diff options
author | Ulrich Weigand <uweigand@de.ibm.com> | 2006-11-22 13:49:53 +0000 |
---|---|---|
committer | Ulrich Weigand <uweigand@de.ibm.com> | 2006-11-22 13:49:53 +0000 |
commit | 771b4502d5e67d90e46529beb9e73ec37151828d (patch) | |
tree | 412025f292ae66f4a2a13bfcebfe3cf48e123107 /gdb/spu-tdep.c | |
parent | 0b2b0195d1b3b75d9fd0e5313466a0141790071d (diff) | |
download | gdb-771b4502d5e67d90e46529beb9e73ec37151828d.zip gdb-771b4502d5e67d90e46529beb9e73ec37151828d.tar.gz gdb-771b4502d5e67d90e46529beb9e73ec37151828d.tar.bz2 |
* config/powerpc/spu-linux.mh: New file.
* config/spu/spu.mt: New file.
* configure.ac: Provide gdb_native configuration variable.
* configure: Regenerate.
* configure.host: Support powerpc64 to spu 'pseudo-native' mode.
* configure.tgt: Add "spu" target_cpu and "spu*-*-*" target.
* Makefile.in (spu_tdep_h): New variable.
(ALLDEPFILES): Add spu-linux-nat.c and spu-tdep.c
(spu-linux-nat.o, spu-tdep.o): Add dependencies.
* spu-linux-nat.c: New file.
* spu-tdep.c: New file.
* spu-tdep.h: New file.
Diffstat (limited to 'gdb/spu-tdep.c')
-rw-r--r-- | gdb/spu-tdep.c | 1099 |
1 files changed, 1099 insertions, 0 deletions
diff --git a/gdb/spu-tdep.c b/gdb/spu-tdep.c new file mode 100644 index 0000000..ed88dd4 --- /dev/null +++ b/gdb/spu-tdep.c @@ -0,0 +1,1099 @@ +/* SPU target-dependent code for GDB, the GNU debugger. + Copyright (C) 2006 Free Software Foundation, Inc. + + Contributed by Ulrich Weigand <uweigand@de.ibm.com>. + Based on a port by Sid Manning <sid@us.ibm.com>. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, + Boston, MA 02110-1301, USA. */ + +#include "defs.h" +#include "arch-utils.h" +#include "gdbtypes.h" +#include "gdbcmd.h" +#include "gdbcore.h" +#include "gdb_string.h" +#include "gdb_assert.h" +#include "frame.h" +#include "frame-unwind.h" +#include "frame-base.h" +#include "trad-frame.h" +#include "symtab.h" +#include "symfile.h" +#include "value.h" +#include "inferior.h" +#include "dis-asm.h" +#include "objfiles.h" +#include "language.h" +#include "regcache.h" +#include "reggroups.h" +#include "floatformat.h" + +#include "spu-tdep.h" + + +/* Registers. */ + +static const char * +spu_register_name (int reg_nr) +{ + static char *register_names[] = + { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", + "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", + "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", + "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", + "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", + "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", + "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", + "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", + "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", + "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", + "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", + "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", + "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", + "id", "pc", "sp" + }; + + if (reg_nr < 0) + return NULL; + if (reg_nr >= sizeof register_names / sizeof *register_names) + return NULL; + + return register_names[reg_nr]; +} + +static struct type * +spu_register_type (struct gdbarch *gdbarch, int reg_nr) +{ + if (reg_nr < SPU_NUM_GPRS) + return builtin_type_vec128; + + switch (reg_nr) + { + case SPU_ID_REGNUM: + return builtin_type_uint32; + + case SPU_PC_REGNUM: + return builtin_type_void_func_ptr; + + case SPU_SP_REGNUM: + return builtin_type_void_data_ptr; + + default: + internal_error (__FILE__, __LINE__, "invalid regnum"); + } +} + +/* Pseudo registers for preferred slots - stack pointer. */ + +static void +spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, gdb_byte *buf) +{ + gdb_byte reg[16]; + + switch (regnum) + { + case SPU_SP_REGNUM: + regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); + memcpy (buf, reg, 4); + break; + + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } +} + +static void +spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, const gdb_byte *buf) +{ + gdb_byte reg[16]; + + switch (regnum) + { + case SPU_SP_REGNUM: + regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); + memcpy (reg, buf, 4); + regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg); + break; + + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } +} + +/* Value conversion -- access scalar values at the preferred slot. */ + +static int +spu_convert_register_p (int regno, struct type *type) +{ + return regno < SPU_NUM_GPRS && TYPE_LENGTH (type) < 16; +} + +static void +spu_register_to_value (struct frame_info *frame, int regnum, + struct type *valtype, gdb_byte *out) +{ + gdb_byte in[16]; + int len = TYPE_LENGTH (valtype); + int preferred_slot = len < 4 ? 4 - len : 0; + gdb_assert (len < 16); + + get_frame_register (frame, regnum, in); + memcpy (out, in + preferred_slot, len); +} + +static void +spu_value_to_register (struct frame_info *frame, int regnum, + struct type *valtype, const gdb_byte *in) +{ + gdb_byte out[16]; + int len = TYPE_LENGTH (valtype); + int preferred_slot = len < 4 ? 4 - len : 0; + gdb_assert (len < 16); + + memset (out, 0, 16); + memcpy (out + preferred_slot, in, len); + put_frame_register (frame, regnum, out); +} + +/* Register groups. */ + +static int +spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum, + struct reggroup *group) +{ + /* Registers displayed via 'info regs'. */ + if (group == general_reggroup) + return 1; + + /* Registers displayed via 'info float'. */ + if (group == float_reggroup) + return 0; + + /* Registers that need to be saved/restored in order to + push or pop frames. */ + if (group == save_reggroup || group == restore_reggroup) + return 1; + + return default_register_reggroup_p (gdbarch, regnum, group); +} + + +/* Decoding SPU instructions. */ + +enum + { + op_lqd = 0x34, + op_lqx = 0x3c4, + op_lqa = 0x61, + op_lqr = 0x67, + op_stqd = 0x24, + op_stqx = 0x144, + op_stqa = 0x41, + op_stqr = 0x47, + + op_il = 0x081, + op_ila = 0x21, + op_a = 0x0c0, + op_ai = 0x1c, + + op_selb = 0x4, + + op_br = 0x64, + op_bra = 0x60, + op_brsl = 0x66, + op_brasl = 0x62, + op_brnz = 0x42, + op_brz = 0x40, + op_brhnz = 0x46, + op_brhz = 0x44, + op_bi = 0x1a8, + op_bisl = 0x1a9, + op_biz = 0x128, + op_binz = 0x129, + op_bihz = 0x12a, + op_bihnz = 0x12b, + }; + +static int +is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb) +{ + if ((insn >> 21) == op) + { + *rt = insn & 127; + *ra = (insn >> 7) & 127; + *rb = (insn >> 14) & 127; + return 1; + } + + return 0; +} + +static int +is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc) +{ + if ((insn >> 28) == op) + { + *rt = (insn >> 21) & 127; + *ra = (insn >> 7) & 127; + *rb = (insn >> 14) & 127; + *rc = insn & 127; + return 1; + } + + return 0; +} + +static int +is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7) +{ + if ((insn >> 21) == op) + { + *rt = insn & 127; + *ra = (insn >> 7) & 127; + *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40; + return 1; + } + + return 0; +} + +static int +is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10) +{ + if ((insn >> 24) == op) + { + *rt = insn & 127; + *ra = (insn >> 7) & 127; + *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200; + return 1; + } + + return 0; +} + +static int +is_ri16 (unsigned int insn, int op, int *rt, int *i16) +{ + if ((insn >> 23) == op) + { + *rt = insn & 127; + *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000; + return 1; + } + + return 0; +} + +static int +is_ri18 (unsigned int insn, int op, int *rt, int *i18) +{ + if ((insn >> 25) == op) + { + *rt = insn & 127; + *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000; + return 1; + } + + return 0; +} + +static int +is_branch (unsigned int insn, int *offset, int *reg) +{ + int rt, i7, i16; + + if (is_ri16 (insn, op_br, &rt, &i16) + || is_ri16 (insn, op_brsl, &rt, &i16) + || is_ri16 (insn, op_brnz, &rt, &i16) + || is_ri16 (insn, op_brz, &rt, &i16) + || is_ri16 (insn, op_brhnz, &rt, &i16) + || is_ri16 (insn, op_brhz, &rt, &i16)) + { + *reg = SPU_PC_REGNUM; + *offset = i16 << 2; + return 1; + } + + if (is_ri16 (insn, op_bra, &rt, &i16) + || is_ri16 (insn, op_brasl, &rt, &i16)) + { + *reg = -1; + *offset = i16 << 2; + return 1; + } + + if (is_ri7 (insn, op_bi, &rt, reg, &i7) + || is_ri7 (insn, op_bisl, &rt, reg, &i7) + || is_ri7 (insn, op_biz, &rt, reg, &i7) + || is_ri7 (insn, op_binz, &rt, reg, &i7) + || is_ri7 (insn, op_bihz, &rt, reg, &i7) + || is_ri7 (insn, op_bihnz, &rt, reg, &i7)) + { + *offset = 0; + return 1; + } + + return 0; +} + + +/* Prolog parsing. */ + +struct spu_prologue_data + { + /* Stack frame size. -1 if analysis was unsuccessful. */ + int size; + + /* How to find the CFA. The CFA is equal to SP at function entry. */ + int cfa_reg; + int cfa_offset; + + /* Offset relative to CFA where a register is saved. -1 if invalid. */ + int reg_offset[SPU_NUM_GPRS]; + }; + +static CORE_ADDR +spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc, + struct spu_prologue_data *data) +{ + int found_sp = 0; + int found_fp = 0; + int found_lr = 0; + int reg_immed[SPU_NUM_GPRS]; + gdb_byte buf[16]; + CORE_ADDR prolog_pc = start_pc; + CORE_ADDR pc; + int i; + + + /* Initialize DATA to default values. */ + data->size = -1; + + data->cfa_reg = SPU_RAW_SP_REGNUM; + data->cfa_offset = 0; + + for (i = 0; i < SPU_NUM_GPRS; i++) + data->reg_offset[i] = -1; + + /* Set up REG_IMMED array. This is non-zero for a register if we know its + preferred slot currently holds this immediate value. */ + for (i = 0; i < SPU_NUM_GPRS; i++) + reg_immed[i] = 0; + + /* Scan instructions until the first branch. + + The following instructions are important prolog components: + + - The first instruction to set up the stack pointer. + - The first instruction to set up the frame pointer. + - The first instruction to save the link register. + + We return the instruction after the latest of these three, + or the incoming PC if none is found. The first instruction + to set up the stack pointer also defines the frame size. + + Note that instructions saving incoming arguments to their stack + slots are not counted as important, because they are hard to + identify with certainty. This should not matter much, because + arguments are relevant only in code compiled with debug data, + and in such code the GDB core will advance until the first source + line anyway, using SAL data. + + For purposes of stack unwinding, we analyze the following types + of instructions in addition: + + - Any instruction adding to the current frame pointer. + - Any instruction loading an immediate constant into a register. + - Any instruction storing a register onto the stack. + + These are used to compute the CFA and REG_OFFSET output. */ + + for (pc = start_pc; pc < end_pc; pc += 4) + { + unsigned int insn; + int rt, ra, rb, rc, immed; + + if (target_read_memory (pc, buf, 4)) + break; + insn = extract_unsigned_integer (buf, 4); + + /* AI is the typical instruction to set up a stack frame. + It is also used to initialize the frame pointer. */ + if (is_ri10 (insn, op_ai, &rt, &ra, &immed)) + { + if (rt == data->cfa_reg && ra == data->cfa_reg) + data->cfa_offset -= immed; + + if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM + && !found_sp) + { + found_sp = 1; + prolog_pc = pc + 4; + + data->size = -immed; + } + else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM + && !found_fp) + { + found_fp = 1; + prolog_pc = pc + 4; + + data->cfa_reg = SPU_FP_REGNUM; + data->cfa_offset -= immed; + } + } + + /* A is used to set up stack frames of size >= 512 bytes. + If we have tracked the contents of the addend register, + we can handle this as well. */ + else if (is_rr (insn, op_a, &rt, &ra, &rb)) + { + if (rt == data->cfa_reg && ra == data->cfa_reg) + { + if (reg_immed[rb] != 0) + data->cfa_offset -= reg_immed[rb]; + else + data->cfa_reg = -1; /* We don't know the CFA any more. */ + } + + if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM + && !found_sp) + { + found_sp = 1; + prolog_pc = pc + 4; + + if (reg_immed[rb] != 0) + data->size = -reg_immed[rb]; + } + } + + /* We need to track IL and ILA used to load immediate constants + in case they are later used as input to an A instruction. */ + else if (is_ri16 (insn, op_il, &rt, &immed)) + { + reg_immed[rt] = immed; + } + + else if (is_ri18 (insn, op_ila, &rt, &immed)) + { + reg_immed[rt] = immed & 0x3ffff; + } + + /* STQD is used to save registers to the stack. */ + else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed)) + { + if (ra == data->cfa_reg) + data->reg_offset[rt] = data->cfa_offset - (immed << 4); + + if (ra == data->cfa_reg && rt == SPU_LR_REGNUM + && !found_lr) + { + found_lr = 1; + prolog_pc = pc + 4; + } + } + + /* _start uses SELB to set up the stack pointer. */ + else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc)) + { + if (rt == SPU_RAW_SP_REGNUM && !found_sp) + found_sp = 1; + } + + /* We terminate if we find a branch. */ + else if (is_branch (insn, &immed, &ra)) + break; + } + + + /* If we successfully parsed until here, and didn't find any instruction + modifying SP, we assume we have a frameless function. */ + if (!found_sp) + data->size = 0; + + /* Return cooked instead of raw SP. */ + if (data->cfa_reg == SPU_RAW_SP_REGNUM) + data->cfa_reg = SPU_SP_REGNUM; + + return prolog_pc; +} + +/* Return the first instruction after the prologue starting at PC. */ +static CORE_ADDR +spu_skip_prologue (CORE_ADDR pc) +{ + struct spu_prologue_data data; + return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data); +} + +/* Return the frame pointer in use at address PC. */ +static void +spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset) +{ + struct spu_prologue_data data; + spu_analyze_prologue (pc, (CORE_ADDR)-1, &data); + + if (data.size != -1 && data.cfa_reg != -1) + { + /* The 'frame pointer' address is CFA minus frame size. */ + *reg = data.cfa_reg; + *offset = data.cfa_offset - data.size; + } + else + { + /* ??? We don't really know ... */ + *reg = SPU_SP_REGNUM; + *offset = 0; + } +} + +/* Normal stack frames. */ + +struct spu_unwind_cache +{ + CORE_ADDR func; + CORE_ADDR frame_base; + CORE_ADDR local_base; + + struct trad_frame_saved_reg *saved_regs; +}; + +static struct spu_unwind_cache * +spu_frame_unwind_cache (struct frame_info *next_frame, + void **this_prologue_cache) +{ + struct spu_unwind_cache *info; + struct spu_prologue_data data; + + if (*this_prologue_cache) + return *this_prologue_cache; + + info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (next_frame); + info->frame_base = 0; + info->local_base = 0; + + /* Find the start of the current function, and analyze its prologue. */ + info->func = frame_func_unwind (next_frame); + if (info->func == 0) + { + /* Fall back to using the current PC as frame ID. */ + info->func = frame_pc_unwind (next_frame); + data.size = -1; + } + else + spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data); + + + /* If successful, use prologue analysis data. */ + if (data.size != -1 && data.cfa_reg != -1) + { + CORE_ADDR cfa; + int i; + gdb_byte buf[16]; + + /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */ + frame_unwind_register (next_frame, data.cfa_reg, buf); + cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset; + + /* Call-saved register slots. */ + for (i = 0; i < SPU_NUM_GPRS; i++) + if (i == SPU_LR_REGNUM + || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM)) + if (data.reg_offset[i] != -1) + info->saved_regs[i].addr = cfa - data.reg_offset[i]; + + /* The previous PC comes from the link register. */ + if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM)) + info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM]; + else + info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM; + + /* The previous SP is equal to the CFA. */ + trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa); + + /* Frame bases. */ + info->frame_base = cfa; + info->local_base = cfa - data.size; + } + + /* Otherwise, fall back to reading the backchain link. */ + else + { + CORE_ADDR reg, backchain; + + /* Get the backchain. */ + reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); + backchain = read_memory_unsigned_integer (reg, 4); + + /* A zero backchain terminates the frame chain. Also, sanity + check against the local store size limit. */ + if (backchain != 0 && backchain < SPU_LS_SIZE) + { + /* Assume the link register is saved into its slot. */ + if (backchain + 16 < SPU_LS_SIZE) + info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16; + + /* This will also be the previous PC. */ + if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM)) + info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM]; + else + info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM; + + /* The previous SP will equal the backchain value. */ + trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain); + + /* Frame bases. */ + info->frame_base = backchain; + info->local_base = reg; + } + } + + return info; +} + +static void +spu_frame_this_id (struct frame_info *next_frame, + void **this_prologue_cache, struct frame_id *this_id) +{ + struct spu_unwind_cache *info = + spu_frame_unwind_cache (next_frame, this_prologue_cache); + + if (info->frame_base == 0) + return; + + *this_id = frame_id_build (info->frame_base, info->func); +} + +static void +spu_frame_prev_register (struct frame_info *next_frame, + void **this_prologue_cache, + int regnum, int *optimizedp, + enum lval_type *lvalp, CORE_ADDR * addrp, + int *realnump, gdb_byte *bufferp) +{ + struct spu_unwind_cache *info + = spu_frame_unwind_cache (next_frame, this_prologue_cache); + + /* Special-case the stack pointer. */ + if (regnum == SPU_RAW_SP_REGNUM) + regnum = SPU_SP_REGNUM; + + trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, + optimizedp, lvalp, addrp, realnump, bufferp); +} + +static const struct frame_unwind spu_frame_unwind = { + NORMAL_FRAME, + spu_frame_this_id, + spu_frame_prev_register +}; + +const struct frame_unwind * +spu_frame_sniffer (struct frame_info *next_frame) +{ + return &spu_frame_unwind; +} + +static CORE_ADDR +spu_frame_base_address (struct frame_info *next_frame, void **this_cache) +{ + struct spu_unwind_cache *info + = spu_frame_unwind_cache (next_frame, this_cache); + return info->local_base; +} + +static const struct frame_base spu_frame_base = { + &spu_frame_unwind, + spu_frame_base_address, + spu_frame_base_address, + spu_frame_base_address +}; + +static CORE_ADDR +spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM); +} + +static CORE_ADDR +spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); +} + + +/* Function calling convention. */ + +static int +spu_scalar_value_p (struct type *type) +{ + switch (TYPE_CODE (type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_ENUM: + case TYPE_CODE_RANGE: + case TYPE_CODE_CHAR: + case TYPE_CODE_BOOL: + case TYPE_CODE_PTR: + case TYPE_CODE_REF: + return TYPE_LENGTH (type) <= 16; + + default: + return 0; + } +} + +static void +spu_value_to_regcache (struct regcache *regcache, int regnum, + struct type *type, const gdb_byte *in) +{ + int len = TYPE_LENGTH (type); + + if (spu_scalar_value_p (type)) + { + int preferred_slot = len < 4 ? 4 - len : 0; + regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in); + } + else + { + while (len >= 16) + { + regcache_cooked_write (regcache, regnum++, in); + in += 16; + len -= 16; + } + + if (len > 0) + regcache_cooked_write_part (regcache, regnum, 0, len, in); + } +} + +static void +spu_regcache_to_value (struct regcache *regcache, int regnum, + struct type *type, gdb_byte *out) +{ + int len = TYPE_LENGTH (type); + + if (spu_scalar_value_p (type)) + { + int preferred_slot = len < 4 ? 4 - len : 0; + regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out); + } + else + { + while (len >= 16) + { + regcache_cooked_read (regcache, regnum++, out); + out += 16; + len -= 16; + } + + if (len > 0) + regcache_cooked_read_part (regcache, regnum, 0, len, out); + } +} + +static CORE_ADDR +spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, + int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ + int i; + int regnum = SPU_ARG1_REGNUM; + int stack_arg = -1; + gdb_byte buf[16]; + + /* Set the return address. */ + memset (buf, 0, sizeof buf); + store_unsigned_integer (buf, 4, bp_addr); + regcache_cooked_write (regcache, SPU_LR_REGNUM, buf); + + /* If STRUCT_RETURN is true, then the struct return address (in + STRUCT_ADDR) will consume the first argument-passing register. + Both adjust the register count and store that value. */ + if (struct_return) + { + memset (buf, 0, sizeof buf); + store_unsigned_integer (buf, 4, struct_addr); + regcache_cooked_write (regcache, regnum++, buf); + } + + /* Fill in argument registers. */ + for (i = 0; i < nargs; i++) + { + struct value *arg = args[i]; + struct type *type = check_typedef (value_type (arg)); + const gdb_byte *contents = value_contents (arg); + int len = TYPE_LENGTH (type); + int n_regs = align_up (len, 16) / 16; + + /* If the argument doesn't wholly fit into registers, it and + all subsequent arguments go to the stack. */ + if (regnum + n_regs - 1 > SPU_ARGN_REGNUM) + { + stack_arg = i; + break; + } + + spu_value_to_regcache (regcache, regnum, type, contents); + regnum += n_regs; + } + + /* Overflow arguments go to the stack. */ + if (stack_arg != -1) + { + CORE_ADDR ap; + + /* Allocate all required stack size. */ + for (i = stack_arg; i < nargs; i++) + { + struct type *type = check_typedef (value_type (args[i])); + sp -= align_up (TYPE_LENGTH (type), 16); + } + + /* Fill in stack arguments. */ + ap = sp; + for (i = stack_arg; i < nargs; i++) + { + struct value *arg = args[i]; + struct type *type = check_typedef (value_type (arg)); + int len = TYPE_LENGTH (type); + int preferred_slot; + + if (spu_scalar_value_p (type)) + preferred_slot = len < 4 ? 4 - len : 0; + else + preferred_slot = 0; + + target_write_memory (ap + preferred_slot, value_contents (arg), len); + ap += align_up (TYPE_LENGTH (type), 16); + } + } + + /* Allocate stack frame header. */ + sp -= 32; + + /* Finally, update the SP register. */ + regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp); + + return sp; +} + +static struct frame_id +spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_id_build (spu_unwind_sp (gdbarch, next_frame), + spu_unwind_pc (gdbarch, next_frame)); +} + +/* Function return value access. */ + +static enum return_value_convention +spu_return_value (struct gdbarch *gdbarch, struct type *type, + struct regcache *regcache, gdb_byte *out, const gdb_byte *in) +{ + enum return_value_convention rvc; + + if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16) + rvc = RETURN_VALUE_REGISTER_CONVENTION; + else + rvc = RETURN_VALUE_STRUCT_CONVENTION; + + if (in) + { + switch (rvc) + { + case RETURN_VALUE_REGISTER_CONVENTION: + spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in); + break; + + case RETURN_VALUE_STRUCT_CONVENTION: + error ("Cannot set function return value."); + break; + } + } + else if (out) + { + switch (rvc) + { + case RETURN_VALUE_REGISTER_CONVENTION: + spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out); + break; + + case RETURN_VALUE_STRUCT_CONVENTION: + error ("Function return value unknown."); + break; + } + } + + return rvc; +} + + +/* Breakpoints. */ + +static const gdb_byte * +spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) +{ + static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; + + *lenptr = sizeof breakpoint; + return breakpoint; +} + + +/* Software single-stepping support. */ + +void +spu_software_single_step (enum target_signal signal, int insert_breakpoints_p) +{ + if (insert_breakpoints_p) + { + CORE_ADDR pc, next_pc; + unsigned int insn; + int offset, reg; + gdb_byte buf[4]; + + regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf); + pc = extract_unsigned_integer (buf, 4); + + if (target_read_memory (pc, buf, 4)) + return; + insn = extract_unsigned_integer (buf, 4); + + /* Next sequential instruction is at PC + 4, except if the current + instruction is a PPE-assisted call, in which case it is at PC + 8. + Wrap around LS limit to be on the safe side. */ + if ((insn & 0xffffff00) == 0x00002100) + next_pc = (pc + 8) & (SPU_LS_SIZE - 1) & -4; + else + next_pc = (pc + 4) & (SPU_LS_SIZE - 1) & -4; + + insert_single_step_breakpoint (next_pc); + + if (is_branch (insn, &offset, ®)) + { + CORE_ADDR target = offset; + + if (reg == SPU_PC_REGNUM) + target += pc; + else if (reg != -1) + { + regcache_cooked_read_part (current_regcache, reg, 0, 4, buf); + target += extract_unsigned_integer (buf, 4); + } + + target = target & (SPU_LS_SIZE - 1) & -4; + if (target != next_pc) + insert_single_step_breakpoint (target); + } + } + else + remove_single_step_breakpoints (); +} + + +/* Set up gdbarch struct. */ + +static struct gdbarch * +spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + + /* Find a candidate among the list of pre-declared architectures. */ + arches = gdbarch_list_lookup_by_info (arches, &info); + if (arches != NULL) + return arches->gdbarch; + + /* Is is for us? */ + if (info.bfd_arch_info->mach != bfd_mach_spu) + return NULL; + + /* Yes, create a new architecture. */ + gdbarch = gdbarch_alloc (&info, NULL); + + /* Disassembler. */ + set_gdbarch_print_insn (gdbarch, print_insn_spu); + + /* Registers. */ + set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS); + set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS); + set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM); + set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM); + set_gdbarch_register_name (gdbarch, spu_register_name); + set_gdbarch_register_type (gdbarch, spu_register_type); + set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write); + set_gdbarch_convert_register_p (gdbarch, spu_convert_register_p); + set_gdbarch_register_to_value (gdbarch, spu_register_to_value); + set_gdbarch_value_to_register (gdbarch, spu_value_to_register); + set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p); + + /* Data types. */ + set_gdbarch_char_signed (gdbarch, 0); + set_gdbarch_ptr_bit (gdbarch, 32); + set_gdbarch_addr_bit (gdbarch, 32); + set_gdbarch_short_bit (gdbarch, 16); + set_gdbarch_int_bit (gdbarch, 32); + set_gdbarch_long_bit (gdbarch, 32); + set_gdbarch_long_long_bit (gdbarch, 64); + set_gdbarch_float_bit (gdbarch, 32); + set_gdbarch_double_bit (gdbarch, 64); + set_gdbarch_long_double_bit (gdbarch, 64); + set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); + set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big); + set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); + + /* Inferior function calls. */ + set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call); + set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id); + set_gdbarch_return_value (gdbarch, spu_return_value); + + /* Frame handling. */ + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer); + frame_base_set_default (gdbarch, &spu_frame_base); + set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp); + set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer); + set_gdbarch_frame_args_skip (gdbarch, 0); + set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue); + + /* Breakpoints. */ + set_gdbarch_decr_pc_after_break (gdbarch, 4); + set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc); + set_gdbarch_cannot_step_breakpoint (gdbarch, 1); + set_gdbarch_software_single_step (gdbarch, spu_software_single_step); + + return gdbarch; +} + +void +_initialize_spu_tdep (void) +{ + register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init); +} |