diff options
author | Yao Qi <yao@codesourcery.com> | 2014-03-11 10:47:48 +0800 |
---|---|---|
committer | Yao Qi <yao@codesourcery.com> | 2014-03-22 18:31:30 +0800 |
commit | 8acf9577e5acd99c23fe8f3fa87a961668de7805 (patch) | |
tree | 23ca50f0997a15f90038522062faa4e75ab8cc9f /gdb/remote.c | |
parent | 25d743f9e6f23ec5fc1529a56d7178ad9cfe5611 (diff) | |
download | gdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.zip gdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.tar.gz gdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.tar.bz2 |
Move the traceframe_available_memory code from memory_xfer_partial_1 down to the targets
As a follow-up to
[PATCH 7/8] Adjust read_value_memory to use to_xfer_partial
https://sourceware.org/ml/gdb-patches/2014-02/msg00384.html
this patch moves traceframe_available_memory down to the target side.
After this patch, the gdb core code is cleaner, and code on handling
unavailable memory is moved to remote/tfile/ctf targets.
In details, this patch moves traceframe_available_memory code from
memory_xfer_partial_1 to remote target only, so remote target still
uses traceframe_info mechanism to check unavailable memory, and use
remote_ops to read them from read-only sections. We don't use
traceframe_info mechanism for tfile and ctf target, because it is
fast to iterate all traceframes from trace file, so the summary
information got from traceframe_info is not necessary.
This patch also moves two functions to remote.c from target.c,
because they are only used in remote.c. I'll clean them up in another
patch.
gdb:
2014-03-22 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_xfer_partial): Check the return value of
exec_read_partial_read_only, if it is not TARGET_XFER_OK,
return TARGET_XFER_UNAVAILABLE.
* tracefile-tfile.c (tfile_xfer_partial): Likewise.
* target.c (target_read_live_memory): Move it to remote.c.
(memory_xfer_live_readonly_partial): Likewise.
(memory_xfer_partial_1): Move some code to remote_read_bytes.
* remote.c (target_read_live_memory): Moved from target.c.
(memory_xfer_live_readonly_partial): Likewise.
(remote_read_bytes): New, factored out from
memory_xfer_partial_1.
Diffstat (limited to 'gdb/remote.c')
-rw-r--r-- | gdb/remote.c | 144 |
1 files changed, 141 insertions, 3 deletions
diff --git a/gdb/remote.c b/gdb/remote.c index e03d3bf..dcee6e1 100644 --- a/gdb/remote.c +++ b/gdb/remote.c @@ -6824,6 +6824,87 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len, packet_format[0], 1); } +/* Read memory from the live target, even if currently inspecting a + traceframe. The return is the same as that of target_read. */ + +static enum target_xfer_status +target_read_live_memory (enum target_object object, + ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len, + ULONGEST *xfered_len) +{ + enum target_xfer_status ret; + struct cleanup *cleanup; + + /* Switch momentarily out of tfind mode so to access live memory. + Note that this must not clear global state, such as the frame + cache, which must still remain valid for the previous traceframe. + We may be _building_ the frame cache at this point. */ + cleanup = make_cleanup_restore_traceframe_number (); + set_traceframe_number (-1); + + ret = target_xfer_partial (current_target.beneath, object, NULL, + myaddr, NULL, memaddr, len, xfered_len); + + do_cleanups (cleanup); + return ret; +} + +/* Using the set of read-only target sections of OPS, read live + read-only memory. Note that the actual reads start from the + top-most target again. + + For interface/parameters/return description see target.h, + to_xfer_partial. */ + +static enum target_xfer_status +memory_xfer_live_readonly_partial (struct target_ops *ops, + enum target_object object, + gdb_byte *readbuf, ULONGEST memaddr, + ULONGEST len, ULONGEST *xfered_len) +{ + struct target_section *secp; + struct target_section_table *table; + + secp = target_section_by_addr (ops, memaddr); + if (secp != NULL + && (bfd_get_section_flags (secp->the_bfd_section->owner, + secp->the_bfd_section) + & SEC_READONLY)) + { + struct target_section *p; + ULONGEST memend = memaddr + len; + + table = target_get_section_table (ops); + + for (p = table->sections; p < table->sections_end; p++) + { + if (memaddr >= p->addr) + { + if (memend <= p->endaddr) + { + /* Entire transfer is within this section. */ + return target_read_live_memory (object, memaddr, + readbuf, len, xfered_len); + } + else if (memaddr >= p->endaddr) + { + /* This section ends before the transfer starts. */ + continue; + } + else + { + /* This section overlaps the transfer. Just do half. */ + len = p->endaddr - memaddr; + return target_read_live_memory (object, memaddr, + readbuf, len, xfered_len); + } + } + } + } + + return TARGET_XFER_EOF; +} + /* Read memory data directly from the remote machine. This does not use the data cache; the data cache uses this. MEMADDR is the address in the remote memory space. @@ -6835,8 +6916,8 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len, transferred in *XFERED_LEN. */ static enum target_xfer_status -remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len, - ULONGEST *xfered_len) +remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr, + gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len) { struct remote_state *rs = get_remote_state (); int max_buf_size; /* Max size of packet output buffer. */ @@ -6847,6 +6928,63 @@ remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len, if (len == 0) return 0; + if (get_traceframe_number () != -1) + { + VEC(mem_range_s) *available; + + /* If we fail to get the set of available memory, then the + target does not support querying traceframe info, and so we + attempt reading from the traceframe anyway (assuming the + target implements the old QTro packet then). */ + if (traceframe_available_memory (&available, memaddr, len)) + { + struct cleanup *old_chain; + + old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available); + + if (VEC_empty (mem_range_s, available) + || VEC_index (mem_range_s, available, 0)->start != memaddr) + { + enum target_xfer_status res; + + /* Don't read into the traceframe's available + memory. */ + if (!VEC_empty (mem_range_s, available)) + { + LONGEST oldlen = len; + + len = VEC_index (mem_range_s, available, 0)->start - memaddr; + gdb_assert (len <= oldlen); + } + + do_cleanups (old_chain); + + /* This goes through the topmost target again. */ + res = memory_xfer_live_readonly_partial (ops, + TARGET_OBJECT_MEMORY, + myaddr, memaddr, + len, xfered_len); + if (res == TARGET_XFER_OK) + return TARGET_XFER_OK; + else + { + /* No use trying further, we know some memory starting + at MEMADDR isn't available. */ + *xfered_len = len; + return TARGET_XFER_UNAVAILABLE; + } + } + + /* Don't try to read more than how much is available, in + case the target implements the deprecated QTro packet to + cater for older GDBs (the target's knowledge of read-only + sections may be outdated by now). */ + len = VEC_index (mem_range_s, available, 0)->length; + + do_cleanups (old_chain); + } + } + max_buf_size = get_memory_read_packet_size (); /* The packet buffer will be large enough for the payload; get_memory_packet_size ensures this. */ @@ -8698,7 +8836,7 @@ remote_xfer_partial (struct target_ops *ops, enum target_object object, if (writebuf != NULL) return remote_write_bytes (offset, writebuf, len, xfered_len); else - return remote_read_bytes (offset, readbuf, len, xfered_len); + return remote_read_bytes (ops, offset, readbuf, len, xfered_len); } /* Handle SPU memory using qxfer packets. */ |