aboutsummaryrefslogtreecommitdiff
path: root/gdb/nat
diff options
context:
space:
mode:
authorYao Qi <yao.qi@linaro.org>2015-07-17 14:32:40 +0100
committerYao Qi <yao.qi@linaro.org>2015-07-17 14:32:40 +0100
commit554717a3edce7e266d409cd2c9c76d92584ac156 (patch)
tree5a37e4c6a3e17b20ad0f527341b0b163b2407670 /gdb/nat
parentc67ca4de63fb3018a7e21ec4afe709d4c0dd52c4 (diff)
downloadgdb-554717a3edce7e266d409cd2c9c76d92584ac156.zip
gdb-554717a3edce7e266d409cd2c9c76d92584ac156.tar.gz
gdb-554717a3edce7e266d409cd2c9c76d92584ac156.tar.bz2
Move common aarch64 HW breakpoint/watchpoint code to nat/
When I look at test fails related to watchpoint on aarch64-linux, I find there are some code duplicates between GDB and GDBserver. This patch is to move some of them to a nat/aarch64-linux-hw-point.{h,c}. The only change I do is about the dr_changed_t typedef, which was ULONGEST in GDB and 'unsigned long long' in GDBserver. Each bit of dr_changed_t represents a status of each HW breakpoint or watchpoint register, and the max number of HW breakpoint or watchpoint registers is 16, so the width of 'unsigned long long' is sufficient. gdb: 2015-07-17 Yao Qi <yao.qi@linaro.org> * Makefile.in (HFILES_NO_SRCDIR): Add nat/aarch64-linux-hw-point.h. (aarch64-linux-hw-point.o): New rule. * nat/aarch64-linux-hw-point.h: New file. * nat/aarch64-linux-hw-point.c: New file. * aarch64-linux-nat.c: Include nat/aarch64-linux-hw-point.h. (AARCH64_HBP_MAX_NUM): Move to nat/aarch64-linux-hw-point.h. (AARCH64_HWP_MAX_NUM, AARCH64_HBP_ALIGNMENT): Likewise. (AARCH64_HWP_ALIGNMENT): Likewise. (AARCH64_HWP_MAX_LEN_PER_REG): Likewise. (AARCH64_DEBUG_NUM_SLOTS, AARCH64_DEBUG_ARCH): Likewise. (AARCH64_DEBUG_ARCH_V8, DR_MARK_ALL_CHANGED): Likewise. (DR_MARK_N_CHANGED, DR_CLEAR_CHANGED): Likewise. (DR_HAS_CHANGED, DR_N_HAS_CHANGE): Likewise. (aarch64_num_bp_regs, aarch64_num_wp_regs): Likewise. (struct aarch64_debug_reg_state): Likewise. (struct arch_lwp_info): Likewise. (aarch64_linux_set_debug_regs): Likewise. (aarch64_notify_debug_reg_change): Remove static. (aarch64_align_watchpoint): Likewise. (DR_CONTROL_ENABLED, DR_CONTROL_LENGTH): Likewise. (aarch64_watchpoint_length): Likewise. (aarch64_point_encode_ctrl_reg): Likewise (aarch64_point_is_aligned): Likewise. (aarch64_dr_state_insert_one_point): Likewise. (aarch64_dr_state_remove_one_point): Likewise. (aarch64_handle_breakpoint): Likewise. (aarch64_handle_aligned_watchpoint): Likewise. (aarch64_handle_unaligned_watchpoint): Likewise. (aarch64_handle_watchpoint): Likewise. * config/aarch64/linux.mh (NAT_FILE): Add aarch64-linux-hw-point.o. gdb/gdbserver: 2015-07-17 Yao Qi <yao.qi@linaro.org> * Makefile.in (aarch64-linux-hw-point.o): New rule. * configure.srv (srv_tgtobj): Append aarch64-linux-hw-point.o. * linux-aarch64-low.c: Include nat/aarch64-linux-hw-point.h. (AARCH64_HBP_MAX_NUM): Move to nat/aarch64-linux-hw-point.h. (AARCH64_HWP_MAX_NUM, AARCH64_HBP_ALIGNMENT): Likewise. (AARCH64_HWP_ALIGNMENT): Likewise. (AARCH64_HWP_MAX_LEN_PER_REG): Likewise. (AARCH64_DEBUG_NUM_SLOTS, AARCH64_DEBUG_ARCH): Likewise. (aarch64_num_bp_regs, aarch64_num_wp_regs): Likewise. (AARCH64_DEBUG_ARCH_V8, DR_MARK_ALL_CHANGED): Likewise. (DR_MARK_N_CHANGED, DR_CLEAR_CHANGED): Likewise. (DR_HAS_CHANGED, DR_N_HAS_CHANGE): Likewise. (struct aarch64_debug_reg_state): Likewise. (struct arch_lwp_info): Likewise. (aarch64_align_watchpoint): Likewise. (DR_CONTROL_ENABLED, DR_CONTROL_LENGTH): Likewise. (aarch64_watchpoint_length): Likewise. (aarch64_point_encode_ctrl_reg): Likewise (aarch64_point_is_aligned): Likewise. (aarch64_align_watchpoint): Likewise. (aarch64_linux_set_debug_regs): (aarch64_dr_state_insert_one_point): Likewise. (aarch64_dr_state_remove_one_point): Likewise. (aarch64_handle_breakpoint): Likewise. (aarch64_handle_aligned_watchpoint): Likewise. (aarch64_handle_unaligned_watchpoint): Likewise. (aarch64_handle_watchpoint): Likewise.
Diffstat (limited to 'gdb/nat')
-rw-r--r--gdb/nat/aarch64-linux-hw-point.c505
-rw-r--r--gdb/nat/aarch64-linux-hw-point.h184
2 files changed, 689 insertions, 0 deletions
diff --git a/gdb/nat/aarch64-linux-hw-point.c b/gdb/nat/aarch64-linux-hw-point.c
new file mode 100644
index 0000000..ded4a19
--- /dev/null
+++ b/gdb/nat/aarch64-linux-hw-point.c
@@ -0,0 +1,505 @@
+/* Copyright (C) 2009-2015 Free Software Foundation, Inc.
+ Contributed by ARM Ltd.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "common-defs.h"
+#include "break-common.h"
+#include "aarch64-linux-hw-point.h"
+
+#include <sys/uio.h>
+#include <asm/ptrace.h>
+#include <sys/ptrace.h>
+#include <elf.h>
+
+/* Number of hardware breakpoints/watchpoints the target supports.
+ They are initialized with values obtained via the ptrace calls
+ with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
+
+int aarch64_num_bp_regs;
+int aarch64_num_wp_regs;
+
+/* Utility function that returns the length in bytes of a watchpoint
+ according to the content of a hardware debug control register CTRL.
+ Note that the kernel currently only supports the following Byte
+ Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
+ that for a hardware watchpoint, its valid length can only be 1
+ byte, 2 bytes, 4 bytes or 8 bytes. */
+
+unsigned int
+aarch64_watchpoint_length (unsigned int ctrl)
+{
+ switch (DR_CONTROL_LENGTH (ctrl))
+ {
+ case 0x01:
+ return 1;
+ case 0x03:
+ return 2;
+ case 0x0f:
+ return 4;
+ case 0xff:
+ return 8;
+ default:
+ return 0;
+ }
+}
+
+/* Given the hardware breakpoint or watchpoint type TYPE and its
+ length LEN, return the expected encoding for a hardware
+ breakpoint/watchpoint control register. */
+
+static unsigned int
+aarch64_point_encode_ctrl_reg (enum target_hw_bp_type type, int len)
+{
+ unsigned int ctrl, ttype;
+
+ /* type */
+ switch (type)
+ {
+ case hw_write:
+ ttype = 2;
+ break;
+ case hw_read:
+ ttype = 1;
+ break;
+ case hw_access:
+ ttype = 3;
+ break;
+ case hw_execute:
+ ttype = 0;
+ break;
+ default:
+ perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
+ }
+
+ ctrl = ttype << 3;
+
+ /* length bitmask */
+ ctrl |= ((1 << len) - 1) << 5;
+ /* enabled at el0 */
+ ctrl |= (2 << 1) | 1;
+
+ return ctrl;
+}
+
+/* Addresses to be written to the hardware breakpoint and watchpoint
+ value registers need to be aligned; the alignment is 4-byte and
+ 8-type respectively. Linux kernel rejects any non-aligned address
+ it receives from the related ptrace call. Furthermore, the kernel
+ currently only supports the following Byte Address Select (BAS)
+ values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
+ watchpoint to be accepted by the kernel (via ptrace call), its
+ valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
+ Despite these limitations, the unaligned watchpoint is supported in
+ this port.
+
+ Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
+
+static int
+aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
+{
+ unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
+ : AARCH64_HBP_ALIGNMENT;
+
+ if (addr & (alignment - 1))
+ return 0;
+
+ if (len != 8 && len != 4 && len != 2 && len != 1)
+ return 0;
+
+ return 1;
+}
+
+/* Given the (potentially unaligned) watchpoint address in ADDR and
+ length in LEN, return the aligned address and aligned length in
+ *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
+ aligned address and length will be valid values to write to the
+ hardware watchpoint value and control registers.
+
+ The given watchpoint may get truncated if more than one hardware
+ register is needed to cover the watched region. *NEXT_ADDR_P
+ and *NEXT_LEN_P, if non-NULL, will return the address and length
+ of the remaining part of the watchpoint (which can be processed
+ by calling this routine again to generate another aligned address
+ and length pair.
+
+ Essentially, unaligned watchpoint is achieved by minimally
+ enlarging the watched area to meet the alignment requirement, and
+ if necessary, splitting the watchpoint over several hardware
+ watchpoint registers. The trade-off is that there will be
+ false-positive hits for the read-type or the access-type hardware
+ watchpoints; for the write type, which is more commonly used, there
+ will be no such issues, as the higher-level breakpoint management
+ in gdb always examines the exact watched region for any content
+ change, and transparently resumes a thread from a watchpoint trap
+ if there is no change to the watched region.
+
+ Another limitation is that because the watched region is enlarged,
+ the watchpoint fault address returned by
+ aarch64_stopped_data_address may be outside of the original watched
+ region, especially when the triggering instruction is accessing a
+ larger region. When the fault address is not within any known
+ range, watchpoints_triggered in gdb will get confused, as the
+ higher-level watchpoint management is only aware of original
+ watched regions, and will think that some unknown watchpoint has
+ been triggered. In such a case, gdb may stop without displaying
+ any detailed information.
+
+ Once the kernel provides the full support for Byte Address Select
+ (BAS) in the hardware watchpoint control register, these
+ limitations can be largely relaxed with some further work. */
+
+static void
+aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
+ int *aligned_len_p, CORE_ADDR *next_addr_p,
+ int *next_len_p)
+{
+ int aligned_len;
+ unsigned int offset;
+ CORE_ADDR aligned_addr;
+ const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
+ const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
+
+ /* As assumed by the algorithm. */
+ gdb_assert (alignment == max_wp_len);
+
+ if (len <= 0)
+ return;
+
+ /* Address to be put into the hardware watchpoint value register
+ must be aligned. */
+ offset = addr & (alignment - 1);
+ aligned_addr = addr - offset;
+
+ gdb_assert (offset >= 0 && offset < alignment);
+ gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
+ gdb_assert (offset + len > 0);
+
+ if (offset + len >= max_wp_len)
+ {
+ /* Need more than one watchpoint registers; truncate it at the
+ alignment boundary. */
+ aligned_len = max_wp_len;
+ len -= (max_wp_len - offset);
+ addr += (max_wp_len - offset);
+ gdb_assert ((addr & (alignment - 1)) == 0);
+ }
+ else
+ {
+ /* Find the smallest valid length that is large enough to
+ accommodate this watchpoint. */
+ static const unsigned char
+ aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
+ { 1, 2, 4, 4, 8, 8, 8, 8 };
+
+ aligned_len = aligned_len_array[offset + len - 1];
+ addr += len;
+ len = 0;
+ }
+
+ if (aligned_addr_p)
+ *aligned_addr_p = aligned_addr;
+ if (aligned_len_p)
+ *aligned_len_p = aligned_len;
+ if (next_addr_p)
+ *next_addr_p = addr;
+ if (next_len_p)
+ *next_len_p = len;
+}
+
+/* Record the insertion of one breakpoint/watchpoint, as represented
+ by ADDR and CTRL, in the process' arch-specific data area *STATE. */
+
+static int
+aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
+ enum target_hw_bp_type type,
+ CORE_ADDR addr, int len)
+{
+ int i, idx, num_regs, is_watchpoint;
+ unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
+ CORE_ADDR *dr_addr_p;
+
+ /* Set up state pointers. */
+ is_watchpoint = (type != hw_execute);
+ gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
+ if (is_watchpoint)
+ {
+ num_regs = aarch64_num_wp_regs;
+ dr_addr_p = state->dr_addr_wp;
+ dr_ctrl_p = state->dr_ctrl_wp;
+ dr_ref_count = state->dr_ref_count_wp;
+ }
+ else
+ {
+ num_regs = aarch64_num_bp_regs;
+ dr_addr_p = state->dr_addr_bp;
+ dr_ctrl_p = state->dr_ctrl_bp;
+ dr_ref_count = state->dr_ref_count_bp;
+ }
+
+ ctrl = aarch64_point_encode_ctrl_reg (type, len);
+
+ /* Find an existing or free register in our cache. */
+ idx = -1;
+ for (i = 0; i < num_regs; ++i)
+ {
+ if ((dr_ctrl_p[i] & 1) == 0)
+ {
+ gdb_assert (dr_ref_count[i] == 0);
+ idx = i;
+ /* no break; continue hunting for an exising one. */
+ }
+ else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
+ {
+ gdb_assert (dr_ref_count[i] != 0);
+ idx = i;
+ break;
+ }
+ }
+
+ /* No space. */
+ if (idx == -1)
+ return -1;
+
+ /* Update our cache. */
+ if ((dr_ctrl_p[idx] & 1) == 0)
+ {
+ /* new entry */
+ dr_addr_p[idx] = addr;
+ dr_ctrl_p[idx] = ctrl;
+ dr_ref_count[idx] = 1;
+ /* Notify the change. */
+ aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
+ }
+ else
+ {
+ /* existing entry */
+ dr_ref_count[idx]++;
+ }
+
+ return 0;
+}
+
+/* Record the removal of one breakpoint/watchpoint, as represented by
+ ADDR and CTRL, in the process' arch-specific data area *STATE. */
+
+static int
+aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
+ enum target_hw_bp_type type,
+ CORE_ADDR addr, int len)
+{
+ int i, num_regs, is_watchpoint;
+ unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
+ CORE_ADDR *dr_addr_p;
+
+ /* Set up state pointers. */
+ is_watchpoint = (type != hw_execute);
+ gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
+ if (is_watchpoint)
+ {
+ num_regs = aarch64_num_wp_regs;
+ dr_addr_p = state->dr_addr_wp;
+ dr_ctrl_p = state->dr_ctrl_wp;
+ dr_ref_count = state->dr_ref_count_wp;
+ }
+ else
+ {
+ num_regs = aarch64_num_bp_regs;
+ dr_addr_p = state->dr_addr_bp;
+ dr_ctrl_p = state->dr_ctrl_bp;
+ dr_ref_count = state->dr_ref_count_bp;
+ }
+
+ ctrl = aarch64_point_encode_ctrl_reg (type, len);
+
+ /* Find the entry that matches the ADDR and CTRL. */
+ for (i = 0; i < num_regs; ++i)
+ if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
+ {
+ gdb_assert (dr_ref_count[i] != 0);
+ break;
+ }
+
+ /* Not found. */
+ if (i == num_regs)
+ return -1;
+
+ /* Clear our cache. */
+ if (--dr_ref_count[i] == 0)
+ {
+ /* Clear the enable bit. */
+ ctrl &= ~1;
+ dr_addr_p[i] = 0;
+ dr_ctrl_p[i] = ctrl;
+ /* Notify the change. */
+ aarch64_notify_debug_reg_change (state, is_watchpoint, i);
+ }
+
+ return 0;
+}
+
+int
+aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
+ int len, int is_insert,
+ struct aarch64_debug_reg_state *state)
+{
+ /* The hardware breakpoint on AArch64 should always be 4-byte
+ aligned. */
+ if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
+ return -1;
+
+ if (is_insert)
+ return aarch64_dr_state_insert_one_point (state, type, addr, len);
+ else
+ return aarch64_dr_state_remove_one_point (state, type, addr, len);
+}
+
+/* This is essentially the same as aarch64_handle_breakpoint, apart
+ from that it is an aligned watchpoint to be handled. */
+
+static int
+aarch64_handle_aligned_watchpoint (enum target_hw_bp_type type,
+ CORE_ADDR addr, int len, int is_insert,
+ struct aarch64_debug_reg_state *state)
+{
+ if (is_insert)
+ return aarch64_dr_state_insert_one_point (state, type, addr, len);
+ else
+ return aarch64_dr_state_remove_one_point (state, type, addr, len);
+}
+
+/* Insert/remove unaligned watchpoint by calling
+ aarch64_align_watchpoint repeatedly until the whole watched region,
+ as represented by ADDR and LEN, has been properly aligned and ready
+ to be written to one or more hardware watchpoint registers.
+ IS_INSERT indicates whether this is an insertion or a deletion.
+ Return 0 if succeed. */
+
+static int
+aarch64_handle_unaligned_watchpoint (enum target_hw_bp_type type,
+ CORE_ADDR addr, int len, int is_insert,
+ struct aarch64_debug_reg_state *state)
+{
+ while (len > 0)
+ {
+ CORE_ADDR aligned_addr;
+ int aligned_len, ret;
+
+ aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
+ &addr, &len);
+
+ if (is_insert)
+ ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
+ aligned_len);
+ else
+ ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
+ aligned_len);
+
+ if (show_debug_regs)
+ debug_printf (
+"handle_unaligned_watchpoint: is_insert: %d\n"
+" aligned_addr: %s, aligned_len: %d\n"
+" next_addr: %s, next_len: %d\n",
+is_insert, core_addr_to_string_nz (aligned_addr), aligned_len,
+core_addr_to_string_nz (addr), len);
+
+ if (ret != 0)
+ return ret;
+ }
+
+ return 0;
+}
+
+int
+aarch64_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
+ int len, int is_insert,
+ struct aarch64_debug_reg_state *state)
+{
+ if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
+ return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert,
+ state);
+ else
+ return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert,
+ state);
+}
+
+/* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
+ registers with data from *STATE. */
+
+void
+aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
+ int tid, int watchpoint)
+{
+ int i, count;
+ struct iovec iov;
+ struct user_hwdebug_state regs;
+ const CORE_ADDR *addr;
+ const unsigned int *ctrl;
+
+ memset (&regs, 0, sizeof (regs));
+ iov.iov_base = &regs;
+ count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
+ addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
+ ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
+ if (count == 0)
+ return;
+ iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
+ + sizeof (regs.dbg_regs [count - 1]));
+
+ for (i = 0; i < count; i++)
+ {
+ regs.dbg_regs[i].addr = addr[i];
+ regs.dbg_regs[i].ctrl = ctrl[i];
+ }
+
+ if (ptrace (PTRACE_SETREGSET, tid,
+ watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
+ (void *) &iov))
+ error (_("Unexpected error setting hardware debug registers"));
+}
+
+/* Print the values of the cached breakpoint/watchpoint registers. */
+
+void
+aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
+ const char *func, CORE_ADDR addr,
+ int len, enum target_hw_bp_type type)
+{
+ int i;
+
+ debug_printf ("%s", func);
+ if (addr || len)
+ debug_printf (" (addr=0x%08lx, len=%d, type=%s)",
+ (unsigned long) addr, len,
+ type == hw_write ? "hw-write-watchpoint"
+ : (type == hw_read ? "hw-read-watchpoint"
+ : (type == hw_access ? "hw-access-watchpoint"
+ : (type == hw_execute ? "hw-breakpoint"
+ : "??unknown??"))));
+ debug_printf (":\n");
+
+ debug_printf ("\tBREAKPOINTs:\n");
+ for (i = 0; i < aarch64_num_bp_regs; i++)
+ debug_printf ("\tBP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
+ i, core_addr_to_string_nz (state->dr_addr_bp[i]),
+ state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
+
+ debug_printf ("\tWATCHPOINTs:\n");
+ for (i = 0; i < aarch64_num_wp_regs; i++)
+ debug_printf ("\tWP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
+ i, core_addr_to_string_nz (state->dr_addr_wp[i]),
+ state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
+}
diff --git a/gdb/nat/aarch64-linux-hw-point.h b/gdb/nat/aarch64-linux-hw-point.h
new file mode 100644
index 0000000..44dc5cf
--- /dev/null
+++ b/gdb/nat/aarch64-linux-hw-point.h
@@ -0,0 +1,184 @@
+/* Copyright (C) 2009-2015 Free Software Foundation, Inc.
+ Contributed by ARM Ltd.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#ifndef AARCH64_LINUX_HW_POINT_H
+#define AARCH64_LINUX_HW_POINT_H 1
+
+/* Macro definitions, data structures, and code for the hardware
+ breakpoint and hardware watchpoint support follow. We use the
+ following abbreviations throughout the code:
+
+ hw - hardware
+ bp - breakpoint
+ wp - watchpoint */
+
+/* Maximum number of hardware breakpoint and watchpoint registers.
+ Neither of these values may exceed the width of dr_changed_t
+ measured in bits. */
+
+#define AARCH64_HBP_MAX_NUM 16
+#define AARCH64_HWP_MAX_NUM 16
+
+/* Alignment requirement in bytes for addresses written to
+ hardware breakpoint and watchpoint value registers.
+
+ A ptrace call attempting to set an address that does not meet the
+ alignment criteria will fail. Limited support has been provided in
+ this port for unaligned watchpoints, such that from a GDB user
+ perspective, an unaligned watchpoint may be requested.
+
+ This is achieved by minimally enlarging the watched area to meet the
+ alignment requirement, and if necessary, splitting the watchpoint
+ over several hardware watchpoint registers. */
+
+#define AARCH64_HBP_ALIGNMENT 4
+#define AARCH64_HWP_ALIGNMENT 8
+
+/* The maximum length of a memory region that can be watched by one
+ hardware watchpoint register. */
+
+#define AARCH64_HWP_MAX_LEN_PER_REG 8
+
+/* ptrace hardware breakpoint resource info is formatted as follows:
+
+ 31 24 16 8 0
+ +---------------+--------------+---------------+---------------+
+ | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
+ +---------------+--------------+---------------+---------------+ */
+
+
+/* Macros to extract fields from the hardware debug information word. */
+#define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
+#define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
+
+/* Macro for the expected version of the ARMv8-A debug architecture. */
+#define AARCH64_DEBUG_ARCH_V8 0x6
+
+/* ptrace expects control registers to be formatted as follows:
+
+ 31 13 5 3 1 0
+ +--------------------------------+----------+------+------+----+
+ | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
+ +--------------------------------+----------+------+------+----+
+
+ The TYPE field is ignored for breakpoints. */
+
+#define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
+#define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
+
+/* Each bit of a variable of this type is used to indicate whether a
+ hardware breakpoint or watchpoint setting has been changed since
+ the last update.
+
+ Bit N corresponds to the Nth hardware breakpoint or watchpoint
+ setting which is managed in aarch64_debug_reg_state, where N is
+ valid between 0 and the total number of the hardware breakpoint or
+ watchpoint debug registers minus 1.
+
+ When bit N is 1, the corresponding breakpoint or watchpoint setting
+ has changed, and therefore the corresponding hardware debug
+ register needs to be updated via the ptrace interface.
+
+ In the per-thread arch-specific data area, we define two such
+ variables for per-thread hardware breakpoint and watchpoint
+ settings respectively.
+
+ This type is part of the mechanism which helps reduce the number of
+ ptrace calls to the kernel, i.e. avoid asking the kernel to write
+ to the debug registers with unchanged values. */
+
+typedef unsigned long long dr_changed_t;
+
+/* Set each of the lower M bits of X to 1; assert X is wide enough. */
+
+#define DR_MARK_ALL_CHANGED(x, m) \
+ do \
+ { \
+ gdb_assert (sizeof ((x)) * 8 >= (m)); \
+ (x) = (((dr_changed_t)1 << (m)) - 1); \
+ } while (0)
+
+#define DR_MARK_N_CHANGED(x, n) \
+ do \
+ { \
+ (x) |= ((dr_changed_t)1 << (n)); \
+ } while (0)
+
+#define DR_CLEAR_CHANGED(x) \
+ do \
+ { \
+ (x) = 0; \
+ } while (0)
+
+#define DR_HAS_CHANGED(x) ((x) != 0)
+#define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
+
+/* Structure for managing the hardware breakpoint/watchpoint resources.
+ DR_ADDR_* stores the address, DR_CTRL_* stores the control register
+ content, and DR_REF_COUNT_* counts the numbers of references to the
+ corresponding bp/wp, by which way the limited hardware resources
+ are not wasted on duplicated bp/wp settings (though so far gdb has
+ done a good job by not sending duplicated bp/wp requests). */
+
+struct aarch64_debug_reg_state
+{
+ /* hardware breakpoint */
+ CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
+ unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
+ unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
+
+ /* hardware watchpoint */
+ CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
+ unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
+ unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
+};
+
+/* Per-thread arch-specific data we want to keep. */
+
+struct arch_lwp_info
+{
+ /* When bit N is 1, it indicates the Nth hardware breakpoint or
+ watchpoint register pair needs to be updated when the thread is
+ resumed; see aarch64_linux_prepare_to_resume. */
+ dr_changed_t dr_changed_bp;
+ dr_changed_t dr_changed_wp;
+};
+
+extern int aarch64_num_bp_regs;
+extern int aarch64_num_wp_regs;
+
+unsigned int aarch64_watchpoint_length (unsigned int ctrl);
+
+int aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
+ int len, int is_insert,
+ struct aarch64_debug_reg_state *state);
+int aarch64_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
+ int len, int is_insert,
+ struct aarch64_debug_reg_state *state);
+
+void aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
+ int is_watchpoint, unsigned int idx);
+
+void aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
+ int tid, int watchpoint);
+
+void aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
+ const char *func, CORE_ADDR addr,
+ int len, enum target_hw_bp_type type);
+
+#endif /* AARCH64_LINUX_HW_POINT_H */