diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:34:07 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:34:07 +0000 |
commit | 071ea11e85eb9d529cc5eb3d35f6247466a21b99 (patch) | |
tree | 5deda65b8d7b04d1f4cbc534c3206d328e1267ec /gdb/sparc-tdep.c | |
parent | 1730ec6b1848f0f32154277f788fb29f88d8475b (diff) | |
download | gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.zip gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.gz gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.bz2 |
Initial creation of sourceware repository
Diffstat (limited to 'gdb/sparc-tdep.c')
-rw-r--r-- | gdb/sparc-tdep.c | 2074 |
1 files changed, 0 insertions, 2074 deletions
diff --git a/gdb/sparc-tdep.c b/gdb/sparc-tdep.c deleted file mode 100644 index 2ea0c1b..0000000 --- a/gdb/sparc-tdep.c +++ /dev/null @@ -1,2074 +0,0 @@ -/* Target-dependent code for the SPARC for GDB, the GNU debugger. - Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997 - Free Software Foundation, Inc. - -This file is part of GDB. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -/* ??? Support for calling functions from gdb in sparc64 is unfinished. */ - -#include "defs.h" -#include "frame.h" -#include "inferior.h" -#include "obstack.h" -#include "target.h" -#include "value.h" -#include "bfd.h" -#include "gdb_string.h" - -#ifdef USE_PROC_FS -#include <sys/procfs.h> -#endif - -#include "gdbcore.h" - -#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) -#define SPARC_HAS_FPU 0 -#else -#define SPARC_HAS_FPU 1 -#endif - -#ifdef GDB_TARGET_IS_SPARC64 -#define FP_REGISTER_BYTES (64 * 4) -#else -#define FP_REGISTER_BYTES (32 * 4) -#endif - -/* If not defined, assume 32 bit sparc. */ -#ifndef FP_MAX_REGNUM -#define FP_MAX_REGNUM (FP0_REGNUM + 32) -#endif - -#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) - -/* From infrun.c */ -extern int stop_after_trap; - -/* We don't store all registers immediately when requested, since they - get sent over in large chunks anyway. Instead, we accumulate most - of the changes and send them over once. "deferred_stores" keeps - track of which sets of registers we have locally-changed copies of, - so we only need send the groups that have changed. */ - -int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ - - -/* Fetch a single instruction. Even on bi-endian machines - such as sparc86x, instructions are always big-endian. */ - -static unsigned long -fetch_instruction (pc) - CORE_ADDR pc; -{ - unsigned long retval; - int i; - unsigned char buf[4]; - - read_memory (pc, buf, sizeof (buf)); - - /* Start at the most significant end of the integer, and work towards - the least significant. */ - retval = 0; - for (i = 0; i < sizeof (buf); ++i) - retval = (retval << 8) | buf[i]; - return retval; -} - - -/* Branches with prediction are treated like their non-predicting cousins. */ -/* FIXME: What about floating point branches? */ - -/* Macros to extract fields from sparc instructions. */ -#define X_OP(i) (((i) >> 30) & 0x3) -#define X_RD(i) (((i) >> 25) & 0x1f) -#define X_A(i) (((i) >> 29) & 1) -#define X_COND(i) (((i) >> 25) & 0xf) -#define X_OP2(i) (((i) >> 22) & 0x7) -#define X_IMM22(i) ((i) & 0x3fffff) -#define X_OP3(i) (((i) >> 19) & 0x3f) -#define X_RS1(i) (((i) >> 14) & 0x1f) -#define X_I(i) (((i) >> 13) & 1) -#define X_IMM13(i) ((i) & 0x1fff) -/* Sign extension macros. */ -#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) -#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) -#define X_CC(i) (((i) >> 20) & 3) -#define X_P(i) (((i) >> 19) & 1) -#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) -#define X_RCOND(i) (((i) >> 25) & 7) -#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) -#define X_FCN(i) (((i) >> 25) & 31) - -typedef enum -{ - Error, not_branch, bicc, bicca, ba, baa, ticc, ta, -#ifdef GDB_TARGET_IS_SPARC64 - done_retry -#endif -} branch_type; - -/* Simulate single-step ptrace call for sun4. Code written by Gary - Beihl (beihl@mcc.com). */ - -/* npc4 and next_pc describe the situation at the time that the - step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ -static CORE_ADDR next_pc, npc4, target; -static int brknpc4, brktrg; -typedef char binsn_quantum[BREAKPOINT_MAX]; -static binsn_quantum break_mem[3]; - -/* Non-zero if we just simulated a single-step ptrace call. This is - needed because we cannot remove the breakpoints in the inferior - process until after the `wait' in `wait_for_inferior'. Used for - sun4. */ - -int one_stepped; - -static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *)); - -/* single_step() is called just before we want to resume the inferior, - if we want to single-step it but there is no hardware or kernel single-step - support (as on all SPARCs). We find all the possible targets of the - coming instruction and breakpoint them. - - single_step is also called just after the inferior stops. If we had - set up a simulated single-step, we undo our damage. */ - -void -single_step (ignore) - enum target_signal ignore; /* pid, but we don't need it */ -{ - branch_type br; - CORE_ADDR pc; - long pc_instruction; - - if (!one_stepped) - { - /* Always set breakpoint for NPC. */ - next_pc = read_register (NPC_REGNUM); - npc4 = next_pc + 4; /* branch not taken */ - - target_insert_breakpoint (next_pc, break_mem[0]); - /* printf_unfiltered ("set break at %x\n",next_pc); */ - - pc = read_register (PC_REGNUM); - pc_instruction = fetch_instruction (pc); - br = isbranch (pc_instruction, pc, &target); - brknpc4 = brktrg = 0; - - if (br == bicca) - { - /* Conditional annulled branch will either end up at - npc (if taken) or at npc+4 (if not taken). - Trap npc+4. */ - brknpc4 = 1; - target_insert_breakpoint (npc4, break_mem[1]); - } - else if (br == baa && target != next_pc) - { - /* Unconditional annulled branch will always end up at - the target. */ - brktrg = 1; - target_insert_breakpoint (target, break_mem[2]); - } -#ifdef GDB_TARGET_IS_SPARC64 - else if (br == done_retry) - { - brktrg = 1; - target_insert_breakpoint (target, break_mem[2]); - } -#endif - - /* We are ready to let it go */ - one_stepped = 1; - return; - } - else - { - /* Remove breakpoints */ - target_remove_breakpoint (next_pc, break_mem[0]); - - if (brknpc4) - target_remove_breakpoint (npc4, break_mem[1]); - - if (brktrg) - target_remove_breakpoint (target, break_mem[2]); - - one_stepped = 0; - } -} - -/* Call this for each newly created frame. For SPARC, we need to calculate - the bottom of the frame, and do some extra work if the prologue - has been generated via the -mflat option to GCC. In particular, - we need to know where the previous fp and the pc have been stashed, - since their exact position within the frame may vary. */ - -void -sparc_init_extra_frame_info (fromleaf, fi) - int fromleaf; - struct frame_info *fi; -{ - char *name; - CORE_ADDR addr; - int insn; - - fi->bottom = - (fi->next ? - (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) : - read_sp ()); - - /* If fi->next is NULL, then we already set ->frame by passing read_fp() - to create_new_frame. */ - if (fi->next) - { - char buf[MAX_REGISTER_RAW_SIZE]; - - /* Compute ->frame as if not flat. If it is flat, we'll change - it later. */ - if (fi->next->next != NULL - && (fi->next->next->signal_handler_caller - || frame_in_dummy (fi->next->next)) - && frameless_look_for_prologue (fi->next)) - { - /* A frameless function interrupted by a signal did not change - the frame pointer, fix up frame pointer accordingly. */ - fi->frame = FRAME_FP (fi->next); - fi->bottom = fi->next->bottom; - } - else - { - /* Should we adjust for stack bias here? */ - get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); - fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); -#ifdef GDB_TARGET_IS_SPARC64 - if (fi->frame & 1) - fi->frame += 2047; -#endif - - } - } - - /* Decide whether this is a function with a ``flat register window'' - frame. For such functions, the frame pointer is actually in %i7. */ - fi->flat = 0; - if (find_pc_partial_function (fi->pc, &name, &addr, NULL)) - { - /* See if the function starts with an add (which will be of a - negative number if a flat frame) to the sp. FIXME: Does not - handle large frames which will need more than one instruction - to adjust the sp. */ - insn = fetch_instruction (addr); - if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 - && X_I (insn) && X_SIMM13 (insn) < 0) - { - int offset = X_SIMM13 (insn); - - /* Then look for a save of %i7 into the frame. */ - insn = fetch_instruction (addr + 4); - if (X_OP (insn) == 3 - && X_RD (insn) == 31 - && X_OP3 (insn) == 4 - && X_RS1 (insn) == 14) - { - char buf[MAX_REGISTER_RAW_SIZE]; - - /* We definitely have a flat frame now. */ - fi->flat = 1; - - fi->sp_offset = offset; - - /* Overwrite the frame's address with the value in %i7. */ - get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); - fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); -#ifdef GDB_TARGET_IS_SPARC64 - if (fi->frame & 1) - fi->frame += 2047; -#endif - /* Record where the fp got saved. */ - fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); - - /* Also try to collect where the pc got saved to. */ - fi->pc_addr = 0; - insn = fetch_instruction (addr + 12); - if (X_OP (insn) == 3 - && X_RD (insn) == 15 - && X_OP3 (insn) == 4 - && X_RS1 (insn) == 14) - fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); - } - } - } - if (fi->next && fi->frame == 0) - { - /* Kludge to cause init_prev_frame_info to destroy the new frame. */ - fi->frame = fi->next->frame; - fi->pc = fi->next->pc; - } -} - -CORE_ADDR -sparc_frame_chain (frame) - struct frame_info *frame; -{ - /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain - value. If it realy is zero, we detect it later in - sparc_init_prev_frame. */ - return (CORE_ADDR)1; -} - -CORE_ADDR -sparc_extract_struct_value_address (regbuf) - char regbuf[REGISTER_BYTES]; -{ -#ifdef GDB_TARGET_IS_SPARC64 - return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), - REGISTER_RAW_SIZE (O0_REGNUM)); -#else - CORE_ADDR sp = extract_address (®buf [REGISTER_BYTE (SP_REGNUM)], - REGISTER_RAW_SIZE (SP_REGNUM)); - return read_memory_integer (sp + (16 * SPARC_INTREG_SIZE), - TARGET_PTR_BIT / TARGET_CHAR_BIT); -#endif -} - -/* Find the pc saved in frame FRAME. */ - -CORE_ADDR -sparc_frame_saved_pc (frame) - struct frame_info *frame; -{ - char buf[MAX_REGISTER_RAW_SIZE]; - CORE_ADDR addr; - - if (frame->signal_handler_caller) - { - /* This is the signal trampoline frame. - Get the saved PC from the sigcontext structure. */ - -#ifndef SIGCONTEXT_PC_OFFSET -#define SIGCONTEXT_PC_OFFSET 12 -#endif - - CORE_ADDR sigcontext_addr; - char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; - int saved_pc_offset = SIGCONTEXT_PC_OFFSET; - char *name = NULL; - - /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext - as the third parameter. The offset to the saved pc is 12. */ - find_pc_partial_function (frame->pc, &name, - (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); - if (name && STREQ (name, "ucbsigvechandler")) - saved_pc_offset = 12; - - /* The sigcontext address is contained in register O2. */ - get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, - frame, O0_REGNUM + 2, (enum lval_type *)NULL); - sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); - - /* Don't cause a memory_error when accessing sigcontext in case the - stack layout has changed or the stack is corrupt. */ - target_read_memory (sigcontext_addr + saved_pc_offset, - scbuf, sizeof (scbuf)); - return extract_address (scbuf, sizeof (scbuf)); - } - else if (frame->next != NULL - && (frame->next->signal_handler_caller - || frame_in_dummy (frame->next)) - && frameless_look_for_prologue (frame)) - { - /* A frameless function interrupted by a signal did not save - the PC, it is still in %o7. */ - get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, - frame, O7_REGNUM, (enum lval_type *)NULL); - return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); - } - if (frame->flat) - addr = frame->pc_addr; - else - addr = frame->bottom + FRAME_SAVED_I0 + - SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); - - if (addr == 0) - /* A flat frame leaf function might not save the PC anywhere, - just leave it in %o7. */ - return PC_ADJUST (read_register (O7_REGNUM)); - - read_memory (addr, buf, SPARC_INTREG_SIZE); - return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); -} - -/* Since an individual frame in the frame cache is defined by two - arguments (a frame pointer and a stack pointer), we need two - arguments to get info for an arbitrary stack frame. This routine - takes two arguments and makes the cached frames look as if these - two arguments defined a frame on the cache. This allows the rest - of info frame to extract the important arguments without - difficulty. */ - -struct frame_info * -setup_arbitrary_frame (argc, argv) - int argc; - CORE_ADDR *argv; -{ - struct frame_info *frame; - - if (argc != 2) - error ("Sparc frame specifications require two arguments: fp and sp"); - - frame = create_new_frame (argv[0], 0); - - if (!frame) - fatal ("internal: create_new_frame returned invalid frame"); - - frame->bottom = argv[1]; - frame->pc = FRAME_SAVED_PC (frame); - return frame; -} - -/* Given a pc value, skip it forward past the function prologue by - disassembling instructions that appear to be a prologue. - - If FRAMELESS_P is set, we are only testing to see if the function - is frameless. This allows a quicker answer. - - This routine should be more specific in its actions; making sure - that it uses the same register in the initial prologue section. */ - -static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *, - struct frame_saved_regs *)); - -static CORE_ADDR -examine_prologue (start_pc, frameless_p, fi, saved_regs) - CORE_ADDR start_pc; - int frameless_p; - struct frame_info *fi; - struct frame_saved_regs *saved_regs; -{ - int insn; - int dest = -1; - CORE_ADDR pc = start_pc; - int is_flat = 0; - - insn = fetch_instruction (pc); - - /* Recognize the `sethi' insn and record its destination. */ - if (X_OP (insn) == 0 && X_OP2 (insn) == 4) - { - dest = X_RD (insn); - pc += 4; - insn = fetch_instruction (pc); - } - - /* Recognize an add immediate value to register to either %g1 or - the destination register recorded above. Actually, this might - well recognize several different arithmetic operations. - It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" - followed by "save %sp, %g1, %sp" is a valid prologue (Not that - I imagine any compiler really does that, however). */ - if (X_OP (insn) == 2 - && X_I (insn) - && (X_RD (insn) == 1 || X_RD (insn) == dest)) - { - pc += 4; - insn = fetch_instruction (pc); - } - - /* Recognize any SAVE insn. */ - if (X_OP (insn) == 2 && X_OP3 (insn) == 60) - { - pc += 4; - if (frameless_p) /* If the save is all we care about, */ - return pc; /* return before doing more work */ - insn = fetch_instruction (pc); - } - /* Recognize add to %sp. */ - else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) - { - pc += 4; - if (frameless_p) /* If the add is all we care about, */ - return pc; /* return before doing more work */ - is_flat = 1; - insn = fetch_instruction (pc); - /* Recognize store of frame pointer (i7). */ - if (X_OP (insn) == 3 - && X_RD (insn) == 31 - && X_OP3 (insn) == 4 - && X_RS1 (insn) == 14) - { - pc += 4; - insn = fetch_instruction (pc); - - /* Recognize sub %sp, <anything>, %i7. */ - if (X_OP (insn) == 2 - && X_OP3 (insn) == 4 - && X_RS1 (insn) == 14 - && X_RD (insn) == 31) - { - pc += 4; - insn = fetch_instruction (pc); - } - else - return pc; - } - else - return pc; - } - else - /* Without a save or add instruction, it's not a prologue. */ - return start_pc; - - while (1) - { - /* Recognize stores into the frame from the input registers. - This recognizes all non alternate stores of input register, - into a location offset from the frame pointer. */ - if ((X_OP (insn) == 3 - && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ - && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ - && X_I (insn) /* Immediate mode. */ - && X_RS1 (insn) == 30 /* Off of frame pointer. */ - /* Into reserved stack space. */ - && X_SIMM13 (insn) >= 0x44 - && X_SIMM13 (insn) < 0x5b)) - ; - else if (is_flat - && X_OP (insn) == 3 - && X_OP3 (insn) == 4 - && X_RS1 (insn) == 14 - ) - { - if (saved_regs && X_I (insn)) - saved_regs->regs[X_RD (insn)] = - fi->frame + fi->sp_offset + X_SIMM13 (insn); - } - else - break; - pc += 4; - insn = fetch_instruction (pc); - } - - return pc; -} - -CORE_ADDR -skip_prologue (start_pc, frameless_p) - CORE_ADDR start_pc; - int frameless_p; -{ - return examine_prologue (start_pc, frameless_p, NULL, NULL); -} - -/* Check instruction at ADDR to see if it is a branch. - All non-annulled instructions will go to NPC or will trap. - Set *TARGET if we find a candidate branch; set to zero if not. - - This isn't static as it's used by remote-sa.sparc.c. */ - -static branch_type -isbranch (instruction, addr, target) - long instruction; - CORE_ADDR addr, *target; -{ - branch_type val = not_branch; - long int offset = 0; /* Must be signed for sign-extend. */ - - *target = 0; - - if (X_OP (instruction) == 0 - && (X_OP2 (instruction) == 2 - || X_OP2 (instruction) == 6 - || X_OP2 (instruction) == 1 - || X_OP2 (instruction) == 3 - || X_OP2 (instruction) == 5 -#ifndef GDB_TARGET_IS_SPARC64 - || X_OP2 (instruction) == 7 -#endif - )) - { - if (X_COND (instruction) == 8) - val = X_A (instruction) ? baa : ba; - else - val = X_A (instruction) ? bicca : bicc; - switch (X_OP2 (instruction)) - { - case 2: - case 6: -#ifndef GDB_TARGET_IS_SPARC64 - case 7: -#endif - offset = 4 * X_DISP22 (instruction); - break; - case 1: - case 5: - offset = 4 * X_DISP19 (instruction); - break; - case 3: - offset = 4 * X_DISP16 (instruction); - break; - } - *target = addr + offset; - } -#ifdef GDB_TARGET_IS_SPARC64 - else if (X_OP (instruction) == 2 - && X_OP3 (instruction) == 62) - { - if (X_FCN (instruction) == 0) - { - /* done */ - *target = read_register (TNPC_REGNUM); - val = done_retry; - } - else if (X_FCN (instruction) == 1) - { - /* retry */ - *target = read_register (TPC_REGNUM); - val = done_retry; - } - } -#endif - - return val; -} - -/* Find register number REGNUM relative to FRAME and put its - (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable - was optimized out (and thus can't be fetched). If the variable - was fetched from memory, set *ADDRP to where it was fetched from, - otherwise it was fetched from a register. - - The argument RAW_BUFFER must point to aligned memory. */ - -void -get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) - char *raw_buffer; - int *optimized; - CORE_ADDR *addrp; - struct frame_info *frame; - int regnum; - enum lval_type *lval; -{ - struct frame_info *frame1; - CORE_ADDR addr; - - if (!target_has_registers) - error ("No registers."); - - if (optimized) - *optimized = 0; - - addr = 0; - - /* FIXME This code extracted from infcmd.c; should put elsewhere! */ - if (frame == NULL) - { - /* error ("No selected frame."); */ - if (!target_has_registers) - error ("The program has no registers now."); - if (selected_frame == NULL) - error ("No selected frame."); - /* Try to use selected frame */ - frame = get_prev_frame (selected_frame); - if (frame == 0) - error ("Cmd not meaningful in the outermost frame."); - } - - - frame1 = frame->next; - - /* Get saved PC from the frame info if not in innermost frame. */ - if (regnum == PC_REGNUM && frame1 != NULL) - { - if (lval != NULL) - *lval = not_lval; - if (raw_buffer != NULL) - { - /* Put it back in target format. */ - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); - } - if (addrp != NULL) - *addrp = 0; - return; - } - - while (frame1 != NULL) - { - if (frame1->pc >= (frame1->bottom ? frame1->bottom : - read_sp ()) - && frame1->pc <= FRAME_FP (frame1)) - { - /* Dummy frame. All but the window regs are in there somewhere. - The window registers are saved on the stack, just like in a - normal frame. */ - if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) - addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE - - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); - else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) - addr = (frame1->prev->bottom - + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_I0); - else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) - addr = (frame1->prev->bottom - + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_L0); - else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) - addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE - - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); -#ifdef FP0_REGNUM - else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) - addr = frame1->frame + (regnum - FP0_REGNUM) * 4 - - (FP_REGISTER_BYTES); -#ifdef GDB_TARGET_IS_SPARC64 - else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) - addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 - - (FP_REGISTER_BYTES); -#endif -#endif /* FP0_REGNUM */ - else if (regnum >= Y_REGNUM && regnum < NUM_REGS) - addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE - - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); - } - else if (frame1->flat) - { - - if (regnum == RP_REGNUM) - addr = frame1->pc_addr; - else if (regnum == I7_REGNUM) - addr = frame1->fp_addr; - else - { - CORE_ADDR func_start; - struct frame_saved_regs regs; - memset (®s, 0, sizeof (regs)); - - find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); - examine_prologue (func_start, 0, frame1, ®s); - addr = regs.regs[regnum]; - } - } - else - { - /* Normal frame. Local and In registers are saved on stack. */ - if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) - addr = (frame1->prev->bottom - + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_I0); - else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) - addr = (frame1->prev->bottom - + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_L0); - else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) - { - /* Outs become ins. */ - get_saved_register (raw_buffer, optimized, addrp, frame1, - (regnum - O0_REGNUM + I0_REGNUM), lval); - return; - } - } - if (addr != 0) - break; - frame1 = frame1->next; - } - if (addr != 0) - { - if (lval != NULL) - *lval = lval_memory; - if (regnum == SP_REGNUM) - { - if (raw_buffer != NULL) - { - /* Put it back in target format. */ - store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); - } - if (addrp != NULL) - *addrp = 0; - return; - } - if (raw_buffer != NULL) - read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); - } - else - { - if (lval != NULL) - *lval = lval_register; - addr = REGISTER_BYTE (regnum); - if (raw_buffer != NULL) - read_register_gen (regnum, raw_buffer); - } - if (addrp != NULL) - *addrp = addr; -} - -/* Push an empty stack frame, and record in it the current PC, regs, etc. - - We save the non-windowed registers and the ins. The locals and outs - are new; they don't need to be saved. The i's and l's of - the last frame were already saved on the stack. */ - -/* Definitely see tm-sparc.h for more doc of the frame format here. */ - -#ifdef GDB_TARGET_IS_SPARC64 -#define DUMMY_REG_SAVE_OFFSET (128 + 16) -#else -#define DUMMY_REG_SAVE_OFFSET 0x60 -#endif - -/* See tm-sparc.h for how this is calculated. */ -#ifdef FP0_REGNUM -#define DUMMY_STACK_REG_BUF_SIZE \ -(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) -#else -#define DUMMY_STACK_REG_BUF_SIZE \ -(((8+8+8) * SPARC_INTREG_SIZE) ) -#endif /* FP0_REGNUM */ -#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) - -void -sparc_push_dummy_frame () -{ - CORE_ADDR sp, old_sp; - char register_temp[DUMMY_STACK_SIZE]; - - old_sp = sp = read_sp (); - -#ifdef GDB_TARGET_IS_SPARC64 - /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ - read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0], - REGISTER_RAW_SIZE (PC_REGNUM) * 7); - read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), ®ister_temp[8], - REGISTER_RAW_SIZE (PSTATE_REGNUM)); - /* FIXME: not sure what needs to be saved here. */ -#else - /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ - read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], - REGISTER_RAW_SIZE (Y_REGNUM) * 8); -#endif - - read_register_bytes (REGISTER_BYTE (O0_REGNUM), - ®ister_temp[8 * SPARC_INTREG_SIZE], - SPARC_INTREG_SIZE * 8); - - read_register_bytes (REGISTER_BYTE (G0_REGNUM), - ®ister_temp[16 * SPARC_INTREG_SIZE], - SPARC_INTREG_SIZE * 8); - -#ifdef FP0_REGNUM - read_register_bytes (REGISTER_BYTE (FP0_REGNUM), - ®ister_temp[24 * SPARC_INTREG_SIZE], - FP_REGISTER_BYTES); -#endif /* FP0_REGNUM */ - - sp -= DUMMY_STACK_SIZE; - - write_sp (sp); - - write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], - DUMMY_STACK_REG_BUF_SIZE); - - if (strcmp (target_shortname, "sim") != 0) - { - write_fp (old_sp); - - /* Set return address register for the call dummy to the current PC. */ - write_register (I7_REGNUM, read_pc() - 8); - } - else - { - /* The call dummy will write this value to FP before executing - the 'save'. This ensures that register window flushes work - correctly in the simulator. */ - write_register (G0_REGNUM+1, read_register (FP_REGNUM)); - - /* The call dummy will write this value to FP after executing - the 'save'. */ - write_register (G0_REGNUM+2, old_sp); - - /* The call dummy will write this value to the return address (%i7) after - executing the 'save'. */ - write_register (G0_REGNUM+3, read_pc() - 8); - - /* Set the FP that the call dummy will be using after the 'save'. - This makes backtraces from an inferior function call work properly. */ - write_register (FP_REGNUM, old_sp); - } -} - -/* sparc_frame_find_saved_regs (). This function is here only because - pop_frame uses it. Note there is an interesting corner case which - I think few ports of GDB get right--if you are popping a frame - which does not save some register that *is* saved by a more inner - frame (such a frame will never be a dummy frame because dummy - frames save all registers). Rewriting pop_frame to use - get_saved_register would solve this problem and also get rid of the - ugly duplication between sparc_frame_find_saved_regs and - get_saved_register. - - Stores, into a struct frame_saved_regs, - the addresses of the saved registers of frame described by FRAME_INFO. - This includes special registers such as pc and fp saved in special - ways in the stack frame. sp is even more special: - the address we return for it IS the sp for the next frame. - - Note that on register window machines, we are currently making the - assumption that window registers are being saved somewhere in the - frame in which they are being used. If they are stored in an - inferior frame, find_saved_register will break. - - On the Sun 4, the only time all registers are saved is when - a dummy frame is involved. Otherwise, the only saved registers - are the LOCAL and IN registers which are saved as a result - of the "save/restore" opcodes. This condition is determined - by address rather than by value. - - The "pc" is not stored in a frame on the SPARC. (What is stored - is a return address minus 8.) sparc_pop_frame knows how to - deal with that. Other routines might or might not. - - See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information - about how this works. */ - -static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *, - struct frame_saved_regs *)); - -static void -sparc_frame_find_saved_regs (fi, saved_regs_addr) - struct frame_info *fi; - struct frame_saved_regs *saved_regs_addr; -{ - register int regnum; - CORE_ADDR frame_addr = FRAME_FP (fi); - - if (!fi) - fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); - - memset (saved_regs_addr, 0, sizeof (*saved_regs_addr)); - - if (fi->pc >= (fi->bottom ? fi->bottom : - read_sp ()) - && fi->pc <= FRAME_FP(fi)) - { - /* Dummy frame. All but the window regs are in there somewhere. */ - for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) - saved_regs_addr->regs[regnum] = - frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE - - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; - for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = - frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE - - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; -#ifdef FP0_REGNUM - for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) - saved_regs_addr->regs[regnum] = - frame_addr + (regnum - FP0_REGNUM) * 4 - - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; -#ifdef GDB_TARGET_IS_SPARC64 - for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++) - saved_regs_addr->regs[regnum] = - frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4 - - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; -#endif -#endif /* FP0_REGNUM */ -#ifdef GDB_TARGET_IS_SPARC64 - for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) - { - saved_regs_addr->regs[regnum] = - frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE - - DUMMY_STACK_REG_BUF_SIZE; - } - saved_regs_addr->regs[PSTATE_REGNUM] = - frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; -#else - for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) - saved_regs_addr->regs[regnum] = - frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE - - DUMMY_STACK_REG_BUF_SIZE; -#endif - frame_addr = fi->bottom ? - fi->bottom : read_sp (); - } - else if (fi->flat) - { - CORE_ADDR func_start; - find_pc_partial_function (fi->pc, NULL, &func_start, NULL); - examine_prologue (func_start, 0, fi, saved_regs_addr); - - /* Flat register window frame. */ - saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr; - saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr; - } - else - { - /* Normal frame. Just Local and In registers */ - frame_addr = fi->bottom ? - fi->bottom : read_sp (); - for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = - (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_L0); - for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = - (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_I0); - } - if (fi->next) - { - if (fi->flat) - { - saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr; - } - else - { - /* Pull off either the next frame pointer or the stack pointer */ - CORE_ADDR next_next_frame_addr = - (fi->next->bottom ? - fi->next->bottom : - read_sp ()); - for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = - (next_next_frame_addr - + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE - + FRAME_SAVED_I0); - } - } - /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ - /* FIXME -- should this adjust for the sparc64 offset? */ - saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); -} - -/* Discard from the stack the innermost frame, restoring all saved registers. - - Note that the values stored in fsr by get_frame_saved_regs are *in - the context of the called frame*. What this means is that the i - regs of fsr must be restored into the o regs of the (calling) frame that - we pop into. We don't care about the output regs of the calling frame, - since unless it's a dummy frame, it won't have any output regs in it. - - We never have to bother with %l (local) regs, since the called routine's - locals get tossed, and the calling routine's locals are already saved - on its stack. */ - -/* Definitely see tm-sparc.h for more doc of the frame format here. */ - -void -sparc_pop_frame () -{ - register struct frame_info *frame = get_current_frame (); - register CORE_ADDR pc; - struct frame_saved_regs fsr; - char raw_buffer[REGISTER_BYTES]; - int regnum; - - sparc_frame_find_saved_regs (frame, &fsr); -#ifdef FP0_REGNUM - if (fsr.regs[FP0_REGNUM]) - { - read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); - write_register_bytes (REGISTER_BYTE (FP0_REGNUM), - raw_buffer, FP_REGISTER_BYTES); - } -#ifndef GDB_TARGET_IS_SPARC64 - if (fsr.regs[FPS_REGNUM]) - { - read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4); - write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4); - } - if (fsr.regs[CPS_REGNUM]) - { - read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4); - write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4); - } -#endif -#endif /* FP0_REGNUM */ - if (fsr.regs[G1_REGNUM]) - { - read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); - write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, - 7 * SPARC_INTREG_SIZE); - } - - if (frame->flat) - { - /* Each register might or might not have been saved, need to test - individually. */ - for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) - if (fsr.regs[regnum]) - write_register (regnum, read_memory_integer (fsr.regs[regnum], - SPARC_INTREG_SIZE)); - for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) - if (fsr.regs[regnum]) - write_register (regnum, read_memory_integer (fsr.regs[regnum], - SPARC_INTREG_SIZE)); - - /* Handle all outs except stack pointer (o0-o5; o7). */ - for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) - if (fsr.regs[regnum]) - write_register (regnum, read_memory_integer (fsr.regs[regnum], - SPARC_INTREG_SIZE)); - if (fsr.regs[O0_REGNUM + 7]) - write_register (O0_REGNUM + 7, - read_memory_integer (fsr.regs[O0_REGNUM + 7], - SPARC_INTREG_SIZE)); - - write_sp (frame->frame); - } - else if (fsr.regs[I0_REGNUM]) - { - CORE_ADDR sp; - - char reg_temp[REGISTER_BYTES]; - - read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); - - /* Get the ins and locals which we are about to restore. Just - moving the stack pointer is all that is really needed, except - store_inferior_registers is then going to write the ins and - locals from the registers array, so we need to muck with the - registers array. */ - sp = fsr.regs[SP_REGNUM]; -#ifdef GDB_TARGET_IS_SPARC64 - if (sp & 1) - sp += 2047; -#endif - read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); - - /* Restore the out registers. - Among other things this writes the new stack pointer. */ - write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, - SPARC_INTREG_SIZE * 8); - - write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, - SPARC_INTREG_SIZE * 16); - } -#ifndef GDB_TARGET_IS_SPARC64 - if (fsr.regs[PS_REGNUM]) - write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); -#endif - if (fsr.regs[Y_REGNUM]) - write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM))); - if (fsr.regs[PC_REGNUM]) - { - /* Explicitly specified PC (and maybe NPC) -- just restore them. */ - write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], - REGISTER_RAW_SIZE (PC_REGNUM))); - if (fsr.regs[NPC_REGNUM]) - write_register (NPC_REGNUM, - read_memory_integer (fsr.regs[NPC_REGNUM], - REGISTER_RAW_SIZE (NPC_REGNUM))); - } - else if (frame->flat) - { - if (frame->pc_addr) - pc = PC_ADJUST ((CORE_ADDR) - read_memory_integer (frame->pc_addr, - REGISTER_RAW_SIZE (PC_REGNUM))); - else - { - /* I think this happens only in the innermost frame, if so then - it is a complicated way of saying - "pc = read_register (O7_REGNUM);". */ - char buf[MAX_REGISTER_RAW_SIZE]; - get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); - pc = PC_ADJUST (extract_address - (buf, REGISTER_RAW_SIZE (O7_REGNUM))); - } - - write_register (PC_REGNUM, pc); - write_register (NPC_REGNUM, pc + 4); - } - else if (fsr.regs[I7_REGNUM]) - { - /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ - pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM], - SPARC_INTREG_SIZE)); - write_register (PC_REGNUM, pc); - write_register (NPC_REGNUM, pc + 4); - } - flush_cached_frames (); -} - -/* On the Sun 4 under SunOS, the compile will leave a fake insn which - encodes the structure size being returned. If we detect such - a fake insn, step past it. */ - -CORE_ADDR -sparc_pc_adjust(pc) - CORE_ADDR pc; -{ - unsigned long insn; - char buf[4]; - int err; - - err = target_read_memory (pc + 8, buf, 4); - insn = extract_unsigned_integer (buf, 4); - if ((err == 0) && (insn & 0xffc00000) == 0) - return pc+12; - else - return pc+8; -} - -/* If pc is in a shared library trampoline, return its target. - The SunOs 4.x linker rewrites the jump table entries for PIC - compiled modules in the main executable to bypass the dynamic linker - with jumps of the form - sethi %hi(addr),%g1 - jmp %g1+%lo(addr) - and removes the corresponding jump table relocation entry in the - dynamic relocations. - find_solib_trampoline_target relies on the presence of the jump - table relocation entry, so we have to detect these jump instructions - by hand. */ - -CORE_ADDR -sunos4_skip_trampoline_code (pc) - CORE_ADDR pc; -{ - unsigned long insn1; - char buf[4]; - int err; - - err = target_read_memory (pc, buf, 4); - insn1 = extract_unsigned_integer (buf, 4); - if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) - { - unsigned long insn2; - - err = target_read_memory (pc + 4, buf, 4); - insn2 = extract_unsigned_integer (buf, 4); - if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) - { - CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; - int delta = insn2 & 0x1fff; - - /* Sign extend the displacement. */ - if (delta & 0x1000) - delta |= ~0x1fff; - return target_pc + delta; - } - } - return find_solib_trampoline_target (pc); -} - -#ifdef USE_PROC_FS /* Target dependent support for /proc */ - -/* The /proc interface divides the target machine's register set up into - two different sets, the general register set (gregset) and the floating - point register set (fpregset). For each set, there is an ioctl to get - the current register set and another ioctl to set the current values. - - The actual structure passed through the ioctl interface is, of course, - naturally machine dependent, and is different for each set of registers. - For the sparc for example, the general register set is typically defined - by: - - typedef int gregset_t[38]; - - #define R_G0 0 - ... - #define R_TBR 37 - - and the floating point set by: - - typedef struct prfpregset { - union { - u_long pr_regs[32]; - double pr_dregs[16]; - } pr_fr; - void * pr_filler; - u_long pr_fsr; - u_char pr_qcnt; - u_char pr_q_entrysize; - u_char pr_en; - u_long pr_q[64]; - } prfpregset_t; - - These routines provide the packing and unpacking of gregset_t and - fpregset_t formatted data. - - */ - -/* Given a pointer to a general register set in /proc format (gregset_t *), - unpack the register contents and supply them as gdb's idea of the current - register values. */ - -void -supply_gregset (gregsetp) -prgregset_t *gregsetp; -{ - register int regi; - register prgreg_t *regp = (prgreg_t *) gregsetp; - static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; - - /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ - for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++) - { - supply_register (regi, (char *) (regp + regi)); - } - - /* These require a bit more care. */ - supply_register (PS_REGNUM, (char *) (regp + R_PS)); - supply_register (PC_REGNUM, (char *) (regp + R_PC)); - supply_register (NPC_REGNUM,(char *) (regp + R_nPC)); - supply_register (Y_REGNUM, (char *) (regp + R_Y)); - - /* Fill inaccessible registers with zero. */ - supply_register (WIM_REGNUM, zerobuf); - supply_register (TBR_REGNUM, zerobuf); - supply_register (CPS_REGNUM, zerobuf); -} - -void -fill_gregset (gregsetp, regno) -prgregset_t *gregsetp; -int regno; -{ - int regi; - register prgreg_t *regp = (prgreg_t *) gregsetp; - - for (regi = 0 ; regi <= R_I7 ; regi++) - { - if ((regno == -1) || (regno == regi)) - { - *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; - } - } - if ((regno == -1) || (regno == PS_REGNUM)) - { - *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; - } - if ((regno == -1) || (regno == PC_REGNUM)) - { - *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; - } - if ((regno == -1) || (regno == NPC_REGNUM)) - { - *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)]; - } - if ((regno == -1) || (regno == Y_REGNUM)) - { - *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)]; - } -} - -#if defined (FP0_REGNUM) - -/* Given a pointer to a floating point register set in /proc format - (fpregset_t *), unpack the register contents and supply them as gdb's - idea of the current floating point register values. */ - -void -supply_fpregset (fpregsetp) -prfpregset_t *fpregsetp; -{ - register int regi; - char *from; - - for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) - { - from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; - supply_register (regi, from); - } - supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); -} - -/* Given a pointer to a floating point register set in /proc format - (fpregset_t *), update the register specified by REGNO from gdb's idea - of the current floating point register set. If REGNO is -1, update - them all. */ -/* ??? This will probably need some changes for sparc64. */ - -void -fill_fpregset (fpregsetp, regno) -prfpregset_t *fpregsetp; -int regno; -{ - int regi; - char *to; - char *from; - - for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) - { - if ((regno == -1) || (regno == regi)) - { - from = (char *) ®isters[REGISTER_BYTE (regi)]; - to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; - memcpy (to, from, REGISTER_RAW_SIZE (regi)); - } - } - if ((regno == -1) || (regno == FPS_REGNUM)) - { - fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; - } -} - -#endif /* defined (FP0_REGNUM) */ - -#endif /* USE_PROC_FS */ - - -#ifdef GET_LONGJMP_TARGET - -/* Figure out where the longjmp will land. We expect that we have just entered - longjmp and haven't yet setup the stack frame, so the args are still in the - output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we - extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. - This routine returns true on success */ - -int -get_longjmp_target (pc) - CORE_ADDR *pc; -{ - CORE_ADDR jb_addr; -#define LONGJMP_TARGET_SIZE 4 - char buf[LONGJMP_TARGET_SIZE]; - - jb_addr = read_register (O0_REGNUM); - - if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, - LONGJMP_TARGET_SIZE)) - return 0; - - *pc = extract_address (buf, LONGJMP_TARGET_SIZE); - - return 1; -} -#endif /* GET_LONGJMP_TARGET */ - -#ifdef STATIC_TRANSFORM_NAME -/* SunPRO (3.0 at least), encodes the static variables. This is not - related to C++ mangling, it is done for C too. */ - -char * -sunpro_static_transform_name (name) - char *name; -{ - char *p; - if (name[0] == '$') - { - /* For file-local statics there will be a dollar sign, a bunch - of junk (the contents of which match a string given in the - N_OPT), a period and the name. For function-local statics - there will be a bunch of junk (which seems to change the - second character from 'A' to 'B'), a period, the name of the - function, and the name. So just skip everything before the - last period. */ - p = strrchr (name, '.'); - if (p != NULL) - name = p + 1; - } - return name; -} -#endif /* STATIC_TRANSFORM_NAME */ - - -/* Utilities for printing registers. - Page numbers refer to the SPARC Architecture Manual. */ - -static void dump_ccreg PARAMS ((char *, int)); - -static void -dump_ccreg (reg, val) - char *reg; - int val; -{ - /* page 41 */ - printf_unfiltered ("%s:%s,%s,%s,%s", reg, - val & 8 ? "N" : "NN", - val & 4 ? "Z" : "NZ", - val & 2 ? "O" : "NO", - val & 1 ? "C" : "NC" - ); -} - -static char * -decode_asi (val) - int val; -{ - /* page 72 */ - switch (val) - { - case 4 : return "ASI_NUCLEUS"; - case 0x0c : return "ASI_NUCLEUS_LITTLE"; - case 0x10 : return "ASI_AS_IF_USER_PRIMARY"; - case 0x11 : return "ASI_AS_IF_USER_SECONDARY"; - case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE"; - case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE"; - case 0x80 : return "ASI_PRIMARY"; - case 0x81 : return "ASI_SECONDARY"; - case 0x82 : return "ASI_PRIMARY_NOFAULT"; - case 0x83 : return "ASI_SECONDARY_NOFAULT"; - case 0x88 : return "ASI_PRIMARY_LITTLE"; - case 0x89 : return "ASI_SECONDARY_LITTLE"; - case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE"; - case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE"; - default : return NULL; - } -} - -/* PRINT_REGISTER_HOOK routine. - Pretty print various registers. */ -/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ - -void -sparc_print_register_hook (regno) - int regno; -{ - ULONGEST val; - - /* Handle double/quad versions of lower 32 fp regs. */ - if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 - && (regno & 1) == 0) - { - char value[16]; - - if (!read_relative_register_raw_bytes (regno, value) - && !read_relative_register_raw_bytes (regno + 1, value + 4)) - { - printf_unfiltered ("\t"); - print_floating (value, builtin_type_double, gdb_stdout); - } -#if 0 /* FIXME: gdb doesn't handle long doubles */ - if ((regno & 3) == 0) - { - if (!read_relative_register_raw_bytes (regno + 2, value + 8) - && !read_relative_register_raw_bytes (regno + 3, value + 12)) - { - printf_unfiltered ("\t"); - print_floating (value, builtin_type_long_double, gdb_stdout); - } - } -#endif - return; - } - -#if 0 /* FIXME: gdb doesn't handle long doubles */ - /* Print upper fp regs as long double if appropriate. */ - if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM - /* We test for even numbered regs and not a multiple of 4 because - the upper fp regs are recorded as doubles. */ - && (regno & 1) == 0) - { - char value[16]; - - if (!read_relative_register_raw_bytes (regno, value) - && !read_relative_register_raw_bytes (regno + 1, value + 8)) - { - printf_unfiltered ("\t"); - print_floating (value, builtin_type_long_double, gdb_stdout); - } - return; - } -#endif - - /* FIXME: Some of these are priviledged registers. - Not sure how they should be handled. */ - -#define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) - - val = read_register (regno); - - /* pages 40 - 60 */ - switch (regno) - { -#ifdef GDB_TARGET_IS_SPARC64 - case CCR_REGNUM : - printf_unfiltered("\t"); - dump_ccreg ("xcc", val >> 4); - printf_unfiltered(", "); - dump_ccreg ("icc", val & 15); - break; - case FPRS_REGNUM : - printf ("\tfef:%d, du:%d, dl:%d", - BITS (2, 1), BITS (1, 1), BITS (0, 1)); - break; - case FSR_REGNUM : - { - static char *fcc[4] = { "=", "<", ">", "?" }; - static char *rd[4] = { "N", "0", "+", "-" }; - /* Long, yes, but I'd rather leave it as is and use a wide screen. */ - printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", - fcc[BITS (10, 3)], fcc[BITS (32, 3)], - fcc[BITS (34, 3)], fcc[BITS (36, 3)], - rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), - BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31)); - break; - } - case ASI_REGNUM : - { - char *asi = decode_asi (val); - if (asi != NULL) - printf ("\t%s", asi); - break; - } - case VER_REGNUM : - printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", - BITS (48, 0xffff), BITS (32, 0xffff), - BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); - break; - case PSTATE_REGNUM : - { - static char *mm[4] = { "tso", "pso", "rso", "?" }; - printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d", - BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1), - BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1), - BITS (0, 1)); - break; - } - case TSTATE_REGNUM : - /* FIXME: print all 4? */ - break; - case TT_REGNUM : - /* FIXME: print all 4? */ - break; - case TPC_REGNUM : - /* FIXME: print all 4? */ - break; - case TNPC_REGNUM : - /* FIXME: print all 4? */ - break; - case WSTATE_REGNUM : - printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); - break; - case CWP_REGNUM : - printf ("\t%d", BITS (0, 31)); - break; - case CANSAVE_REGNUM : - printf ("\t%-2d before spill", BITS (0, 31)); - break; - case CANRESTORE_REGNUM : - printf ("\t%-2d before fill", BITS (0, 31)); - break; - case CLEANWIN_REGNUM : - printf ("\t%-2d before clean", BITS (0, 31)); - break; - case OTHERWIN_REGNUM : - printf ("\t%d", BITS (0, 31)); - break; -#else - case PS_REGNUM: - printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", - BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', - BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', - BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), - BITS (0, 31)); - break; - case FPS_REGNUM: - { - static char *fcc[4] = { "=", "<", ">", "?" }; - static char *rd[4] = { "N", "0", "+", "-" }; - /* Long, yes, but I'd rather leave it as is and use a wide screen. */ - printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " - "fcc:%s, aexc:%d, cexc:%d", - rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), - BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), - BITS (0, 31)); - break; - } - -#endif /* GDB_TARGET_IS_SPARC64 */ - } - -#undef BITS -} - -int -gdb_print_insn_sparc (memaddr, info) - bfd_vma memaddr; - disassemble_info *info; -{ - /* It's necessary to override mach again because print_insn messes it up. */ - info->mach = TM_PRINT_INSN_MACH; - return print_insn_sparc (memaddr, info); -} - -/* The SPARC passes the arguments on the stack; arguments smaller - than an int are promoted to an int. */ - -CORE_ADDR -sparc_push_arguments (nargs, args, sp, struct_return, struct_addr) - int nargs; - value_ptr *args; - CORE_ADDR sp; - int struct_return; - CORE_ADDR struct_addr; -{ - int i; - int accumulate_size = 0; - struct sparc_arg - { - char *contents; - int len; - int offset; - }; - struct sparc_arg *sparc_args = - (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg)); - struct sparc_arg *m_arg; - - /* Promote arguments if necessary, and calculate their stack offsets - and sizes. */ - for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) - { - value_ptr arg = args[i]; - struct type *arg_type = check_typedef (VALUE_TYPE (arg)); - /* Cast argument to long if necessary as the compiler does it too. */ - switch (TYPE_CODE (arg_type)) - { - case TYPE_CODE_INT: - case TYPE_CODE_BOOL: - case TYPE_CODE_CHAR: - case TYPE_CODE_RANGE: - case TYPE_CODE_ENUM: - if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) - { - arg_type = builtin_type_long; - arg = value_cast (arg_type, arg); - } - break; - default: - break; - } - m_arg->len = TYPE_LENGTH (arg_type); - m_arg->offset = accumulate_size; - accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; - m_arg->contents = VALUE_CONTENTS(arg); - } - - /* Make room for the arguments on the stack. */ - accumulate_size += CALL_DUMMY_STACK_ADJUST; - sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; - - /* `Push' arguments on the stack. */ - for (i = nargs; m_arg--, --i >= 0; ) - write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len); - - return sp; -} - - -/* Extract from an array REGBUF containing the (raw) register state - a function return value of type TYPE, and copy that, in virtual format, - into VALBUF. */ - -void -sparc_extract_return_value (type, regbuf, valbuf) - struct type *type; - char *regbuf; - char *valbuf; -{ - int typelen = TYPE_LENGTH (type); - int regsize = REGISTER_RAW_SIZE (O0_REGNUM); - - if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) - memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); - else - memcpy (valbuf, - ®buf [O0_REGNUM * regsize + - (typelen >= regsize ? 0 : regsize - typelen)], - typelen); -} - - -/* Write into appropriate registers a function return value - of type TYPE, given in virtual format. On SPARCs with FPUs, - float values are returned in %f0 (and %f1). In all other cases, - values are returned in register %o0. */ - -void -sparc_store_return_value (type, valbuf) - struct type *type; - char *valbuf; -{ - int regno; - char buffer[MAX_REGISTER_RAW_SIZE]; - - if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) - /* Floating-point values are returned in the register pair */ - /* formed by %f0 and %f1 (doubles are, anyway). */ - regno = FP0_REGNUM; - else - /* Other values are returned in register %o0. */ - regno = O0_REGNUM; - - /* Add leading zeros to the value. */ - if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno)) - { - bzero (buffer, REGISTER_RAW_SIZE(regno)); - memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf, - TYPE_LENGTH (type)); - write_register_bytes (REGISTER_BYTE (regno), buffer, - REGISTER_RAW_SIZE(regno)); - } - else - write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type)); -} - - -/* Insert the function address into a call dummy instsruction sequence - stored at DUMMY. - - For structs and unions, if the function was compiled with Sun cc, - it expects 'unimp' after the call. But gcc doesn't use that - (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY - can assume it is operating on a pristine CALL_DUMMY, not one that - has already been customized for a different function). */ - -void -sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc) - char *dummy; - CORE_ADDR pc; - CORE_ADDR fun; - struct type *value_type; - int using_gcc; -{ - int i; - - /* Store the relative adddress of the target function into the - 'call' instruction. */ - store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, - (0x40000000 - | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) - & 0x3fffffff))); - - /* Comply with strange Sun cc calling convention for struct-returning - functions. */ - if (!using_gcc - && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT - || TYPE_CODE (value_type) == TYPE_CODE_UNION)) - store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, - TYPE_LENGTH (value_type) & 0x1fff); - -#ifndef GDB_TARGET_IS_SPARC64 - /* If this is not a simulator target, change the first four instructions - of the call dummy to NOPs. Those instructions include a 'save' - instruction and are designed to work around problems with register - window flushing in the simulator. */ - if (strcmp (target_shortname, "sim") != 0) - { - for (i = 0; i < 4; i++) - store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); - } -#endif -} - - -/* Set target byte order based on machine type. */ - -static int -sparc_target_architecture_hook (ap) - const bfd_arch_info_type *ap; -{ - int i, j; - -#ifdef TARGET_BYTE_ORDER_SELECTABLE - if (ap->mach == bfd_mach_sparc_sparclite_le) - target_byte_order = LITTLE_ENDIAN; -#endif - return 1; -} - - -void -_initialize_sparc_tdep () -{ - tm_print_insn = gdb_print_insn_sparc; - tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ - target_architecture_hook = sparc_target_architecture_hook; -} - - -#ifdef GDB_TARGET_IS_SPARC64 - -/* Compensate for stack bias. Note that we currently don't handle mixed - 32/64 bit code. */ -CORE_ADDR -sparc64_read_sp () -{ - CORE_ADDR sp = read_register (SP_REGNUM); - - if (sp & 1) - sp += 2047; - return sp; -} - -CORE_ADDR -sparc64_read_fp () -{ - CORE_ADDR fp = read_register (FP_REGNUM); - - if (fp & 1) - fp += 2047; - return fp; -} - -void -sparc64_write_sp (val) - CORE_ADDR val; -{ - CORE_ADDR oldsp = read_register (SP_REGNUM); - if (oldsp & 1) - write_register (SP_REGNUM, val - 2047); - else - write_register (SP_REGNUM, val); -} - -void -sparc64_write_fp (val) - CORE_ADDR val; -{ - CORE_ADDR oldfp = read_register (FP_REGNUM); - if (oldfp & 1) - write_register (FP_REGNUM, val - 2047); - else - write_register (FP_REGNUM, val); -} - -/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are - also copied onto the stack in the correct places. */ - -CORE_ADDR -sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr) - int nargs; - value_ptr *args; - CORE_ADDR sp; - unsigned char struct_return; - CORE_ADDR struct_retaddr; -{ - int x; - int regnum = 0; - CORE_ADDR tempsp; - - sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL)); - - /* Figure out how much space we'll need. */ - for (x = nargs - 1; x >= 0; x--) - { - int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); - value_ptr copyarg = args[x]; - int copylen = len; - - /* This code is, of course, no longer correct. */ - if (copylen < TYPE_LENGTH (builtin_type_long)) - { - copyarg = value_cast(builtin_type_long, copyarg); - copylen = TYPE_LENGTH (builtin_type_long); - } - sp -= copylen; - } - - /* Round down. */ - sp = sp & ~7; - tempsp = sp; - - /* Now write the arguments onto the stack, while writing FP arguments - into the FP registers. */ - for (x = 0; x < nargs; x++) - { - int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); - value_ptr copyarg = args[x]; - int copylen = len; - - /* This code is, of course, no longer correct. */ - if (copylen < TYPE_LENGTH (builtin_type_long)) - { - copyarg = value_cast(builtin_type_long, copyarg); - copylen = TYPE_LENGTH (builtin_type_long); - } - write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); - tempsp += copylen; - if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32) - { - /* This gets copied into a FP register. */ - int nextreg = regnum + 2; - char *data = VALUE_CONTENTS (args[x]); - /* Floats go into the lower half of a FP register pair; quads - use 2 pairs. */ - - if (len == 16) - nextreg += 2; - else if (len == 4) - regnum++; - - write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum), - data, - len); - regnum = nextreg; - } - } - return sp; -} - -/* Values <= 32 bytes are returned in o0-o3 (floating-point values are - returned in f0-f3). */ -void -sparc64_extract_return_value (type, regbuf, valbuf, bitoffset) - struct type *type; - char *regbuf; - char *valbuf; - int bitoffset; -{ - int typelen = TYPE_LENGTH (type); - int regsize = REGISTER_RAW_SIZE (O0_REGNUM); - - if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) - { - memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); - return; - } - - if (TYPE_CODE (type) != TYPE_CODE_STRUCT - || (TYPE_LENGTH (type) > 32)) - { - memcpy (valbuf, - ®buf [O0_REGNUM * regsize + - (typelen >= regsize ? 0 : regsize - typelen)], - typelen); - return; - } - else - { - char *o0 = ®buf[O0_REGNUM * regsize]; - char *f0 = ®buf[FP0_REGNUM * regsize]; - int x; - - for (x = 0; x < TYPE_NFIELDS (type); x++) - { - struct field *f = &TYPE_FIELDS(type)[x]; - /* FIXME: We may need to handle static fields here. */ - int whichreg = (f->loc.bitpos + bitoffset) / 32; - int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; - int where = (f->loc.bitpos + bitoffset) / 8; - int size = TYPE_LENGTH (f->type); - int typecode = TYPE_CODE (f->type); - - if (typecode == TYPE_CODE_STRUCT) - { - sparc64_extract_return_value (f->type, - regbuf, - valbuf, - bitoffset + f->loc.bitpos); - } - else if (typecode == TYPE_CODE_FLT) - { - memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); - } - else - { - memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); - } - } - } -} -#endif |