aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
diff options
context:
space:
mode:
authorJohn Gilmore <gnu@cygnus>1991-11-12 15:50:47 +0000
committerJohn Gilmore <gnu@cygnus>1991-11-12 15:50:47 +0000
commit41abdfbd2de07837ba8088092765154eaa66351d (patch)
treebb912925e95a78628143f4d2e98b0c32e372f3ac /gdb/rs6000-tdep.c
parent37b637f3b7327782b3217f1655fea4258cfb1701 (diff)
downloadgdb-41abdfbd2de07837ba8088092765154eaa66351d.zip
gdb-41abdfbd2de07837ba8088092765154eaa66351d.tar.gz
gdb-41abdfbd2de07837ba8088092765154eaa66351d.tar.bz2
* rs6000-pinsn.c, rs6000-tdep.c, rs6000-xdep.c, tm-rs6000.h,
xm-rs6000.h: New files. * xcoffexec.c: New file for handling AIX shared libraries.
Diffstat (limited to 'gdb/rs6000-tdep.c')
-rw-r--r--gdb/rs6000-tdep.c975
1 files changed, 975 insertions, 0 deletions
diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c
new file mode 100644
index 0000000..4003de0
--- /dev/null
+++ b/gdb/rs6000-tdep.c
@@ -0,0 +1,975 @@
+/* Target-dependent code for GDB, the GNU debugger.
+ Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include <stdio.h>
+
+#include "defs.h"
+#include "param.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "target.h"
+
+#include <sys/param.h>
+#include <sys/dir.h>
+#include <sys/user.h>
+#include <signal.h>
+#include <sys/ioctl.h>
+#include <fcntl.h>
+
+#include <sys/ptrace.h>
+#include <sys/reg.h>
+
+#include <a.out.h>
+#include <sys/file.h>
+#include <sys/stat.h>
+#include <sys/core.h>
+
+extern int errno;
+extern int attach_flag;
+
+/* Nonzero if we just simulated a single step break. */
+int one_stepped;
+
+#if 0
+
+/* This is Damon's implementation of single step simulation. It suffers the
+ following program:
+
+ 1 main () {
+ 2 char buf[10];
+ 3 puts ("test");
+ 4 strcmp (buf, "test"); puts ("test");
+ 5 exit (0);
+ 6 }
+
+ You cannot `next' on line 4 in the above program. gdb puts a breakpoint
+ to the return address of `strcmp', and when execution arrives that point,
+ it is still in the line range and gdb attemps to resume it with single
+ steps. At that point the breakpoint at step_resume_break_address (return
+ address of strcmp) and single step's breakpoint mixes up and we end up
+ with a breakpoint which its shadow and itself are identical.
+
+ Fix that problem and use this version. FIXMEmgo.
+*/
+
+
+static struct sstep_breaks {
+ int address;
+ int data;
+} tbreak[2];
+
+
+/*
+ * branch_dest - calculate all places the current instruction may go
+ */
+static
+branch_dest(tb)
+ register struct sstep_breaks *tb;
+{
+ register ulong opcode, iar;
+ long instr;
+ int immediate, absolute;;
+
+ iar = read_pc(); /* current IAR */
+ target_read_memory(iar, &instr, sizeof (instr)); /* current inst */
+
+ opcode = instr >> 26;
+ absolute = instr & 2;
+
+ tb[1].address = -1;
+
+ switch (opcode) {
+ case 0x10: /* branch conditional */
+ immediate = ((instr & ~3) << 16) >> 16;
+
+ /*
+ * two possible locations for next instruction
+ */
+ tb[0].address = iar + 4;
+ tb[1].address = immediate + (absolute ? 0 : iar);
+
+ break;
+
+ case 0x12: /* branch unconditional */
+ immediate = ((instr & ~3) << 6) >> 6;
+
+ /*
+ * only one possible location for next instr
+ */
+ tb[0].address = immediate + (absolute ? 0 : iar);
+
+ break;
+
+ case 0x13: /* branch conditional register */
+ /*
+ * WE NEED TO CHECK THE CR HERE, TO SEE IF THIS IS
+ * REALLY UNCONDITIONAL.
+ */
+ tb++->address = iar + 4;
+
+ switch ((instr >> 1) & 0x3ff) {
+ case 0x10: /* branch conditional register */
+ tb->address = read_register(LR_REGNUM) & ~3;
+ sigtramp_chk(tb); /* return from sig handler? */
+ break;
+
+ case 0x210: /* branch cond to CTR */
+ tb->address = read_register(CTR_REGNUM) & ~3;
+ sigtramp_chk(tb); /* return from sig handler? */
+ break;
+
+ default:
+ /*
+ * not a branch.
+ */
+ tb->address = iar + 4;
+ break;
+ }
+ break;
+
+ default:
+ /*
+ * not a branch, flow proceeds normally
+ */
+ tb->address = iar + 4;
+ break;
+ }
+}
+
+/*
+ * sigtramp_chk - heuristic check to see if we think we are returning
+ * from a signal handler.
+ *
+ * Input:
+ * tb - ^ to a single step branch location
+ *
+ * Note:
+ * When we are at the "br" instruction returning to a signal handler,
+ * we return in user mode to an address in the kernel. If the
+ * segment of the branch target is 0, we may very well be in a
+ * signal handler. From scrounging through this code, we note that
+ * register 29 has the signal context pointer, from which we can
+ * determine where we will end up next.
+ */
+sigtramp_chk(tb)
+register struct sstep_breaks *tb; {
+ struct sigcontext sc;
+
+ if (tb->address & 0xf0000000)
+ return; /* can't have been sigtramp */
+
+ if (target_read_memory(read_register(GPR29), &sc, sizeof (sc)))
+ return; /* read fails, heuristic fails */
+
+ if ((sc.sc_jmpbuf.jmp_context.iar & 0xf0000000) == 0x10000000) {
+ /*
+ * looks like it might be ok.....
+ */
+ tb->address = sc.sc_jmpbuf.jmp_context.iar;
+ }
+}
+
+
+/*
+ * single_step - no trace mode harware support, or software support.
+ * sigh.
+ */
+single_step(signal) {
+ register i;
+
+ if (!one_stepped) {
+ /*
+ * need to set breakpoints for single step.
+ * figure out all places the current instruction could go.
+ */
+ branch_dest(&tbreak[0]);
+
+ /*
+ * always at least one place to go to
+ */
+ target_insert_breakpoint(tbreak[0].address, &tbreak[0].data);
+
+ /*
+ * if there is another possible location, set a breakpoint there
+ * as well.
+ */
+ if (tbreak[1].address != -1)
+ target_insert_breakpoint(tbreak[1].address, &tbreak[1].data);
+
+ one_stepped = 1;
+ ptrace(PT_CONTINUE, inferior_pid, 1, signal, 0);
+ } else {
+ /*
+ * need to clear the breakpoints.
+ */
+ for (i = 0; i < 2; ++i)
+ if (tbreak[i].address != -1)
+ target_remove_breakpoint(tbreak[i].address, &tbreak[i].data);
+
+ one_stepped = 0;
+ }
+
+ return 1;
+}
+
+#else /* !DAMON'S VERSION */
+
+/* Breakpoint shadows for the single step instructions will be kept here. */
+
+static struct sstep_breaks {
+ int address;
+ int data;
+} stepBreaks[2];
+
+
+/*
+ * Calculate the destination of a branch/jump. Return -1 if not a branch.
+ */
+static int
+branch_dest (opcode, instr, pc, safety)
+ int opcode, instr, pc, safety;
+{
+ register long offset;
+ unsigned dest;
+ int immediate;
+ int absolute;
+ int ext_op;
+
+ absolute = (int) ((instr >> 1) & 1);
+
+ switch (opcode) {
+ case 18 :
+ immediate = ((instr & ~3) << 6) >> 6; /* br unconditionl */
+
+ case 16 :
+ if (opcode != 18) /* br conditional */
+ immediate = ((instr & ~3) << 16) >> 16;
+ if (absolute)
+ dest = immediate;
+ else
+ dest = pc + immediate;
+ break;
+
+ case 19 :
+ ext_op = (instr>>1) & 0x3ff;
+
+ if (ext_op == 16) /* br conditional register */
+ dest = read_register (LR_REGNUM) & ~3;
+
+ else if (ext_op == 528) /* br cond to count reg */
+ dest = read_register (CTR_REGNUM) & ~3;
+
+ else return -1;
+ break;
+
+ default: return -1;
+ }
+ return (dest < 0x10000000) ? safety : dest;
+}
+
+
+
+/* AIX does not support PT_STEP. Simulate it. */
+
+int
+single_step (signal)
+int signal;
+{
+#define INSNLEN(OPCODE) 4
+
+ static char breakp[] = BREAKPOINT;
+ int ii, insn, ret, loc;
+ int breaks[2], opcode;
+
+ if (!one_stepped) {
+ extern CORE_ADDR text_start;
+ loc = read_pc ();
+
+ ret = read_memory (loc, &insn, sizeof (int));
+ if (ret)
+ printf ("Error in single_step()!!\n");
+
+ breaks[0] = loc + INSNLEN(insn);
+ opcode = insn >> 26;
+ breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+
+ stepBreaks[1].address = -1;
+
+ for (ii=0; ii < 2; ++ii) {
+
+ /* ignore invalid breakpoint. */
+ if ( breaks[ii] == -1)
+ continue;
+
+ read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
+
+ ret = write_memory (breaks[ii], breakp, sizeof(int));
+ stepBreaks[ii].address = breaks[ii];
+ }
+
+ one_stepped = 1;
+ ptrace (PT_CONTINUE, inferior_pid, 1, signal);
+ }
+ else {
+
+ /* remove step breakpoints. */
+ for (ii=0; ii < 2; ++ii)
+ if (stepBreaks[ii].address != -1)
+ write_memory
+ (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
+
+ one_stepped = 0;
+ }
+ return 1;
+}
+#endif /* !DAMON's version of single step. */
+
+
+
+/* return pc value after skipping a function prologue. */
+
+skip_prologue (pc)
+int pc;
+{
+ unsigned int tmp;
+ unsigned int op;
+
+ if (target_read_memory (pc, (char *)&op, sizeof (op)))
+ return pc; /* Can't access it -- assume no prologue. */
+ SWAP_TARGET_AND_HOST (&op, sizeof (op));
+
+ /* Assume that subsequent fetches can fail with low probability. */
+
+ if (op == 0x7c0802a6) { /* mflr r0 */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+ else /* else, this is a frameless invocation */
+ return pc;
+
+ if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
+ pc += 4; /* store floating register double */
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
+ (tmp == 0x9421) || /* stu r1, NUM(r1) */
+ (op == 0x93e1fffc)) /* st r31,-4(r1) */
+ {
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
+ pc += 4; /* l r30, ... */
+ op = read_memory_integer (pc, 4);
+ }
+
+ while ((op & 0xfc1f0000) == 0x90010000) { /* st r?, NUM(r1) */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
+ pc += 4; /* this happens if r31 is used as */
+ op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
+
+ if ((op >> 16) == 0x907f) { /* st r3, NUM(r31) */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+ }
+ return pc;
+}
+
+/* text start and end addresses in virtual memory. */
+
+CORE_ADDR text_start;
+CORE_ADDR text_end;
+
+
+/*************************************************************************
+ Support for creating pushind a dummy frame into the stack, and popping
+ frames, etc.
+*************************************************************************/
+
+#define DUMMY_FRAME_ADDR_SIZE 10
+
+/* Make sure you initialize these in somewhere, in case gdb gives up what it
+ was debugging and starts debugging something else. FIXMEmgo */
+
+static int dummy_frame_count = 0;
+static int dummy_frame_size = 0;
+static CORE_ADDR *dummy_frame_addr = 0;
+
+extern int stop_stack_dummy;
+
+/* push a dummy frame into stack, save all register. Currently we are saving
+ only gpr's and fpr's, which is not good enough! FIXMEmgo */
+
+push_dummy_frame ()
+{
+ int sp, pc; /* stack pointer and link register */
+ int ii;
+
+ if (dummy_frame_count >= dummy_frame_size) {
+ dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
+ if (dummy_frame_addr)
+ dummy_frame_addr = (CORE_ADDR*) xrealloc
+ (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
+ else
+ dummy_frame_addr = (CORE_ADDR*)
+ xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
+ }
+
+ sp = read_register(SP_REGNUM);
+ pc = read_register(PC_REGNUM);
+
+ dummy_frame_addr [dummy_frame_count++] = sp;
+
+ /* Be careful! If the stack pointer is not decremented first, then kernel
+ thinks he is free to use the sapce underneath it. And kernel actually
+ uses that area for IPC purposes when executing ptrace(2) calls. So
+ before writing register values into the new frame, decrement and update
+ %sp first in order to secure your frame. */
+
+ write_register (SP_REGNUM, sp-408);
+
+#if 1
+ /* gdb relies on the state of current_frame. We'd better update it,
+ otherwise things like do_registers_info() wouldn't work properly! */
+
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (sp-408, pc));
+#endif /* 0 */
+
+ /* save program counter in link register's space. */
+ write_memory (sp+8, &pc, 4);
+
+ /* save full floating point registers here. They will be from F14..F31
+ for know. I am not sure if we need to save everything here! */
+
+ /* fpr's, f0..f31 */
+ for (ii = 0; ii < 32; ++ii)
+ write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
+
+ /* gpr's r0..r31 */
+ for (ii=1; ii <=32; ++ii)
+ write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
+
+ /* so far, 32*2 + 32 words = 384 bytes have been written. We need 6 words
+ (24 bytes) for the rest of the registers. It brings the total to 408
+ bytes.
+ save sp or so call back chain right here. */
+ write_memory (sp-408, &sp, 4);
+ sp -= 408;
+
+ /* And finally, this is the back chain. */
+ write_memory (sp+8, &pc, 4);
+}
+
+
+/* Pop a dummy frame.
+
+ In rs6000 when we push a dummy frame, we save all of the registers. This
+ is usually done before user calls a function explicitly.
+
+ After a dummy frame is pushed, some instructions are copied into stack, and
+ stack pointer is decremented even more. Since we don't have a frame pointer to
+ get back to the parent frame of the dummy, we start having trouble poping it.
+ Therefore, we keep a dummy frame stack, keeping addresses of dummy frames as
+ such. When poping happens and when we detect that was a dummy frame, we pop
+ it back to its parent by using dummy frame stack (`dummy_frame_addr' array).
+ */
+
+pop_dummy_frame ()
+{
+ CORE_ADDR sp, pc;
+ int ii;
+ sp = dummy_frame_addr [--dummy_frame_count];
+
+ /* restore all fpr's. */
+ for (ii = 1; ii <= 32; ++ii)
+ read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
+
+ /* restore all gpr's */
+ for (ii=1; ii <= 32; ++ii) {
+ read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
+ }
+
+ read_memory (sp-400, &registers [REGISTER_BYTE(PC_REGNUM)], 4);
+
+ /* when a dummy frame was being pushed, we had to decrement %sp first, in
+ order to secure astack space. Thus, saved %sp (or %r1) value, is not the
+ one we should restore. Change it with the one we need. */
+
+ *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
+
+ /* Now we can restore all registers. */
+
+ store_inferior_registers (-1);
+ pc = read_pc ();
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (sp, pc));
+}
+
+
+/* pop the innermost frame, go back to the caller. */
+
+pop_frame ()
+{
+ int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
+ FRAME fr = get_current_frame ();
+ int offset = 0;
+ int frameless = 0; /* TRUE if function is frameless */
+ int addr, ii;
+ int saved_gpr, saved_fpr; /* # of saved gpr's and fpr's */
+
+ pc = read_pc ();
+ sp = FRAME_FP (fr);
+
+ if (stop_stack_dummy && dummy_frame_count) {
+ pop_dummy_frame ();
+ return;
+ }
+
+ /* figure out previous %pc value. If the function is frameless, it is
+ still in the link register, otherwise walk the frames and retrieve the
+ saved %pc value in the previous frame. */
+
+ addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
+ function_frame_info (addr, &frameless, &offset, &saved_gpr, &saved_fpr);
+
+ read_memory (sp, &prev_sp, 4);
+ if (frameless)
+ lr = read_register (LR_REGNUM);
+ else
+ read_memory (prev_sp+8, &lr, 4);
+
+ /* reset %pc value. */
+ write_register (PC_REGNUM, lr);
+
+ /* reset register values if any was saved earlier. */
+ addr = prev_sp - offset;
+
+ if (saved_gpr != -1)
+ for (ii=saved_gpr; ii <= 31; ++ii) {
+ read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
+ addr += sizeof (int);
+ }
+
+ if (saved_fpr != -1)
+ for (ii=saved_fpr; ii <= 31; ++ii) {
+ read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
+ addr += 8;
+ }
+
+ write_register (SP_REGNUM, prev_sp);
+ store_inferior_registers (-1);
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (prev_sp, lr));
+}
+
+
+/* fixup the call sequence of a dummy function, with the real function address.
+ its argumets will be passed by gdb. */
+
+fix_call_dummy(dummyname, pc, fun, nargs, type)
+ char *dummyname;
+ int pc;
+ int fun;
+ int nargs; /* not used */
+ int type; /* not used */
+
+{
+#define TOC_ADDR_OFFSET 20
+#define TARGET_ADDR_OFFSET 28
+
+ int ii;
+ unsigned long target_addr;
+ unsigned long tocvalue;
+
+ target_addr = fun;
+ tocvalue = find_toc_address (target_addr);
+
+ ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
+ ii = (ii & 0xffff0000) | (tocvalue >> 16);
+ *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
+
+ ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
+ ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
+ *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
+
+ ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
+ ii = (ii & 0xffff0000) | (target_addr >> 16);
+ *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
+
+ ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
+ ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
+ *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
+}
+
+
+
+/* return information about a function frame.
+ - frameless is TRUE, if function does not save %pc value in its frame.
+ - offset is the number of bytes used in the frame to save registers.
+ - saved_gpr is the number of the first saved gpr.
+ - saved_fpr is the number of the first saved fpr.
+ */
+function_frame_info (pc, frameless, offset, saved_gpr, saved_fpr)
+ int pc;
+ int *frameless, *offset, *saved_gpr, *saved_fpr;
+{
+ unsigned int tmp;
+ register unsigned int op;
+
+ *offset = 0;
+ *saved_gpr = *saved_fpr = -1;
+
+ if (!inferior_pid)
+ return;
+
+ op = read_memory_integer (pc, 4);
+ if (op == 0x7c0802a6) { /* mflr r0 */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ *frameless = 0;
+ }
+ else /* else, this is a frameless invocation */
+ *frameless = 1;
+
+
+ if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
+ pc += 4; /* store floating register double */
+ op = read_memory_integer (pc, 4);
+ }
+
+ if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
+ int tmp2;
+ *saved_gpr = (op >> 21) & 0x1f;
+ tmp2 = op & 0xffff;
+ if (tmp2 > 0x7fff)
+ tmp2 = 0xffff0000 | tmp2;
+
+ if (tmp2 < 0) {
+ tmp2 = tmp2 * -1;
+ *saved_fpr = (tmp2 - ((32 - *saved_gpr) * 4)) / 8;
+ if ( *saved_fpr > 0)
+ *saved_fpr = 32 - *saved_fpr;
+ else
+ *saved_fpr = -1;
+ }
+ *offset = tmp2;
+ }
+}
+
+
+/* Pass the arguments in either registers, or in the stack. In RS6000, the first
+ eight words of the argument list (that might be less than eight parameters if
+ some parameters occupy more than one word) are passed in r3..r11 registers.
+ float and double parameters are passed in fpr's, in addition to that. Rest of
+ the parameters if any are passed in user stack. There might be cases in which
+ half of the parameter is copied into registers, the other half is pushed into
+ stack.
+
+ If the function is returning a structure, then the return address is passed
+ in r3, then the first 7 words of the parametes can be passed in registers,
+ starting from r4. */
+
+CORE_ADDR
+push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int ii, len;
+ int argno; /* current argument number */
+ int argbytes; /* current argument byte */
+ char tmp_buffer [50];
+ value arg;
+ int f_argno = 0; /* current floating point argno */
+
+ CORE_ADDR saved_sp, pc;
+
+ if ( dummy_frame_count <= 0)
+ printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
+
+ /* The first eight words of ther arguments are passed in registers. Copy
+ them appropriately.
+
+ If the function is returning a `struct', then the first word (which
+ will be passed in r3) is used for struct return address. In that
+ case we should advance one word and start from r4 register to copy
+ parameters. */
+
+ ii = struct_return ? 1 : 0;
+
+ for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
+
+ arg = value_arg_coerce (args[argno]);
+ len = TYPE_LENGTH (VALUE_TYPE (arg));
+
+ if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
+
+ /* floating point arguments are passed in fpr's, as well as gpr's.
+ There are 13 fpr's reserved for passing parameters. At this point
+ there is no way we would run out of them. */
+
+ if (len > 8)
+ printf (
+"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ bcopy (VALUE_CONTENTS (arg),
+ &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
+ ++f_argno;
+ }
+
+ if (len > 4) {
+
+ /* Argument takes more than one register. */
+ while (argbytes < len) {
+
+ *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
+ bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
+ &registers[REGISTER_BYTE(ii+3)],
+ (len - argbytes) > 4 ? 4 : len - argbytes);
+ ++ii, argbytes += 4;
+
+ if (ii >= 8)
+ goto ran_out_of_registers_for_arguments;
+ }
+ argbytes = 0;
+ --ii;
+ }
+ else { /* Argument can fit in one register. No problem. */
+ *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
+ bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
+ }
+ ++argno;
+ }
+
+ran_out_of_registers_for_arguments:
+
+ /* location for 8 parameters are always reserved. */
+ sp -= 4 * 8;
+
+ /* another six words for back chain, TOC register, link register, etc. */
+ sp -= 24;
+
+ /* if there are more arguments, allocate space for them in
+ the stack, then push them starting from the ninth one. */
+
+ if ((argno < nargs) || argbytes) {
+ int space = 0, jj;
+ value val;
+
+ if (argbytes) {
+ space += ((len - argbytes + 3) & -4);
+ jj = argno + 1;
+ }
+ else
+ jj = argno;
+
+ for (; jj < nargs; ++jj) {
+ val = value_arg_coerce (args[jj]);
+ space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
+ }
+
+ /* add location required for the rest of the parameters */
+ space = (space + 7) & -8;
+ sp -= space;
+
+ /* This is another instance we need to be concerned about securing our
+ stack space. If we write anything underneath %sp (r1), we might conflict
+ with the kernel who thinks he is free to use this area. So, update %sp
+ first before doing anything else. */
+
+ write_register (SP_REGNUM, sp);
+
+#if 0
+ pc = read_pc ();
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (sp, pc));
+#endif
+
+ /* if the last argument copied into the registers didn't fit there
+ completely, push the rest of it into stack. */
+
+ if (argbytes) {
+ write_memory (
+ sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
+ ++argno;
+ ii += ((len - argbytes + 3) & -4) / 4;
+ }
+
+ /* push the rest of the arguments into stack. */
+ for (; argno < nargs; ++argno) {
+
+ arg = value_arg_coerce (args[argno]);
+ len = TYPE_LENGTH (VALUE_TYPE (arg));
+
+
+ /* float types should be passed in fpr's, as well as in the stack. */
+ if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
+
+ if (len > 8)
+ printf (
+"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ bcopy (VALUE_CONTENTS (arg),
+ &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
+ ++f_argno;
+ }
+
+ write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
+ ii += ((len + 3) & -4) / 4;
+ }
+ }
+ else {
+
+ /* Secure stack areas first, before doing anything else. */
+ write_register (SP_REGNUM, sp);
+
+#if 0
+ pc = read_pc ();
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (sp, pc));
+#endif
+ }
+
+ saved_sp = dummy_frame_addr [dummy_frame_count - 1];
+ read_memory (saved_sp, tmp_buffer, 24);
+ write_memory (sp, tmp_buffer, 24);
+
+ write_memory (sp, &saved_sp, 4); /* set back chain properly */
+
+ store_inferior_registers (-1);
+ return sp;
+}
+
+/* a given return value in `regbuf' with a type `valtype', extract and copy its
+ value into `valbuf' */
+
+extract_return_value (valtype, regbuf, valbuf)
+ struct type *valtype;
+ char regbuf[REGISTER_BYTES];
+ char *valbuf;
+{
+
+ if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
+
+ double dd; float ff;
+ /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
+ We need to truncate the return value into float size (4 byte) if
+ necessary. */
+
+ if (TYPE_LENGTH (valtype) > 4) /* this is a double */
+ bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
+ TYPE_LENGTH (valtype));
+ else { /* float */
+ bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
+ ff = (float)dd;
+ bcopy (&ff, valbuf, sizeof(float));
+ }
+ }
+ else
+ /* return value is copied starting from r3. */
+ bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
+}
+
+
+/* keep keep structure return address in this variable. */
+
+CORE_ADDR rs6000_struct_return_address;
+
+
+/* Throw away this debugging code. FIXMEmgo. */
+print_frame(fram)
+int fram;
+{
+ int ii, val;
+ for (ii=0; ii<40; ++ii) {
+ if ((ii % 4) == 0)
+ printf ("\n");
+ val = read_memory_integer (fram + ii * 4, 4);
+ printf ("0x%08x\t", val);
+ }
+ printf ("\n");
+}
+
+
+
+/* Indirect function calls use a piece of trampoline code do co context switching,
+ i.e. to set the new TOC table. Skip such code if exists. */
+
+skip_trampoline_code (pc)
+int pc;
+{
+ register unsigned int ii, op;
+
+ static unsigned trampoline_code[] = {
+ 0x800b0000, /* l r0,0x0(r11) */
+ 0x90410014, /* st r2,0x14(r1) */
+ 0x7c0903a6, /* mtctr r0 */
+ 0x804b0004, /* l r2,0x4(r11) */
+ 0x816b0008, /* l r11,0x8(r11) */
+ 0x4e800420, /* bctr */
+ 0x4e800020, /* br */
+ 0
+ };
+
+ for (ii=0; trampoline_code[ii]; ++ii) {
+ op = read_memory_integer (pc + (ii*4), 4);
+ if (op != trampoline_code [ii])
+ return NULL;
+ }
+ ii = read_register (11); /* r11 holds destination addr */
+ pc = read_memory_integer (ii, 4); /* (r11) value */
+ return pc;
+}
+