aboutsummaryrefslogtreecommitdiff
path: root/gdb/remote.c
diff options
context:
space:
mode:
authorYao Qi <yao@codesourcery.com>2014-03-11 10:47:48 +0800
committerYao Qi <yao@codesourcery.com>2014-03-22 18:31:30 +0800
commit8acf9577e5acd99c23fe8f3fa87a961668de7805 (patch)
tree23ca50f0997a15f90038522062faa4e75ab8cc9f /gdb/remote.c
parent25d743f9e6f23ec5fc1529a56d7178ad9cfe5611 (diff)
downloadgdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.zip
gdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.tar.gz
gdb-8acf9577e5acd99c23fe8f3fa87a961668de7805.tar.bz2
Move the traceframe_available_memory code from memory_xfer_partial_1 down to the targets
As a follow-up to [PATCH 7/8] Adjust read_value_memory to use to_xfer_partial https://sourceware.org/ml/gdb-patches/2014-02/msg00384.html this patch moves traceframe_available_memory down to the target side. After this patch, the gdb core code is cleaner, and code on handling unavailable memory is moved to remote/tfile/ctf targets. In details, this patch moves traceframe_available_memory code from memory_xfer_partial_1 to remote target only, so remote target still uses traceframe_info mechanism to check unavailable memory, and use remote_ops to read them from read-only sections. We don't use traceframe_info mechanism for tfile and ctf target, because it is fast to iterate all traceframes from trace file, so the summary information got from traceframe_info is not necessary. This patch also moves two functions to remote.c from target.c, because they are only used in remote.c. I'll clean them up in another patch. gdb: 2014-03-22 Yao Qi <yao@codesourcery.com> * ctf.c (ctf_xfer_partial): Check the return value of exec_read_partial_read_only, if it is not TARGET_XFER_OK, return TARGET_XFER_UNAVAILABLE. * tracefile-tfile.c (tfile_xfer_partial): Likewise. * target.c (target_read_live_memory): Move it to remote.c. (memory_xfer_live_readonly_partial): Likewise. (memory_xfer_partial_1): Move some code to remote_read_bytes. * remote.c (target_read_live_memory): Moved from target.c. (memory_xfer_live_readonly_partial): Likewise. (remote_read_bytes): New, factored out from memory_xfer_partial_1.
Diffstat (limited to 'gdb/remote.c')
-rw-r--r--gdb/remote.c144
1 files changed, 141 insertions, 3 deletions
diff --git a/gdb/remote.c b/gdb/remote.c
index e03d3bf..dcee6e1 100644
--- a/gdb/remote.c
+++ b/gdb/remote.c
@@ -6824,6 +6824,87 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
packet_format[0], 1);
}
+/* Read memory from the live target, even if currently inspecting a
+ traceframe. The return is the same as that of target_read. */
+
+static enum target_xfer_status
+target_read_live_memory (enum target_object object,
+ ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
+ ULONGEST *xfered_len)
+{
+ enum target_xfer_status ret;
+ struct cleanup *cleanup;
+
+ /* Switch momentarily out of tfind mode so to access live memory.
+ Note that this must not clear global state, such as the frame
+ cache, which must still remain valid for the previous traceframe.
+ We may be _building_ the frame cache at this point. */
+ cleanup = make_cleanup_restore_traceframe_number ();
+ set_traceframe_number (-1);
+
+ ret = target_xfer_partial (current_target.beneath, object, NULL,
+ myaddr, NULL, memaddr, len, xfered_len);
+
+ do_cleanups (cleanup);
+ return ret;
+}
+
+/* Using the set of read-only target sections of OPS, read live
+ read-only memory. Note that the actual reads start from the
+ top-most target again.
+
+ For interface/parameters/return description see target.h,
+ to_xfer_partial. */
+
+static enum target_xfer_status
+memory_xfer_live_readonly_partial (struct target_ops *ops,
+ enum target_object object,
+ gdb_byte *readbuf, ULONGEST memaddr,
+ ULONGEST len, ULONGEST *xfered_len)
+{
+ struct target_section *secp;
+ struct target_section_table *table;
+
+ secp = target_section_by_addr (ops, memaddr);
+ if (secp != NULL
+ && (bfd_get_section_flags (secp->the_bfd_section->owner,
+ secp->the_bfd_section)
+ & SEC_READONLY))
+ {
+ struct target_section *p;
+ ULONGEST memend = memaddr + len;
+
+ table = target_get_section_table (ops);
+
+ for (p = table->sections; p < table->sections_end; p++)
+ {
+ if (memaddr >= p->addr)
+ {
+ if (memend <= p->endaddr)
+ {
+ /* Entire transfer is within this section. */
+ return target_read_live_memory (object, memaddr,
+ readbuf, len, xfered_len);
+ }
+ else if (memaddr >= p->endaddr)
+ {
+ /* This section ends before the transfer starts. */
+ continue;
+ }
+ else
+ {
+ /* This section overlaps the transfer. Just do half. */
+ len = p->endaddr - memaddr;
+ return target_read_live_memory (object, memaddr,
+ readbuf, len, xfered_len);
+ }
+ }
+ }
+ }
+
+ return TARGET_XFER_EOF;
+}
+
/* Read memory data directly from the remote machine.
This does not use the data cache; the data cache uses this.
MEMADDR is the address in the remote memory space.
@@ -6835,8 +6916,8 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
transferred in *XFERED_LEN. */
static enum target_xfer_status
-remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
- ULONGEST *xfered_len)
+remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
+ gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len)
{
struct remote_state *rs = get_remote_state ();
int max_buf_size; /* Max size of packet output buffer. */
@@ -6847,6 +6928,63 @@ remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
if (len == 0)
return 0;
+ if (get_traceframe_number () != -1)
+ {
+ VEC(mem_range_s) *available;
+
+ /* If we fail to get the set of available memory, then the
+ target does not support querying traceframe info, and so we
+ attempt reading from the traceframe anyway (assuming the
+ target implements the old QTro packet then). */
+ if (traceframe_available_memory (&available, memaddr, len))
+ {
+ struct cleanup *old_chain;
+
+ old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
+
+ if (VEC_empty (mem_range_s, available)
+ || VEC_index (mem_range_s, available, 0)->start != memaddr)
+ {
+ enum target_xfer_status res;
+
+ /* Don't read into the traceframe's available
+ memory. */
+ if (!VEC_empty (mem_range_s, available))
+ {
+ LONGEST oldlen = len;
+
+ len = VEC_index (mem_range_s, available, 0)->start - memaddr;
+ gdb_assert (len <= oldlen);
+ }
+
+ do_cleanups (old_chain);
+
+ /* This goes through the topmost target again. */
+ res = memory_xfer_live_readonly_partial (ops,
+ TARGET_OBJECT_MEMORY,
+ myaddr, memaddr,
+ len, xfered_len);
+ if (res == TARGET_XFER_OK)
+ return TARGET_XFER_OK;
+ else
+ {
+ /* No use trying further, we know some memory starting
+ at MEMADDR isn't available. */
+ *xfered_len = len;
+ return TARGET_XFER_UNAVAILABLE;
+ }
+ }
+
+ /* Don't try to read more than how much is available, in
+ case the target implements the deprecated QTro packet to
+ cater for older GDBs (the target's knowledge of read-only
+ sections may be outdated by now). */
+ len = VEC_index (mem_range_s, available, 0)->length;
+
+ do_cleanups (old_chain);
+ }
+ }
+
max_buf_size = get_memory_read_packet_size ();
/* The packet buffer will be large enough for the payload;
get_memory_packet_size ensures this. */
@@ -8698,7 +8836,7 @@ remote_xfer_partial (struct target_ops *ops, enum target_object object,
if (writebuf != NULL)
return remote_write_bytes (offset, writebuf, len, xfered_len);
else
- return remote_read_bytes (offset, readbuf, len, xfered_len);
+ return remote_read_bytes (ops, offset, readbuf, len, xfered_len);
}
/* Handle SPU memory using qxfer packets. */