aboutsummaryrefslogtreecommitdiff
path: root/gdb/mn10200-tdep.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/mn10200-tdep.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadgdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/mn10200-tdep.c')
-rw-r--r--gdb/mn10200-tdep.c919
1 files changed, 919 insertions, 0 deletions
diff --git a/gdb/mn10200-tdep.c b/gdb/mn10200-tdep.c
new file mode 100644
index 0000000..cb7ead0
--- /dev/null
+++ b/gdb/mn10200-tdep.c
@@ -0,0 +1,919 @@
+/* Target-dependent code for the Matsushita MN10200 for GDB, the GNU debugger.
+ Copyright 1997 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "obstack.h"
+#include "target.h"
+#include "value.h"
+#include "bfd.h"
+#include "gdb_string.h"
+#include "gdbcore.h"
+#include "symfile.h"
+
+
+/* Should call_function allocate stack space for a struct return? */
+int
+mn10200_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
+}
+
+
+
+/* The main purpose of this file is dealing with prologues to extract
+ information about stack frames and saved registers.
+
+ For reference here's how prologues look on the mn10200:
+
+ With frame pointer:
+ mov fp,a0
+ mov sp,fp
+ add <size>,sp
+ Register saves for d2, d3, a1, a2 as needed. Saves start
+ at fp - <size> + <outgoing_args_size> and work towards higher
+ addresses. Note that the saves are actually done off the stack
+ pointer in the prologue! This makes for smaller code and easier
+ prologue scanning as the displacement fields will unlikely
+ be more than 8 bits!
+
+ Without frame pointer:
+ add <size>,sp
+ Register saves for d2, d3, a1, a2 as needed. Saves start
+ at sp + <outgoing_args_size> and work towards higher addresses.
+
+ Out of line prologue:
+ add <local size>,sp -- optional
+ jsr __prologue
+ add <outgoing_size>,sp -- optional
+
+ The stack pointer remains constant throughout the life of most
+ functions. As a result the compiler will usually omit the
+ frame pointer, so we must handle frame pointerless functions. */
+
+/* Analyze the prologue to determine where registers are saved,
+ the end of the prologue, etc etc. Return the end of the prologue
+ scanned.
+
+ We store into FI (if non-null) several tidbits of information:
+
+ * stack_size -- size of this stack frame. Note that if we stop in
+ certain parts of the prologue/epilogue we may claim the size of the
+ current frame is zero. This happens when the current frame has
+ not been allocated yet or has already been deallocated.
+
+ * fsr -- Addresses of registers saved in the stack by this frame.
+
+ * status -- A (relatively) generic status indicator. It's a bitmask
+ with the following bits:
+
+ MY_FRAME_IN_SP: The base of the current frame is actually in
+ the stack pointer. This can happen for frame pointerless
+ functions, or cases where we're stopped in the prologue/epilogue
+ itself. For these cases mn10200_analyze_prologue will need up
+ update fi->frame before returning or analyzing the register
+ save instructions.
+
+ MY_FRAME_IN_FP: The base of the current frame is in the
+ frame pointer register ($a2).
+
+ CALLER_A2_IN_A0: $a2 from the caller's frame is temporarily
+ in $a0. This can happen if we're stopped in the prologue.
+
+ NO_MORE_FRAMES: Set this if the current frame is "start" or
+ if the first instruction looks like mov <imm>,sp. This tells
+ frame chain to not bother trying to unwind past this frame. */
+
+#define MY_FRAME_IN_SP 0x1
+#define MY_FRAME_IN_FP 0x2
+#define CALLER_A2_IN_A0 0x4
+#define NO_MORE_FRAMES 0x8
+
+static CORE_ADDR
+mn10200_analyze_prologue (fi, pc)
+ struct frame_info *fi;
+ CORE_ADDR pc;
+{
+ CORE_ADDR func_addr, func_end, addr, stop;
+ CORE_ADDR stack_size;
+ unsigned char buf[4];
+ int status;
+ char *name;
+ int out_of_line_prologue = 0;
+
+ /* Use the PC in the frame if it's provided to look up the
+ start of this function. */
+ pc = (fi ? fi->pc : pc);
+
+ /* Find the start of this function. */
+ status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
+
+ /* Do nothing if we couldn't find the start of this function or if we're
+ stopped at the first instruction in the prologue. */
+ if (status == 0)
+ return pc;
+
+ /* If we're in start, then give up. */
+ if (strcmp (name, "start") == 0)
+ {
+ if (fi)
+ fi->status = NO_MORE_FRAMES;
+ return pc;
+ }
+
+ /* At the start of a function our frame is in the stack pointer. */
+ if (fi)
+ fi->status = MY_FRAME_IN_SP;
+
+ /* If we're physically on an RTS instruction, then our frame has already
+ been deallocated.
+
+ fi->frame is bogus, we need to fix it. */
+ if (fi && fi->pc + 1 == func_end)
+ {
+ status = target_read_memory (fi->pc, buf, 1);
+ if (status != 0)
+ {
+ if (fi->next == NULL)
+ fi->frame = read_sp ();
+ return fi->pc;
+ }
+
+ if (buf[0] == 0xfe)
+ {
+ if (fi->next == NULL)
+ fi->frame = read_sp ();
+ return fi->pc;
+ }
+ }
+
+ /* Similarly if we're stopped on the first insn of a prologue as our
+ frame hasn't been allocated yet. */
+ if (fi && fi->pc == func_addr)
+ {
+ if (fi->next == NULL)
+ fi->frame = read_sp ();
+ return fi->pc;
+ }
+
+ /* Figure out where to stop scanning. */
+ stop = fi ? fi->pc : func_end;
+
+ /* Don't walk off the end of the function. */
+ stop = stop > func_end ? func_end : stop;
+
+ /* Start scanning on the first instruction of this function. */
+ addr = func_addr;
+
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && fi->status & MY_FRAME_IN_SP)
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ /* First see if this insn sets the stack pointer; if so, it's something
+ we won't understand, so quit now. */
+ if (buf[0] == 0xdf
+ || (buf[0] == 0xf4 && buf[1] == 0x77))
+ {
+ if (fi)
+ fi->status = NO_MORE_FRAMES;
+ return addr;
+ }
+
+ /* Now see if we have a frame pointer.
+
+ Search for mov a2,a0 (0xf278)
+ then mov a3,a2 (0xf27e). */
+
+ if (buf[0] == 0xf2 && buf[1] == 0x78)
+ {
+ /* Our caller's $a2 will be found in $a0 now. Note it for
+ our callers. */
+ if (fi)
+ fi->status |= CALLER_A2_IN_A0;
+ addr += 2;
+ if (addr >= stop)
+ {
+ /* We still haven't allocated our local stack. Handle this
+ as if we stopped on the first or last insn of a function. */
+ if (fi && fi->next == NULL)
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL)
+ fi->frame = read_sp ();
+ return addr;
+ }
+ if (buf[0] == 0xf2 && buf[1] == 0x7e)
+ {
+ addr += 2;
+
+ /* Our frame pointer is valid now. */
+ if (fi)
+ {
+ fi->status |= MY_FRAME_IN_FP;
+ fi->status &= ~MY_FRAME_IN_SP;
+ }
+ if (addr >= stop)
+ return addr;
+ }
+ else
+ {
+ if (fi && fi->next == NULL)
+ fi->frame = read_sp ();
+ return addr;
+ }
+ }
+
+ /* Next we should allocate the local frame.
+
+ Search for add imm8,a3 (0xd3XX)
+ or add imm16,a3 (0xf70bXXXX)
+ or add imm24,a3 (0xf467XXXXXX).
+
+ If none of the above was found, then this prologue has
+ no stack, and therefore can't have any register saves,
+ so quit now. */
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+ if (buf[0] == 0xd3)
+ {
+ stack_size = extract_signed_integer (&buf[1], 1);
+ if (fi)
+ fi->stack_size = stack_size;
+ addr += 2;
+ if (addr >= stop)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp () - stack_size;
+ return addr;
+ }
+ }
+ else if (buf[0] == 0xf7 && buf[1] == 0x0b)
+ {
+ status = target_read_memory (addr + 2, buf, 2);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+ stack_size = extract_signed_integer (buf, 2);
+ if (fi)
+ fi->stack_size = stack_size;
+ addr += 4;
+ if (addr >= stop)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp () - stack_size;
+ return addr;
+ }
+ }
+ else if (buf[0] == 0xf4 && buf[1] == 0x67)
+ {
+ status = target_read_memory (addr + 2, buf, 3);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+ stack_size = extract_signed_integer (buf, 3);
+ if (fi)
+ fi->stack_size = stack_size;
+ addr += 5;
+ if (addr >= stop)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp () - stack_size;
+ return addr;
+ }
+ }
+
+ /* Now see if we have a call to __prologue for an out of line
+ prologue. */
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ return addr;
+
+ /* First check for 16bit pc-relative call to __prologue. */
+ if (buf[0] == 0xfd)
+ {
+ CORE_ADDR temp;
+ status = target_read_memory (addr + 1, buf, 2);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ /* Get the PC this instruction will branch to. */
+ temp = (extract_signed_integer (buf, 2) + addr + 3) & 0xffffff;
+
+ /* Get the name of the function at the target address. */
+ status = find_pc_partial_function (temp, &name, NULL, NULL);
+ if (status == 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ /* Note if it is an out of line prologue. */
+ out_of_line_prologue = (strcmp (name, "__prologue") == 0);
+
+ /* This sucks up 3 bytes of instruction space. */
+ if (out_of_line_prologue)
+ addr += 3;
+
+ if (addr >= stop)
+ {
+ if (fi && fi->next == NULL)
+ {
+ fi->stack_size -= 16;
+ fi->frame = read_sp () - fi->stack_size;
+ }
+ return addr;
+ }
+ }
+ /* Now check for the 24bit pc-relative call to __prologue. */
+ else if (buf[0] == 0xf4 && buf[1] == 0xe1)
+ {
+ CORE_ADDR temp;
+ status = target_read_memory (addr + 2, buf, 3);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ /* Get the PC this instruction will branch to. */
+ temp = (extract_signed_integer (buf, 3) + addr + 5) & 0xffffff;
+
+ /* Get the name of the function at the target address. */
+ status = find_pc_partial_function (temp, &name, NULL, NULL);
+ if (status == 0)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ fi->frame = read_sp ();
+ return addr;
+ }
+
+ /* Note if it is an out of line prologue. */
+ out_of_line_prologue = (strcmp (name, "__prologue") == 0);
+
+ /* This sucks up 5 bytes of instruction space. */
+ if (out_of_line_prologue)
+ addr += 5;
+
+ if (addr >= stop)
+ {
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
+ {
+ fi->stack_size -= 16;
+ fi->frame = read_sp () - fi->stack_size;
+ }
+ return addr;
+ }
+ }
+
+ /* Now actually handle the out of line prologue. */
+ if (out_of_line_prologue)
+ {
+ int outgoing_args_size = 0;
+
+ /* First adjust the stack size for this function. The out of
+ line prologue saves 4 registers (16bytes of data). */
+ if (fi)
+ fi->stack_size -= 16;
+
+ /* Update fi->frame if necessary. */
+ if (fi && fi->next == NULL)
+ fi->frame = read_sp () - fi->stack_size;
+
+ /* After the out of line prologue, there may be another
+ stack adjustment for the outgoing arguments.
+
+ Search for add imm8,a3 (0xd3XX)
+ or add imm16,a3 (0xf70bXXXX)
+ or add imm24,a3 (0xf467XXXXXX). */
+
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ {
+ if (fi)
+ {
+ fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
+ fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
+ fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
+ fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
+ }
+ return addr;
+ }
+
+ if (buf[0] == 0xd3)
+ {
+ outgoing_args_size = extract_signed_integer (&buf[1], 1);
+ addr += 2;
+ }
+ else if (buf[0] == 0xf7 && buf[1] == 0x0b)
+ {
+ status = target_read_memory (addr + 2, buf, 2);
+ if (status != 0)
+ {
+ if (fi)
+ {
+ fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
+ fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
+ fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
+ fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
+ }
+ return addr;
+ }
+ outgoing_args_size = extract_signed_integer (buf, 2);
+ addr += 4;
+ }
+ else if (buf[0] == 0xf4 && buf[1] == 0x67)
+ {
+ status = target_read_memory (addr + 2, buf, 3);
+ if (status != 0)
+ {
+ if (fi && fi->next == NULL)
+ {
+ fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
+ fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
+ fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
+ fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
+ }
+ return addr;
+ }
+ outgoing_args_size = extract_signed_integer (buf, 3);
+ addr += 5;
+ }
+ else
+ outgoing_args_size = 0;
+
+ /* Now that we know the size of the outgoing arguments, fix
+ fi->frame again if this is the innermost frame. */
+ if (fi && fi->next == NULL)
+ fi->frame -= outgoing_args_size;
+
+ /* Note the register save information and update the stack
+ size for this frame too. */
+ if (fi)
+ {
+ fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
+ fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
+ fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
+ fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
+ fi->stack_size += outgoing_args_size;
+ }
+ /* There can be no more prologue insns, so return now. */
+ return addr;
+ }
+
+ /* At this point fi->frame needs to be correct.
+
+ If MY_FRAME_IN_SP is set and we're the innermost frame, then we
+ need to fix fi->frame so that backtracing, find_frame_saved_regs,
+ etc work correctly. */
+ if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP) != 0)
+ fi->frame = read_sp () - fi->stack_size;
+
+ /* And last we have the register saves. These are relatively
+ simple because they're physically done off the stack pointer,
+ and thus the number of different instructions we need to
+ check is greatly reduced because we know the displacements
+ will be small.
+
+ Search for movx d2,(X,a3) (0xf55eXX)
+ then movx d3,(X,a3) (0xf55fXX)
+ then mov a1,(X,a3) (0x5dXX) No frame pointer case
+ then mov a2,(X,a3) (0x5eXX) No frame pointer case
+ or mov a0,(X,a3) (0x5cXX) Frame pointer case. */
+
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ return addr;
+ if (buf[0] == 0xf5 && buf[1] == 0x5e)
+ {
+ if (fi)
+ {
+ status = target_read_memory (addr + 2, buf, 1);
+ if (status != 0)
+ return addr;
+ fi->fsr.regs[2] = (fi->frame + stack_size
+ + extract_signed_integer (buf, 1));
+ }
+ addr += 3;
+ if (addr >= stop)
+ return addr;
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ return addr;
+ }
+ if (buf[0] == 0xf5 && buf[1] == 0x5f)
+ {
+ if (fi)
+ {
+ status = target_read_memory (addr + 2, buf, 1);
+ if (status != 0)
+ return addr;
+ fi->fsr.regs[3] = (fi->frame + stack_size
+ + extract_signed_integer (buf, 1));
+ }
+ addr += 3;
+ if (addr >= stop)
+ return addr;
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ return addr;
+ }
+ if (buf[0] == 0x5d)
+ {
+ if (fi)
+ {
+ status = target_read_memory (addr + 1, buf, 1);
+ if (status != 0)
+ return addr;
+ fi->fsr.regs[5] = (fi->frame + stack_size
+ + extract_signed_integer (buf, 1));
+ }
+ addr += 2;
+ if (addr >= stop)
+ return addr;
+ status = target_read_memory (addr, buf, 2);
+ if (status != 0)
+ return addr;
+ }
+ if (buf[0] == 0x5e || buf[0] == 0x5c)
+ {
+ if (fi)
+ {
+ status = target_read_memory (addr + 1, buf, 1);
+ if (status != 0)
+ return addr;
+ fi->fsr.regs[6] = (fi->frame + stack_size
+ + extract_signed_integer (buf, 1));
+ fi->status &= ~CALLER_A2_IN_A0;
+ }
+ addr += 2;
+ if (addr >= stop)
+ return addr;
+ return addr;
+ }
+ return addr;
+}
+
+/* Function: frame_chain
+ Figure out and return the caller's frame pointer given current
+ frame_info struct.
+
+ We don't handle dummy frames yet but we would probably just return the
+ stack pointer that was in use at the time the function call was made? */
+
+CORE_ADDR
+mn10200_frame_chain (fi)
+ struct frame_info *fi;
+{
+ struct frame_info dummy_frame;
+
+ /* Walk through the prologue to determine the stack size,
+ location of saved registers, end of the prologue, etc. */
+ if (fi->status == 0)
+ mn10200_analyze_prologue (fi, (CORE_ADDR)0);
+
+ /* Quit now if mn10200_analyze_prologue set NO_MORE_FRAMES. */
+ if (fi->status & NO_MORE_FRAMES)
+ return 0;
+
+ /* Now that we've analyzed our prologue, determine the frame
+ pointer for our caller.
+
+ If our caller has a frame pointer, then we need to
+ find the entry value of $a2 to our function.
+
+ If CALLER_A2_IN_A0, then the chain is in $a0.
+
+ If fsr.regs[6] is nonzero, then it's at the memory
+ location pointed to by fsr.regs[6].
+
+ Else it's still in $a2.
+
+ If our caller does not have a frame pointer, then his
+ frame base is fi->frame + -caller's stack size + 4. */
+
+ /* The easiest way to get that info is to analyze our caller's frame.
+
+ So we set up a dummy frame and call mn10200_analyze_prologue to
+ find stuff for us. */
+ dummy_frame.pc = FRAME_SAVED_PC (fi);
+ dummy_frame.frame = fi->frame;
+ memset (dummy_frame.fsr.regs, '\000', sizeof dummy_frame.fsr.regs);
+ dummy_frame.status = 0;
+ dummy_frame.stack_size = 0;
+ mn10200_analyze_prologue (&dummy_frame);
+
+ if (dummy_frame.status & MY_FRAME_IN_FP)
+ {
+ /* Our caller has a frame pointer. So find the frame in $a2, $a0,
+ or in the stack. */
+ if (fi->fsr.regs[6])
+ return (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE)
+ & 0xffffff);
+ else if (fi->status & CALLER_A2_IN_A0)
+ return read_register (4);
+ else
+ return read_register (FP_REGNUM);
+ }
+ else
+ {
+ /* Our caller does not have a frame pointer. So his frame starts
+ at the base of our frame (fi->frame) + <his size> + 4 (saved pc). */
+ return fi->frame + -dummy_frame.stack_size + 4;
+ }
+}
+
+/* Function: skip_prologue
+ Return the address of the first inst past the prologue of the function. */
+
+CORE_ADDR
+mn10200_skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ /* We used to check the debug symbols, but that can lose if
+ we have a null prologue. */
+ return mn10200_analyze_prologue (NULL, pc);
+}
+
+/* Function: pop_frame
+ This routine gets called when either the user uses the `return'
+ command, or the call dummy breakpoint gets hit. */
+
+void
+mn10200_pop_frame (frame)
+ struct frame_info *frame;
+{
+ int regnum;
+
+ if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
+ generic_pop_dummy_frame ();
+ else
+ {
+ write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
+
+ /* Restore any saved registers. */
+ for (regnum = 0; regnum < NUM_REGS; regnum++)
+ if (frame->fsr.regs[regnum] != 0)
+ {
+ ULONGEST value;
+
+ value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
+ REGISTER_RAW_SIZE (regnum));
+ write_register (regnum, value);
+ }
+
+ /* Actually cut back the stack. */
+ write_register (SP_REGNUM, FRAME_FP (frame));
+
+ /* Don't we need to set the PC?!? XXX FIXME. */
+ }
+
+ /* Throw away any cached frame information. */
+ flush_cached_frames ();
+}
+
+/* Function: push_arguments
+ Setup arguments for a call to the target. Arguments go in
+ order on the stack. */
+
+CORE_ADDR
+mn10200_push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ unsigned char struct_return;
+ CORE_ADDR struct_addr;
+{
+ int argnum = 0;
+ int len = 0;
+ int stack_offset = 0;
+ int regsused = struct_return ? 1 : 0;
+
+ /* This should be a nop, but align the stack just in case something
+ went wrong. Stacks are two byte aligned on the mn10200. */
+ sp &= ~1;
+
+ /* Now make space on the stack for the args.
+
+ XXX This doesn't appear to handle pass-by-invisible reference
+ arguments. */
+ for (argnum = 0; argnum < nargs; argnum++)
+ {
+ int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 1) & ~1;
+
+ /* If we've used all argument registers, then this argument is
+ pushed. */
+ if (regsused >= 2 || arg_length > 4)
+ {
+ regsused = 2;
+ len += arg_length;
+ }
+ /* We know we've got some arg register space left. If this argument
+ will fit entirely in regs, then put it there. */
+ else if (arg_length <= 2
+ || TYPE_CODE (VALUE_TYPE (args[argnum])) == TYPE_CODE_PTR)
+ {
+ regsused++;
+ }
+ else if (regsused == 0)
+ {
+ regsused = 2;
+ }
+ else
+ {
+ regsused = 2;
+ len += arg_length;
+ }
+ }
+
+ /* Allocate stack space. */
+ sp -= len;
+
+ regsused = struct_return ? 1 : 0;
+ /* Push all arguments onto the stack. */
+ for (argnum = 0; argnum < nargs; argnum++)
+ {
+ int len;
+ char *val;
+
+ /* XXX Check this. What about UNIONS? */
+ if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
+ && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
+ {
+ /* XXX Wrong, we want a pointer to this argument. */
+ len = TYPE_LENGTH (VALUE_TYPE (*args));
+ val = (char *)VALUE_CONTENTS (*args);
+ }
+ else
+ {
+ len = TYPE_LENGTH (VALUE_TYPE (*args));
+ val = (char *)VALUE_CONTENTS (*args);
+ }
+
+ if (regsused < 2
+ && (len <= 2
+ || TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_PTR))
+ {
+ write_register (regsused, extract_unsigned_integer (val, 4));
+ regsused++;
+ }
+ else if (regsused == 0 && len == 4)
+ {
+ write_register (regsused, extract_unsigned_integer (val, 2));
+ write_register (regsused + 1, extract_unsigned_integer (val + 2, 2));
+ regsused = 2;
+ }
+ else
+ {
+ regsused = 2;
+ while (len > 0)
+ {
+ write_memory (sp + stack_offset, val, 2);
+
+ len -= 2;
+ val += 2;
+ stack_offset += 2;
+ }
+ }
+ args++;
+ }
+
+ return sp;
+}
+
+/* Function: push_return_address (pc)
+ Set up the return address for the inferior function call.
+ Needed for targets where we don't actually execute a JSR/BSR instruction */
+
+CORE_ADDR
+mn10200_push_return_address (pc, sp)
+ CORE_ADDR pc;
+ CORE_ADDR sp;
+{
+ unsigned char buf[4];
+
+ store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
+ write_memory (sp - 4, buf, 4);
+ return sp - 4;
+}
+
+/* Function: store_struct_return (addr,sp)
+ Store the structure value return address for an inferior function
+ call. */
+
+CORE_ADDR
+mn10200_store_struct_return (addr, sp)
+ CORE_ADDR addr;
+ CORE_ADDR sp;
+{
+ /* The structure return address is passed as the first argument. */
+ write_register (0, addr);
+ return sp;
+}
+
+/* Function: frame_saved_pc
+ Find the caller of this frame. We do this by seeing if RP_REGNUM
+ is saved in the stack anywhere, otherwise we get it from the
+ registers. If the inner frame is a dummy frame, return its PC
+ instead of RP, because that's where "caller" of the dummy-frame
+ will be found. */
+
+CORE_ADDR
+mn10200_frame_saved_pc (fi)
+ struct frame_info *fi;
+{
+ /* The saved PC will always be at the base of the current frame. */
+ return (read_memory_integer (fi->frame, REGISTER_SIZE) & 0xffffff);
+}
+
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+ char *raw_buffer;
+ int *optimized;
+ CORE_ADDR *addrp;
+ struct frame_info *frame;
+ int regnum;
+ enum lval_type *lval;
+{
+ generic_get_saved_register (raw_buffer, optimized, addrp,
+ frame, regnum, lval);
+}
+
+/* Function: init_extra_frame_info
+ Setup the frame's frame pointer, pc, and frame addresses for saved
+ registers. Most of the work is done in mn10200_analyze_prologue().
+
+ Note that when we are called for the last frame (currently active frame),
+ that fi->pc and fi->frame will already be setup. However, fi->frame will
+ be valid only if this routine uses FP. For previous frames, fi-frame will
+ always be correct. mn10200_analyze_prologue will fix fi->frame if
+ it's not valid.
+
+ We can be called with the PC in the call dummy under two circumstances.
+ First, during normal backtracing, second, while figuring out the frame
+ pointer just prior to calling the target function (see run_stack_dummy). */
+
+void
+mn10200_init_extra_frame_info (fi)
+ struct frame_info *fi;
+{
+ if (fi->next)
+ fi->pc = FRAME_SAVED_PC (fi->next);
+
+ memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
+ fi->status = 0;
+ fi->stack_size = 0;
+
+ mn10200_analyze_prologue (fi, 0);
+}
+
+void
+_initialize_mn10200_tdep ()
+{
+ tm_print_insn = print_insn_mn10200;
+}
+