aboutsummaryrefslogtreecommitdiff
path: root/gdb/spu-tdep.c
diff options
context:
space:
mode:
authorUlrich Weigand <ulrich.weigand@de.ibm.com>2019-09-20 23:06:57 +0200
committerUlrich Weigand <ulrich.weigand@de.ibm.com>2019-09-20 23:06:57 +0200
commitabf516c6931af1683d1e51203de1ca01467f9f85 (patch)
treef2d4e09a3840ac22f5af5584348fbdf97e0c8aca /gdb/spu-tdep.c
parent78e8cb91cd1374ac59cc8bf6509fa70bde74ff1a (diff)
downloadgdb-abf516c6931af1683d1e51203de1ca01467f9f85.zip
gdb-abf516c6931af1683d1e51203de1ca01467f9f85.tar.gz
gdb-abf516c6931af1683d1e51203de1ca01467f9f85.tar.bz2
Remove Cell Broadband Engine debugging support
This patch implements removal of Cell/B.E. support, including - Support for the spu-*-* target - Support for native stand-alone SPU debugging - Support for integrated debugging of combined PPU/SPU applications - Remote debugging (gdbserver) support for all the above. The patch also removes the TARGET_OBJECT_SPU target object type, as this is available only on Cell/B.E. targets, including - Native Linux support - Core file support (including core file generation) - Remote target support, including removal of the qXfer:spu:read and qXfer:spu:write remote protocal packets and associated support in gdbserver. gdb/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Mention that Cell/B.E. debugging support was removed. * MAINTAINERS: Remove spu target. * config/djgpp/fnchange.lst: Remove entries for removed files. * Makefile.in (ALL_TARGET_OBS): Remove solib-spu.o, spu-multiarch.o, and spu-tdep.o. (HFILES_NO_SRCDIR): Remove solib-spu.h and spu-tdep.h. (ALLDEPFILES): Remove solib-spu.c, spu-linux-nat.c, spu-multiarch.c, and spu-tdep.c. * spu-linux-nat.c: Remove file. * spu-multiarch.c: Remove file. * spu-tdep.c: Remove file. * spu-tdep.h: Remove file. * solib-spu.c: Remove file. * solib-spu.h: Remove file. * configure.host (powerpc64*-*-linux*): Remove Cell/B.E. support. * configure.nat (spu-linux): Remove. * configure.tgt (powerpc*-*-linux*): Remove solib-spu.o and solib-multiarch.o from gdb_target_obs. (spu*-*-*): Remove. * arch/ppc-linux-common.h (struct ppc_linux_features): Remove "cell" feature flag. (ppc_linux_no_features): Update. * arch/ppc-linux-common.c (ppc_linux_match_description): Remove Cell/B.E. support. * arch/ppc-linux-tdesc.h (tdesc_powerpc_cell32l): Remove declaration. (tdesc_powerpc_cell64l): Likewise. * nat/ppc-linux.h (PPC_FEATURE_CELL): Remove. * ppc-linux-nat.c (ppc_linux_nat_target::read_description): Remove Cell/B.E. support. * ppc-linux-tdep.h: Do not include "solib-spu.h" or "spu-tdep.h". Do not include "features/rs6000/powerpc-cell32l.c" or "features/rs6000/powerpc-cell64l.c". (ppc_linux_spu_section): Remove. (ppc_linux_core_read_description): Remove Cell/B.E. support. (spe_context_objfile, spe_context_lm_addr, spe_context_offset, spe_context_cache_ptid, spe_context_cache_ptid): Remove. (ppc_linux_spe_context_lookup): Remove. (ppc_linux_spe_context_inferior_created): Remove. (ppc_linux_spe_context_solib_loaded): Remove. (ppc_linux_spe_context_solib_unloaded): Remove. (ppc_linux_spe_context): Remove. (struct ppu2spu_cache): Remove. (ppu2spu_prev_arch, ppu2spu_this_id, ppu2spu_prev_register): Remove. (struct ppu2spu_data): Remove. (ppu2spu_unwind_register, ppu2spu_sniffer, ppu2spu_dealloc_cache, ppu2spu_unwind): Remove. (ppc_linux_init_abi): Remove Cell/B.E. support. * rs6000-tdep.h (rs6000_gdbarch_init): Remove Cell/B.E. support. * features/Makefile (rs6000/powerpc-cell32l-expedite): Remove. (rs6000/powerpc-cell64l-expedite): Likewise (WHICH): Remove rs6000/powerpc-cell32l and rs6000/powerpc-cell64l. (XMLTOC): Remove rs6000/powerpc-cell32l.xml and rs6000/powerpc-cell64l.xml. * features/rs6000/powerpc-cell32l.xml: Remove. * features/rs6000/powerpc-cell64l.xml: Likewise. * features/rs6000/powerpc-cell32l.c: Remove generated file. * features/rs6000/powerpc-cell64l.c: Likewise. * regformats/rs6000/powerpc-cell32l.dat: Remove generated file. * regformats/rs6000/powerpc-cell64l.dat: Likewise. * regformats/reg-spu.dat: Remove. * target.h (enum target_object): Remove TARGET_OBJECT_SPU. * corelow.c (struct spuid_list): Remove. (add_to_spuid_list): Remove. (core_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * remote.c (PACKET_qXfer_spu_read, PACKET_qXfer_spu_write): Remove. (remote_protocol_features): Remove associated entries. (_initialize_remote): No longer initialize them. (remote_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * linux-nat.c (SPUFS_MAGIC): Remove. (linux_proc_xfer_spu): Remove. (spu_enumerate_spu_ids): Remove. (linux_nat_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * linux-tdep.c (-linux_spu_make_corefile_notes): Remove. (linux_make_corefile_notes): No longer call it. * regcache.c (cooked_read_test): Remove bfd_arch_spu special case. (cooked_write_test): Likewise. gdb/doc/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * doc/gdb.texinfo (Remote Configuration): Remove documentation for qXfer:spu:read and qXfer:spu:write. (General Query Packets): Likewise. (Cell Broadband Engine SPU architecture): Remove subsection. gdb/gdbserver/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * configure.srv (ipa_ppc_linux_regobj): Remove powerpc-cell32l-ipa.o and powerpc-cell64l-ipa.o. (powerpc*-*-linux*): Remove powerpc-cell32l.o and powerpc-cell64l.o from srv_regobj. Remove rs6000/powerpc-cell32l.xml and rs6000/powerpc-cell64l.xml from srv_xmlfiles. (spu*-*-*): Remove. * spu-low.c: Remove file. * linux-ppc-low.c (INSTR_SC, NR_spu_run): Remove. (parse_spufs_run): Remove. (ppc_get_pc): Remove Cell/B.E. support. (ppc_set_pc): Likewise. (ppc_breakpoint_at): Likewise. (ppc_arch_setup): Likewise. (ppc_get_ipa_tdesc_idx): Do not handle tdesc_powerpc_cell64l or tdesc_powerpc_cell32l. (initialize_low_arch): Do not call init_registers_powerpc_cell64l or init_registers_powerpc_cell32l. * linux-ppc-ipa.c (get_ipa_tdesc): Do not handle PPC_TDESC_CELL. (initialize_low_tracepoint): Do not call init_registers_powerpc_cell64l or init_registers_powerpc_cell32l. * linux-ppc-tdesc-init.h (PPC_TDESC_CELL): Mark as unused. (init_registers_powerpc_cell32l): Remove prototype. (init_registers_powerpc_cell64l): Likewise. * target.h (struct target_ops): Remove qxfer_spu member. * server.c (handle_qxfer_spu): Remove. (qxfer_packets): Remove entry for "spu". (handle_query): No longer support qXfer:spu:read or qXfer:spu:write. * linux-low.c (SPUFS_MAGIC): Remove. (spu_enumerate_spu_ids): Remove. (linux_qxfer_spu): Remove. (linux_target_ops): Remove qxfer_spu member. * lynx-low.c (lynx_target_ops): Remove qxfer_spu member. * nto-low.c (nto_target_ops): Remove qxfer_spu member. * win32-low.c (win32_target_ops): Remove qxfer_spu member. gdb/testsuite/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/spu-info.exp: Remove file. * gdb.arch/spu-info.c: Remove file. * gdb.arch/spu-ls.exp: Remove file. * gdb.arch/spu-ls.c: Remove file. * gdb.asm/asm-source.exp: Remove support for spu*-*-*. * gdb.asm/spu.inc: Remove file. * gdb.base/dump.exp: Remove support for spu*-*-*. * gdb.base/stack-checking.exp: Likewise. * gdb.base/overlays.exp: Likewise. * gdb.base/ovlymgr.c: Likewise. * gdb.base/spu.ld: Remove file. * gdb.cp/bs15503.exp: Remove support for spu*-*-*. * gdb.cp/cpexprs.exp: Likewise. * gdb.cp/exception.exp: Likewise. * gdb.cp/gdb2495.exp: Likewise. * gdb.cp/mb-templates.exp: Likewise. * gdb.cp/pr9167.exp: Likewise. * gdb.cp/userdef.exp: Likewise. * gdb.xml/tdesc-regs.exp: Remove support for spu*-*-*. * gdb.cell: Remove directory. * lib/cell.exp: Remove file.
Diffstat (limited to 'gdb/spu-tdep.c')
-rw-r--r--gdb/spu-tdep.c2835
1 files changed, 0 insertions, 2835 deletions
diff --git a/gdb/spu-tdep.c b/gdb/spu-tdep.c
deleted file mode 100644
index 5360efb..0000000
--- a/gdb/spu-tdep.c
+++ /dev/null
@@ -1,2835 +0,0 @@
-/* SPU target-dependent code for GDB, the GNU debugger.
- Copyright (C) 2006-2019 Free Software Foundation, Inc.
-
- Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
- Based on a port by Sid Manning <sid@us.ibm.com>.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-#include "defs.h"
-#include "arch-utils.h"
-#include "gdbtypes.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "frame.h"
-#include "frame-unwind.h"
-#include "frame-base.h"
-#include "trad-frame.h"
-#include "symtab.h"
-#include "symfile.h"
-#include "value.h"
-#include "inferior.h"
-#include "dis-asm.h"
-#include "disasm.h"
-#include "objfiles.h"
-#include "language.h"
-#include "regcache.h"
-#include "reggroups.h"
-#include "block.h"
-#include "observable.h"
-#include "infcall.h"
-#include "dwarf2.h"
-#include "dwarf2-frame.h"
-#include "ax.h"
-#include "spu-tdep.h"
-#include "location.h"
-
-/* The list of available "set spu " and "show spu " commands. */
-static struct cmd_list_element *setspucmdlist = NULL;
-static struct cmd_list_element *showspucmdlist = NULL;
-
-/* Whether to stop for new SPE contexts. */
-static bool spu_stop_on_load_p = false;
-/* Whether to automatically flush the SW-managed cache. */
-static bool spu_auto_flush_cache_p = true;
-
-
-/* The tdep structure. */
-struct gdbarch_tdep
-{
- /* The spufs ID identifying our address space. */
- int id;
-
- /* SPU-specific vector type. */
- struct type *spu_builtin_type_vec128;
-};
-
-
-/* SPU-specific vector type. */
-static struct type *
-spu_builtin_type_vec128 (struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (!tdep->spu_builtin_type_vec128)
- {
- const struct builtin_type *bt = builtin_type (gdbarch);
- struct type *t;
-
- t = arch_composite_type (gdbarch,
- "__spu_builtin_type_vec128", TYPE_CODE_UNION);
- append_composite_type_field (t, "uint128", bt->builtin_int128);
- append_composite_type_field (t, "v2_int64",
- init_vector_type (bt->builtin_int64, 2));
- append_composite_type_field (t, "v4_int32",
- init_vector_type (bt->builtin_int32, 4));
- append_composite_type_field (t, "v8_int16",
- init_vector_type (bt->builtin_int16, 8));
- append_composite_type_field (t, "v16_int8",
- init_vector_type (bt->builtin_int8, 16));
- append_composite_type_field (t, "v2_double",
- init_vector_type (bt->builtin_double, 2));
- append_composite_type_field (t, "v4_float",
- init_vector_type (bt->builtin_float, 4));
-
- TYPE_VECTOR (t) = 1;
- TYPE_NAME (t) = "spu_builtin_type_vec128";
-
- tdep->spu_builtin_type_vec128 = t;
- }
-
- return tdep->spu_builtin_type_vec128;
-}
-
-
-/* The list of available "info spu " commands. */
-static struct cmd_list_element *infospucmdlist = NULL;
-
-/* Registers. */
-
-static const char *
-spu_register_name (struct gdbarch *gdbarch, int reg_nr)
-{
- static const char *register_names[] =
- {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
- "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
- "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
- "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
- "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
- "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
- "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
- "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
- "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
- "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
- "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
- "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
- "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
- "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
- "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
- "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
- };
-
- if (reg_nr < 0)
- return NULL;
- if (reg_nr >= sizeof register_names / sizeof *register_names)
- return NULL;
-
- return register_names[reg_nr];
-}
-
-static struct type *
-spu_register_type (struct gdbarch *gdbarch, int reg_nr)
-{
- if (reg_nr < SPU_NUM_GPRS)
- return spu_builtin_type_vec128 (gdbarch);
-
- switch (reg_nr)
- {
- case SPU_ID_REGNUM:
- return builtin_type (gdbarch)->builtin_uint32;
-
- case SPU_PC_REGNUM:
- return builtin_type (gdbarch)->builtin_func_ptr;
-
- case SPU_SP_REGNUM:
- return builtin_type (gdbarch)->builtin_data_ptr;
-
- case SPU_FPSCR_REGNUM:
- return builtin_type (gdbarch)->builtin_uint128;
-
- case SPU_SRR0_REGNUM:
- return builtin_type (gdbarch)->builtin_uint32;
-
- case SPU_LSLR_REGNUM:
- return builtin_type (gdbarch)->builtin_uint32;
-
- case SPU_DECR_REGNUM:
- return builtin_type (gdbarch)->builtin_uint32;
-
- case SPU_DECR_STATUS_REGNUM:
- return builtin_type (gdbarch)->builtin_uint32;
-
- default:
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
-}
-
-/* Pseudo registers for preferred slots - stack pointer. */
-
-static enum register_status
-spu_pseudo_register_read_spu (readable_regcache *regcache, const char *regname,
- gdb_byte *buf)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- enum register_status status;
- gdb_byte reg[32];
- char annex[32];
- ULONGEST id;
- ULONGEST ul;
-
- status = regcache->raw_read (SPU_ID_REGNUM, &id);
- if (status != REG_VALID)
- return status;
- xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
- memset (reg, 0, sizeof reg);
- target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- reg, 0, sizeof reg);
-
- ul = strtoulst ((char *) reg, NULL, 16);
- store_unsigned_integer (buf, 4, byte_order, ul);
- return REG_VALID;
-}
-
-static enum register_status
-spu_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
- int regnum, gdb_byte *buf)
-{
- gdb_byte reg[16];
- char annex[32];
- ULONGEST id;
- enum register_status status;
-
- switch (regnum)
- {
- case SPU_SP_REGNUM:
- status = regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
- if (status != REG_VALID)
- return status;
- memcpy (buf, reg, 4);
- return status;
-
- case SPU_FPSCR_REGNUM:
- status = regcache->raw_read (SPU_ID_REGNUM, &id);
- if (status != REG_VALID)
- return status;
- xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
- target_read (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
- return status;
-
- case SPU_SRR0_REGNUM:
- return spu_pseudo_register_read_spu (regcache, "srr0", buf);
-
- case SPU_LSLR_REGNUM:
- return spu_pseudo_register_read_spu (regcache, "lslr", buf);
-
- case SPU_DECR_REGNUM:
- return spu_pseudo_register_read_spu (regcache, "decr", buf);
-
- case SPU_DECR_STATUS_REGNUM:
- return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
-
- default:
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
-}
-
-static void
-spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
- const gdb_byte *buf)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- char reg[32];
- char annex[32];
- ULONGEST id;
-
- regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
- xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
- xsnprintf (reg, sizeof reg, "0x%s",
- phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
- target_write (current_top_target (), TARGET_OBJECT_SPU, annex,
- (gdb_byte *) reg, 0, strlen (reg));
-}
-
-static void
-spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
- int regnum, const gdb_byte *buf)
-{
- gdb_byte reg[16];
- char annex[32];
- ULONGEST id;
-
- switch (regnum)
- {
- case SPU_SP_REGNUM:
- regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
- memcpy (reg, buf, 4);
- regcache->raw_write (SPU_RAW_SP_REGNUM, reg);
- break;
-
- case SPU_FPSCR_REGNUM:
- regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
- xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
- target_write (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
- break;
-
- case SPU_SRR0_REGNUM:
- spu_pseudo_register_write_spu (regcache, "srr0", buf);
- break;
-
- case SPU_LSLR_REGNUM:
- spu_pseudo_register_write_spu (regcache, "lslr", buf);
- break;
-
- case SPU_DECR_REGNUM:
- spu_pseudo_register_write_spu (regcache, "decr", buf);
- break;
-
- case SPU_DECR_STATUS_REGNUM:
- spu_pseudo_register_write_spu (regcache, "decr_status", buf);
- break;
-
- default:
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
-}
-
-static int
-spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
- struct agent_expr *ax, int regnum)
-{
- switch (regnum)
- {
- case SPU_SP_REGNUM:
- ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
- return 0;
-
- case SPU_FPSCR_REGNUM:
- case SPU_SRR0_REGNUM:
- case SPU_LSLR_REGNUM:
- case SPU_DECR_REGNUM:
- case SPU_DECR_STATUS_REGNUM:
- return -1;
-
- default:
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
-}
-
-static int
-spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
- struct agent_expr *ax, int regnum)
-{
- switch (regnum)
- {
- case SPU_SP_REGNUM:
- ax_reg (ax, SPU_RAW_SP_REGNUM);
- return 0;
-
- case SPU_FPSCR_REGNUM:
- case SPU_SRR0_REGNUM:
- case SPU_LSLR_REGNUM:
- case SPU_DECR_REGNUM:
- case SPU_DECR_STATUS_REGNUM:
- return -1;
-
- default:
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
-}
-
-
-/* Value conversion -- access scalar values at the preferred slot. */
-
-static struct value *
-spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
- int regnum, struct frame_id frame_id)
-{
- struct value *value = default_value_from_register (gdbarch, type,
- regnum, frame_id);
- LONGEST len = TYPE_LENGTH (type);
-
- if (regnum < SPU_NUM_GPRS && len < 16)
- {
- int preferred_slot = len < 4 ? 4 - len : 0;
- set_value_offset (value, preferred_slot);
- }
-
- return value;
-}
-
-/* Register groups. */
-
-static int
-spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *group)
-{
- /* Registers displayed via 'info regs'. */
- if (group == general_reggroup)
- return 1;
-
- /* Registers displayed via 'info float'. */
- if (group == float_reggroup)
- return 0;
-
- /* Registers that need to be saved/restored in order to
- push or pop frames. */
- if (group == save_reggroup || group == restore_reggroup)
- return 1;
-
- return default_register_reggroup_p (gdbarch, regnum, group);
-}
-
-/* DWARF-2 register numbers. */
-
-static int
-spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
- /* Use cooked instead of raw SP. */
- return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
-}
-
-
-/* Address handling. */
-
-static int
-spu_gdbarch_id (struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int id = tdep->id;
-
- /* The objfile architecture of a standalone SPU executable does not
- provide an SPU ID. Retrieve it from the objfile's relocated
- address range in this special case. */
- if (id == -1
- && symfile_objfile && symfile_objfile->obfd
- && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
- && symfile_objfile->sections != symfile_objfile->sections_end)
- id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
-
- return id;
-}
-
-static int
-spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
-{
- if (dwarf2_addr_class == 1)
- return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- else
- return 0;
-}
-
-static const char *
-spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
-{
- if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
- return "__ea";
- else
- return NULL;
-}
-
-static int
-spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
- const char *name, int *type_flags_ptr)
-{
- if (strcmp (name, "__ea") == 0)
- {
- *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- return 1;
- }
- else
- return 0;
-}
-
-static void
-spu_address_to_pointer (struct gdbarch *gdbarch,
- struct type *type, gdb_byte *buf, CORE_ADDR addr)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
- SPUADDR_ADDR (addr));
-}
-
-static CORE_ADDR
-spu_pointer_to_address (struct gdbarch *gdbarch,
- struct type *type, const gdb_byte *buf)
-{
- int id = spu_gdbarch_id (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- ULONGEST addr
- = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
-
- /* Do not convert __ea pointers. */
- if (TYPE_ADDRESS_CLASS_1 (type))
- return addr;
-
- return addr? SPUADDR (id, addr) : 0;
-}
-
-static CORE_ADDR
-spu_integer_to_address (struct gdbarch *gdbarch,
- struct type *type, const gdb_byte *buf)
-{
- int id = spu_gdbarch_id (gdbarch);
- ULONGEST addr = unpack_long (type, buf);
-
- return SPUADDR (id, addr);
-}
-
-
-/* Decoding SPU instructions. */
-
-enum
- {
- op_lqd = 0x34,
- op_lqx = 0x3c4,
- op_lqa = 0x61,
- op_lqr = 0x67,
- op_stqd = 0x24,
- op_stqx = 0x144,
- op_stqa = 0x41,
- op_stqr = 0x47,
-
- op_il = 0x081,
- op_ila = 0x21,
- op_a = 0x0c0,
- op_ai = 0x1c,
-
- op_selb = 0x8,
-
- op_br = 0x64,
- op_bra = 0x60,
- op_brsl = 0x66,
- op_brasl = 0x62,
- op_brnz = 0x42,
- op_brz = 0x40,
- op_brhnz = 0x46,
- op_brhz = 0x44,
- op_bi = 0x1a8,
- op_bisl = 0x1a9,
- op_biz = 0x128,
- op_binz = 0x129,
- op_bihz = 0x12a,
- op_bihnz = 0x12b,
- };
-
-static int
-is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
-{
- if ((insn >> 21) == op)
- {
- *rt = insn & 127;
- *ra = (insn >> 7) & 127;
- *rb = (insn >> 14) & 127;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
-{
- if ((insn >> 28) == op)
- {
- *rt = (insn >> 21) & 127;
- *ra = (insn >> 7) & 127;
- *rb = (insn >> 14) & 127;
- *rc = insn & 127;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
-{
- if ((insn >> 21) == op)
- {
- *rt = insn & 127;
- *ra = (insn >> 7) & 127;
- *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
-{
- if ((insn >> 24) == op)
- {
- *rt = insn & 127;
- *ra = (insn >> 7) & 127;
- *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_ri16 (unsigned int insn, int op, int *rt, int *i16)
-{
- if ((insn >> 23) == op)
- {
- *rt = insn & 127;
- *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_ri18 (unsigned int insn, int op, int *rt, int *i18)
-{
- if ((insn >> 25) == op)
- {
- *rt = insn & 127;
- *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
- return 1;
- }
-
- return 0;
-}
-
-static int
-is_branch (unsigned int insn, int *offset, int *reg)
-{
- int rt, i7, i16;
-
- if (is_ri16 (insn, op_br, &rt, &i16)
- || is_ri16 (insn, op_brsl, &rt, &i16)
- || is_ri16 (insn, op_brnz, &rt, &i16)
- || is_ri16 (insn, op_brz, &rt, &i16)
- || is_ri16 (insn, op_brhnz, &rt, &i16)
- || is_ri16 (insn, op_brhz, &rt, &i16))
- {
- *reg = SPU_PC_REGNUM;
- *offset = i16 << 2;
- return 1;
- }
-
- if (is_ri16 (insn, op_bra, &rt, &i16)
- || is_ri16 (insn, op_brasl, &rt, &i16))
- {
- *reg = -1;
- *offset = i16 << 2;
- return 1;
- }
-
- if (is_ri7 (insn, op_bi, &rt, reg, &i7)
- || is_ri7 (insn, op_bisl, &rt, reg, &i7)
- || is_ri7 (insn, op_biz, &rt, reg, &i7)
- || is_ri7 (insn, op_binz, &rt, reg, &i7)
- || is_ri7 (insn, op_bihz, &rt, reg, &i7)
- || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
- {
- *offset = 0;
- return 1;
- }
-
- return 0;
-}
-
-
-/* Prolog parsing. */
-
-struct spu_prologue_data
- {
- /* Stack frame size. -1 if analysis was unsuccessful. */
- int size;
-
- /* How to find the CFA. The CFA is equal to SP at function entry. */
- int cfa_reg;
- int cfa_offset;
-
- /* Offset relative to CFA where a register is saved. -1 if invalid. */
- int reg_offset[SPU_NUM_GPRS];
- };
-
-static CORE_ADDR
-spu_analyze_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc, CORE_ADDR end_pc,
- struct spu_prologue_data *data)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int found_sp = 0;
- int found_fp = 0;
- int found_lr = 0;
- int found_bc = 0;
- int reg_immed[SPU_NUM_GPRS];
- gdb_byte buf[16];
- CORE_ADDR prolog_pc = start_pc;
- CORE_ADDR pc;
- int i;
-
-
- /* Initialize DATA to default values. */
- data->size = -1;
-
- data->cfa_reg = SPU_RAW_SP_REGNUM;
- data->cfa_offset = 0;
-
- for (i = 0; i < SPU_NUM_GPRS; i++)
- data->reg_offset[i] = -1;
-
- /* Set up REG_IMMED array. This is non-zero for a register if we know its
- preferred slot currently holds this immediate value. */
- for (i = 0; i < SPU_NUM_GPRS; i++)
- reg_immed[i] = 0;
-
- /* Scan instructions until the first branch.
-
- The following instructions are important prolog components:
-
- - The first instruction to set up the stack pointer.
- - The first instruction to set up the frame pointer.
- - The first instruction to save the link register.
- - The first instruction to save the backchain.
-
- We return the instruction after the latest of these four,
- or the incoming PC if none is found. The first instruction
- to set up the stack pointer also defines the frame size.
-
- Note that instructions saving incoming arguments to their stack
- slots are not counted as important, because they are hard to
- identify with certainty. This should not matter much, because
- arguments are relevant only in code compiled with debug data,
- and in such code the GDB core will advance until the first source
- line anyway, using SAL data.
-
- For purposes of stack unwinding, we analyze the following types
- of instructions in addition:
-
- - Any instruction adding to the current frame pointer.
- - Any instruction loading an immediate constant into a register.
- - Any instruction storing a register onto the stack.
-
- These are used to compute the CFA and REG_OFFSET output. */
-
- for (pc = start_pc; pc < end_pc; pc += 4)
- {
- unsigned int insn;
- int rt, ra, rb, rc, immed;
-
- if (target_read_memory (pc, buf, 4))
- break;
- insn = extract_unsigned_integer (buf, 4, byte_order);
-
- /* AI is the typical instruction to set up a stack frame.
- It is also used to initialize the frame pointer. */
- if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
- {
- if (rt == data->cfa_reg && ra == data->cfa_reg)
- data->cfa_offset -= immed;
-
- if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
- && !found_sp)
- {
- found_sp = 1;
- prolog_pc = pc + 4;
-
- data->size = -immed;
- }
- else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
- && !found_fp)
- {
- found_fp = 1;
- prolog_pc = pc + 4;
-
- data->cfa_reg = SPU_FP_REGNUM;
- data->cfa_offset -= immed;
- }
- }
-
- /* A is used to set up stack frames of size >= 512 bytes.
- If we have tracked the contents of the addend register,
- we can handle this as well. */
- else if (is_rr (insn, op_a, &rt, &ra, &rb))
- {
- if (rt == data->cfa_reg && ra == data->cfa_reg)
- {
- if (reg_immed[rb] != 0)
- data->cfa_offset -= reg_immed[rb];
- else
- data->cfa_reg = -1; /* We don't know the CFA any more. */
- }
-
- if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
- && !found_sp)
- {
- found_sp = 1;
- prolog_pc = pc + 4;
-
- if (reg_immed[rb] != 0)
- data->size = -reg_immed[rb];
- }
- }
-
- /* We need to track IL and ILA used to load immediate constants
- in case they are later used as input to an A instruction. */
- else if (is_ri16 (insn, op_il, &rt, &immed))
- {
- reg_immed[rt] = immed;
-
- if (rt == SPU_RAW_SP_REGNUM && !found_sp)
- found_sp = 1;
- }
-
- else if (is_ri18 (insn, op_ila, &rt, &immed))
- {
- reg_immed[rt] = immed & 0x3ffff;
-
- if (rt == SPU_RAW_SP_REGNUM && !found_sp)
- found_sp = 1;
- }
-
- /* STQD is used to save registers to the stack. */
- else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
- {
- if (ra == data->cfa_reg)
- data->reg_offset[rt] = data->cfa_offset - (immed << 4);
-
- if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
- && !found_lr)
- {
- found_lr = 1;
- prolog_pc = pc + 4;
- }
-
- if (ra == SPU_RAW_SP_REGNUM
- && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
- && !found_bc)
- {
- found_bc = 1;
- prolog_pc = pc + 4;
- }
- }
-
- /* _start uses SELB to set up the stack pointer. */
- else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
- {
- if (rt == SPU_RAW_SP_REGNUM && !found_sp)
- found_sp = 1;
- }
-
- /* We terminate if we find a branch. */
- else if (is_branch (insn, &immed, &ra))
- break;
- }
-
-
- /* If we successfully parsed until here, and didn't find any instruction
- modifying SP, we assume we have a frameless function. */
- if (!found_sp)
- data->size = 0;
-
- /* Return cooked instead of raw SP. */
- if (data->cfa_reg == SPU_RAW_SP_REGNUM)
- data->cfa_reg = SPU_SP_REGNUM;
-
- return prolog_pc;
-}
-
-/* Return the first instruction after the prologue starting at PC. */
-static CORE_ADDR
-spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- struct spu_prologue_data data;
- return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
-}
-
-/* Return the frame pointer in use at address PC. */
-static void
-spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
- int *reg, LONGEST *offset)
-{
- struct spu_prologue_data data;
- spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
-
- if (data.size != -1 && data.cfa_reg != -1)
- {
- /* The 'frame pointer' address is CFA minus frame size. */
- *reg = data.cfa_reg;
- *offset = data.cfa_offset - data.size;
- }
- else
- {
- /* ??? We don't really know ... */
- *reg = SPU_SP_REGNUM;
- *offset = 0;
- }
-}
-
-/* Implement the stack_frame_destroyed_p gdbarch method.
-
- 1) scan forward from the point of execution:
- a) If you find an instruction that modifies the stack pointer
- or transfers control (except a return), execution is not in
- an epilogue, return.
- b) Stop scanning if you find a return instruction or reach the
- end of the function or reach the hard limit for the size of
- an epilogue.
- 2) scan backward from the point of execution:
- a) If you find an instruction that modifies the stack pointer,
- execution *is* in an epilogue, return.
- b) Stop scanning if you reach an instruction that transfers
- control or the beginning of the function or reach the hard
- limit for the size of an epilogue. */
-
-static int
-spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
- bfd_byte buf[4];
- unsigned int insn;
- int rt, ra, rb, immed;
-
- /* Find the search limits based on function boundaries and hard limit.
- We assume the epilogue can be up to 64 instructions long. */
-
- const int spu_max_epilogue_size = 64 * 4;
-
- if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
- return 0;
-
- if (pc - func_start < spu_max_epilogue_size)
- epilogue_start = func_start;
- else
- epilogue_start = pc - spu_max_epilogue_size;
-
- if (func_end - pc < spu_max_epilogue_size)
- epilogue_end = func_end;
- else
- epilogue_end = pc + spu_max_epilogue_size;
-
- /* Scan forward until next 'bi $0'. */
-
- for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
- {
- if (target_read_memory (scan_pc, buf, 4))
- return 0;
- insn = extract_unsigned_integer (buf, 4, byte_order);
-
- if (is_branch (insn, &immed, &ra))
- {
- if (immed == 0 && ra == SPU_LR_REGNUM)
- break;
-
- return 0;
- }
-
- if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
- || is_rr (insn, op_a, &rt, &ra, &rb)
- || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
- {
- if (rt == SPU_RAW_SP_REGNUM)
- return 0;
- }
- }
-
- if (scan_pc >= epilogue_end)
- return 0;
-
- /* Scan backward until adjustment to stack pointer (R1). */
-
- for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
- {
- if (target_read_memory (scan_pc, buf, 4))
- return 0;
- insn = extract_unsigned_integer (buf, 4, byte_order);
-
- if (is_branch (insn, &immed, &ra))
- return 0;
-
- if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
- || is_rr (insn, op_a, &rt, &ra, &rb)
- || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
- {
- if (rt == SPU_RAW_SP_REGNUM)
- return 1;
- }
- }
-
- return 0;
-}
-
-
-/* Normal stack frames. */
-
-struct spu_unwind_cache
-{
- CORE_ADDR func;
- CORE_ADDR frame_base;
- CORE_ADDR local_base;
-
- struct trad_frame_saved_reg *saved_regs;
-};
-
-static struct spu_unwind_cache *
-spu_frame_unwind_cache (struct frame_info *this_frame,
- void **this_prologue_cache)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct spu_unwind_cache *info;
- struct spu_prologue_data data;
- CORE_ADDR id = tdep->id;
- gdb_byte buf[16];
-
- if (*this_prologue_cache)
- return (struct spu_unwind_cache *) *this_prologue_cache;
-
- info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
- *this_prologue_cache = info;
- info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
- info->frame_base = 0;
- info->local_base = 0;
-
- /* Find the start of the current function, and analyze its prologue. */
- info->func = get_frame_func (this_frame);
- if (info->func == 0)
- {
- /* Fall back to using the current PC as frame ID. */
- info->func = get_frame_pc (this_frame);
- data.size = -1;
- }
- else
- spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
- &data);
-
- /* If successful, use prologue analysis data. */
- if (data.size != -1 && data.cfa_reg != -1)
- {
- CORE_ADDR cfa;
- int i;
-
- /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
- get_frame_register (this_frame, data.cfa_reg, buf);
- cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
- cfa = SPUADDR (id, cfa);
-
- /* Call-saved register slots. */
- for (i = 0; i < SPU_NUM_GPRS; i++)
- if (i == SPU_LR_REGNUM
- || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
- if (data.reg_offset[i] != -1)
- info->saved_regs[i].addr = cfa - data.reg_offset[i];
-
- /* Frame bases. */
- info->frame_base = cfa;
- info->local_base = cfa - data.size;
- }
-
- /* Otherwise, fall back to reading the backchain link. */
- else
- {
- CORE_ADDR reg;
- LONGEST backchain;
- ULONGEST lslr;
- int status;
-
- /* Get local store limit. */
- lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
- if (!lslr)
- lslr = (ULONGEST) -1;
-
- /* Get the backchain. */
- reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
- status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
- &backchain);
-
- /* A zero backchain terminates the frame chain. Also, sanity
- check against the local store size limit. */
- if (status && backchain > 0 && backchain <= lslr)
- {
- /* Assume the link register is saved into its slot. */
- if (backchain + 16 <= lslr)
- info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
- backchain + 16);
-
- /* Frame bases. */
- info->frame_base = SPUADDR (id, backchain);
- info->local_base = SPUADDR (id, reg);
- }
- }
-
- /* If we didn't find a frame, we cannot determine SP / return address. */
- if (info->frame_base == 0)
- return info;
-
- /* The previous SP is equal to the CFA. */
- trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
- SPUADDR_ADDR (info->frame_base));
-
- /* Read full contents of the unwound link register in order to
- be able to determine the return address. */
- if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
- target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
- else
- get_frame_register (this_frame, SPU_LR_REGNUM, buf);
-
- /* Normally, the return address is contained in the slot 0 of the
- link register, and slots 1-3 are zero. For an overlay return,
- slot 0 contains the address of the overlay manager return stub,
- slot 1 contains the partition number of the overlay section to
- be returned to, and slot 2 contains the return address within
- that section. Return the latter address in that case. */
- if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
- trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
- extract_unsigned_integer (buf + 8, 4, byte_order));
- else
- trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
- extract_unsigned_integer (buf, 4, byte_order));
-
- return info;
-}
-
-static void
-spu_frame_this_id (struct frame_info *this_frame,
- void **this_prologue_cache, struct frame_id *this_id)
-{
- struct spu_unwind_cache *info =
- spu_frame_unwind_cache (this_frame, this_prologue_cache);
-
- if (info->frame_base == 0)
- return;
-
- *this_id = frame_id_build (info->frame_base, info->func);
-}
-
-static struct value *
-spu_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache, int regnum)
-{
- struct spu_unwind_cache *info
- = spu_frame_unwind_cache (this_frame, this_prologue_cache);
-
- /* Special-case the stack pointer. */
- if (regnum == SPU_RAW_SP_REGNUM)
- regnum = SPU_SP_REGNUM;
-
- return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
-}
-
-static const struct frame_unwind spu_frame_unwind = {
- NORMAL_FRAME,
- default_frame_unwind_stop_reason,
- spu_frame_this_id,
- spu_frame_prev_register,
- NULL,
- default_frame_sniffer
-};
-
-static CORE_ADDR
-spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
-{
- struct spu_unwind_cache *info
- = spu_frame_unwind_cache (this_frame, this_cache);
- return info->local_base;
-}
-
-static const struct frame_base spu_frame_base = {
- &spu_frame_unwind,
- spu_frame_base_address,
- spu_frame_base_address,
- spu_frame_base_address
-};
-
-static CORE_ADDR
-spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
- /* Mask off interrupt enable bit. */
- return SPUADDR (tdep->id, pc & -4);
-}
-
-static CORE_ADDR
-spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
- return SPUADDR (tdep->id, sp);
-}
-
-static CORE_ADDR
-spu_read_pc (readable_regcache *regcache)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
- ULONGEST pc;
-
- regcache->cooked_read (SPU_PC_REGNUM, &pc);
- /* Mask off interrupt enable bit. */
- return SPUADDR (tdep->id, pc & -4);
-}
-
-static void
-spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
-{
- /* Keep interrupt enabled state unchanged. */
- ULONGEST old_pc;
-
- regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
- regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
- (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
-}
-
-
-/* Cell/B.E. cross-architecture unwinder support. */
-
-struct spu2ppu_cache
-{
- struct frame_id frame_id;
- readonly_detached_regcache *regcache;
-};
-
-static struct gdbarch *
-spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
-{
- struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
- return cache->regcache->arch ();
-}
-
-static void
-spu2ppu_this_id (struct frame_info *this_frame,
- void **this_cache, struct frame_id *this_id)
-{
- struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
- *this_id = cache->frame_id;
-}
-
-static struct value *
-spu2ppu_prev_register (struct frame_info *this_frame,
- void **this_cache, int regnum)
-{
- struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
- struct gdbarch *gdbarch = cache->regcache->arch ();
- gdb_byte *buf;
-
- buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
- cache->regcache->cooked_read (regnum, buf);
- return frame_unwind_got_bytes (this_frame, regnum, buf);
-}
-
-static int
-spu2ppu_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame, void **this_prologue_cache)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR base, func, backchain;
- gdb_byte buf[4];
-
- if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
- return 0;
-
- base = get_frame_sp (this_frame);
- func = get_frame_pc (this_frame);
- if (target_read_memory (base, buf, 4))
- return 0;
- backchain = extract_unsigned_integer (buf, 4, byte_order);
-
- if (!backchain)
- {
- struct frame_info *fi;
-
- struct spu2ppu_cache *cache
- = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
-
- cache->frame_id = frame_id_build (base + 16, func);
-
- for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
- if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
- break;
-
- if (fi)
- {
- cache->regcache = frame_save_as_regcache (fi).release ();
- *this_prologue_cache = cache;
- return 1;
- }
- else
- {
- struct regcache *regcache;
- regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
- cache->regcache = new readonly_detached_regcache (*regcache);
- *this_prologue_cache = cache;
- return 1;
- }
- }
-
- return 0;
-}
-
-static void
-spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
-{
- struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
- delete cache->regcache;
-}
-
-static const struct frame_unwind spu2ppu_unwind = {
- ARCH_FRAME,
- default_frame_unwind_stop_reason,
- spu2ppu_this_id,
- spu2ppu_prev_register,
- NULL,
- spu2ppu_sniffer,
- spu2ppu_dealloc_cache,
- spu2ppu_prev_arch,
-};
-
-
-/* Function calling convention. */
-
-static CORE_ADDR
-spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
-{
- return sp & ~15;
-}
-
-static CORE_ADDR
-spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
- struct value **args, int nargs, struct type *value_type,
- CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
- struct regcache *regcache)
-{
- /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
- sp = (sp - 4) & ~15;
- /* Store the address of that breakpoint */
- *bp_addr = sp;
- /* The call starts at the callee's entry point. */
- *real_pc = funaddr;
-
- return sp;
-}
-
-static int
-spu_scalar_value_p (struct type *type)
-{
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_INT:
- case TYPE_CODE_ENUM:
- case TYPE_CODE_RANGE:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_BOOL:
- case TYPE_CODE_PTR:
- case TYPE_CODE_REF:
- case TYPE_CODE_RVALUE_REF:
- return TYPE_LENGTH (type) <= 16;
-
- default:
- return 0;
- }
-}
-
-static void
-spu_value_to_regcache (struct regcache *regcache, int regnum,
- struct type *type, const gdb_byte *in)
-{
- int len = TYPE_LENGTH (type);
-
- if (spu_scalar_value_p (type))
- {
- int preferred_slot = len < 4 ? 4 - len : 0;
- regcache->cooked_write_part (regnum, preferred_slot, len, in);
- }
- else
- {
- while (len >= 16)
- {
- regcache->cooked_write (regnum++, in);
- in += 16;
- len -= 16;
- }
-
- if (len > 0)
- regcache->cooked_write_part (regnum, 0, len, in);
- }
-}
-
-static void
-spu_regcache_to_value (struct regcache *regcache, int regnum,
- struct type *type, gdb_byte *out)
-{
- int len = TYPE_LENGTH (type);
-
- if (spu_scalar_value_p (type))
- {
- int preferred_slot = len < 4 ? 4 - len : 0;
- regcache->cooked_read_part (regnum, preferred_slot, len, out);
- }
- else
- {
- while (len >= 16)
- {
- regcache->cooked_read (regnum++, out);
- out += 16;
- len -= 16;
- }
-
- if (len > 0)
- regcache->cooked_read_part (regnum, 0, len, out);
- }
-}
-
-static CORE_ADDR
-spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- function_call_return_method return_method,
- CORE_ADDR struct_addr)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR sp_delta;
- int i;
- int regnum = SPU_ARG1_REGNUM;
- int stack_arg = -1;
- gdb_byte buf[16];
-
- /* Set the return address. */
- memset (buf, 0, sizeof buf);
- store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
- regcache->cooked_write (SPU_LR_REGNUM, buf);
-
- /* If STRUCT_RETURN is true, then the struct return address (in
- STRUCT_ADDR) will consume the first argument-passing register.
- Both adjust the register count and store that value. */
- if (return_method == return_method_struct)
- {
- memset (buf, 0, sizeof buf);
- store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
- regcache->cooked_write (regnum++, buf);
- }
-
- /* Fill in argument registers. */
- for (i = 0; i < nargs; i++)
- {
- struct value *arg = args[i];
- struct type *type = check_typedef (value_type (arg));
- const gdb_byte *contents = value_contents (arg);
- int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
-
- /* If the argument doesn't wholly fit into registers, it and
- all subsequent arguments go to the stack. */
- if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
- {
- stack_arg = i;
- break;
- }
-
- spu_value_to_regcache (regcache, regnum, type, contents);
- regnum += n_regs;
- }
-
- /* Overflow arguments go to the stack. */
- if (stack_arg != -1)
- {
- CORE_ADDR ap;
-
- /* Allocate all required stack size. */
- for (i = stack_arg; i < nargs; i++)
- {
- struct type *type = check_typedef (value_type (args[i]));
- sp -= align_up (TYPE_LENGTH (type), 16);
- }
-
- /* Fill in stack arguments. */
- ap = sp;
- for (i = stack_arg; i < nargs; i++)
- {
- struct value *arg = args[i];
- struct type *type = check_typedef (value_type (arg));
- int len = TYPE_LENGTH (type);
- int preferred_slot;
-
- if (spu_scalar_value_p (type))
- preferred_slot = len < 4 ? 4 - len : 0;
- else
- preferred_slot = 0;
-
- target_write_memory (ap + preferred_slot, value_contents (arg), len);
- ap += align_up (TYPE_LENGTH (type), 16);
- }
- }
-
- /* Allocate stack frame header. */
- sp -= 32;
-
- /* Store stack back chain. */
- regcache->cooked_read (SPU_RAW_SP_REGNUM, buf);
- target_write_memory (sp, buf, 16);
-
- /* Finally, update all slots of the SP register. */
- sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
- for (i = 0; i < 4; i++)
- {
- CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
- store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
- }
- regcache->cooked_write (SPU_RAW_SP_REGNUM, buf);
-
- return sp;
-}
-
-static struct frame_id
-spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
- CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
- return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
-}
-
-/* Function return value access. */
-
-static enum return_value_convention
-spu_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *out, const gdb_byte *in)
-{
- struct type *func_type = function ? value_type (function) : NULL;
- enum return_value_convention rvc;
- int opencl_vector = 0;
-
- if (func_type)
- {
- func_type = check_typedef (func_type);
-
- if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
- func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
-
- if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
- && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
- && TYPE_CODE (type) == TYPE_CODE_ARRAY
- && TYPE_VECTOR (type))
- opencl_vector = 1;
- }
-
- if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
- rvc = RETURN_VALUE_REGISTER_CONVENTION;
- else
- rvc = RETURN_VALUE_STRUCT_CONVENTION;
-
- if (in)
- {
- switch (rvc)
- {
- case RETURN_VALUE_REGISTER_CONVENTION:
- if (opencl_vector && TYPE_LENGTH (type) == 2)
- regcache->cooked_write_part (SPU_ARG1_REGNUM, 2, 2, in);
- else
- spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
- break;
-
- case RETURN_VALUE_STRUCT_CONVENTION:
- error (_("Cannot set function return value."));
- break;
- }
- }
- else if (out)
- {
- switch (rvc)
- {
- case RETURN_VALUE_REGISTER_CONVENTION:
- if (opencl_vector && TYPE_LENGTH (type) == 2)
- regcache->cooked_read_part (SPU_ARG1_REGNUM, 2, 2, out);
- else
- spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
- break;
-
- case RETURN_VALUE_STRUCT_CONVENTION:
- error (_("Function return value unknown."));
- break;
- }
- }
-
- return rvc;
-}
-
-
-/* Breakpoints. */
-constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
-
-typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
-
-static int
-spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
- struct bp_target_info *bp_tgt)
-{
- /* We work around a problem in combined Cell/B.E. debugging here. Consider
- that in a combined application, we have some breakpoints inserted in SPU
- code, and now the application forks (on the PPU side). GDB common code
- will assume that the fork system call copied all breakpoints into the new
- process' address space, and that all those copies now need to be removed
- (see breakpoint.c:detach_breakpoints).
-
- While this is certainly true for PPU side breakpoints, it is not true
- for SPU side breakpoints. fork will clone the SPU context file
- descriptors, so that all the existing SPU contexts are in accessible
- in the new process. However, the contents of the SPU contexts themselves
- are *not* cloned. Therefore the effect of detach_breakpoints is to
- remove SPU breakpoints from the *original* SPU context's local store
- -- this is not the correct behaviour.
-
- The workaround is to check whether the PID we are asked to remove this
- breakpoint from (i.e. inferior_ptid.pid ()) is different from the
- PID of the current inferior (i.e. current_inferior ()->pid). This is only
- true in the context of detach_breakpoints. If so, we simply do nothing.
- [ Note that for the fork child process, it does not matter if breakpoints
- remain inserted, because those SPU contexts are not runnable anyway --
- the Linux kernel allows only the original process to invoke spu_run. */
-
- if (inferior_ptid.pid () != current_inferior ()->pid)
- return 0;
-
- return default_memory_remove_breakpoint (gdbarch, bp_tgt);
-}
-
-
-/* Software single-stepping support. */
-
-static std::vector<CORE_ADDR>
-spu_software_single_step (struct regcache *regcache)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR pc, next_pc;
- unsigned int insn;
- int offset, reg;
- gdb_byte buf[4];
- ULONGEST lslr;
- std::vector<CORE_ADDR> next_pcs;
-
- pc = regcache_read_pc (regcache);
-
- if (target_read_memory (pc, buf, 4))
- throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
- paddress (gdbarch, pc));
-
- insn = extract_unsigned_integer (buf, 4, byte_order);
-
- /* Get local store limit. */
- if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
- != REG_VALID) || !lslr)
- lslr = (ULONGEST) -1;
-
- /* Next sequential instruction is at PC + 4, except if the current
- instruction is a PPE-assisted call, in which case it is at PC + 8.
- Wrap around LS limit to be on the safe side. */
- if ((insn & 0xffffff00) == 0x00002100)
- next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
- else
- next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
-
- next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
-
- if (is_branch (insn, &offset, &reg))
- {
- CORE_ADDR target = offset;
-
- if (reg == SPU_PC_REGNUM)
- target += SPUADDR_ADDR (pc);
- else if (reg != -1)
- {
- regcache->raw_read_part (reg, 0, 4, buf);
- target += extract_unsigned_integer (buf, 4, byte_order) & -4;
- }
-
- target = target & lslr;
- if (target != next_pc)
- next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
- }
-
- return next_pcs;
-}
-
-
-/* Longjmp support. */
-
-static int
-spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
-{
- struct gdbarch *gdbarch = get_frame_arch (frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- gdb_byte buf[4];
- CORE_ADDR jb_addr;
- int optim, unavail;
-
- /* Jump buffer is pointed to by the argument register $r3. */
- if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
- &optim, &unavail))
- return 0;
-
- jb_addr = extract_unsigned_integer (buf, 4, byte_order);
- if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
- return 0;
-
- *pc = extract_unsigned_integer (buf, 4, byte_order);
- *pc = SPUADDR (tdep->id, *pc);
- return 1;
-}
-
-
-/* Disassembler. */
-
-struct spu_dis_asm_info : disassemble_info
-{
- int id;
-};
-
-static void
-spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
-{
- struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
- gdb_disassembler *di
- = static_cast<gdb_disassembler *>(info->application_data);
-
- print_address (di->arch (), SPUADDR (data->id, addr),
- (struct ui_file *) info->stream);
-}
-
-static int
-gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
-{
- /* The opcodes disassembler does 18-bit address arithmetic. Make
- sure the SPU ID encoded in the high bits is added back when we
- call print_address. */
- struct spu_dis_asm_info spu_info;
-
- memcpy (&spu_info, info, sizeof (*info));
- spu_info.id = SPUADDR_SPU (memaddr);
- spu_info.print_address_func = spu_dis_asm_print_address;
- return default_print_insn (memaddr, &spu_info);
-}
-
-
-/* Target overlays for the SPU overlay manager.
-
- See the documentation of simple_overlay_update for how the
- interface is supposed to work.
-
- Data structures used by the overlay manager:
-
- struct ovly_table
- {
- u32 vma;
- u32 size;
- u32 pos;
- u32 buf;
- } _ovly_table[]; -- one entry per overlay section
-
- struct ovly_buf_table
- {
- u32 mapped;
- } _ovly_buf_table[]; -- one entry per overlay buffer
-
- _ovly_table should never change.
-
- Both tables are aligned to a 16-byte boundary, the symbols
- _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
- size set to the size of the respective array. buf in _ovly_table is
- an index into _ovly_buf_table.
-
- mapped is an index into _ovly_table. Both the mapped and buf indices start
- from one to reference the first entry in their respective tables. */
-
-/* Using the per-objfile private data mechanism, we store for each
- objfile an array of "struct spu_overlay_table" structures, one
- for each obj_section of the objfile. This structure holds two
- fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
- is *not* an overlay section. If it is non-zero, it represents
- a target address. The overlay section is mapped iff the target
- integer at this location equals MAPPED_VAL. */
-
-struct spu_overlay_table
- {
- CORE_ADDR mapped_ptr;
- CORE_ADDR mapped_val;
- };
-
-static objfile_key<spu_overlay_table,
- gdb::noop_deleter<spu_overlay_table>> spu_overlay_data;
-
-/* Retrieve the overlay table for OBJFILE. If not already cached, read
- the _ovly_table data structure from the target and initialize the
- spu_overlay_table data structure from it. */
-static struct spu_overlay_table *
-spu_get_overlay_table (struct objfile *objfile)
-{
- enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
- BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
- struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
- CORE_ADDR ovly_table_base, ovly_buf_table_base;
- unsigned ovly_table_size, ovly_buf_table_size;
- struct spu_overlay_table *tbl;
- struct obj_section *osect;
- gdb_byte *ovly_table;
- int i;
-
- tbl = spu_overlay_data.get (objfile);
- if (tbl)
- return tbl;
-
- ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
- if (!ovly_table_msym.minsym)
- return NULL;
-
- ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
- NULL, objfile);
- if (!ovly_buf_table_msym.minsym)
- return NULL;
-
- ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
- ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
-
- ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
- ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
-
- ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
- read_memory (ovly_table_base, ovly_table, ovly_table_size);
-
- tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
- objfile->sections_end - objfile->sections,
- struct spu_overlay_table);
-
- for (i = 0; i < ovly_table_size / 16; i++)
- {
- CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
- 4, byte_order);
- /* Note that this skips the "size" entry, which is at offset
- 4. */
- CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
- 4, byte_order);
- CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
- 4, byte_order);
-
- if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
- continue;
-
- ALL_OBJFILE_OSECTIONS (objfile, osect)
- if (vma == bfd_section_vma (osect->the_bfd_section)
- && pos == osect->the_bfd_section->filepos)
- {
- int ndx = osect - objfile->sections;
- tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
- tbl[ndx].mapped_val = i + 1;
- break;
- }
- }
-
- xfree (ovly_table);
- spu_overlay_data.set (objfile, tbl);
- return tbl;
-}
-
-/* Read _ovly_buf_table entry from the target to dermine whether
- OSECT is currently mapped, and update the mapped state. */
-static void
-spu_overlay_update_osect (struct obj_section *osect)
-{
- enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
- BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
- struct spu_overlay_table *ovly_table;
- CORE_ADDR id, val;
-
- ovly_table = spu_get_overlay_table (osect->objfile);
- if (!ovly_table)
- return;
-
- ovly_table += osect - osect->objfile->sections;
- if (ovly_table->mapped_ptr == 0)
- return;
-
- id = SPUADDR_SPU (obj_section_addr (osect));
- val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
- 4, byte_order);
- osect->ovly_mapped = (val == ovly_table->mapped_val);
-}
-
-/* If OSECT is NULL, then update all sections' mapped state.
- If OSECT is non-NULL, then update only OSECT's mapped state. */
-static void
-spu_overlay_update (struct obj_section *osect)
-{
- /* Just one section. */
- if (osect)
- spu_overlay_update_osect (osect);
-
- /* All sections. */
- else
- {
- for (objfile *objfile : current_program_space->objfiles ())
- ALL_OBJFILE_OSECTIONS (objfile, osect)
- if (section_is_overlay (osect))
- spu_overlay_update_osect (osect);
- }
-}
-
-/* Whenever a new objfile is loaded, read the target's _ovly_table.
- If there is one, go through all sections and make sure for non-
- overlay sections LMA equals VMA, while for overlay sections LMA
- is larger than SPU_OVERLAY_LMA. */
-static void
-spu_overlay_new_objfile (struct objfile *objfile)
-{
- struct spu_overlay_table *ovly_table;
- struct obj_section *osect;
-
- /* If we've already touched this file, do nothing. */
- if (!objfile || spu_overlay_data.get (objfile) != NULL)
- return;
-
- /* Consider only SPU objfiles. */
- if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
- return;
-
- /* Check if this objfile has overlays. */
- ovly_table = spu_get_overlay_table (objfile);
- if (!ovly_table)
- return;
-
- /* Now go and fiddle with all the LMAs. */
- ALL_OBJFILE_OSECTIONS (objfile, osect)
- {
- asection *bsect = osect->the_bfd_section;
- int ndx = osect - objfile->sections;
-
- if (ovly_table[ndx].mapped_ptr == 0)
- bfd_set_section_lma (bsect, bfd_section_vma (bsect));
- else
- bfd_set_section_lma (bsect, SPU_OVERLAY_LMA + bsect->filepos);
- }
-}
-
-
-/* Insert temporary breakpoint on "main" function of newly loaded
- SPE context OBJFILE. */
-static void
-spu_catch_start (struct objfile *objfile)
-{
- struct bound_minimal_symbol minsym;
- struct compunit_symtab *cust;
- CORE_ADDR pc;
-
- /* Do this only if requested by "set spu stop-on-load on". */
- if (!spu_stop_on_load_p)
- return;
-
- /* Consider only SPU objfiles. */
- if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
- return;
-
- /* The main objfile is handled differently. */
- if (objfile == symfile_objfile)
- return;
-
- /* There can be multiple symbols named "main". Search for the
- "main" in *this* objfile. */
- minsym = lookup_minimal_symbol ("main", NULL, objfile);
- if (!minsym.minsym)
- return;
-
- /* If we have debugging information, try to use it -- this
- will allow us to properly skip the prologue. */
- pc = BMSYMBOL_VALUE_ADDRESS (minsym);
- cust
- = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
- minsym.minsym));
- if (cust != NULL)
- {
- const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
- const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
- struct symbol *sym;
- struct symtab_and_line sal;
-
- sym = block_lookup_symbol (block, "main",
- symbol_name_match_type::SEARCH_NAME,
- VAR_DOMAIN);
- if (sym)
- {
- fixup_symbol_section (sym, objfile);
- sal = find_function_start_sal (sym, 1);
- pc = sal.pc;
- }
- }
-
- /* Use a numerical address for the set_breakpoint command to avoid having
- the breakpoint re-set incorrectly. */
- event_location_up location = new_address_location (pc, NULL, 0);
- create_breakpoint (get_objfile_arch (objfile), location.get (),
- NULL /* cond_string */, -1 /* thread */,
- NULL /* extra_string */,
- 0 /* parse_condition_and_thread */, 1 /* tempflag */,
- bp_breakpoint /* type_wanted */,
- 0 /* ignore_count */,
- AUTO_BOOLEAN_FALSE /* pending_break_support */,
- &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
- 1 /* enabled */, 0 /* internal */, 0);
-}
-
-
-/* Look up OBJFILE loaded into FRAME's SPU context. */
-static struct objfile *
-spu_objfile_from_frame (struct frame_info *frame)
-{
- struct gdbarch *gdbarch = get_frame_arch (frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
- return NULL;
-
- for (objfile *obj : current_program_space->objfiles ())
- {
- if (obj->sections != obj->sections_end
- && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
- return obj;
- }
-
- return NULL;
-}
-
-/* Flush cache for ea pointer access if available. */
-static void
-flush_ea_cache (void)
-{
- struct bound_minimal_symbol msymbol;
- struct objfile *obj;
-
- if (!has_stack_frames ())
- return;
-
- obj = spu_objfile_from_frame (get_current_frame ());
- if (obj == NULL)
- return;
-
- /* Lookup inferior function __cache_flush. */
- msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
- if (msymbol.minsym != NULL)
- {
- struct type *type;
- CORE_ADDR addr;
-
- type = objfile_type (obj)->builtin_void;
- type = lookup_function_type (type);
- type = lookup_pointer_type (type);
- addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
-
- call_function_by_hand (value_from_pointer (type, addr), NULL, {});
- }
-}
-
-/* This handler is called when the inferior has stopped. If it is stopped in
- SPU architecture then flush the ea cache if used. */
-static void
-spu_attach_normal_stop (struct bpstats *bs, int print_frame)
-{
- if (!spu_auto_flush_cache_p)
- return;
-
- /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
- re-entering this function when __cache_flush stops. */
- spu_auto_flush_cache_p = 0;
- flush_ea_cache ();
- spu_auto_flush_cache_p = 1;
-}
-
-
-/* "info spu" commands. */
-
-static void
-info_spu_event_command (const char *args, int from_tty)
-{
- struct frame_info *frame = get_selected_frame (NULL);
- ULONGEST event_status = 0;
- ULONGEST event_mask = 0;
- gdb_byte buf[100];
- char annex[32];
- LONGEST len;
- int id;
-
- if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
- error (_("\"info spu\" is only supported on the SPU architecture."));
-
- id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
-
- xsnprintf (annex, sizeof annex, "%d/event_status", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, (sizeof (buf) - 1));
- if (len <= 0)
- error (_("Could not read event_status."));
- buf[len] = '\0';
- event_status = strtoulst ((char *) buf, NULL, 16);
-
- xsnprintf (annex, sizeof annex, "%d/event_mask", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, (sizeof (buf) - 1));
- if (len <= 0)
- error (_("Could not read event_mask."));
- buf[len] = '\0';
- event_mask = strtoulst ((char *) buf, NULL, 16);
-
- ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
-
- current_uiout->text (_("Event Status "));
- current_uiout->field_fmt ("event_status", "0x%s", phex (event_status, 4));
- current_uiout->text ("\n");
- current_uiout->text (_("Event Mask "));
- current_uiout->field_fmt ("event_mask", "0x%s", phex (event_mask, 4));
- current_uiout->text ("\n");
-}
-
-static void
-info_spu_signal_command (const char *args, int from_tty)
-{
- struct frame_info *frame = get_selected_frame (NULL);
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- ULONGEST signal1 = 0;
- ULONGEST signal1_type = 0;
- int signal1_pending = 0;
- ULONGEST signal2 = 0;
- ULONGEST signal2_type = 0;
- int signal2_pending = 0;
- char annex[32];
- gdb_byte buf[100];
- LONGEST len;
- int id;
-
- if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
- error (_("\"info spu\" is only supported on the SPU architecture."));
-
- id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
-
- xsnprintf (annex, sizeof annex, "%d/signal1", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU,
- annex, buf, 0, 4);
- if (len < 0)
- error (_("Could not read signal1."));
- else if (len == 4)
- {
- signal1 = extract_unsigned_integer (buf, 4, byte_order);
- signal1_pending = 1;
- }
-
- xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, (sizeof (buf) - 1));
- if (len <= 0)
- error (_("Could not read signal1_type."));
- buf[len] = '\0';
- signal1_type = strtoulst ((char *) buf, NULL, 16);
-
- xsnprintf (annex, sizeof annex, "%d/signal2", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU,
- annex, buf, 0, 4);
- if (len < 0)
- error (_("Could not read signal2."));
- else if (len == 4)
- {
- signal2 = extract_unsigned_integer (buf, 4, byte_order);
- signal2_pending = 1;
- }
-
- xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, (sizeof (buf) - 1));
- if (len <= 0)
- error (_("Could not read signal2_type."));
- buf[len] = '\0';
- signal2_type = strtoulst ((char *) buf, NULL, 16);
-
- ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
-
- if (current_uiout->is_mi_like_p ())
- {
- current_uiout->field_signed ("signal1_pending", signal1_pending);
- current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
- current_uiout->field_signed ("signal1_type", signal1_type);
- current_uiout->field_signed ("signal2_pending", signal2_pending);
- current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
- current_uiout->field_signed ("signal2_type", signal2_type);
- }
- else
- {
- if (signal1_pending)
- printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
- else
- printf_filtered (_("Signal 1 not pending "));
-
- if (signal1_type)
- printf_filtered (_("(Type Or)\n"));
- else
- printf_filtered (_("(Type Overwrite)\n"));
-
- if (signal2_pending)
- printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
- else
- printf_filtered (_("Signal 2 not pending "));
-
- if (signal2_type)
- printf_filtered (_("(Type Or)\n"));
- else
- printf_filtered (_("(Type Overwrite)\n"));
- }
-}
-
-static void
-info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
- const char *field, const char *msg)
-{
- int i;
-
- if (nr <= 0)
- return;
-
- ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
-
- current_uiout->table_header (32, ui_left, field, msg);
- current_uiout->table_body ();
-
- for (i = 0; i < nr; i++)
- {
- {
- ULONGEST val;
- ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
- val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
- current_uiout->field_fmt (field, "0x%s", phex (val, 4));
- }
-
- current_uiout->text ("\n");
- }
-}
-
-static void
-info_spu_mailbox_command (const char *args, int from_tty)
-{
- struct frame_info *frame = get_selected_frame (NULL);
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- char annex[32];
- gdb_byte buf[1024];
- LONGEST len;
- int id;
-
- if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
- error (_("\"info spu\" is only supported on the SPU architecture."));
-
- id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
-
- ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
-
- xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, sizeof buf);
- if (len < 0)
- error (_("Could not read mbox_info."));
-
- info_spu_mailbox_list (buf, len / 4, byte_order,
- "mbox", "SPU Outbound Mailbox");
-
- xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, sizeof buf);
- if (len < 0)
- error (_("Could not read ibox_info."));
-
- info_spu_mailbox_list (buf, len / 4, byte_order,
- "ibox", "SPU Outbound Interrupt Mailbox");
-
- xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, sizeof buf);
- if (len < 0)
- error (_("Could not read wbox_info."));
-
- info_spu_mailbox_list (buf, len / 4, byte_order,
- "wbox", "SPU Inbound Mailbox");
-}
-
-static ULONGEST
-spu_mfc_get_bitfield (ULONGEST word, int first, int last)
-{
- ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
- return (word >> (63 - last)) & mask;
-}
-
-static void
-info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
-{
- static const char *spu_mfc_opcode[256] =
- {
- /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
- "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
- /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
- "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
- /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
- /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
- "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
- /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
- };
-
- int *seq = XALLOCAVEC (int, nr);
- int done = 0;
- int i, j;
-
-
- /* Determine sequence in which to display (valid) entries. */
- for (i = 0; i < nr; i++)
- {
- /* Search for the first valid entry all of whose
- dependencies are met. */
- for (j = 0; j < nr; j++)
- {
- ULONGEST mfc_cq_dw3;
- ULONGEST dependencies;
-
- if (done & (1 << (nr - 1 - j)))
- continue;
-
- mfc_cq_dw3
- = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
- if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
- continue;
-
- dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
- if ((dependencies & done) != dependencies)
- continue;
-
- seq[i] = j;
- done |= 1 << (nr - 1 - j);
- break;
- }
-
- if (j == nr)
- break;
- }
-
- nr = i;
-
-
- ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
-
- current_uiout->table_header (7, ui_left, "opcode", "Opcode");
- current_uiout->table_header (3, ui_left, "tag", "Tag");
- current_uiout->table_header (3, ui_left, "tid", "TId");
- current_uiout->table_header (3, ui_left, "rid", "RId");
- current_uiout->table_header (18, ui_left, "ea", "EA");
- current_uiout->table_header (7, ui_left, "lsa", "LSA");
- current_uiout->table_header (7, ui_left, "size", "Size");
- current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
- current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
- current_uiout->table_header (1, ui_left, "error_p", "E");
-
- current_uiout->table_body ();
-
- for (i = 0; i < nr; i++)
- {
- ULONGEST mfc_cq_dw0;
- ULONGEST mfc_cq_dw1;
- ULONGEST mfc_cq_dw2;
- int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
- int list_lsa, list_size, mfc_lsa, mfc_size;
- ULONGEST mfc_ea;
- int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
-
- /* Decode contents of MFC Command Queue Context Save/Restore Registers.
- See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
-
- mfc_cq_dw0
- = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
- mfc_cq_dw1
- = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
- mfc_cq_dw2
- = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
-
- list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
- list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
- mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
- mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
- list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
- rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
- tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
-
- mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
- | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
-
- mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
- mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
- qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
- ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
- cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
-
- {
- ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
-
- if (spu_mfc_opcode[mfc_cmd_opcode])
- current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
- else
- current_uiout->field_signed ("opcode", mfc_cmd_opcode);
-
- current_uiout->field_signed ("tag", mfc_cmd_tag);
- current_uiout->field_signed ("tid", tclass_id);
- current_uiout->field_signed ("rid", rclass_id);
-
- if (ea_valid_p)
- current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
- else
- current_uiout->field_skip ("ea");
-
- current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
- if (qw_valid_p)
- current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
- else
- current_uiout->field_fmt ("size", "0x%05x", mfc_size);
-
- if (list_valid_p)
- {
- current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
- current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
- }
- else
- {
- current_uiout->field_skip ("lstaddr");
- current_uiout->field_skip ("lstsize");
- }
-
- if (cmd_error_p)
- current_uiout->field_string ("error_p", "*");
- else
- current_uiout->field_skip ("error_p");
- }
-
- current_uiout->text ("\n");
- }
-}
-
-static void
-info_spu_dma_command (const char *args, int from_tty)
-{
- struct frame_info *frame = get_selected_frame (NULL);
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- ULONGEST dma_info_type;
- ULONGEST dma_info_mask;
- ULONGEST dma_info_status;
- ULONGEST dma_info_stall_and_notify;
- ULONGEST dma_info_atomic_command_status;
- char annex[32];
- gdb_byte buf[1024];
- LONGEST len;
- int id;
-
- if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
- error (_("\"info spu\" is only supported on the SPU architecture."));
-
- id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
-
- xsnprintf (annex, sizeof annex, "%d/dma_info", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, 40 + 16 * 32);
- if (len <= 0)
- error (_("Could not read dma_info."));
-
- dma_info_type
- = extract_unsigned_integer (buf, 8, byte_order);
- dma_info_mask
- = extract_unsigned_integer (buf + 8, 8, byte_order);
- dma_info_status
- = extract_unsigned_integer (buf + 16, 8, byte_order);
- dma_info_stall_and_notify
- = extract_unsigned_integer (buf + 24, 8, byte_order);
- dma_info_atomic_command_status
- = extract_unsigned_integer (buf + 32, 8, byte_order);
-
- ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
-
- if (current_uiout->is_mi_like_p ())
- {
- current_uiout->field_fmt ("dma_info_type", "0x%s",
- phex_nz (dma_info_type, 4));
- current_uiout->field_fmt ("dma_info_mask", "0x%s",
- phex_nz (dma_info_mask, 4));
- current_uiout->field_fmt ("dma_info_status", "0x%s",
- phex_nz (dma_info_status, 4));
- current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
- phex_nz (dma_info_stall_and_notify, 4));
- current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
- phex_nz (dma_info_atomic_command_status, 4));
- }
- else
- {
- const char *query_msg = _("no query pending");
-
- if (dma_info_type & 4)
- switch (dma_info_type & 3)
- {
- case 1: query_msg = _("'any' query pending"); break;
- case 2: query_msg = _("'all' query pending"); break;
- default: query_msg = _("undefined query type"); break;
- }
-
- printf_filtered (_("Tag-Group Status 0x%s\n"),
- phex (dma_info_status, 4));
- printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
- phex (dma_info_mask, 4), query_msg);
- printf_filtered (_("Stall-and-Notify 0x%s\n"),
- phex (dma_info_stall_and_notify, 4));
- printf_filtered (_("Atomic Cmd Status 0x%s\n"),
- phex (dma_info_atomic_command_status, 4));
- printf_filtered ("\n");
- }
-
- info_spu_dma_cmdlist (buf + 40, 16, byte_order);
-}
-
-static void
-info_spu_proxydma_command (const char *args, int from_tty)
-{
- struct frame_info *frame = get_selected_frame (NULL);
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- ULONGEST dma_info_type;
- ULONGEST dma_info_mask;
- ULONGEST dma_info_status;
- char annex[32];
- gdb_byte buf[1024];
- LONGEST len;
- int id;
-
- if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
- error (_("\"info spu\" is only supported on the SPU architecture."));
-
- id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
-
- xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
- len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
- buf, 0, 24 + 8 * 32);
- if (len <= 0)
- error (_("Could not read proxydma_info."));
-
- dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
- dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
- dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
-
- ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
-
- if (current_uiout->is_mi_like_p ())
- {
- current_uiout->field_fmt ("proxydma_info_type", "0x%s",
- phex_nz (dma_info_type, 4));
- current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
- phex_nz (dma_info_mask, 4));
- current_uiout->field_fmt ("proxydma_info_status", "0x%s",
- phex_nz (dma_info_status, 4));
- }
- else
- {
- const char *query_msg;
-
- switch (dma_info_type & 3)
- {
- case 0: query_msg = _("no query pending"); break;
- case 1: query_msg = _("'any' query pending"); break;
- case 2: query_msg = _("'all' query pending"); break;
- default: query_msg = _("undefined query type"); break;
- }
-
- printf_filtered (_("Tag-Group Status 0x%s\n"),
- phex (dma_info_status, 4));
- printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
- phex (dma_info_mask, 4), query_msg);
- printf_filtered ("\n");
- }
-
- info_spu_dma_cmdlist (buf + 24, 8, byte_order);
-}
-
-static void
-info_spu_command (const char *args, int from_tty)
-{
- printf_unfiltered (_("\"info spu\" must be followed by "
- "the name of an SPU facility.\n"));
- help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
-}
-
-
-/* Root of all "set spu "/"show spu " commands. */
-
-static void
-show_spu_command (const char *args, int from_tty)
-{
- help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
-}
-
-static void
-set_spu_command (const char *args, int from_tty)
-{
- help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
-}
-
-static void
-show_spu_stop_on_load (struct ui_file *file, int from_tty,
- struct cmd_list_element *c, const char *value)
-{
- fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
- value);
-}
-
-static void
-show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
- struct cmd_list_element *c, const char *value)
-{
- fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
- value);
-}
-
-
-/* Set up gdbarch struct. */
-
-static struct gdbarch *
-spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
- int id = -1;
-
- /* Which spufs ID was requested as address space? */
- if (info.id)
- id = *info.id;
- /* For objfile architectures of SPU solibs, decode the ID from the name.
- This assumes the filename convention employed by solib-spu.c. */
- else if (info.abfd)
- {
- const char *name = strrchr (info.abfd->filename, '@');
- if (name)
- sscanf (name, "@0x%*x <%d>", &id);
- }
-
- /* Find a candidate among extant architectures. */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- {
- tdep = gdbarch_tdep (arches->gdbarch);
- if (tdep && tdep->id == id)
- return arches->gdbarch;
- }
-
- /* None found, so create a new architecture. */
- tdep = XCNEW (struct gdbarch_tdep);
- tdep->id = id;
- gdbarch = gdbarch_alloc (&info, tdep);
-
- /* Disassembler. */
- set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
-
- /* Registers. */
- set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
- set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
- set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
- set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
- set_gdbarch_read_pc (gdbarch, spu_read_pc);
- set_gdbarch_write_pc (gdbarch, spu_write_pc);
- set_gdbarch_register_name (gdbarch, spu_register_name);
- set_gdbarch_register_type (gdbarch, spu_register_type);
- set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
- set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
- set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
- set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
- set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
- set_gdbarch_ax_pseudo_register_collect
- (gdbarch, spu_ax_pseudo_register_collect);
- set_gdbarch_ax_pseudo_register_push_stack
- (gdbarch, spu_ax_pseudo_register_push_stack);
-
- /* Data types. */
- set_gdbarch_char_signed (gdbarch, 0);
- set_gdbarch_ptr_bit (gdbarch, 32);
- set_gdbarch_addr_bit (gdbarch, 32);
- set_gdbarch_short_bit (gdbarch, 16);
- set_gdbarch_int_bit (gdbarch, 32);
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_float_bit (gdbarch, 32);
- set_gdbarch_double_bit (gdbarch, 64);
- set_gdbarch_long_double_bit (gdbarch, 64);
- set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
- set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
- set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
-
- /* Address handling. */
- set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
- set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
- set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
- set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
- set_gdbarch_address_class_type_flags_to_name
- (gdbarch, spu_address_class_type_flags_to_name);
- set_gdbarch_address_class_name_to_type_flags
- (gdbarch, spu_address_class_name_to_type_flags);
-
- /* We need to support more than "addr_bit" significant address bits
- in order to support SPUADDR_ADDR encoded values. */
- set_gdbarch_significant_addr_bit (gdbarch, 64);
-
- /* Inferior function calls. */
- set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
- set_gdbarch_frame_align (gdbarch, spu_frame_align);
- set_gdbarch_frame_red_zone_size (gdbarch, 2000);
- set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
- set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
- set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
- set_gdbarch_return_value (gdbarch, spu_return_value);
-
- /* Frame handling. */
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- dwarf2_append_unwinders (gdbarch);
- frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
- frame_base_set_default (gdbarch, &spu_frame_base);
- set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
- set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
- set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
- set_gdbarch_frame_args_skip (gdbarch, 0);
- set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
- set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
-
- /* Cell/B.E. cross-architecture unwinder support. */
- frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
-
- /* Breakpoints. */
- set_gdbarch_decr_pc_after_break (gdbarch, 4);
- set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
- set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
- set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
- set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
- set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
-
- /* Overlays. */
- set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
-
- return gdbarch;
-}
-
-void
-_initialize_spu_tdep (void)
-{
- register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
-
- /* Add ourselves to objfile event chain. */
- gdb::observers::new_objfile.attach (spu_overlay_new_objfile);
-
- /* Install spu stop-on-load handler. */
- gdb::observers::new_objfile.attach (spu_catch_start);
-
- /* Add ourselves to normal_stop event chain. */
- gdb::observers::normal_stop.attach (spu_attach_normal_stop);
-
- /* Add root prefix command for all "set spu"/"show spu" commands. */
- add_prefix_cmd ("spu", no_class, set_spu_command,
- _("Various SPU specific commands."),
- &setspucmdlist, "set spu ", 0, &setlist);
- add_prefix_cmd ("spu", no_class, show_spu_command,
- _("Various SPU specific commands."),
- &showspucmdlist, "show spu ", 0, &showlist);
-
- /* Toggle whether or not to add a temporary breakpoint at the "main"
- function of new SPE contexts. */
- add_setshow_boolean_cmd ("stop-on-load", class_support,
- &spu_stop_on_load_p, _("\
-Set whether to stop for new SPE threads."),
- _("\
-Show whether to stop for new SPE threads."),
- _("\
-Use \"on\" to give control to the user when a new SPE thread\n\
-enters its \"main\" function.\n\
-Use \"off\" to disable stopping for new SPE threads."),
- NULL,
- show_spu_stop_on_load,
- &setspucmdlist, &showspucmdlist);
-
- /* Toggle whether or not to automatically flush the software-managed
- cache whenever SPE execution stops. */
- add_setshow_boolean_cmd ("auto-flush-cache", class_support,
- &spu_auto_flush_cache_p, _("\
-Set whether to automatically flush the software-managed cache."),
- _("\
-Show whether to automatically flush the software-managed cache."),
- _("\
-Use \"on\" to automatically flush the software-managed cache\n\
-whenever SPE execution stops.\n\
-Use \"off\" to never automatically flush the software-managed cache."),
- NULL,
- show_spu_auto_flush_cache,
- &setspucmdlist, &showspucmdlist);
-
- /* Add root prefix command for all "info spu" commands. */
- add_prefix_cmd ("spu", class_info, info_spu_command,
- _("Various SPU specific commands."),
- &infospucmdlist, "info spu ", 0, &infolist);
-
- /* Add various "info spu" commands. */
- add_cmd ("event", class_info, info_spu_event_command,
- _("Display SPU event facility status."),
- &infospucmdlist);
- add_cmd ("signal", class_info, info_spu_signal_command,
- _("Display SPU signal notification facility status."),
- &infospucmdlist);
- add_cmd ("mailbox", class_info, info_spu_mailbox_command,
- _("Display SPU mailbox facility status."),
- &infospucmdlist);
- add_cmd ("dma", class_info, info_spu_dma_command,
- _("Display MFC DMA status."),
- &infospucmdlist);
- add_cmd ("proxydma", class_info, info_spu_proxydma_command,
- _("Display MFC Proxy-DMA status."),
- &infospucmdlist);
-}