@ print_symbol (args)
case LOC_BASEREG:
fprintf_filtered (outfile, "local at 0x%lx from register %d",
- SYMBOL_VALUE (symbol), SYMBOL_BASEREG (symbol));
+ SYMBOL_VALUE (symbol), SYMBOL_BASEREG (symbol));
break;
case LOC_BASEREG_ARG:
fprintf_filtered (outfile, "arg at 0x%lx from register %d",
- SYMBOL_VALUE (symbol), SYMBOL_BASEREG (symbol));
+ SYMBOL_VALUE (symbol), SYMBOL_BASEREG (symbol));
break;
case LOC_TYPEDEF:
@@ -727,7 +729,7 @@ print_symbol (args)
fprintf_filtered (outfile, "optimized out");
break;
- default:
+ default:
fprintf_filtered (outfile, "botched symbol class %x",
SYMBOL_CLASS (symbol));
break;
@@ -743,7 +745,7 @@ maintenance_print_psymbols (args, from_tty)
int from_tty;
{
char **argv;
- GDB_FILE *outfile;
+ GDB_FILE *outfile;
struct cleanup *cleanups;
char *symname = NULL;
char *filename = DEV_TTY;
@@ -774,7 +776,7 @@ maintenance_print_psymbols (args, from_tty)
filename = tilde_expand (filename);
make_cleanup (free, filename);
-
+
outfile = gdb_fopen (filename, FOPEN_WT);
if (outfile == 0)
perror_with_name (filename);
@@ -782,8 +784,8 @@ maintenance_print_psymbols (args, from_tty)
immediate_quit++;
ALL_PSYMTABS (objfile, ps)
- if (symname == NULL || (STREQ (symname, ps -> filename)))
- dump_psymtab (objfile, ps, outfile);
+ if (symname == NULL || (STREQ (symname, ps->filename)))
+ dump_psymtab (objfile, ps, outfile);
immediate_quit--;
do_cleanups (cleanups);
}
@@ -798,7 +800,7 @@ print_partial_symbols (p, count, what, outfile)
fprintf_filtered (outfile, " %s partial symbols:\n", what);
while (count-- > 0)
{
- fprintf_filtered (outfile, " `%s'", SYMBOL_NAME(*p));
+ fprintf_filtered (outfile, " `%s'", SYMBOL_NAME (*p));
if (SYMBOL_DEMANGLED_NAME (*p) != NULL)
{
fprintf_filtered (outfile, " `%s'", SYMBOL_DEMANGLED_NAME (*p));
@@ -922,7 +924,7 @@ maintenance_print_msymbols (args, from_tty)
filename = tilde_expand (filename);
make_cleanup (free, filename);
-
+
outfile = gdb_fopen (filename, FOPEN_WT);
if (outfile == 0)
perror_with_name (filename);
@@ -930,8 +932,8 @@ maintenance_print_msymbols (args, from_tty)
immediate_quit++;
ALL_OBJFILES (objfile)
- if (symname == NULL || (STREQ (symname, objfile -> name)))
- dump_msymbols (objfile, outfile);
+ if (symname == NULL || (STREQ (symname, objfile->name)))
+ dump_msymbols (objfile, outfile);
immediate_quit--;
fprintf_filtered (outfile, "\n\n");
do_cleanups (cleanups);
@@ -969,76 +971,76 @@ maintenance_check_symtabs (ignore, from_tty)
int length;
ALL_PSYMTABS (objfile, ps)
- {
- s = PSYMTAB_TO_SYMTAB(ps);
- if (s == NULL)
- continue;
- bv = BLOCKVECTOR (s);
- b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
- psym = ps->objfile->static_psymbols.list + ps->statics_offset;
- length = ps->n_static_syms;
- while (length--)
- {
- sym = lookup_block_symbol (b, SYMBOL_NAME (*psym),
- SYMBOL_NAMESPACE (*psym));
- if (!sym)
- {
- printf_filtered ("Static symbol `");
- puts_filtered (SYMBOL_NAME (*psym));
- printf_filtered ("' only found in ");
- puts_filtered (ps->filename);
- printf_filtered (" psymtab\n");
- }
- psym++;
- }
- b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
- psym = ps->objfile->global_psymbols.list + ps->globals_offset;
- length = ps->n_global_syms;
- while (length--)
- {
- sym = lookup_block_symbol (b, SYMBOL_NAME (*psym),
- SYMBOL_NAMESPACE (*psym));
- if (!sym)
- {
- printf_filtered ("Global symbol `");
- puts_filtered (SYMBOL_NAME (*psym));
- printf_filtered ("' only found in ");
- puts_filtered (ps->filename);
- printf_filtered (" psymtab\n");
- }
- psym++;
- }
- if (ps->texthigh < ps->textlow)
- {
- printf_filtered ("Psymtab ");
- puts_filtered (ps->filename);
- printf_filtered (" covers bad range ");
- print_address_numeric (ps->textlow, 1, gdb_stdout);
- printf_filtered (" - ");
- print_address_numeric (ps->texthigh, 1, gdb_stdout);
- printf_filtered ("\n");
- continue;
- }
- if (ps->texthigh == 0)
+ {
+ s = PSYMTAB_TO_SYMTAB (ps);
+ if (s == NULL)
+ continue;
+ bv = BLOCKVECTOR (s);
+ b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
+ psym = ps->objfile->static_psymbols.list + ps->statics_offset;
+ length = ps->n_static_syms;
+ while (length--)
+ {
+ sym = lookup_block_symbol (b, SYMBOL_NAME (*psym),
+ SYMBOL_NAMESPACE (*psym));
+ if (!sym)
+ {
+ printf_filtered ("Static symbol `");
+ puts_filtered (SYMBOL_NAME (*psym));
+ printf_filtered ("' only found in ");
+ puts_filtered (ps->filename);
+ printf_filtered (" psymtab\n");
+ }
+ psym++;
+ }
+ b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
+ psym = ps->objfile->global_psymbols.list + ps->globals_offset;
+ length = ps->n_global_syms;
+ while (length--)
+ {
+ sym = lookup_block_symbol (b, SYMBOL_NAME (*psym),
+ SYMBOL_NAMESPACE (*psym));
+ if (!sym)
+ {
+ printf_filtered ("Global symbol `");
+ puts_filtered (SYMBOL_NAME (*psym));
+ printf_filtered ("' only found in ");
+ puts_filtered (ps->filename);
+ printf_filtered (" psymtab\n");
+ }
+ psym++;
+ }
+ if (ps->texthigh < ps->textlow)
+ {
+ printf_filtered ("Psymtab ");
+ puts_filtered (ps->filename);
+ printf_filtered (" covers bad range ");
+ print_address_numeric (ps->textlow, 1, gdb_stdout);
+ printf_filtered (" - ");
+ print_address_numeric (ps->texthigh, 1, gdb_stdout);
+ printf_filtered ("\n");
continue;
- if (ps->textlow < BLOCK_START (b) || ps->texthigh > BLOCK_END (b))
- {
- printf_filtered ("Psymtab ");
- puts_filtered (ps->filename);
- printf_filtered (" covers ");
- print_address_numeric (ps->textlow, 1, gdb_stdout);
- printf_filtered (" - ");
- print_address_numeric (ps->texthigh, 1, gdb_stdout);
- printf_filtered (" but symtab covers only ");
- print_address_numeric (BLOCK_START (b), 1, gdb_stdout);
- printf_filtered (" - ");
- print_address_numeric (BLOCK_END (b), 1, gdb_stdout);
- printf_filtered ("\n");
- }
- }
+ }
+ if (ps->texthigh == 0)
+ continue;
+ if (ps->textlow < BLOCK_START (b) || ps->texthigh > BLOCK_END (b))
+ {
+ printf_filtered ("Psymtab ");
+ puts_filtered (ps->filename);
+ printf_filtered (" covers ");
+ print_address_numeric (ps->textlow, 1, gdb_stdout);
+ printf_filtered (" - ");
+ print_address_numeric (ps->texthigh, 1, gdb_stdout);
+ printf_filtered (" but symtab covers only ");
+ print_address_numeric (BLOCK_START (b), 1, gdb_stdout);
+ printf_filtered (" - ");
+ print_address_numeric (BLOCK_END (b), 1, gdb_stdout);
+ printf_filtered ("\n");
+ }
+ }
}
-
+
/* Return the nexting depth of a block within other blocks in its symtab. */
static int
@@ -1046,14 +1048,14 @@ block_depth (block)
struct block *block;
{
register int i = 0;
- while ((block = BLOCK_SUPERBLOCK (block)) != NULL)
+ while ((block = BLOCK_SUPERBLOCK (block)) != NULL)
{
i++;
}
return i;
}
-
+
/* Increase the space allocated for LISTP, which is probably
global_psymbols or static_psymbols. This space will eventually
be freed in free_objfile(). */
@@ -1068,13 +1070,13 @@ extend_psymbol_list (listp, objfile)
{
new_size = 255;
listp->list = (struct partial_symbol **)
- xmmalloc (objfile -> md, new_size * sizeof (struct partial_symbol *));
+ xmmalloc (objfile->md, new_size * sizeof (struct partial_symbol *));
}
else
{
new_size = listp->size * 2;
listp->list = (struct partial_symbol **)
- xmrealloc (objfile -> md, (char *) listp->list,
+ xmrealloc (objfile->md, (char *) listp->list,
new_size * sizeof (struct partial_symbol *));
}
/* Next assumes we only went one over. Should be good if
@@ -1088,7 +1090,7 @@ extend_psymbol_list (listp, objfile)
void
_initialize_symmisc ()
{
- std_in = stdin;
+ std_in = stdin;
std_out = stdout;
std_err = stderr;
}
ref='#n1547'>1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
/* Target-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "doublest.h"
#include "value.h"
#include "parser-defs.h"
#include "osabi.h"
#include "infcall.h"
#include "sim-regno.h"
#include "gdb/sim-ppc.h"
#include "reggroups.h"
#include "dwarf2-frame.h"
#include "target-descriptions.h"
#include "user-regs.h"

#include "libbfd.h"		/* for bfd_default_set_arch_mach */
#include "coff/internal.h"	/* for libcoff.h */
#include "libcoff.h"		/* for xcoff_data */
#include "coff/xcoff.h"
#include "libxcoff.h"

#include "elf-bfd.h"
#include "elf/ppc.h"

#include "solib-svr4.h"
#include "ppc-tdep.h"

#include "gdb_assert.h"
#include "dis-asm.h"

#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"

#include "features/rs6000/powerpc-32.c"
#include "features/rs6000/powerpc-altivec32.c"
#include "features/rs6000/powerpc-vsx32.c"
#include "features/rs6000/powerpc-403.c"
#include "features/rs6000/powerpc-403gc.c"
#include "features/rs6000/powerpc-505.c"
#include "features/rs6000/powerpc-601.c"
#include "features/rs6000/powerpc-602.c"
#include "features/rs6000/powerpc-603.c"
#include "features/rs6000/powerpc-604.c"
#include "features/rs6000/powerpc-64.c"
#include "features/rs6000/powerpc-altivec64.c"
#include "features/rs6000/powerpc-vsx64.c"
#include "features/rs6000/powerpc-7400.c"
#include "features/rs6000/powerpc-750.c"
#include "features/rs6000/powerpc-860.c"
#include "features/rs6000/powerpc-e500.c"
#include "features/rs6000/rs6000.c"

/* Determine if regnum is an SPE pseudo-register.  */
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_ev0_regnum \
    && (regnum) < (tdep)->ppc_ev0_regnum + 32)

/* Determine if regnum is a decimal float pseudo-register.  */
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_dl0_regnum \
    && (regnum) < (tdep)->ppc_dl0_regnum + 16)

/* Determine if regnum is a POWER7 VSX register.  */
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_vsr0_regnum \
    && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)

/* Determine if regnum is a POWER7 Extended FP register.  */
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_efpr0_regnum \
    && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)

/* The list of available "set powerpc ..." and "show powerpc ..."
   commands.  */
static struct cmd_list_element *setpowerpccmdlist = NULL;
static struct cmd_list_element *showpowerpccmdlist = NULL;

static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;

/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
static const char *powerpc_vector_strings[] =
{
  "auto",
  "generic",
  "altivec",
  "spe",
  NULL
};

/* A variable that can be configured by the user.  */
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
static const char *powerpc_vector_abi_string = "auto";

/* To be used by skip_prologue. */

struct rs6000_framedata
  {
    int offset;			/* total size of frame --- the distance
				   by which we decrement sp to allocate
				   the frame */
    int saved_gpr;		/* smallest # of saved gpr */
    unsigned int gpr_mask;	/* Each bit is an individual saved GPR.  */
    int saved_fpr;		/* smallest # of saved fpr */
    int saved_vr;               /* smallest # of saved vr */
    int saved_ev;               /* smallest # of saved ev */
    int alloca_reg;		/* alloca register number (frame ptr) */
    char frameless;		/* true if frameless functions. */
    char nosavedpc;		/* true if pc not saved. */
    char used_bl;		/* true if link register clobbered */
    int gpr_offset;		/* offset of saved gprs from prev sp */
    int fpr_offset;		/* offset of saved fprs from prev sp */
    int vr_offset;              /* offset of saved vrs from prev sp */
    int ev_offset;              /* offset of saved evs from prev sp */
    int lr_offset;		/* offset of saved lr */
    int lr_register;		/* register of saved lr, if trustworthy */
    int cr_offset;		/* offset of saved cr */
    int vrsave_offset;          /* offset of saved vrsave register */
  };


/* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
int
vsx_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep->ppc_vsr0_regnum < 0)
    return 0;
  else
    return (regno >= tdep->ppc_vsr0_upper_regnum && regno
	    <= tdep->ppc_vsr0_upper_regnum + 31);
}

/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
int
altivec_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
    return 0;
  else
    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
}


/* Return true if REGNO is an SPE register, false otherwise.  */
int
spe_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  
  /* Is it a reference to EV0 -- EV31, and do we have those?  */
  if (IS_SPE_PSEUDOREG (tdep, regno))
    return 1;

  /* Is it a reference to one of the raw upper GPR halves?  */
  if (tdep->ppc_ev0_upper_regnum >= 0
      && tdep->ppc_ev0_upper_regnum <= regno
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    return 1;

  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
  if (tdep->ppc_acc_regnum >= 0
      && tdep->ppc_acc_regnum == regno)
    return 1;

  /* Is it a reference to the SPE floating-point status and control register,
     and do we have that?  */
  if (tdep->ppc_spefscr_regnum >= 0
      && tdep->ppc_spefscr_regnum == regno)
    return 1;

  return 0;
}


/* Return non-zero if the architecture described by GDBARCH has
   floating-point registers (f0 --- f31 and fpscr).  */
int
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_fp0_regnum >= 0
          && tdep->ppc_fpscr_regnum >= 0);
}

/* Return non-zero if the architecture described by GDBARCH has
   VSX registers (vsr0 --- vsr63).  */
static int
ppc_vsx_support_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return tdep->ppc_vsr0_regnum >= 0;
}

/* Return non-zero if the architecture described by GDBARCH has
   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
int
ppc_altivec_support_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_vr0_regnum >= 0
          && tdep->ppc_vrsave_regnum >= 0);
}

/* Check that TABLE[GDB_REGNO] is not already initialized, and then
   set it to SIM_REGNO.

   This is a helper function for init_sim_regno_table, constructing
   the table mapping GDB register numbers to sim register numbers; we
   initialize every element in that table to -1 before we start
   filling it in.  */
static void
set_sim_regno (int *table, int gdb_regno, int sim_regno)
{
  /* Make sure we don't try to assign any given GDB register a sim
     register number more than once.  */
  gdb_assert (table[gdb_regno] == -1);
  table[gdb_regno] = sim_regno;
}


/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
   numbers to simulator register numbers, based on the values placed
   in the ARCH->tdep->ppc_foo_regnum members.  */
static void
init_sim_regno_table (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int total_regs = gdbarch_num_regs (arch);
  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
  int i;
  static const char *const segment_regs[] = {
    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
  };

  /* Presume that all registers not explicitly mentioned below are
     unavailable from the sim.  */
  for (i = 0; i < total_regs; i++)
    sim_regno[i] = -1;

  /* General-purpose registers.  */
  for (i = 0; i < ppc_num_gprs; i++)
    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
  
  /* Floating-point registers.  */
  if (tdep->ppc_fp0_regnum >= 0)
    for (i = 0; i < ppc_num_fprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_fp0_regnum + i,
                     sim_ppc_f0_regnum + i);
  if (tdep->ppc_fpscr_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);

  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);

  /* Segment registers.  */
  for (i = 0; i < ppc_num_srs; i++)
    {
      int gdb_regno;

      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
      if (gdb_regno >= 0)
	set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
    }

  /* Altivec registers.  */
  if (tdep->ppc_vr0_regnum >= 0)
    {
      for (i = 0; i < ppc_num_vrs; i++)
        set_sim_regno (sim_regno,
                       tdep->ppc_vr0_regnum + i,
                       sim_ppc_vr0_regnum + i);

      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
         we can treat this more like the other cases.  */
      set_sim_regno (sim_regno,
                     tdep->ppc_vr0_regnum + ppc_num_vrs,
                     sim_ppc_vscr_regnum);
    }
  /* vsave is a special-purpose register, so the code below handles it.  */

  /* SPE APU (E500) registers.  */
  if (tdep->ppc_ev0_upper_regnum >= 0)
    for (i = 0; i < ppc_num_gprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_ev0_upper_regnum + i,
                     sim_ppc_rh0_regnum + i);
  if (tdep->ppc_acc_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
  /* spefscr is a special-purpose register, so the code below handles it.  */

#ifdef WITH_SIM
  /* Now handle all special-purpose registers.  Verify that they
     haven't mistakenly been assigned numbers by any of the above
     code.  */
  for (i = 0; i < sim_ppc_num_sprs; i++)
    {
      const char *spr_name = sim_spr_register_name (i);
      int gdb_regno = -1;

      if (spr_name != NULL)
	gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);

      if (gdb_regno != -1)
	set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
    }
#endif

  /* Drop the initialized array into place.  */
  tdep->sim_regno = sim_regno;
}


/* Given a GDB register number REG, return the corresponding SIM
   register number.  */
static int
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int sim_regno;

  if (tdep->sim_regno == NULL)
    init_sim_regno_table (gdbarch);

  gdb_assert (0 <= reg 
	      && reg <= gdbarch_num_regs (gdbarch)
			+ gdbarch_num_pseudo_regs (gdbarch));
  sim_regno = tdep->sim_regno[reg];

  if (sim_regno >= 0)
    return sim_regno;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}



/* Register set support functions.  */

/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
   Write the register to REGCACHE.  */

void
ppc_supply_reg (struct regcache *regcache, int regnum, 
		const gdb_byte *regs, size_t offset, int regsize)
{
  if (regnum != -1 && offset != -1)
    {
      if (regsize > 4)
	{
	  struct gdbarch *gdbarch = get_regcache_arch (regcache);
	  int gdb_regsize = register_size (gdbarch, regnum);
	  if (gdb_regsize < regsize
	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	    offset += regsize - gdb_regsize;
	}
      regcache_raw_supply (regcache, regnum, regs + offset);
    }
}

/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
   in a field REGSIZE wide.  Zero pad as necessary.  */

void
ppc_collect_reg (const struct regcache *regcache, int regnum,
		 gdb_byte *regs, size_t offset, int regsize)
{
  if (regnum != -1 && offset != -1)
    {
      if (regsize > 4)
	{
	  struct gdbarch *gdbarch = get_regcache_arch (regcache);
	  int gdb_regsize = register_size (gdbarch, regnum);
	  if (gdb_regsize < regsize)
	    {
	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		{
		  memset (regs + offset, 0, regsize - gdb_regsize);
		  offset += regsize - gdb_regsize;
		}
	      else
		memset (regs + offset + regsize - gdb_regsize, 0,
			regsize - gdb_regsize);
	    }
	}
      regcache_raw_collect (regcache, regnum, regs + offset);
    }
}
    
static int
ppc_greg_offset (struct gdbarch *gdbarch,
		 struct gdbarch_tdep *tdep,
		 const struct ppc_reg_offsets *offsets,
		 int regnum,
		 int *regsize)
{
  *regsize = offsets->gpr_size;
  if (regnum >= tdep->ppc_gp0_regnum
      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
    return (offsets->r0_offset
	    + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);

  if (regnum == gdbarch_pc_regnum (gdbarch))
    return offsets->pc_offset;

  if (regnum == tdep->ppc_ps_regnum)
    return offsets->ps_offset;

  if (regnum == tdep->ppc_lr_regnum)
    return offsets->lr_offset;

  if (regnum == tdep->ppc_ctr_regnum)
    return offsets->ctr_offset;

  *regsize = offsets->xr_size;
  if (regnum == tdep->ppc_cr_regnum)
    return offsets->cr_offset;

  if (regnum == tdep->ppc_xer_regnum)
    return offsets->xer_offset;

  if (regnum == tdep->ppc_mq_regnum)
    return offsets->mq_offset;

  return -1;
}

static int
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
		  const struct ppc_reg_offsets *offsets,
		  int regnum)
{
  if (regnum >= tdep->ppc_fp0_regnum
      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;

  if (regnum == tdep->ppc_fpscr_regnum)
    return offsets->fpscr_offset;

  return -1;
}

static int
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
		  const struct ppc_reg_offsets *offsets,
		  int regnum)
{
  if (regnum >= tdep->ppc_vr0_regnum
      && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
    return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;

  if (regnum == tdep->ppc_vrsave_regnum - 1)
    return offsets->vscr_offset;

  if (regnum == tdep->ppc_vrsave_regnum)
    return offsets->vrsave_offset;

  return -1;
}

/* Supply register REGNUM in the general-purpose register set REGSET
   from the buffer specified by GREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *gregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int regsize;

  if (regnum == -1)
    {
      int i;
      int gpr_size = offsets->gpr_size;

      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   i++, offset += gpr_size)
	ppc_supply_reg (regcache, i, gregs, offset, gpr_size);

      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
		      gregs, offsets->pc_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
		      gregs, offsets->ps_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
		      gregs, offsets->lr_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
		      gregs, offsets->ctr_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
		      gregs, offsets->cr_offset, offsets->xr_size);
      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
		      gregs, offsets->xer_offset, offsets->xr_size);
      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
		      gregs, offsets->mq_offset, offsets->xr_size);
      return;
    }

  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
  ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
}

/* Supply register REGNUM in the floating-point register set REGSET
   from the buffer specified by FPREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_floating_point_unit_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = regset->descr;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
	   i++, offset += 8)
	ppc_supply_reg (regcache, i, fpregs, offset, 8);

      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
		      fpregs, offsets->fpscr_offset, offsets->fpscr_size);
      return;
    }

  offset = ppc_fpreg_offset (tdep, offsets, regnum);
  ppc_supply_reg (regcache, regnum, fpregs, offset,
		  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}

/* Supply register REGNUM in the VSX register set REGSET
   from the buffer specified by VSXREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *vsxregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;

  if (!ppc_vsx_support_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);

  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_vsr0_upper_regnum;
	   i < tdep->ppc_vsr0_upper_regnum + 32;
	   i++)
	ppc_supply_reg (regcache, i, vsxregs, 0, 8);

      return;
    }
  else
    ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
}

/* Supply register REGNUM in the Altivec register set REGSET
   from the buffer specified by VRREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *vrregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_altivec_support_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = regset->descr;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
	   i < tdep->ppc_vr0_regnum + ppc_num_vrs;
	   i++, offset += 16)
        ppc_supply_reg (regcache, i, vrregs, offset, 16);

      ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
		      vrregs, offsets->vscr_offset, 4);

      ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
		      vrregs, offsets->vrsave_offset, 4);
      return;
    }

  offset = ppc_vrreg_offset (tdep, offsets, regnum);
  if (regnum != tdep->ppc_vrsave_regnum
      && regnum != tdep->ppc_vrsave_regnum - 1)
    ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
  else
    ppc_supply_reg (regcache, regnum,
		    vrregs, offset, 4);
}

/* Collect register REGNUM in the general-purpose register set
   REGSET from register cache REGCACHE into the buffer specified by
   GREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_gregset (const struct regset *regset,
		     const struct regcache *regcache,
		     int regnum, void *gregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int regsize;

  if (regnum == -1)
    {
      int i;
      int gpr_size = offsets->gpr_size;

      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   i++, offset += gpr_size)
	ppc_collect_reg (regcache, i, gregs, offset, gpr_size);

      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
		       gregs, offsets->pc_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
		       gregs, offsets->ps_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
		       gregs, offsets->lr_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
		       gregs, offsets->ctr_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
		       gregs, offsets->cr_offset, offsets->xr_size);
      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
		       gregs, offsets->xer_offset, offsets->xr_size);
      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
		       gregs, offsets->mq_offset, offsets->xr_size);
      return;
    }

  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
  ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
}

/* Collect register REGNUM in the floating-point register set
   REGSET from register cache REGCACHE into the buffer specified by
   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_fpregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_floating_point_unit_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = regset->descr;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
	   i++, offset += 8)
	ppc_collect_reg (regcache, i, fpregs, offset, 8);

      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
		       fpregs, offsets->fpscr_offset, offsets->fpscr_size);
      return;
    }

  offset = ppc_fpreg_offset (tdep, offsets, regnum);
  ppc_collect_reg (regcache, regnum, fpregs, offset,
		   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}

/* Collect register REGNUM in the VSX register set
   REGSET from register cache REGCACHE into the buffer specified by
   VSXREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_vsxregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *vsxregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;

  if (!ppc_vsx_support_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);

  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_vsr0_upper_regnum;
	   i < tdep->ppc_vsr0_upper_regnum + 32;
	   i++)
	ppc_collect_reg (regcache, i, vsxregs, 0, 8);

      return;
    }
  else
    ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
}


/* Collect register REGNUM in the Altivec register set
   REGSET from register cache REGCACHE into the buffer specified by
   VRREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_vrregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *vrregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_altivec_support_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = regset->descr;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
	   i < tdep->ppc_vr0_regnum + ppc_num_vrs;
	   i++, offset += 16)
	ppc_collect_reg (regcache, i, vrregs, offset, 16);

      ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
		       vrregs, offsets->vscr_offset, 4);

      ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
		       vrregs, offsets->vrsave_offset, 4);
      return;
    }

  offset = ppc_vrreg_offset (tdep, offsets, regnum);
  if (regnum != tdep->ppc_vrsave_regnum
      && regnum != tdep->ppc_vrsave_regnum - 1)
    ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
  else
    ppc_collect_reg (regcache, regnum,
		    vrregs, offset, 4);
}


static int
insn_changes_sp_or_jumps (unsigned long insn)
{
  int opcode = (insn >> 26) & 0x03f;
  int sd = (insn >> 21) & 0x01f;
  int a = (insn >> 16) & 0x01f;
  int subcode = (insn >> 1) & 0x3ff;

  /* Changes the stack pointer.  */

  /* NOTE: There are many ways to change the value of a given register.
           The ways below are those used when the register is R1, the SP,
           in a funtion's epilogue.  */

  if (opcode == 31 && subcode == 444 && a == 1)
    return 1;  /* mr R1,Rn */
  if (opcode == 14 && sd == 1)
    return 1;  /* addi R1,Rn,simm */
  if (opcode == 58 && sd == 1)
    return 1;  /* ld R1,ds(Rn) */

  /* Transfers control.  */

  if (opcode == 18)
    return 1;  /* b */
  if (opcode == 16)
    return 1;  /* bc */
  if (opcode == 19 && subcode == 16)
    return 1;  /* bclr */
  if (opcode == 19 && subcode == 528)
    return 1;  /* bcctr */

  return 0;
}

/* Return true if we are in the function's epilogue, i.e. after the
   instruction that destroyed the function's stack frame.

   1) scan forward from the point of execution:
       a) If you find an instruction that modifies the stack pointer
          or transfers control (except a return), execution is not in
          an epilogue, return.
       b) Stop scanning if you find a return instruction or reach the
          end of the function or reach the hard limit for the size of
          an epilogue.
   2) scan backward from the point of execution:
        a) If you find an instruction that modifies the stack pointer,
            execution *is* in an epilogue, return.
        b) Stop scanning if you reach an instruction that transfers
           control or the beginning of the function or reach the hard
           limit for the size of an epilogue.  */

static int
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  bfd_byte insn_buf[PPC_INSN_SIZE];
  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
  unsigned long insn;
  struct frame_info *curfrm;

  /* Find the search limits based on function boundaries and hard limit.  */

  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
    return 0;

  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
  if (epilogue_start < func_start) epilogue_start = func_start;

  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
  if (epilogue_end > func_end) epilogue_end = func_end;

  curfrm = get_current_frame ();

  /* Scan forward until next 'blr'.  */

  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
    {
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
        return 0;
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
      if (insn == 0x4e800020)
        break;
      /* Assume a bctr is a tail call unless it points strictly within
	 this function.  */
      if (insn == 0x4e800420)
	{
	  CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
						       tdep->ppc_ctr_regnum);
	  if (ctr > func_start && ctr < func_end)
	    return 0;
	  else
	    break;
	}
      if (insn_changes_sp_or_jumps (insn))
        return 0;
    }

  /* Scan backward until adjustment to stack pointer (R1).  */

  for (scan_pc = pc - PPC_INSN_SIZE;
       scan_pc >= epilogue_start;
       scan_pc -= PPC_INSN_SIZE)
    {
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
        return 0;
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
      if (insn_changes_sp_or_jumps (insn))
        return 1;
    }

  return 0;
}

/* Get the ith function argument for the current function.  */
static CORE_ADDR
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
			       struct type *type)
{
  return get_frame_register_unsigned (frame, 3 + argi);
}

/* Sequence of bytes for breakpoint instruction.  */

const static unsigned char *
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
			   int *bp_size)
{
  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
  *bp_size = 4;
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    return big_breakpoint;
  else
    return little_breakpoint;
}

/* Instruction masks for displaced stepping.  */
#define BRANCH_MASK 0xfc000000
#define BP_MASK 0xFC0007FE
#define B_INSN 0x48000000
#define BC_INSN 0x40000000
#define BXL_INSN 0x4c000000
#define BP_INSN 0x7C000008

/* Fix up the state of registers and memory after having single-stepped
   a displaced instruction.  */
static void
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
			  struct displaced_step_closure *closure,
			  CORE_ADDR from, CORE_ADDR to,
			  struct regcache *regs)
{
  /* Since we use simple_displaced_step_copy_insn, our closure is a
     copy of the instruction.  */
  ULONGEST insn  = extract_unsigned_integer ((gdb_byte *) closure,
					      PPC_INSN_SIZE);
  ULONGEST opcode = 0;
  /* Offset for non PC-relative instructions.  */
  LONGEST offset = PPC_INSN_SIZE;

  opcode = insn & BRANCH_MASK;

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog,
			"displaced: (ppc) fixup (0x%s, 0x%s)\n",
			paddr_nz (from), paddr_nz (to));


  /* Handle PC-relative branch instructions.  */
  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
    {
      ULONGEST current_pc;

      /* Read the current PC value after the instruction has been executed
	 in a displaced location.  Calculate the offset to be applied to the
	 original PC value before the displaced stepping.  */
      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
				      &current_pc);
      offset = current_pc - to;

      if (opcode != BXL_INSN)
	{
	  /* Check for AA bit indicating whether this is an absolute
	     addressing or PC-relative (1: absolute, 0: relative).  */
	  if (!(insn & 0x2))
	    {
	      /* PC-relative addressing is being used in the branch.  */
	      if (debug_displaced)
		fprintf_unfiltered
		  (gdb_stdlog,
		   "displaced: (ppc) branch instruction: 0x%s\n"
		   "displaced: (ppc) adjusted PC from 0x%s to 0x%s\n",
		   paddr_nz (insn), paddr_nz (current_pc),
		   paddr_nz (from + offset));

	      regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
					      from + offset);
	    }
	}
      else
	{
	  /* If we're here, it means we have a branch to LR or CTR.  If the
	     branch was taken, the offset is probably greater than 4 (the next
	     instruction), so it's safe to assume that an offset of 4 means we
	     did not take the branch.  */
	  if (offset == PPC_INSN_SIZE)
	    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
					    from + PPC_INSN_SIZE);
	}

      /* Check for LK bit indicating whether we should set the link
	 register to point to the next instruction
	 (1: Set, 0: Don't set).  */
      if (insn & 0x1)
	{
	  /* Link register needs to be set to the next instruction's PC.  */
	  regcache_cooked_write_unsigned (regs,
					  gdbarch_tdep (gdbarch)->ppc_lr_regnum,
					  from + PPC_INSN_SIZE);
	  if (debug_displaced)
		fprintf_unfiltered (gdb_stdlog,
				    "displaced: (ppc) adjusted LR to 0x%s\n",
				    paddr_nz (from + PPC_INSN_SIZE));

	}
    }
  /* Check for breakpoints in the inferior.  If we've found one, place the PC
     right at the breakpoint instruction.  */
  else if ((insn & BP_MASK) == BP_INSN)
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
  else
  /* Handle any other instructions that do not fit in the categories above.  */
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
				    from + offset);
}

/* Instruction masks used during single-stepping of atomic sequences.  */
#define LWARX_MASK 0xfc0007fe
#define LWARX_INSTRUCTION 0x7c000028
#define LDARX_INSTRUCTION 0x7c0000A8
#define STWCX_MASK 0xfc0007ff
#define STWCX_INSTRUCTION 0x7c00012d
#define STDCX_INSTRUCTION 0x7c0001ad

/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
   instruction and ending with a STWCX/STDCX instruction.  If such a sequence
   is found, attempt to step through it.  A breakpoint is placed at the end of 
   the sequence.  */

int 
ppc_deal_with_atomic_sequence (struct frame_info *frame)
{
  CORE_ADDR pc = get_frame_pc (frame);
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR loc = pc;
  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
  int insn = read_memory_integer (loc, PPC_INSN_SIZE);
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
  int opcode; /* Branch instruction's OPcode.  */
  int bc_insn_count = 0; /* Conditional branch instruction count.  */

  /* Assume all atomic sequences start with a lwarx/ldarx instruction.  */
  if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
      && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
    return 0;

  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      loc += PPC_INSN_SIZE;
      insn = read_memory_integer (loc, PPC_INSN_SIZE);

      /* Assume that there is at most one conditional branch in the atomic
         sequence.  If a conditional branch is found, put a breakpoint in 
         its destination address.  */
      if ((insn & BRANCH_MASK) == BC_INSN)
        {
          int immediate = ((insn & ~3) << 16) >> 16;
          int absolute = ((insn >> 1) & 1);

          if (bc_insn_count >= 1)
            return 0; /* More than one conditional branch found, fallback 
                         to the standard single-step code.  */
 
	  if (absolute)
	    breaks[1] = immediate;
	  else
	    breaks[1] = pc + immediate;

	  bc_insn_count++;
	  last_breakpoint++;
        }

      if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
          || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
        break;
    }

  /* Assume that the atomic sequence ends with a stwcx/stdcx instruction.  */
  if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
      && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
    return 0;

  closing_insn = loc;
  loc += PPC_INSN_SIZE;
  insn = read_memory_integer (loc, PPC_INSN_SIZE);

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) at the stwcx/stdcx 
     instruction, this resets the reservation and take us back to the 
     lwarx/ldarx instruction at the beginning of the atomic sequence.  */
  if (last_breakpoint && ((breaks[1] == breaks[0]) 
      || (breaks[1] == closing_insn)))
    last_breakpoint = 0;

  /* Effectively inserts the breakpoints.  */
  for (index = 0; index <= last_breakpoint; index++)
    insert_single_step_breakpoint (breaks[index]);

  return 1;
}


#define SIGNED_SHORT(x) 						\
  ((sizeof (short) == 2)						\
   ? ((int)(short)(x))							\
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))

#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)

/* Limit the number of skipped non-prologue instructions, as the examining
   of the prologue is expensive.  */
static int max_skip_non_prologue_insns = 10;

/* Return nonzero if the given instruction OP can be part of the prologue
   of a function and saves a parameter on the stack.  FRAMEP should be
   set if one of the previous instructions in the function has set the
   Frame Pointer.  */

static int
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
{
  /* Move parameters from argument registers to temporary register.  */
  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
    {
      /* Rx must be scratch register r0.  */
      const int rx_regno = (op >> 16) & 31;
      /* Ry: Only r3 - r10 are used for parameter passing.  */
      const int ry_regno = GET_SRC_REG (op);

      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
        {
          *r0_contains_arg = 1;
          return 1;
        }
      else
        return 0;
    }

  /* Save a General Purpose Register on stack.  */

  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
    {
      /* Rx: Only r3 - r10 are used for parameter passing.  */
      const int rx_regno = GET_SRC_REG (op);

      return (rx_regno >= 3 && rx_regno <= 10);
    }
           
  /* Save a General Purpose Register on stack via the Frame Pointer.  */

  if (framep &&
      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
    {
      /* Rx: Usually, only r3 - r10 are used for parameter passing.
         However, the compiler sometimes uses r0 to hold an argument.  */
      const int rx_regno = GET_SRC_REG (op);

      return ((rx_regno >= 3 && rx_regno <= 10)
              || (rx_regno == 0 && *r0_contains_arg));
    }

  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  /* Not an insn that saves a parameter on stack.  */
  return 0;
}

/* Assuming that INSN is a "bl" instruction located at PC, return
   nonzero if the destination of the branch is a "blrl" instruction.
   
   This sequence is sometimes found in certain function prologues.
   It allows the function to load the LR register with a value that
   they can use to access PIC data using PC-relative offsets.  */

static int
bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
{
  CORE_ADDR dest;
  int immediate;
  int absolute;
  int dest_insn;

  absolute = (int) ((insn >> 1) & 1);
  immediate = ((insn & ~3) << 6) >> 6;
  if (absolute)
    dest = immediate;
  else
    dest = pc + immediate;

  dest_insn = read_memory_integer (dest, 4);
  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
    return 1;

  return 0;
}

/* Masks for decoding a branch-and-link (bl) instruction.  

   BL_MASK and BL_INSTRUCTION are used in combination with each other.
   The former is anded with the opcode in question; if the result of
   this masking operation is equal to BL_INSTRUCTION, then the opcode in
   question is a ``bl'' instruction.
   
   BL_DISPLACMENT_MASK is anded with the opcode in order to extract
   the branch displacement.  */

#define BL_MASK 0xfc000001
#define BL_INSTRUCTION 0x48000001
#define BL_DISPLACEMENT_MASK 0x03fffffc

static unsigned long
rs6000_fetch_instruction (const CORE_ADDR pc)
{
  gdb_byte buf[4];
  unsigned long op;

  /* Fetch the instruction and convert it to an integer.  */
  if (target_read_memory (pc, buf, 4))
    return 0;
  op = extract_unsigned_integer (buf, 4);

  return op;
}

/* GCC generates several well-known sequences of instructions at the begining
   of each function prologue when compiling with -fstack-check.  If one of
   such sequences starts at START_PC, then return the address of the
   instruction immediately past this sequence.  Otherwise, return START_PC.  */
   
static CORE_ADDR
rs6000_skip_stack_check (const CORE_ADDR start_pc)
{
  CORE_ADDR pc = start_pc;
  unsigned long op = rs6000_fetch_instruction (pc);

  /* First possible sequence: A small number of probes.
         stw 0, -<some immediate>(1)
         [repeat this instruction any (small) number of times]
  */
  
  if ((op & 0xffff0000) == 0x90010000)
    {
      while ((op & 0xffff0000) == 0x90010000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (pc);
        }
      return pc;
    }

  /* Second sequence: A probing loop.
         addi 12,1,-<some immediate>
         lis 0,-<some immediate>
         [possibly ori 0,0,<some immediate>]
         add 0,12,0
         cmpw 0,12,0
         beq 0,<disp>
         addi 12,12,-<some immediate>
         stw 0,0(12)
         b <disp>
         [possibly one last probe: stw 0,<some immediate>(12)]
  */

  while (1)
    {
      /* addi 12,1,-<some immediate> */
      if ((op & 0xffff0000) != 0x39810000)
        break;

      /* lis 0,-<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xffff0000) != 0x3c000000)
        break;

      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      /* [possibly ori 0,0,<some immediate>] */
      if ((op & 0xffff0000) == 0x60000000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (pc);
        }
      /* add 0,12,0 */
      if (op != 0x7c0c0214)
        break;

      /* cmpw 0,12,0 */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if (op != 0x7c0c0000)
        break;

      /* beq 0,<disp> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xff9f0001) != 0x41820000)
        break;

      /* addi 12,12,-<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xffff0000) != 0x398c0000)
        break;

      /* stw 0,0(12) */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if (op != 0x900c0000)
        break;

      /* b <disp> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xfc000001) != 0x48000000)
        break;

      /* [possibly one last probe: stw 0,<some immediate>(12)] */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xffff0000) == 0x900c0000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (pc);
        }

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* Third sequence: No probe; instead, a comparizon between the stack size
     limit (saved in a run-time global variable) and the current stack
     pointer:

        addi 0,1,-<some immediate>
        lis 12,__gnat_stack_limit@ha
        lwz 12,__gnat_stack_limit@l(12)
        twllt 0,12

     or, with a small variant in the case of a bigger stack frame:
        addis 0,1,<some immediate>
        addic 0,0,-<some immediate>
        lis 12,__gnat_stack_limit@ha
        lwz 12,__gnat_stack_limit@l(12)
        twllt 0,12
  */
  while (1)
    {
      /* addi 0,1,-<some immediate> */
      if ((op & 0xffff0000) != 0x38010000)
        {
          /* small stack frame variant not recognized; try the
             big stack frame variant: */

          /* addis 0,1,<some immediate> */
          if ((op & 0xffff0000) != 0x3c010000)
            break;

          /* addic 0,0,-<some immediate> */
          pc = pc + 4;
          op = rs6000_fetch_instruction (pc);
          if ((op & 0xffff0000) != 0x30000000)
            break;
        }

      /* lis 12,<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xffff0000) != 0x3d800000)
        break;
      
      /* lwz 12,<some immediate>(12) */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xffff0000) != 0x818c0000)
        break;

      /* twllt 0,12 */
      pc = pc + 4;
      op = rs6000_fetch_instruction (pc);
      if ((op & 0xfffffffe) != 0x7c406008)
        break;

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* No stack check code in our prologue, return the start_pc.  */
  return start_pc;
}

/* return pc value after skipping a function prologue and also return
   information about a function frame.

   in struct rs6000_framedata fdata:
   - frameless is TRUE, if function does not have a frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - offset is the initial size of this stack frame --- the amount by
   which we decrement the sp to allocate the frame.
   - saved_gpr is the number of the first saved gpr.
   - saved_fpr is the number of the first saved fpr.
   - saved_vr is the number of the first saved vr.
   - saved_ev is the number of the first saved ev.
   - alloca_reg is the number of the register used for alloca() handling.
   Otherwise -1.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - vr_offset is the offset of the first saved vr from the previous frame.
   - ev_offset is the offset of the first saved ev from the previous frame.
   - lr_offset is the offset of the saved lr
   - cr_offset is the offset of the saved cr
   - vrsave_offset is the offset of the saved vrsave register
 */

static CORE_ADDR
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
	       struct rs6000_framedata *fdata)
{
  CORE_ADDR orig_pc = pc;
  CORE_ADDR last_prologue_pc = pc;
  CORE_ADDR li_found_pc = 0;
  gdb_byte buf[4];
  unsigned long op;
  long offset = 0;
  long vr_saved_offset = 0;
  int lr_reg = -1;
  int cr_reg = -1;
  int vr_reg = -1;
  int ev_reg = -1;
  long ev_offset = 0;
  int vrsave_reg = -1;
  int reg;
  int framep = 0;
  int minimal_toc_loaded = 0;
  int prev_insn_was_prologue_insn = 1;
  int num_skip_non_prologue_insns = 0;
  int r0_contains_arg = 0;
  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  memset (fdata, 0, sizeof (struct rs6000_framedata));
  fdata->saved_gpr = -1;
  fdata->saved_fpr = -1;
  fdata->saved_vr = -1;
  fdata->saved_ev = -1;
  fdata->alloca_reg = -1;
  fdata->frameless = 1;
  fdata->nosavedpc = 1;
  fdata->lr_register = -1;

  pc = rs6000_skip_stack_check (pc);
  if (pc >= lim_pc)
    pc = lim_pc;

  for (;; pc += 4)
    {
      /* Sometimes it isn't clear if an instruction is a prologue
         instruction or not.  When we encounter one of these ambiguous
	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
	 Otherwise, we'll assume that it really is a prologue instruction. */
      if (prev_insn_was_prologue_insn)
	last_prologue_pc = pc;

      /* Stop scanning if we've hit the limit.  */
      if (pc >= lim_pc)
	break;

      prev_insn_was_prologue_insn = 1;

      /* Fetch the instruction and convert it to an integer.  */
      if (target_read_memory (pc, buf, 4))
	break;
      op = extract_unsigned_integer (buf, 4);

      if ((op & 0xfc1fffff) == 0x7c0802a6)
	{			/* mflr Rx */
	  /* Since shared library / PIC code, which needs to get its
	     address at runtime, can appear to save more than one link
	     register vis:

	     *INDENT-OFF*
	     stwu r1,-304(r1)
	     mflr r3
	     bl 0xff570d0 (blrl)
	     stw r30,296(r1)
	     mflr r30
	     stw r31,300(r1)
	     stw r3,308(r1);
	     ...
	     *INDENT-ON*

	     remember just the first one, but skip over additional
	     ones.  */
	  if (lr_reg == -1)
	    lr_reg = (op & 0x03e00000) >> 21;
          if (lr_reg == 0)
            r0_contains_arg = 0;
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c000026)
	{			/* mfcr Rx */
	  cr_reg = (op & 0x03e00000);
          if (cr_reg == 0)
            r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xfc1f0000) == 0xd8010000)
	{			/* stfd Rx,NUM(r1) */
	  reg = GET_SRC_REG (op);
	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
	    {
	      fdata->saved_fpr = reg;
	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
	{

	  reg = GET_SRC_REG (op);
	  if ((op & 0xfc1f0000) == 0xbc010000)
	    fdata->gpr_mask |= ~((1U << reg) - 1);
	  else
	    fdata->gpr_mask |= 1U << reg;
	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
	    {
	      fdata->saved_gpr = reg;
	      if ((op & 0xfc1f0003) == 0xf8010000)
		op &= ~3UL;
	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
        {
	  /* nop */
	  /* Allow nops in the prologue, but do not consider them to
	     be part of the prologue unless followed by other prologue
	     instructions. */
	  prev_insn_was_prologue_insn = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3c000000)
	{			/* addis 0,0,NUM, used
				   for >= 32k frames */
	  fdata->offset = (op & 0x0000ffff) << 16;
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
	{			/* ori 0,0,NUM, 2nd ha
				   lf of >= 32k frames */
	  fdata->offset |= (op & 0x0000ffff);
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if (lr_reg >= 0 &&
	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
	       (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
		/* stw Rx, NUM(r1) */
		((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
		/* stwu Rx, NUM(r1) */
		((op & 0xffff0000) == (lr_reg | 0x94010000))))
	{	/* where Rx == lr */
	  fdata->lr_offset = offset;
	  fdata->nosavedpc = 0;
	  /* Invalidate lr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  lr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
	      (op & 0xfc000000) == 0x90000000)		/* stw */
	    {
	      /* Does not update r1, so add displacement to lr_offset.  */
	      fdata->lr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if (cr_reg >= 0 &&
	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
	       (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
		/* stw Rx, NUM(r1) */
		((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
		/* stwu Rx, NUM(r1) */
		((op & 0xffff0000) == (cr_reg | 0x94010000))))
	{	/* where Rx == cr */
	  fdata->cr_offset = offset;
	  /* Invalidate cr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  cr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||
	      (op & 0xfc000000) == 0x90000000)
	    {
	      /* Does not update r1, so add displacement to cr_offset.  */
	      fdata->cr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
	{
	  /* bcl 20,xx,.+4 is used to get the current PC, with or without
	     prediction bits.  If the LR has already been saved, we can
	     skip it.  */
	  continue;
	}
      else if (op == 0x48000005)
	{			/* bl .+4 used in 
				   -mrelocatable */
	  fdata->used_bl = 1;
	  continue;

	}
      else if (op == 0x48000004)
	{			/* b .+4 (xlc) */
	  break;

	}
      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
						      in V.4 -mminimal-toc */
	       (op & 0xffff0000) == 0x3bde0000)
	{			/* addi 30,30,foo@l */
	  continue;

	}
      else if ((op & 0xfc000001) == 0x48000001)
	{			/* bl foo, 
				   to save fprs??? */

	  fdata->frameless = 0;

	  /* If the return address has already been saved, we can skip
	     calls to blrl (for PIC).  */
          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
	    {
	      fdata->used_bl = 1;
	      continue;
	    }

	  /* Don't skip over the subroutine call if it is not within
	     the first three instructions of the prologue and either
	     we have no line table information or the line info tells
	     us that the subroutine call is not part of the line
	     associated with the prologue.  */
	  if ((pc - orig_pc) > 8)
	    {
	      struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
	      struct symtab_and_line this_sal = find_pc_line (pc, 0);

	      if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
		break;
	    }

	  op = read_memory_integer (pc + 4, 4);

	  /* At this point, make sure this is not a trampoline
	     function (a function that simply calls another functions,
	     and nothing else).  If the next is not a nop, this branch
	     was part of the function prologue. */

	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
	    break;		/* don't skip over 
				   this branch */

	  fdata->used_bl = 1;
	  continue;
	}
      /* update stack pointer */
      else if ((op & 0xfc1f0000) == 0x94010000)
	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f016a) == 0x7c01016e)
	{			/* stwux rX,r1,rY */
	  /* no way to figure out what r1 is going to be */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f0003) == 0xf8010001)
	{			/* stdu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op & ~3UL);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f016a) == 0x7c01016a)
	{			/* stdux rX,r1,rY */
	  /* no way to figure out what r1 is going to be */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xffff0000) == 0x38210000)
 	{			/* addi r1,r1,SIMM */
 	  fdata->frameless = 0;
 	  fdata->offset += SIGNED_SHORT (op);
 	  offset = fdata->offset;
 	  continue;
 	}
      /* Load up minimal toc pointer.  Do not treat an epilogue restore
	 of r31 as a minimal TOC load.  */
      else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,... */
	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,... */
	       && !framep
	       && !minimal_toc_loaded)
	{
	  minimal_toc_loaded = 1;
	  continue;

	  /* move parameters from argument registers to local variable
             registers */
 	}
      else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) <= 10) &&
               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
	{
	  continue;

	  /* store parameters in stack */
	}
      /* Move parameters from argument registers to temporary register.  */
      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
        {
	  continue;

	  /* Set up frame pointer */
	}
      else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
	       || op == 0x7c3f0b78)
	{			/* mr r31, r1 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
	  continue;

	  /* Another way to set up the frame pointer.  */
	}
      else if ((op & 0xfc1fffff) == 0x38010000)
	{			/* addi rX, r1, 0x0 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
			       + ((op & ~0x38010000) >> 21));
	  continue;
	}
      /* AltiVec related instructions.  */
      /* Store the vrsave register (spr 256) in another register for
	 later manipulation, or load a register into the vrsave
	 register.  2 instructions are used: mfvrsave and
	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
	 and mtspr SPR256, Rn.  */
      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
	{
          vrsave_reg = GET_SRC_REG (op);
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
        {
          continue;
        }
      /* Store the register where vrsave was saved to onto the stack:
         rS is the register where vrsave was stored in a previous
	 instruction.  */
      /* 100100 sssss 00001 dddddddd dddddddd */
      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
        {
          if (vrsave_reg == GET_SRC_REG (op))
	    {
	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
	      vrsave_reg = -1;
	    }
          continue;
        }
      /* Compute the new value of vrsave, by modifying the register
         where vrsave was saved to.  */
      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
	{
	  continue;
	}
      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
	 in a pair of insns to save the vector registers on the
	 stack.  */
      /* 001110 00000 00000 iiii iiii iiii iiii  */
      /* 001110 01110 00000 iiii iiii iiii iiii  */
      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
	{
          if ((op & 0xffff0000) == 0x38000000)
            r0_contains_arg = 0;
	  li_found_pc = pc;
	  vr_saved_offset = SIGNED_SHORT (op);

          /* This insn by itself is not part of the prologue, unless
             if part of the pair of insns mentioned above. So do not
             record this insn as part of the prologue yet.  */
          prev_insn_was_prologue_insn = 0;
	}
      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
      /* 011111 sssss 11111 00000 00111001110 */
      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
        {
	  if (pc == (li_found_pc + 4))
	    {
	      vr_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
		{
		  fdata->saved_vr = vr_reg;
		  fdata->vr_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      vr_reg = -1;
	      li_found_pc = 0;
	    }
	}
      /* End AltiVec related instructions.  */

      /* Start BookE related instructions.  */
      /* Store gen register S at (r31+uimm).
         Any register less than r13 is volatile, so we don't care.  */
      /* 000100 sssss 11111 iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
	{
          if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
	    {
              unsigned int imm;
	      ev_reg = GET_SRC_REG (op);
              imm = (op >> 11) & 0x1f;
	      ev_offset = imm * 8;
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
		  fdata->saved_ev = ev_reg;
		  fdata->ev_offset = ev_offset + offset;
		}
	    }
          continue;
        }
      /* Store gen register rS at (r1+rB).  */
      /* 000100 sssss 00001 bbbbb 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
	{
          if (pc == (li_found_pc + 4))
            {
              ev_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
                 it has a lower number than others previously seen,
                 reupdate the frame info.  */
              /* We know the contents of rB from the previous instruction.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
                  fdata->saved_ev = ev_reg;
                  fdata->ev_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      ev_reg = -1;
	      li_found_pc = 0;
            }
          continue;
        }
      /* Store gen register r31 at (rA+uimm).  */
      /* 000100 11111 aaaaa iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
        {
          /* Wwe know that the source register is 31 already, but
             it can't hurt to compute it.  */
	  ev_reg = GET_SRC_REG (op);
          ev_offset = ((op >> 11) & 0x1f) * 8;
	  /* If this is the first vector reg to be saved, or if
	     it has a lower number than others previously seen,
	     reupdate the frame info.  */
	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
	    {
	      fdata->saved_ev = ev_reg;
	      fdata->ev_offset = ev_offset + offset;
	    }

	  continue;
      	}
      /* Store gen register S at (r31+r0).
         Store param on stack when offset from SP bigger than 4 bytes.  */
      /* 000100 sssss 11111 00000 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
	{
          if (pc == (li_found_pc + 4))
            {
              if ((op & 0x03e00000) >= 0x01a00000)
		{
		  ev_reg = GET_SRC_REG (op);
		  /* If this is the first vector reg to be saved, or if
		     it has a lower number than others previously seen,
		     reupdate the frame info.  */
                  /* We know the contents of r0 from the previous
                     instruction.  */
		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		    {
		      fdata->saved_ev = ev_reg;
		      fdata->ev_offset = vr_saved_offset + offset;
		    }
		  ev_reg = -1;
		}
	      vr_saved_offset = -1;
	      li_found_pc = 0;
	      continue;
            }
	}
      /* End BookE related instructions.  */

      else
	{
	  unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);

	  /* Not a recognized prologue instruction.
	     Handle optimizer code motions into the prologue by continuing
	     the search if we have no valid frame yet or if the return
	     address is not yet saved in the frame.  Also skip instructions
	     if some of the GPRs expected to be saved are not yet saved.  */
	  if (fdata->frameless == 0 && fdata->nosavedpc == 0
	      && (fdata->gpr_mask & all_mask) == all_mask)
	    break;

	  if (op == 0x4e800020		/* blr */
	      || op == 0x4e800420)	/* bctr */
	    /* Do not scan past epilogue in frameless functions or
	       trampolines.  */
	    break;
	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
	    /* Never skip branches.  */
	    break;

	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
	    /* Do not scan too many insns, scanning insns is expensive with
	       remote targets.  */
	    break;

	  /* Continue scanning.  */
	  prev_insn_was_prologue_insn = 0;
	  continue;
	}
    }

#if 0
/* I have problems with skipping over __main() that I need to address
 * sometime. Previously, I used to use misc_function_vector which
 * didn't work as well as I wanted to be.  -MGO */

  /* If the first thing after skipping a prolog is a branch to a function,
     this might be a call to an initializer in main(), introduced by gcc2.
     We'd like to skip over it as well.  Fortunately, xlc does some extra
     work before calling a function right after a prologue, thus we can
     single out such gcc2 behaviour.  */


  if ((op & 0xfc000001) == 0x48000001)
    {				/* bl foo, an initializer function? */
      op = read_memory_integer (pc + 4, 4);

      if (op == 0x4def7b82)
	{			/* cror 0xf, 0xf, 0xf (nop) */

	  /* Check and see if we are in main.  If so, skip over this
	     initializer function as well.  */

	  tmp = find_pc_misc_function (pc);
	  if (tmp >= 0
	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
	    return pc + 8;
	}
    }
#endif /* 0 */

  if (pc == lim_pc && lr_reg >= 0)
    fdata->lr_register = lr_reg;

  fdata->offset = -fdata->offset;
  return last_prologue_pc;
}

static CORE_ADDR
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct rs6000_framedata frame;
  CORE_ADDR limit_pc, func_addr;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
    limit_pc = pc + 100;          /* Magic.  */

  pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
  return pc;
}

/* When compiling for EABI, some versions of GCC emit a call to __eabi
   in the prologue of main().

   The function below examines the code pointed at by PC and checks to
   see if it corresponds to a call to __eabi.  If so, it returns the
   address of the instruction following that call.  Otherwise, it simply
   returns PC.  */

static CORE_ADDR
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  gdb_byte buf[4];
  unsigned long op;

  if (target_read_memory (pc, buf, 4))
    return pc;
  op = extract_unsigned_integer (buf, 4);

  if ((op & BL_MASK) == BL_INSTRUCTION)
    {
      CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
      CORE_ADDR call_dest = pc + 4 + displ;
      struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);

      /* We check for ___eabi (three leading underscores) in addition
         to __eabi in case the GCC option "-fleading-underscore" was
	 used to compile the program.  */
      if (s != NULL
          && SYMBOL_LINKAGE_NAME (s) != NULL
	  && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
	      || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
	pc += 4;
    }
  return pc;
}

/* All the ABI's require 16 byte alignment.  */
static CORE_ADDR
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return (addr & -16);
}

/* Return whether handle_inferior_event() should proceed through code
   starting at PC in function NAME when stepping.

   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
   handle memory references that are too distant to fit in instructions
   generated by the compiler.  For example, if 'foo' in the following
   instruction:

     lwz r9,foo(r2)

   is greater than 32767, the linker might replace the lwz with a branch to
   somewhere in @FIX1 that does the load in 2 instructions and then branches
   back to where execution should continue.

   GDB should silently step over @FIX code, just like AIX dbx does.
   Unfortunately, the linker uses the "b" instruction for the
   branches, meaning that the link register doesn't get set.
   Therefore, GDB's usual step_over_function () mechanism won't work.

   Instead, use the gdbarch_skip_trampoline_code and
   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
   @FIX code.  */

static int
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
  return name && !strncmp (name, "@FIX", 4);
}

/* Skip code that the user doesn't want to see when stepping:

   1. Indirect function calls use a piece of trampoline code to do context
   switching, i.e. to set the new TOC table.  Skip such code if we are on
   its first instruction (as when we have single-stepped to here).

   2. Skip shared library trampoline code (which is different from
   indirect function call trampolines).

   3. Skip bigtoc fixup code.

   Result is desired PC to step until, or NULL if we are not in
   code that should be skipped.  */

static CORE_ADDR
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
  unsigned int ii, op;
  int rel;
  CORE_ADDR solib_target_pc;
  struct minimal_symbol *msymbol;

  static unsigned trampoline_code[] =
  {
    0x800b0000,			/*     l   r0,0x0(r11)  */
    0x90410014,			/*    st   r2,0x14(r1)  */
    0x7c0903a6,			/* mtctr   r0           */
    0x804b0004,			/*     l   r2,0x4(r11)  */
    0x816b0008,			/*     l  r11,0x8(r11)  */
    0x4e800420,			/*  bctr                */
    0x4e800020,			/*    br                */
    0
  };

  /* Check for bigtoc fixup code.  */
  msymbol = lookup_minimal_symbol_by_pc (pc);
  if (msymbol 
      && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
    {
      /* Double-check that the third instruction from PC is relative "b".  */
      op = read_memory_integer (pc + 8, 4);
      if ((op & 0xfc000003) == 0x48000000)
	{
	  /* Extract bits 6-29 as a signed 24-bit relative word address and
	     add it to the containing PC.  */
	  rel = ((int)(op << 6) >> 6);
	  return pc + 8 + rel;
	}
    }

  /* If pc is in a shared library trampoline, return its target.  */
  solib_target_pc = find_solib_trampoline_target (frame, pc);
  if (solib_target_pc)
    return solib_target_pc;

  for (ii = 0; trampoline_code[ii]; ++ii)
    {
      op = read_memory_integer (pc + (ii * 4), 4);
      if (op != trampoline_code[ii])
	return 0;
    }
  ii = get_frame_register_unsigned (frame, 11);	/* r11 holds destination addr   */
  pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
  return pc;
}

/* ISA-specific vector types.  */

static struct type *
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->ppc_builtin_type_vec64)
    {
      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec64
	{
	  int64_t uint64;
	  float v2_float[2];
	  int32_t v2_int32[2];
	  int16_t v4_int16[4];
	  int8_t v8_int8[8];
	};
#endif

      struct type *t;

      t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
      append_composite_type_field (t, "uint64", builtin_type_int64);
      append_composite_type_field (t, "v2_float",
				   init_vector_type (builtin_type (gdbarch)
						     ->builtin_float, 2));
      append_composite_type_field (t, "v2_int32",
				   init_vector_type (builtin_type_int32, 2));
      append_composite_type_field (t, "v4_int16",
				   init_vector_type (builtin_type_int16, 4));
      append_composite_type_field (t, "v8_int8",
				   init_vector_type (builtin_type_int8, 8));

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "ppc_builtin_type_vec64";
      tdep->ppc_builtin_type_vec64 = t;
    }

  return tdep->ppc_builtin_type_vec64;
}

/* Vector 128 type.  */

static struct type *
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->ppc_builtin_type_vec128)
    {
      /* The type we're building is this

	 type = union __ppc_builtin_type_vec128 {
	     uint128_t uint128;
	     float v4_float[4];
	     int32_t v4_int32[4];
	     int16_t v8_int16[8];
	     int8_t v16_int8[16];
	 }
      */

      struct type *t;

      t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
      append_composite_type_field (t, "uint128", builtin_type_uint128);
      append_composite_type_field (t, "v4_float",
				   init_vector_type (builtin_type (gdbarch)->builtin_float, 4));
      append_composite_type_field (t, "v4_int32",
				   init_vector_type (builtin_type_int32, 4));
      append_composite_type_field (t, "v8_int16",
				   init_vector_type (builtin_type_int16, 8));
      append_composite_type_field (t, "v16_int8",
				   init_vector_type (builtin_type_int8, 16));

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "ppc_builtin_type_vec128";
      tdep->ppc_builtin_type_vec128 = t;
    }

  return tdep->ppc_builtin_type_vec128;
}

/* Return the name of register number REGNO, or the empty string if it
   is an anonymous register.  */

static const char *
rs6000_register_name (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* The upper half "registers" have names in the XML description,
     but we present only the low GPRs and the full 64-bit registers
     to the user.  */
  if (tdep->ppc_ev0_upper_regnum >= 0
      && tdep->ppc_ev0_upper_regnum <= regno
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    return "";

  /* Hide the upper halves of the vs0~vs31 registers.  */
  if (tdep->ppc_vsr0_regnum >= 0
      && tdep->ppc_vsr0_upper_regnum <= regno
      && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
    return "";

  /* Check if the SPE pseudo registers are available.  */
  if (IS_SPE_PSEUDOREG (tdep, regno))
    {
      static const char *const spe_regnames[] = {
	"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
	"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
	"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
	"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
      };
      return spe_regnames[regno - tdep->ppc_ev0_regnum];
    }

  /* Check if the decimal128 pseudo-registers are available.  */
  if (IS_DFP_PSEUDOREG (tdep, regno))
    {
      static const char *const dfp128_regnames[] = {
	"dl0", "dl1", "dl2", "dl3",
	"dl4", "dl5", "dl6", "dl7",
	"dl8", "dl9", "dl10", "dl11",
	"dl12", "dl13", "dl14", "dl15"
      };
      return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
    }

  /* Check if this is a VSX pseudo-register.  */
  if (IS_VSX_PSEUDOREG (tdep, regno))
    {
      static const char *const vsx_regnames[] = {
	"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
	"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
	"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
	"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
	"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
	"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
	"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
	"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
	"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
      };
      return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
    }

  /* Check if the this is a Extended FP pseudo-register.  */
  if (IS_EFP_PSEUDOREG (tdep, regno))
    {
      static const char *const efpr_regnames[] = {
	"f32", "f33", "f34", "f35", "f36", "f37", "f38",
	"f39", "f40", "f41", "f42", "f43", "f44", "f45",
	"f46", "f47", "f48", "f49", "f50", "f51",
	"f52", "f53", "f54", "f55", "f56", "f57",
	"f58", "f59", "f60", "f61", "f62", "f63"
      };
      return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
    }

  return tdesc_register_name (gdbarch, regno);
}

/* Return the GDB type object for the "standard" data type of data in
   register N.  */

static struct type *
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* These are the only pseudo-registers we support.  */
  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
	      || IS_DFP_PSEUDOREG (tdep, regnum)
	      || IS_VSX_PSEUDOREG (tdep, regnum)
	      || IS_EFP_PSEUDOREG (tdep, regnum));

  /* These are the e500 pseudo-registers.  */
  if (IS_SPE_PSEUDOREG (tdep, regnum))
    return rs6000_builtin_type_vec64 (gdbarch);
  else if (IS_DFP_PSEUDOREG (tdep, regnum))
    /* PPC decimal128 pseudo-registers.  */
    return builtin_type (gdbarch)->builtin_declong;
  else if (IS_VSX_PSEUDOREG (tdep, regnum))
    /* POWER7 VSX pseudo-registers.  */
    return rs6000_builtin_type_vec128 (gdbarch);
  else
    /* POWER7 Extended FP pseudo-registers.  */
    return builtin_type (gdbarch)->builtin_double;
}

/* Is REGNUM a member of REGGROUP?  */
static int
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				   struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* These are the only pseudo-registers we support.  */
  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
	      || IS_DFP_PSEUDOREG (tdep, regnum)
	      || IS_VSX_PSEUDOREG (tdep, regnum)
	      || IS_EFP_PSEUDOREG (tdep, regnum));

  /* These are the e500 pseudo-registers or the POWER7 VSX registers.  */
  if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
    return group == all_reggroup || group == vector_reggroup;
  else
    /* PPC decimal128 or Extended FP pseudo-registers.  */
    return group == all_reggroup || group == float_reggroup;
}

/* The register format for RS/6000 floating point registers is always
   double, we need a conversion if the memory format is float.  */

static int
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
			   struct type *type)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_fp0_regnum >= 0
	  && regnum >= tdep->ppc_fp0_regnum
	  && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
	  && TYPE_CODE (type) == TYPE_CODE_FLT
	  && TYPE_LENGTH (type)
	     != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
}

static void
rs6000_register_to_value (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          gdb_byte *to)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte from[MAX_REGISTER_SIZE];
  
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);

  get_frame_register (frame, regnum, from);
  convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
			  to, type);
}

static void
rs6000_value_to_register (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          const gdb_byte *from)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte to[MAX_REGISTER_SIZE];

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);

  convert_typed_floating (from, type,
			  to, builtin_type (gdbarch)->builtin_double);
  put_frame_register (frame, regnum, to);
}

/* Move SPE vector register values between a 64-bit buffer and the two
   32-bit raw register halves in a regcache.  This function handles
   both splitting a 64-bit value into two 32-bit halves, and joining
   two halves into a whole 64-bit value, depending on the function
   passed as the MOVE argument.

   EV_REG must be the number of an SPE evN vector register --- a
   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
   64-bit buffer.

   Call MOVE once for each 32-bit half of that register, passing
   REGCACHE, the number of the raw register corresponding to that
   half, and the address of the appropriate half of BUFFER.

   For example, passing 'regcache_raw_read' as the MOVE function will
   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
   'regcache_raw_supply' will supply the contents of BUFFER to the
   appropriate pair of raw registers in REGCACHE.

   You may need to cast away some 'const' qualifiers when passing
   MOVE, since this function can't tell at compile-time which of
   REGCACHE or BUFFER is acting as the source of the data.  If C had
   co-variant type qualifiers, ...  */
static void
e500_move_ev_register (void (*move) (struct regcache *regcache,
                                     int regnum, gdb_byte *buf),
                       struct regcache *regcache, int ev_reg,
                       gdb_byte *buffer)
{
  struct gdbarch *arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
  int reg_index;
  gdb_byte *byte_buffer = buffer;

  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));

  reg_index = ev_reg - tdep->ppc_ev0_regnum;

  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
    {
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
    }
  else
    {
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
    }
}

static void
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
}

static void
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
			 regcache_raw_write,
			 regcache, reg_nr, (gdb_byte *) buffer);
}

/* Read method for DFP pseudo-registers.  */
static void
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_dl0_regnum;

  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Read two FP registers to form a whole dl register.  */
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			 2 * reg_index, buffer);
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			 2 * reg_index + 1, buffer + 8);
    }
  else
    {
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			 2 * reg_index + 1, buffer + 8);
      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			 2 * reg_index, buffer);
    }
}

/* Write method for DFP pseudo-registers.  */
static void
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_dl0_regnum;

  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Write each half of the dl register into a separate
      FP register.  */
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			  2 * reg_index, buffer);
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			  2 * reg_index + 1, buffer + 8);
    }
  else
    {
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			  2 * reg_index + 1, buffer + 8);
      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			  2 * reg_index, buffer);
    }
}

/* Read method for POWER7 VSX pseudo-registers.  */
static void
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;

  /* Read the portion that overlaps the VMX registers.  */
  if (reg_index > 31)
    regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
			reg_index - 32, buffer);
  else
    /* Read the portion that overlaps the FPR registers.  */
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      {
	regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			reg_index, buffer);
	regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
			reg_index, buffer + 8);
      }
    else
      {
	regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
			reg_index, buffer + 8);
	regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
			reg_index, buffer);
      }
}

/* Write method for POWER7 VSX pseudo-registers.  */
static void
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;

  /* Write the portion that overlaps the VMX registers.  */
  if (reg_index > 31)
    regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
			reg_index - 32, buffer);
  else
    /* Write the portion that overlaps the FPR registers.  */
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      {
	regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			reg_index, buffer);
	regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
			reg_index, buffer + 8);
      }
    else
      {
	regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
			reg_index, buffer + 8);
	regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
			reg_index, buffer);
      }
}

/* Read method for POWER7 Extended FP pseudo-registers.  */
static void
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;

  /* Read the portion that overlaps the VMX registers.  */
  regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
		     reg_index, buffer);
}

/* Write method for POWER7 Extended FP pseudo-registers.  */
static void
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;

  /* Write the portion that overlaps the VMX registers.  */
  regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
		      reg_index, buffer);
}

static void
rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			     int reg_nr, gdb_byte *buffer)
{
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);

  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
    e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
    dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
    vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
    efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_read: "
		    "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

static void
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
			      struct regcache *regcache,
			      int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);

  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
    e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
    dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
    vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
    efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_write: "
		    "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

/* Convert a DBX STABS register number to a GDB register number.  */
static int
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (77 <= num && num <= 108)
    return tdep->ppc_vr0_regnum + (num - 77);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_regnum + (num - 1200);
  else
    switch (num)
      {
      case 64: 
        return tdep->ppc_mq_regnum;
      case 65:
        return tdep->ppc_lr_regnum;
      case 66: 
        return tdep->ppc_ctr_regnum;
      case 76: 
        return tdep->ppc_xer_regnum;
      case 109:
        return tdep->ppc_vrsave_regnum;
      case 110:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 111:
        return tdep->ppc_acc_regnum;
      case 112:
        return tdep->ppc_spefscr_regnum;
      default: 
        return num;
      }
}


/* Convert a Dwarf 2 register number to a GDB register number.  */
static int
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (1124 <= num && num < 1124 + 32)
    return tdep->ppc_vr0_regnum + (num - 1124);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_regnum + (num - 1200);
  else
    switch (num)
      {
      case 64:
	return tdep->ppc_cr_regnum;
      case 67:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 99:
        return tdep->ppc_acc_regnum;
      case 100:
        return tdep->ppc_mq_regnum;
      case 101:
        return tdep->ppc_xer_regnum;
      case 108:
        return tdep->ppc_lr_regnum;
      case 109:
        return tdep->ppc_ctr_regnum;
      case 356:
        return tdep->ppc_vrsave_regnum;
      case 612:
        return tdep->ppc_spefscr_regnum;
      default:
        return num;
      }
}

/* Translate a .eh_frame register to DWARF register, or adjust a
   .debug_frame register.  */

static int
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
{
  /* GCC releases before 3.4 use GCC internal register numbering in
     .debug_frame (and .debug_info, et cetera).  The numbering is
     different from the standard SysV numbering for everything except
     for GPRs and FPRs.  We can not detect this problem in most cases
     - to get accurate debug info for variables living in lr, ctr, v0,
     et cetera, use a newer version of GCC.  But we must detect
     one important case - lr is in column 65 in .debug_frame output,
     instead of 108.

     GCC 3.4, and the "hammer" branch, have a related problem.  They
     record lr register saves in .debug_frame as 108, but still record
     the return column as 65.  We fix that up too.

     We can do this because 65 is assigned to fpsr, and GCC never
     generates debug info referring to it.  To add support for
     handwritten debug info that restores fpsr, we would need to add a
     producer version check to this.  */
  if (!eh_frame_p)
    {
      if (num == 65)
	return 108;
      else
	return num;
    }

  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
     internal register numbering; translate that to the standard DWARF2
     register numbering.  */
  if (0 <= num && num <= 63)	/* r0-r31,fp0-fp31 */
    return num;
  else if (68 <= num && num <= 75) /* cr0-cr8 */
    return num - 68 + 86;
  else if (77 <= num && num <= 108) /* vr0-vr31 */
    return num - 77 + 1124;
  else
    switch (num)
      {
      case 64: /* mq */
	return 100;
      case 65: /* lr */
	return 108;
      case 66: /* ctr */
	return 109;
      case 76: /* xer */
	return 101;
      case 109: /* vrsave */
	return 356;
      case 110: /* vscr */
	return 67;
      case 111: /* spe_acc */
	return 99;
      case 112: /* spefscr */
	return 612;
      default:
	return num;
      }
}


/* Handling the various POWER/PowerPC variants.  */

/* Information about a particular processor variant.  */

struct variant
  {
    /* Name of this variant.  */
    char *name;

    /* English description of the variant.  */
    char *description;

    /* bfd_arch_info.arch corresponding to variant.  */
    enum bfd_architecture arch;

    /* bfd_arch_info.mach corresponding to variant.  */
    unsigned long mach;

    /* Target description for this variant.  */
    struct target_desc **tdesc;
  };

static struct variant variants[] =
{
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
   bfd_mach_ppc, &tdesc_powerpc_altivec32},
  {"power", "POWER user-level", bfd_arch_rs6000,
   bfd_mach_rs6k, &tdesc_rs6000},
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
   bfd_mach_ppc_403, &tdesc_powerpc_403},
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
   bfd_mach_ppc_601, &tdesc_powerpc_601},
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
   bfd_mach_ppc_602, &tdesc_powerpc_602},
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
   bfd_mach_ppc_603, &tdesc_powerpc_603},
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
   604, &tdesc_powerpc_604},
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
   bfd_mach_ppc_505, &tdesc_powerpc_505},
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
   bfd_mach_ppc_860, &tdesc_powerpc_860},
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
   bfd_mach_ppc_750, &tdesc_powerpc_750},
  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
   bfd_mach_ppc_e500, &tdesc_powerpc_e500},

  /* 64-bit */
  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
   bfd_mach_ppc64, &tdesc_powerpc_altivec64},
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
   bfd_mach_ppc_620, &tdesc_powerpc_64},
  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
   bfd_mach_ppc_630, &tdesc_powerpc_64},
  {"a35", "PowerPC A35", bfd_arch_powerpc,
   bfd_mach_ppc_a35, &tdesc_powerpc_64},
  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},

  /* FIXME: I haven't checked the register sets of the following.  */
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
   bfd_mach_rs6k_rs1, &tdesc_rs6000},
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
   bfd_mach_rs6k_rsc, &tdesc_rs6000},
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
   bfd_mach_rs6k_rs2, &tdesc_rs6000},

  {0, 0, 0, 0, 0}
};

/* Return the variant corresponding to architecture ARCH and machine number
   MACH.  If no such variant exists, return null.  */

static const struct variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
  const struct variant *v;

  for (v = variants; v->name; v++)
    if (arch == v->arch && mach == v->mach)
      return v;

  return NULL;
}

static int
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
{
  if (!info->disassembler_options)
    info->disassembler_options = "any";

  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_powerpc (memaddr, info);
  else
    return print_insn_little_powerpc (memaddr, info);
}

static CORE_ADDR
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame,
					 gdbarch_pc_regnum (gdbarch));
}

static struct frame_id
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build (get_frame_register_unsigned
			  (this_frame, gdbarch_sp_regnum (gdbarch)),
			 get_frame_pc (this_frame));
}

struct rs6000_frame_cache
{
  CORE_ADDR base;
  CORE_ADDR initial_sp;
  struct trad_frame_saved_reg *saved_regs;
};

static struct rs6000_frame_cache *
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct rs6000_frame_cache *cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct rs6000_framedata fdata;
  int wordsize = tdep->wordsize;
  CORE_ADDR func, pc;

  if ((*this_cache) != NULL)
    return (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  func = get_frame_func (this_frame);
  pc = get_frame_pc (this_frame);
  skip_prologue (gdbarch, func, pc, &fdata);

  /* Figure out the parent's stack pointer.  */

  /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
     address of the current frame.  Things might be easier if the
     ->frame pointed to the outer-most address of the frame.  In
     the mean time, the address of the prev frame is used as the
     base address of this frame.  */
  cache->base = get_frame_register_unsigned
		(this_frame, gdbarch_sp_regnum (gdbarch));

  /* If the function appears to be frameless, check a couple of likely
     indicators that we have simply failed to find the frame setup.
     Two common cases of this are missing symbols (i.e.
     get_frame_func returns the wrong address or 0), and assembly
     stubs which have a fast exit path but set up a frame on the slow
     path.

     If the LR appears to return to this function, then presume that
     we have an ABI compliant frame that we failed to find.  */
  if (fdata.frameless && fdata.lr_offset == 0)
    {
      CORE_ADDR saved_lr;
      int make_frame = 0;

      saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
      if (func == 0 && saved_lr == pc)
	make_frame = 1;
      else if (func != 0)
	{
	  CORE_ADDR saved_func = get_pc_function_start (saved_lr);
	  if (func == saved_func)
	    make_frame = 1;
	}

      if (make_frame)
	{
	  fdata.frameless = 0;
	  fdata.lr_offset = tdep->lr_frame_offset;
	}
    }

  if (!fdata.frameless)
    /* Frameless really means stackless.  */
    cache->base = read_memory_unsigned_integer (cache->base, wordsize);

  trad_frame_set_value (cache->saved_regs,
			gdbarch_sp_regnum (gdbarch), cache->base);

  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
     All fpr's from saved_fpr to fp31 are saved.  */

  if (fdata.saved_fpr >= 0)
    {
      int i;
      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;

      /* If skip_prologue says floating-point registers were saved,
         but the current architecture has no floating-point registers,
         then that's strange.  But we have no indices to even record
         the addresses under, so we just ignore it.  */
      if (ppc_floating_point_unit_p (gdbarch))
        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
          {
            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
            fpr_addr += 8;
          }
    }

  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
     All gpr's from saved_gpr to gpr31 are saved (except during the
     prologue).  */

  if (fdata.saved_gpr >= 0)
    {
      int i;
      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
	{
	  if (fdata.gpr_mask & (1U << i))
	    cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
	  gpr_addr += wordsize;
	}
    }

  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
     All vr's from saved_vr to vr31 are saved.  */
  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
    {
      if (fdata.saved_vr >= 0)
	{
	  int i;
	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
	  for (i = fdata.saved_vr; i < 32; i++)
	    {
	      cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
	    }
	}
    }

  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
     All vr's from saved_ev to ev31 are saved. ????? */
  if (tdep->ppc_ev0_regnum != -1)
    {
      if (fdata.saved_ev >= 0)
	{
	  int i;
	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
	    {
	      cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
            }
	}
    }

  /* If != 0, fdata.cr_offset is the offset from the frame that
     holds the CR.  */
  if (fdata.cr_offset != 0)
    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;

  /* If != 0, fdata.lr_offset is the offset from the frame that
     holds the LR.  */
  if (fdata.lr_offset != 0)
    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
  else if (fdata.lr_register != -1)
    cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
  /* The PC is found in the link register.  */
  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
    cache->saved_regs[tdep->ppc_lr_regnum];

  /* If != 0, fdata.vrsave_offset is the offset from the frame that
     holds the VRSAVE.  */
  if (fdata.vrsave_offset != 0)
    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;

  if (fdata.alloca_reg < 0)
    /* If no alloca register used, then fi->frame is the value of the
       %sp for this frame, and it is good enough.  */
    cache->initial_sp
      = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
  else
    cache->initial_sp
      = get_frame_register_unsigned (this_frame, fdata.alloca_reg);

  return cache;
}

static void
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
		      struct frame_id *this_id)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;

  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
rs6000_frame_prev_register (struct frame_info *this_frame,
			    void **this_cache, int regnum)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static const struct frame_unwind rs6000_frame_unwind =
{
  NORMAL_FRAME,
  rs6000_frame_this_id,
  rs6000_frame_prev_register,
  NULL,
  default_frame_sniffer
};


static CORE_ADDR
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);
  return info->initial_sp;
}

static const struct frame_base rs6000_frame_base = {
  &rs6000_frame_unwind,
  rs6000_frame_base_address,
  rs6000_frame_base_address,
  rs6000_frame_base_address
};

static const struct frame_base *
rs6000_frame_base_sniffer (struct frame_info *this_frame)
{
  return &rs6000_frame_base;
}

/* DWARF-2 frame support.  Used to handle the detection of
  clobbered registers during function calls.  */

static void
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			    struct dwarf2_frame_state_reg *reg,
			    struct frame_info *this_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* PPC32 and PPC64 ABI's are the same regarding volatile and
     non-volatile registers.  We will use the same code for both.  */

  /* Call-saved GP registers.  */
  if ((regnum >= tdep->ppc_gp0_regnum + 14
      && regnum <= tdep->ppc_gp0_regnum + 31)
      || (regnum == tdep->ppc_gp0_regnum + 1))
    reg->how = DWARF2_FRAME_REG_SAME_VALUE;

  /* Call-clobbered GP registers.  */
  if ((regnum >= tdep->ppc_gp0_regnum + 3
      && regnum <= tdep->ppc_gp0_regnum + 12)
      || (regnum == tdep->ppc_gp0_regnum))
    reg->how = DWARF2_FRAME_REG_UNDEFINED;

  /* Deal with FP registers, if supported.  */
  if (tdep->ppc_fp0_regnum >= 0)
    {
      /* Call-saved FP registers.  */
      if ((regnum >= tdep->ppc_fp0_regnum + 14
	  && regnum <= tdep->ppc_fp0_regnum + 31))
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered FP registers.  */
      if ((regnum >= tdep->ppc_fp0_regnum
	  && regnum <= tdep->ppc_fp0_regnum + 13))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;
    }

  /* Deal with ALTIVEC registers, if supported.  */
  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
    {
      /* Call-saved Altivec registers.  */
      if ((regnum >= tdep->ppc_vr0_regnum + 20
	  && regnum <= tdep->ppc_vr0_regnum + 31)
	  || regnum == tdep->ppc_vrsave_regnum)
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered Altivec registers.  */
      if ((regnum >= tdep->ppc_vr0_regnum
	  && regnum <= tdep->ppc_vr0_regnum + 19))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;
    }

  /* Handle PC register and Stack Pointer correctly.  */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_RA;
  else if (regnum == gdbarch_sp_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_CFA;
}


/* Initialize the current architecture based on INFO.  If possible, re-use an
   architecture from ARCHES, which is a list of architectures already created
   during this debugging session.

   Called e.g. at program startup, when reading a core file, and when reading
   a binary file.  */

static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int wordsize, from_xcoff_exec, from_elf_exec;
  enum bfd_architecture arch;
  unsigned long mach;
  bfd abfd;
  asection *sect;
  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
  int soft_float;
  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
      have_vsx = 0;
  int tdesc_wordsize = -1;
  const struct target_desc *tdesc = info.target_desc;
  struct tdesc_arch_data *tdesc_data = NULL;
  int num_pseudoregs = 0;
  int cur_reg;

  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;

  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;

  /* Check word size.  If INFO is from a binary file, infer it from
     that, else choose a likely default.  */
  if (from_xcoff_exec)
    {
      if (bfd_xcoff_is_xcoff64 (info.abfd))
	wordsize = 8;
      else
	wordsize = 4;
    }
  else if (from_elf_exec)
    {
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
	wordsize = 8;
      else
	wordsize = 4;
    }
  else if (tdesc_has_registers (tdesc))
    wordsize = -1;
  else
    {
      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
	wordsize = info.bfd_arch_info->bits_per_word /
	  info.bfd_arch_info->bits_per_byte;
      else
	wordsize = 4;
    }

  /* Get the architecture and machine from the BFD.  */
  arch = info.bfd_arch_info->arch;
  mach = info.bfd_arch_info->mach;

  /* For e500 executables, the apuinfo section is of help here.  Such
     section contains the identifier and revision number of each
     Application-specific Processing Unit that is present on the
     chip.  The content of the section is determined by the assembler
     which looks at each instruction and determines which unit (and
     which version of it) can execute it. In our case we just look for
     the existance of the section.  */

  if (info.abfd)
    {
      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
      if (sect)
	{
	  arch = info.bfd_arch_info->arch;
	  mach = bfd_mach_ppc_e500;
	  bfd_default_set_arch_mach (&abfd, arch, mach);
	  info.bfd_arch_info = bfd_get_arch_info (&abfd);
	}
    }

  /* Find a default target description which describes our register
     layout, if we do not already have one.  */
  if (! tdesc_has_registers (tdesc))
    {
      const struct variant *v;

      /* Choose variant.  */
      v = find_variant_by_arch (arch, mach);
      if (!v)
	return NULL;

      tdesc = *v->tdesc;
    }

  gdb_assert (tdesc_has_registers (tdesc));

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      static const char *const gprs[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
      };
      static const char *const segment_regs[] = {
	"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
	"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
      };
      const struct tdesc_feature *feature;
      int i, valid_p;
      static const char *const msr_names[] = { "msr", "ps" };
      static const char *const cr_names[] = { "cr", "cnd" };
      static const char *const ctr_names[] = { "ctr", "cnt" };

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.core");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      for (i = 0; i < ppc_num_gprs; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
					  "pc");
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
					  "lr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
					  "xer");

      /* Allow alternate names for these registers, to accomodate GDB's
	 historic naming.  */
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_MSR_REGNUM, msr_names);
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_CR_REGNUM, cr_names);
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_CTR_REGNUM, ctr_names);

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
					 "mq");

      tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
      if (wordsize == -1)
	wordsize = tdesc_wordsize;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.fpu");
      if (feature != NULL)
	{
	  static const char *const fprs[] = {
	    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
	    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
	    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
	    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
	  };
	  valid_p = 1;
	  for (i = 0; i < ppc_num_fprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_F0_REGNUM + i, fprs[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_FPSCR_REGNUM, "fpscr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_fpu = 1;
	}
      else
	have_fpu = 0;

      /* The DFP pseudo-registers will be available when there are floating
         point registers.  */
      have_dfp = have_fpu;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.altivec");
      if (feature != NULL)
	{
	  static const char *const vector_regs[] = {
	    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
	    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
	    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
	    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
	  };

	  valid_p = 1;
	  for (i = 0; i < ppc_num_gprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_VR0_REGNUM + i,
						vector_regs[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_VSCR_REGNUM, "vscr");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_VRSAVE_REGNUM, "vrsave");

	  if (have_spe || !valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_altivec = 1;
	}
      else
	have_altivec = 0;

      /* Check for POWER7 VSX registers support.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.vsx");

      if (feature != NULL)
	{
	  static const char *const vsx_regs[] = {
	    "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
	    "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
	    "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
	    "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
	    "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
	    "vs30h", "vs31h"
	  };

	  valid_p = 1;

	  for (i = 0; i < ppc_num_vshrs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_VSR0_UPPER_REGNUM + i,
						vsx_regs[i]);
	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }

	  have_vsx = 1;
	}
      else
	have_vsx = 0;

      /* On machines supporting the SPE APU, the general-purpose registers
	 are 64 bits long.  There are SIMD vector instructions to treat them
	 as pairs of floats, but the rest of the instruction set treats them
	 as 32-bit registers, and only operates on their lower halves.

	 In the GDB regcache, we treat their high and low halves as separate
	 registers.  The low halves we present as the general-purpose
	 registers, and then we have pseudo-registers that stitch together
	 the upper and lower halves and present them as pseudo-registers.

	 Thus, the target description is expected to supply the upper
	 halves separately.  */

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.spe");
      if (feature != NULL)
	{
	  static const char *const upper_spe[] = {
	    "ev0h", "ev1h", "ev2h", "ev3h",
	    "ev4h", "ev5h", "ev6h", "ev7h",
	    "ev8h", "ev9h", "ev10h", "ev11h",
	    "ev12h", "ev13h", "ev14h", "ev15h",
	    "ev16h", "ev17h", "ev18h", "ev19h",
	    "ev20h", "ev21h", "ev22h", "ev23h",
	    "ev24h", "ev25h", "ev26h", "ev27h",
	    "ev28h", "ev29h", "ev30h", "ev31h"
	  };

	  valid_p = 1;
	  for (i = 0; i < ppc_num_gprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_SPE_UPPER_GP0_REGNUM + i,
						upper_spe[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SPE_ACC_REGNUM, "acc");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SPE_FSCR_REGNUM, "spefscr");

	  if (have_mq || have_fpu || !valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_spe = 1;
	}
      else
	have_spe = 0;
    }

  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
     complain for a 32-bit binary on a 64-bit target; we do not yet
     support that.  For instance, the 32-bit ABI routines expect
     32-bit GPRs.

     As long as there isn't an explicit target description, we'll
     choose one based on the BFD architecture and get a word size
     matching the binary (probably powerpc:common or
     powerpc:common64).  So there is only trouble if a 64-bit target
     supplies a 64-bit description while debugging a 32-bit
     binary.  */
  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
    {
      tdesc_data_cleanup (tdesc_data);
      return NULL;
    }

#ifdef HAVE_ELF
  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
    {
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					Tag_GNU_Power_ABI_FP))
	{
	case 1:
	  soft_float_flag = AUTO_BOOLEAN_FALSE;
	  break;
	case 2:
	  soft_float_flag = AUTO_BOOLEAN_TRUE;
	  break;
	default:
	  break;
	}
    }

  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
    {
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					Tag_GNU_Power_ABI_Vector))
	{
	case 1:
	  vector_abi = POWERPC_VEC_GENERIC;
	  break;
	case 2:
	  vector_abi = POWERPC_VEC_ALTIVEC;
	  break;
	case 3:
	  vector_abi = POWERPC_VEC_SPE;
	  break;
	default:
	  break;
	}
    }
#endif

  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
    soft_float = 1;
  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
    soft_float = 0;
  else
    soft_float = !have_fpu;

  /* If we have a hard float binary or setting but no floating point
     registers, downgrade to soft float anyway.  We're still somewhat
     useful in this scenario.  */
  if (!soft_float && !have_fpu)
    soft_float = 1;

  /* Similarly for vector registers.  */
  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
    vector_abi = POWERPC_VEC_GENERIC;

  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
    vector_abi = POWERPC_VEC_GENERIC;

  if (vector_abi == POWERPC_VEC_AUTO)
    {
      if (have_altivec)
	vector_abi = POWERPC_VEC_ALTIVEC;
      else if (have_spe)
	vector_abi = POWERPC_VEC_SPE;
      else
	vector_abi = POWERPC_VEC_GENERIC;
    }

  /* Do not limit the vector ABI based on available hardware, since we
     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Word size in the various PowerPC bfd_arch_info structs isn't
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
         separate word size check.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->soft_float != soft_float)
	continue;
      if (tdep && tdep->vector_abi != vector_abi)
	continue;
      if (tdep && tdep->wordsize == wordsize)
	{
	  if (tdesc_data != NULL)
	    tdesc_data_cleanup (tdesc_data);
	  return arches->gdbarch;
	}
    }

  /* None found, create a new architecture from INFO, whose bfd_arch_info
     validity depends on the source:
       - executable		useless
       - rs6000_host_arch()	good
       - core file		good
       - "set arch"		trust blindly
       - GDB startup		useless but harmless */

  tdep = XCALLOC (1, struct gdbarch_tdep);
  tdep->wordsize = wordsize;
  tdep->soft_float = soft_float;
  tdep->vector_abi = vector_abi;

  gdbarch = gdbarch_alloc (&info, tdep);

  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;

  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
  tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;

  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
  set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);

  /* The XML specification for PowerPC sensibly calls the MSR "msr".
     GDB traditionally called it "ps", though, so let GDB add an
     alias.  */
  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);

  if (wordsize == 8)
    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
  else
    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);

  /* Set lr_frame_offset.  */
  if (wordsize == 8)
    tdep->lr_frame_offset = 16;
  else
    tdep->lr_frame_offset = 4;

  if (have_spe || have_dfp || have_vsx)
    {
      set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
    }

  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  /* Select instruction printer.  */
  if (arch == bfd_arch_rs6000)
    set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
  else
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);

  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);

  if (have_spe)
    num_pseudoregs += 32;
  if (have_dfp)
    num_pseudoregs += 16;
  if (have_vsx)
    /* Include both VSX and Extended FP registers.  */
    num_pseudoregs += 96;

  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);

  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
  if (wordsize == 8)
    /* PPC64 SYSV.  */
    set_gdbarch_frame_red_zone_size (gdbarch, 288);

  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);

  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);

  if (wordsize == 4)
    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
  else if (wordsize == 8)
    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);

  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
  set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
  set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);

  /* The value of symbols of type N_SO and N_FUN maybe null when
     it shouldn't be. */
  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);

  /* Handles single stepping of atomic sequences.  */
  set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
  
  /* Not sure on this. FIXMEmgo */
  set_gdbarch_frame_args_skip (gdbarch, 8);

  /* Helpers for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);

  /* Trampoline.  */
  set_gdbarch_in_solib_return_trampoline
    (gdbarch, rs6000_in_solib_return_trampoline);
  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);

  /* Frame handling.  */
  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);

  /* Setup displaced stepping.  */
  set_gdbarch_displaced_step_copy_insn (gdbarch,
					simple_displaced_step_copy_insn);
  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
  set_gdbarch_displaced_step_free_closure (gdbarch,
					   simple_displaced_step_free_closure);
  set_gdbarch_displaced_step_location (gdbarch,
				       displaced_step_at_entry_point);

  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  info.target_desc = tdesc;
  info.tdep_info = (void *) tdesc_data;
  gdbarch_init_osabi (info, gdbarch);

  switch (info.osabi)
    {
    case GDB_OSABI_LINUX:
    case GDB_OSABI_NETBSD_AOUT:
    case GDB_OSABI_NETBSD_ELF:
    case GDB_OSABI_UNKNOWN:
      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
      break;
    default:
      set_gdbarch_believe_pcc_promotion (gdbarch, 1);

      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
    }

  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
  set_tdesc_pseudo_register_reggroup_p (gdbarch,
					rs6000_pseudo_register_reggroup_p);
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  /* Override the normal target description method to make the SPE upper
     halves anonymous.  */
  set_gdbarch_register_name (gdbarch, rs6000_register_name);

  /* Choose register numbers for all supported pseudo-registers.  */
  tdep->ppc_ev0_regnum = -1;
  tdep->ppc_dl0_regnum = -1;
  tdep->ppc_vsr0_regnum = -1;
  tdep->ppc_efpr0_regnum = -1;

  cur_reg = gdbarch_num_regs (gdbarch);

  if (have_spe)
    {
      tdep->ppc_ev0_regnum = cur_reg;
      cur_reg += 32;
    }
  if (have_dfp)
    {
      tdep->ppc_dl0_regnum = cur_reg;
      cur_reg += 16;
    }
  if (have_vsx)
    {
      tdep->ppc_vsr0_regnum = cur_reg;
      cur_reg += 64;
      tdep->ppc_efpr0_regnum = cur_reg;
      cur_reg += 32;
    }

  gdb_assert (gdbarch_num_regs (gdbarch)
	      + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);

  return gdbarch;
}

static void
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (tdep == NULL)
    return;

  /* FIXME: Dump gdbarch_tdep.  */
}

/* PowerPC-specific commands.  */

static void
set_powerpc_command (char *args, int from_tty)
{
  printf_unfiltered (_("\
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
  help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
}

static void
show_powerpc_command (char *args, int from_tty)
{
  cmd_show_list (showpowerpccmdlist, from_tty, "");
}

static void
powerpc_set_soft_float (char *args, int from_tty,
			struct cmd_list_element *c)
{
  struct gdbarch_info info;

  /* Update the architecture.  */
  gdbarch_info_init (&info);
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, "could not update architecture");
}

static void
powerpc_set_vector_abi (char *args, int from_tty,
			struct cmd_list_element *c)
{
  struct gdbarch_info info;
  enum powerpc_vector_abi vector_abi;

  for (vector_abi = POWERPC_VEC_AUTO;
       vector_abi != POWERPC_VEC_LAST;
       vector_abi++)
    if (strcmp (powerpc_vector_abi_string,
		powerpc_vector_strings[vector_abi]) == 0)
      {
	powerpc_vector_abi_global = vector_abi;
	break;
      }

  if (vector_abi == POWERPC_VEC_LAST)
    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
		    powerpc_vector_abi_string);

  /* Update the architecture.  */
  gdbarch_info_init (&info);
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, "could not update architecture");
}

/* Initialization code.  */

extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */

void
_initialize_rs6000_tdep (void)
{
  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);

  /* Initialize the standard target descriptions.  */
  initialize_tdesc_powerpc_32 ();
  initialize_tdesc_powerpc_altivec32 ();
  initialize_tdesc_powerpc_vsx32 ();
  initialize_tdesc_powerpc_403 ();
  initialize_tdesc_powerpc_403gc ();
  initialize_tdesc_powerpc_505 ();
  initialize_tdesc_powerpc_601 ();
  initialize_tdesc_powerpc_602 ();
  initialize_tdesc_powerpc_603 ();
  initialize_tdesc_powerpc_604 ();
  initialize_tdesc_powerpc_64 ();
  initialize_tdesc_powerpc_altivec64 ();
  initialize_tdesc_powerpc_vsx64 ();
  initialize_tdesc_powerpc_7400 ();
  initialize_tdesc_powerpc_750 ();
  initialize_tdesc_powerpc_860 ();
  initialize_tdesc_powerpc_e500 ();
  initialize_tdesc_rs6000 ();

  /* Add root prefix command for all "set powerpc"/"show powerpc"
     commands.  */
  add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
		  _("Various PowerPC-specific commands."),
		  &setpowerpccmdlist, "set powerpc ", 0, &setlist);

  add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
		  _("Various PowerPC-specific commands."),
		  &showpowerpccmdlist, "show powerpc ", 0, &showlist);

  /* Add a command to allow the user to force the ABI.  */
  add_setshow_auto_boolean_cmd ("soft-float", class_support,
				&powerpc_soft_float_global,
				_("Set whether to use a soft-float ABI."),
				_("Show whether to use a soft-float ABI."),
				NULL,
				powerpc_set_soft_float, NULL,
				&setpowerpccmdlist, &showpowerpccmdlist);

  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
			&powerpc_vector_abi_string,
			_("Set the vector ABI."),
			_("Show the vector ABI."),
			NULL, powerpc_set_vector_abi, NULL,
			&setpowerpccmdlist, &showpowerpccmdlist);
}