aboutsummaryrefslogtreecommitdiff
path: root/gdb/regcache.c
diff options
context:
space:
mode:
authorMichael Snyder <msnyder@vmware.com>2000-07-10 06:16:51 +0000
committerMichael Snyder <msnyder@vmware.com>2000-07-10 06:16:51 +0000
commit32178cabe9d82d333ad4274fadb37418da4fb8d1 (patch)
tree359c7395c9d578bc9672a3dbfd1447fa0ba3ad53 /gdb/regcache.c
parent62c848e1d0ed5fb4556a945009b1a8cccd6f41d3 (diff)
downloadgdb-32178cabe9d82d333ad4274fadb37418da4fb8d1.zip
gdb-32178cabe9d82d333ad4274fadb37418da4fb8d1.tar.gz
gdb-32178cabe9d82d333ad4274fadb37418da4fb8d1.tar.bz2
2000-07-07 Michael Snyder <msnyder@cleaver.cygnus.com>
* findvar.c (_initialize_findvar, build_findvar, write_fp, read_fp, generic_target_write_fp, generic_target_read_fp, write_sp, read_sp, generic_target_write_sp, generic_target_read_sp, write_pc, read_pc, generic_target_write_pc, generic_target_read_pc, write_pc_pid, read_pc_pid, supply_register, write_register_pid, write_register, read_register_pid, read_register, write_register_bytes, read_register_bytes, write_register_gen, read_register_gen, registers_fetched, registers_changed, find_saved_register, read_relative_register_raw_bytes, default_get_saved_register, read_relative_register_raw_bytes_for_frame, get_saved_register): Move from this file into new file regcache.c. (register_valid, registers_pid, registers): Ditto. * regcache.c: New file to hold the register cache. (register_cached): New function to read register_valid array. * value.h (register_cached): Declare. * defs.h (default_get_saved_register): Delete decl of static function. * Makefile.in: Add regcache module.
Diffstat (limited to 'gdb/regcache.c')
-rw-r--r--gdb/regcache.c840
1 files changed, 840 insertions, 0 deletions
diff --git a/gdb/regcache.c b/gdb/regcache.c
index e69de29..3cfafa8 100644
--- a/gdb/regcache.c
+++ b/gdb/regcache.c
@@ -0,0 +1,840 @@
+/* Cache and manage the values of registers for GDB, the GNU debugger.
+ Copyright 1986, 87, 89, 91, 94, 95, 96, 1998, 2000
+ Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "target.h"
+#include "gdbarch.h"
+
+/*
+ * DATA STRUCTURE
+ *
+ * Here is the actual register cache.
+ */
+
+/* NOTE: this is a write-back cache. There is no "dirty" bit for
+ recording if the register values have been changed (eg. by the
+ user). Therefore all registers must be written back to the
+ target when appropriate. */
+
+/* REGISTERS contains the cached register values (in target byte order). */
+
+char *registers;
+
+/* REGISTER_VALID is 0 if the register needs to be fetched,
+ 1 if it has been fetched, and
+ -1 if the register value was not available.
+ "Not available" means don't try to fetch it again. */
+
+signed char *register_valid;
+
+/* The thread/process associated with the current set of registers.
+ For now, -1 is special, and means `no current process'. */
+
+static int registers_pid = -1;
+
+/*
+ * FUNCTIONS:
+ */
+
+/* REGISTER_CACHED()
+
+ Returns 0 if the value is not in the cache (needs fetch).
+ >0 if the value is in the cache.
+ <0 if the value is permanently unavailable (don't ask again). */
+
+int
+register_cached (int regnum)
+{
+ return register_valid[regnum];
+}
+
+/* FIND_SAVED_REGISTER ()
+
+ Return the address in which frame FRAME's value of register REGNUM
+ has been saved in memory. Or return zero if it has not been saved.
+ If REGNUM specifies the SP, the value we return is actually
+ the SP value, not an address where it was saved. */
+
+CORE_ADDR
+find_saved_register (struct frame_info *frame, int regnum)
+{
+ register struct frame_info *frame1 = NULL;
+ register CORE_ADDR addr = 0;
+
+ if (frame == NULL) /* No regs saved if want current frame */
+ return 0;
+
+#ifdef HAVE_REGISTER_WINDOWS
+ /* We assume that a register in a register window will only be saved
+ in one place (since the name changes and/or disappears as you go
+ towards inner frames), so we only call get_frame_saved_regs on
+ the current frame. This is directly in contradiction to the
+ usage below, which assumes that registers used in a frame must be
+ saved in a lower (more interior) frame. This change is a result
+ of working on a register window machine; get_frame_saved_regs
+ always returns the registers saved within a frame, within the
+ context (register namespace) of that frame. */
+
+ /* However, note that we don't want this to return anything if
+ nothing is saved (if there's a frame inside of this one). Also,
+ callers to this routine asking for the stack pointer want the
+ stack pointer saved for *this* frame; this is returned from the
+ next frame. */
+
+ if (REGISTER_IN_WINDOW_P (regnum))
+ {
+ frame1 = get_next_frame (frame);
+ if (!frame1)
+ return 0; /* Registers of this frame are active. */
+
+ /* Get the SP from the next frame in; it will be this
+ current frame. */
+ if (regnum != SP_REGNUM)
+ frame1 = frame;
+
+ FRAME_INIT_SAVED_REGS (frame1);
+ return frame1->saved_regs[regnum]; /* ... which might be zero */
+ }
+#endif /* HAVE_REGISTER_WINDOWS */
+
+ /* Note that this next routine assumes that registers used in
+ frame x will be saved only in the frame that x calls and
+ frames interior to it. This is not true on the sparc, but the
+ above macro takes care of it, so we should be all right. */
+ while (1)
+ {
+ QUIT;
+ frame1 = get_prev_frame (frame1);
+ if (frame1 == 0 || frame1 == frame)
+ break;
+ FRAME_INIT_SAVED_REGS (frame1);
+ if (frame1->saved_regs[regnum])
+ addr = frame1->saved_regs[regnum];
+ }
+
+ return addr;
+}
+
+/* DEFAULT_GET_SAVED_REGISTER ()
+
+ Find register number REGNUM relative to FRAME and put its (raw,
+ target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
+ variable was optimized out (and thus can't be fetched). Set *LVAL
+ to lval_memory, lval_register, or not_lval, depending on whether
+ the value was fetched from memory, from a register, or in a strange
+ and non-modifiable way (e.g. a frame pointer which was calculated
+ rather than fetched). Set *ADDRP to the address, either in memory
+ on as a REGISTER_BYTE offset into the registers array.
+
+ Note that this implementation never sets *LVAL to not_lval. But
+ it can be replaced by defining GET_SAVED_REGISTER and supplying
+ your own.
+
+ The argument RAW_BUFFER must point to aligned memory. */
+
+static void
+default_get_saved_register (char *raw_buffer,
+ int *optimized,
+ CORE_ADDR *addrp,
+ struct frame_info *frame,
+ int regnum,
+ enum lval_type *lval)
+{
+ CORE_ADDR addr;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ /* Normal systems don't optimize out things with register numbers. */
+ if (optimized != NULL)
+ *optimized = 0;
+ addr = find_saved_register (frame, regnum);
+ if (addr != 0)
+ {
+ if (lval != NULL)
+ *lval = lval_memory;
+ if (regnum == SP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
+ (LONGEST) addr);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+ if (raw_buffer != NULL)
+ target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
+ }
+ else
+ {
+ if (lval != NULL)
+ *lval = lval_register;
+ addr = REGISTER_BYTE (regnum);
+ if (raw_buffer != NULL)
+ read_register_gen (regnum, raw_buffer);
+ }
+ if (addrp != NULL)
+ *addrp = addr;
+}
+
+#if !defined (GET_SAVED_REGISTER)
+#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
+ default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
+#endif
+
+void
+get_saved_register (char *raw_buffer,
+ int *optimized,
+ CORE_ADDR *addrp,
+ struct frame_info *frame,
+ int regnum,
+ enum lval_type *lval)
+{
+ GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
+}
+
+/* READ_RELATIVE_REGISTER_RAW_BYTES_FOR_FRAME
+
+ Copy the bytes of register REGNUM, relative to the input stack frame,
+ into our memory at MYADDR, in target byte order.
+ The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+ Returns 1 if could not be read, 0 if could. */
+
+/* FIXME: This function increases the confusion between FP_REGNUM
+ and the virtual/pseudo-frame pointer. */
+
+static int
+read_relative_register_raw_bytes_for_frame (int regnum,
+ char *myaddr,
+ struct frame_info *frame)
+{
+ int optim;
+ if (regnum == FP_REGNUM && frame)
+ {
+ /* Put it back in target format. */
+ store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
+ (LONGEST) FRAME_FP (frame));
+
+ return 0;
+ }
+
+ get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
+ regnum, (enum lval_type *) NULL);
+
+ if (register_valid[regnum] < 0)
+ return 1; /* register value not available */
+
+ return optim;
+}
+
+/* READ_RELATIVE_REGISTER_RAW_BYTES
+
+ Copy the bytes of register REGNUM, relative to the current stack
+ frame, into our memory at MYADDR, in target byte order.
+ The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+ Returns 1 if could not be read, 0 if could. */
+
+int
+read_relative_register_raw_bytes (int regnum, char *myaddr)
+{
+ return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
+ selected_frame);
+}
+
+
+/* Low level examining and depositing of registers.
+
+ The caller is responsible for making sure that the inferior is
+ stopped before calling the fetching routines, or it will get
+ garbage. (a change from GDB version 3, in which the caller got the
+ value from the last stop). */
+
+/* REGISTERS_CHANGED ()
+
+ Indicate that registers may have changed, so invalidate the cache. */
+
+void
+registers_changed (void)
+{
+ int i;
+ int numregs = ARCH_NUM_REGS;
+
+ registers_pid = -1;
+
+ /* Force cleanup of any alloca areas if using C alloca instead of
+ a builtin alloca. This particular call is used to clean up
+ areas allocated by low level target code which may build up
+ during lengthy interactions between gdb and the target before
+ gdb gives control to the user (ie watchpoints). */
+ alloca (0);
+
+ for (i = 0; i < numregs; i++)
+ register_valid[i] = 0;
+
+ if (registers_changed_hook)
+ registers_changed_hook ();
+}
+
+/* REGISTERS_FETCHED ()
+
+ Indicate that all registers have been fetched, so mark them all valid. */
+
+
+void
+registers_fetched (void)
+{
+ int i;
+ int numregs = ARCH_NUM_REGS;
+
+ for (i = 0; i < numregs; i++)
+ register_valid[i] = 1;
+}
+
+/* read_register_bytes and write_register_bytes are generally a *BAD*
+ idea. They are inefficient because they need to check for partial
+ updates, which can only be done by scanning through all of the
+ registers and seeing if the bytes that are being read/written fall
+ inside of an invalid register. [The main reason this is necessary
+ is that register sizes can vary, so a simple index won't suffice.]
+ It is far better to call read_register_gen and write_register_gen
+ if you want to get at the raw register contents, as it only takes a
+ regno as an argument, and therefore can't do a partial register
+ update.
+
+ Prior to the recent fixes to check for partial updates, both read
+ and write_register_bytes always checked to see if any registers
+ were stale, and then called target_fetch_registers (-1) to update
+ the whole set. This caused really slowed things down for remote
+ targets. */
+
+/* Copy INLEN bytes of consecutive data from registers
+ starting with the INREGBYTE'th byte of register data
+ into memory at MYADDR. */
+
+void
+read_register_bytes (int inregbyte, char *myaddr, int inlen)
+{
+ int inregend = inregbyte + inlen;
+ int regno;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ /* See if we are trying to read bytes from out-of-date registers. If so,
+ update just those registers. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+
+ if (register_valid[regno])
+ continue;
+
+ if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
+ continue;
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ if (regend <= inregbyte || inregend <= regstart)
+ /* The range the user wants to read doesn't overlap with regno. */
+ continue;
+
+ /* We've found an invalid register where at least one byte will be read.
+ Update it from the target. */
+ target_fetch_registers (regno);
+
+ if (!register_valid[regno])
+ error ("read_register_bytes: Couldn't update register %d.", regno);
+ }
+
+ if (myaddr != NULL)
+ memcpy (myaddr, &registers[inregbyte], inlen);
+}
+
+/* Read register REGNO into memory at MYADDR, which must be large
+ enough for REGISTER_RAW_BYTES (REGNO). Target byte-order. If the
+ register is known to be the size of a CORE_ADDR or smaller,
+ read_register can be used instead. */
+
+void
+read_register_gen (int regno, char *myaddr)
+{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ if (!register_valid[regno])
+ target_fetch_registers (regno);
+ memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE (regno));
+}
+
+/* Write register REGNO at MYADDR to the target. MYADDR points at
+ REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
+
+/* Registers we shouldn't try to store. */
+#if !defined (CANNOT_STORE_REGISTER)
+#define CANNOT_STORE_REGISTER(regno) 0
+#endif
+
+void
+write_register_gen (int regno, char *myaddr)
+{
+ int size;
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to
+ change the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ size = REGISTER_RAW_SIZE (regno);
+
+ /* If we have a valid copy of the register, and new value == old value,
+ then don't bother doing the actual store. */
+
+ if (register_valid[regno]
+ && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
+ return;
+
+ target_prepare_to_store ();
+
+ memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
+
+ register_valid[regno] = 1;
+
+ target_store_registers (regno);
+}
+
+/* Copy INLEN bytes of consecutive data from memory at MYADDR
+ into registers starting with the MYREGSTART'th byte of register data. */
+
+void
+write_register_bytes (int myregstart, char *myaddr, int inlen)
+{
+ int myregend = myregstart + inlen;
+ int regno;
+
+ target_prepare_to_store ();
+
+ /* Scan through the registers updating any that are covered by the
+ range myregstart<=>myregend using write_register_gen, which does
+ nice things like handling threads, and avoiding updates when the
+ new and old contents are the same. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ /* Is this register completely outside the range the user is writing? */
+ if (myregend <= regstart || regend <= myregstart)
+ /* do nothing */ ;
+
+ /* Is this register completely within the range the user is writing? */
+ else if (myregstart <= regstart && regend <= myregend)
+ write_register_gen (regno, myaddr + (regstart - myregstart));
+
+ /* The register partially overlaps the range being written. */
+ else
+ {
+ char regbuf[MAX_REGISTER_RAW_SIZE];
+ /* What's the overlap between this register's bytes and
+ those the caller wants to write? */
+ int overlapstart = max (regstart, myregstart);
+ int overlapend = min (regend, myregend);
+
+ /* We may be doing a partial update of an invalid register.
+ Update it from the target before scribbling on it. */
+ read_register_gen (regno, regbuf);
+
+ memcpy (registers + overlapstart,
+ myaddr + (overlapstart - myregstart),
+ overlapend - overlapstart);
+
+ target_store_registers (regno);
+ }
+ }
+}
+
+
+/* Return the raw contents of register REGNO, regarding it as an
+ integer. This probably should be returning LONGEST rather than
+ CORE_ADDR. */
+
+CORE_ADDR
+read_register (int regno)
+{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ if (!register_valid[regno])
+ target_fetch_registers (regno);
+
+ return ((CORE_ADDR)
+ extract_unsigned_integer (&registers[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE (regno)));
+}
+
+CORE_ADDR
+read_register_pid (int regno, int pid)
+{
+ int save_pid;
+ CORE_ADDR retval;
+
+ if (pid == inferior_pid)
+ return read_register (regno);
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ retval = read_register (regno);
+
+ inferior_pid = save_pid;
+
+ return retval;
+}
+
+/* Store VALUE, into the raw contents of register number REGNO. */
+
+void
+write_register (int regno, LONGEST val)
+{
+ PTR buf;
+ int size;
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to
+ change the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ size = REGISTER_RAW_SIZE (regno);
+ buf = alloca (size);
+ store_signed_integer (buf, size, (LONGEST) val);
+
+ /* If we have a valid copy of the register, and new value == old value,
+ then don't bother doing the actual store. */
+
+ if (register_valid[regno]
+ && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
+ return;
+
+ target_prepare_to_store ();
+
+ memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
+
+ register_valid[regno] = 1;
+
+ target_store_registers (regno);
+}
+
+void
+write_register_pid (int regno, CORE_ADDR val, int pid)
+{
+ int save_pid;
+
+ if (pid == inferior_pid)
+ {
+ write_register (regno, val);
+ return;
+ }
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ write_register (regno, val);
+
+ inferior_pid = save_pid;
+}
+
+/* SUPPLY_REGISTER()
+
+ Record that register REGNO contains VAL. This is used when the
+ value is obtained from the inferior or core dump, so there is no
+ need to store the value there.
+
+ If VAL is a NULL pointer, then it's probably an unsupported register.
+ We just set it's value to all zeros. We might want to record this
+ fact, and report it to the users of read_register and friends. */
+
+void
+supply_register (int regno, char *val)
+{
+#if 1
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+#endif
+
+ register_valid[regno] = 1;
+ if (val)
+ memcpy (&registers[REGISTER_BYTE (regno)], val,
+ REGISTER_RAW_SIZE (regno));
+ else
+ memset (&registers[REGISTER_BYTE (regno)], '\000',
+ REGISTER_RAW_SIZE (regno));
+
+ /* On some architectures, e.g. HPPA, there are a few stray bits in
+ some registers, that the rest of the code would like to ignore. */
+
+#ifdef CLEAN_UP_REGISTER_VALUE
+ CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
+#endif
+}
+
+/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
+ Special handling for registers PC, SP, and FP. */
+
+/* This routine is getting awfully cluttered with #if's. It's probably
+ time to turn this into READ_PC and define it in the tm.h file.
+ Ditto for write_pc.
+
+ 1999-06-08: The following were re-written so that it assumes the
+ existance of a TARGET_READ_PC et.al. macro. A default generic
+ version of that macro is made available where needed.
+
+ Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
+ by the multi-arch framework, it will eventually be possible to
+ eliminate the intermediate read_pc_pid(). The client would call
+ TARGET_READ_PC directly. (cagney). */
+
+#ifndef TARGET_READ_PC
+#define TARGET_READ_PC generic_target_read_pc
+#endif
+
+CORE_ADDR
+generic_target_read_pc (int pid)
+{
+#ifdef PC_REGNUM
+ if (PC_REGNUM >= 0)
+ {
+ CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
+ return pc_val;
+ }
+#endif
+ internal_error ("generic_target_read_pc");
+ return 0;
+}
+
+CORE_ADDR
+read_pc_pid (int pid)
+{
+ int saved_inferior_pid;
+ CORE_ADDR pc_val;
+
+ /* In case pid != inferior_pid. */
+ saved_inferior_pid = inferior_pid;
+ inferior_pid = pid;
+
+ pc_val = TARGET_READ_PC (pid);
+
+ inferior_pid = saved_inferior_pid;
+ return pc_val;
+}
+
+CORE_ADDR
+read_pc (void)
+{
+ return read_pc_pid (inferior_pid);
+}
+
+#ifndef TARGET_WRITE_PC
+#define TARGET_WRITE_PC generic_target_write_pc
+#endif
+
+void
+generic_target_write_pc (CORE_ADDR pc, int pid)
+{
+#ifdef PC_REGNUM
+ if (PC_REGNUM >= 0)
+ write_register_pid (PC_REGNUM, pc, pid);
+ if (NPC_REGNUM >= 0)
+ write_register_pid (NPC_REGNUM, pc + 4, pid);
+ if (NNPC_REGNUM >= 0)
+ write_register_pid (NNPC_REGNUM, pc + 8, pid);
+#else
+ internal_error ("generic_target_write_pc");
+#endif
+}
+
+void
+write_pc_pid (CORE_ADDR pc, int pid)
+{
+ int saved_inferior_pid;
+
+ /* In case pid != inferior_pid. */
+ saved_inferior_pid = inferior_pid;
+ inferior_pid = pid;
+
+ TARGET_WRITE_PC (pc, pid);
+
+ inferior_pid = saved_inferior_pid;
+}
+
+void
+write_pc (CORE_ADDR pc)
+{
+ write_pc_pid (pc, inferior_pid);
+}
+
+/* Cope with strage ways of getting to the stack and frame pointers */
+
+#ifndef TARGET_READ_SP
+#define TARGET_READ_SP generic_target_read_sp
+#endif
+
+CORE_ADDR
+generic_target_read_sp (void)
+{
+#ifdef SP_REGNUM
+ if (SP_REGNUM >= 0)
+ return read_register (SP_REGNUM);
+#endif
+ internal_error ("generic_target_read_sp");
+}
+
+CORE_ADDR
+read_sp (void)
+{
+ return TARGET_READ_SP ();
+}
+
+#ifndef TARGET_WRITE_SP
+#define TARGET_WRITE_SP generic_target_write_sp
+#endif
+
+void
+generic_target_write_sp (CORE_ADDR val)
+{
+#ifdef SP_REGNUM
+ if (SP_REGNUM >= 0)
+ {
+ write_register (SP_REGNUM, val);
+ return;
+ }
+#endif
+ internal_error ("generic_target_write_sp");
+}
+
+void
+write_sp (CORE_ADDR val)
+{
+ TARGET_WRITE_SP (val);
+}
+
+#ifndef TARGET_READ_FP
+#define TARGET_READ_FP generic_target_read_fp
+#endif
+
+CORE_ADDR
+generic_target_read_fp (void)
+{
+#ifdef FP_REGNUM
+ if (FP_REGNUM >= 0)
+ return read_register (FP_REGNUM);
+#endif
+ internal_error ("generic_target_read_fp");
+}
+
+CORE_ADDR
+read_fp (void)
+{
+ return TARGET_READ_FP ();
+}
+
+#ifndef TARGET_WRITE_FP
+#define TARGET_WRITE_FP generic_target_write_fp
+#endif
+
+void
+generic_target_write_fp (CORE_ADDR val)
+{
+#ifdef FP_REGNUM
+ if (FP_REGNUM >= 0)
+ {
+ write_register (FP_REGNUM, val);
+ return;
+ }
+#endif
+ internal_error ("generic_target_write_fp");
+}
+
+void
+write_fp (CORE_ADDR val)
+{
+ TARGET_WRITE_FP (val);
+}
+
+static void
+build_regcache (void)
+{
+ /* We allocate some extra slop since we do a lot of memcpy's around
+ `registers', and failing-soft is better than failing hard. */
+ int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
+ int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
+ registers = xmalloc (sizeof_registers);
+ memset (registers, 0, sizeof_registers);
+ register_valid = xmalloc (sizeof_register_valid);
+ memset (register_valid, 0, sizeof_register_valid);
+}
+
+void
+_initialize_regcache (void)
+{
+ build_regcache ();
+
+ register_gdbarch_swap (&registers, sizeof (registers), NULL);
+ register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
+ register_gdbarch_swap (NULL, 0, build_regcache);
+}