aboutsummaryrefslogtreecommitdiff
path: root/gdb/m32r-tdep.c
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2003-07-21 18:56:05 +0000
committerAndrew Cagney <cagney@redhat.com>2003-07-21 18:56:05 +0000
commitd95a89033d01d8f5132a8a4f79dc4c2d9deb54b1 (patch)
tree36ed9eb488dded30b82a07455f99064b8b248d28 /gdb/m32r-tdep.c
parent796f2a93d192aa7d2c8d6a1ab541581b7b874740 (diff)
downloadgdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.zip
gdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.tar.gz
gdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.tar.bz2
2003-07-21 Andrew Cagney <cagney@redhat.com>
From 2003-07-04 Kei Sakamoto <sakamoto.kei@renesas.com>: * m32r-tdep.c, m32r-stub.c, m32r-tdep.c: Rewrite.
Diffstat (limited to 'gdb/m32r-tdep.c')
-rw-r--r--gdb/m32r-tdep.c1697
1 files changed, 989 insertions, 708 deletions
diff --git a/gdb/m32r-tdep.c b/gdb/m32r-tdep.c
index 93edbf9..a40f67d 100644
--- a/gdb/m32r-tdep.c
+++ b/gdb/m32r-tdep.c
@@ -1,708 +1,989 @@
-// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
-// OBSOLETE
-// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
-// OBSOLETE Foundation, Inc.
-// OBSOLETE
-// OBSOLETE This file is part of GDB.
-// OBSOLETE
-// OBSOLETE This program is free software; you can redistribute it and/or modify
-// OBSOLETE it under the terms of the GNU General Public License as published by
-// OBSOLETE the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE (at your option) any later version.
-// OBSOLETE
-// OBSOLETE This program is distributed in the hope that it will be useful,
-// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// OBSOLETE GNU General Public License for more details.
-// OBSOLETE
-// OBSOLETE You should have received a copy of the GNU General Public License
-// OBSOLETE along with this program; if not, write to the Free Software
-// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE Boston, MA 02111-1307, USA. */
-// OBSOLETE
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "frame.h"
-// OBSOLETE #include "inferior.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "value.h"
-// OBSOLETE #include "bfd.h"
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "symfile.h"
-// OBSOLETE #include "regcache.h"
-// OBSOLETE
-// OBSOLETE /* Function: m32r_use_struct_convention
-// OBSOLETE Return nonzero if call_function should allocate stack space for a
-// OBSOLETE struct return? */
-// OBSOLETE int
-// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
-// OBSOLETE {
-// OBSOLETE return (TYPE_LENGTH (type) > 8);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_find_saved_regs
-// OBSOLETE Return the frame_saved_regs structure for the frame.
-// OBSOLETE Doesn't really work for dummy frames, but it does pass back
-// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
-// OBSOLETE struct frame_saved_regs *regaddr)
-// OBSOLETE {
-// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
-// OBSOLETE if being done, its quite a lot
-// OBSOLETE */
-// OBSOLETE #if 0
-// OBSOLETE static void
-// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
-// OBSOLETE {
-// OBSOLETE printf_filtered (" %s %08x %08x ",
-// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn);
-// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info);
-// OBSOLETE printf_filtered ("\n");
-// OBSOLETE }
-// OBSOLETE #define insn_debug(args) { printf_filtered args; }
-// OBSOLETE #else
-// OBSOLETE #define dump_insn(a,b,c) {}
-// OBSOLETE #define insn_debug(args) {}
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
-// OBSOLETE
-// OBSOLETE /* Function: scan_prologue
-// OBSOLETE This function decodes the target function prologue to determine
-// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it.
-// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument,
-// OBSOLETE and returns the frame size. */
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE The sequence it currently generates is:
-// OBSOLETE
-// OBSOLETE if (varargs function) { ddi sp,#n }
-// OBSOLETE push registers
-// OBSOLETE if (additional stack <= 256) { addi sp,#-stack }
-// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack
-// OBSOLETE
-// OBSOLETE } else if (additional stack) {
-// OBSOLETE seth sp,#(stack & 0xffff0000)
-// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff)
-// OBSOLETE sub sp,r4
-// OBSOLETE }
-// OBSOLETE if (frame pointer) {
-// OBSOLETE mv sp,fp
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE These instructions are scheduled like everything else, so you should stop at
-// OBSOLETE the first branch instruction.
-// OBSOLETE
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info.
-// OBSOLETE The results of decoding a prologue should be cached because this
-// OBSOLETE thrashing is getting nuts.
-// OBSOLETE I am thinking of making a container class with two indexes, name and
-// OBSOLETE address. It may be better to extend the symbol table.
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
-// OBSOLETE unsigned long *framelength, struct frame_info *fi,
-// OBSOLETE struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE unsigned long framesize;
-// OBSOLETE int insn;
-// OBSOLETE int op1;
-// OBSOLETE int maybe_one_more = 0;
-// OBSOLETE CORE_ADDR after_prologue = 0;
-// OBSOLETE CORE_ADDR after_stack_adjust = 0;
-// OBSOLETE CORE_ADDR current_pc;
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE framesize = 0;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
-// OBSOLETE
-// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
-// OBSOLETE {
-// OBSOLETE
-// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
-// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */
-// OBSOLETE
-// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its
-// OBSOLETE immediate data as though it were an instruction */
-// OBSOLETE if (current_pc & 0x02)
-// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */
-// OBSOLETE if (maybe_one_more)
-// OBSOLETE { /* The last instruction was a branch, usually terminates
-// OBSOLETE the series, but if this is a parallel instruction,
-// OBSOLETE it may be a stack framing instruction */
-// OBSOLETE if (!(insn & 0x8000))
-// OBSOLETE {
-// OBSOLETE insn_debug (("Really done"));
-// OBSOLETE break; /* nope, we are really done */
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE insn &= 0x7fff; /* decode this instruction further */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (maybe_one_more)
-// OBSOLETE break; /* This isnt the one more */
-// OBSOLETE if (insn & 0x8000)
-// OBSOLETE {
-// OBSOLETE insn_debug (("32 bit insn\n"));
-// OBSOLETE if (current_pc == scan_limit)
-// OBSOLETE scan_limit += 2; /* extend the search */
-// OBSOLETE current_pc += 2; /* skip the immediate data */
-// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */
-// OBSOLETE /* add 16 bit sign-extended offset */
-// OBSOLETE {
-// OBSOLETE insn_debug (("stack increment\n"));
-// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
-// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
-// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */
-// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn);
-// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4);
-// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn);
-// OBSOLETE if (insn & 0x00800000) /* sign extend */
-// OBSOLETE insn |= 0xff000000; /* negative */
-// OBSOLETE else
-// OBSOLETE insn &= 0x00ffffff; /* positive */
-// OBSOLETE framesize += insn;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */
-// OBSOLETE
-// OBSOLETE if ((insn & 0xf0ff) == 0x207f)
-// OBSOLETE { /* st reg, @-sp */
-// OBSOLETE int regno;
-// OBSOLETE insn_debug (("push\n"));
-// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
-// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi)
-// OBSOLETE fi->using_frame_pointer = 1;
-// OBSOLETE #endif
-// OBSOLETE framesize += 4;
-// OBSOLETE #if 0
-// OBSOLETE /* Why should we increase the scan limit, just because we did a push?
-// OBSOLETE And if there is a reason, surely we would only want to do it if we
-// OBSOLETE had already reached the scan limit... */
-// OBSOLETE if (current_pc == scan_limit)
-// OBSOLETE scan_limit += 2;
-// OBSOLETE #endif
-// OBSOLETE regno = ((insn >> 8) & 0xf);
-// OBSOLETE if (fsr) /* save_regs offset */
-// OBSOLETE fsr->regs[regno] = framesize;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */
-// OBSOLETE /* add 8 bit sign-extended offset */
-// OBSOLETE {
-// OBSOLETE int stack_adjust = (char) (insn & 0xff);
-// OBSOLETE
-// OBSOLETE /* there are probably two of these stack adjustments:
-// OBSOLETE 1) A negative one in the prologue, and
-// OBSOLETE 2) A positive one in the epilogue.
-// OBSOLETE We are only interested in the first one. */
-// OBSOLETE
-// OBSOLETE if (stack_adjust < 0)
-// OBSOLETE {
-// OBSOLETE framesize -= stack_adjust;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE /* A frameless function may have no "mv fp, sp".
-// OBSOLETE In that case, this is the end of the prologue. */
-// OBSOLETE after_stack_adjust = current_pc + 2;
-// OBSOLETE }
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE if (insn == 0x1d8f)
-// OBSOLETE { /* mv fp, sp */
-// OBSOLETE if (fi)
-// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */
-// OBSOLETE insn_debug (("done fp found\n"));
-// OBSOLETE after_prologue = current_pc + 2;
-// OBSOLETE break; /* end of stack adjustments */
-// OBSOLETE }
-// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
-// OBSOLETE {
-// OBSOLETE insn_debug (("nop\n"));
-// OBSOLETE after_prologue = current_pc + 2;
-// OBSOLETE continue; /* nop occurs between pushes */
-// OBSOLETE }
-// OBSOLETE /* End of prolog if any of these are branch instructions */
-// OBSOLETE if ((op1 == 0x7000)
-// OBSOLETE || (op1 == 0xb000)
-// OBSOLETE || (op1 == 0xf000))
-// OBSOLETE {
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE insn_debug (("Done: branch\n"));
-// OBSOLETE maybe_one_more = 1;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE /* Some of the branch instructions are mixed with other types */
-// OBSOLETE if (op1 == 0x1000)
-// OBSOLETE {
-// OBSOLETE int subop = insn & 0x0ff0;
-// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0))
-// OBSOLETE {
-// OBSOLETE insn_debug (("done: jmp\n"));
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE maybe_one_more = 1;
-// OBSOLETE continue; /* jmp , jl */
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (current_pc >= scan_limit)
-// OBSOLETE {
-// OBSOLETE if (pl_endptr)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (after_stack_adjust != 0)
-// OBSOLETE /* We did not find a "mv fp,sp", but we DID find
-// OBSOLETE a stack_adjust. Is it safe to use that as the
-// OBSOLETE end of the prologue? I just don't know. */
-// OBSOLETE {
-// OBSOLETE *pl_endptr = after_stack_adjust;
-// OBSOLETE if (framelength)
-// OBSOLETE *framelength = framesize;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE #endif
-// OBSOLETE /* We reached the end of the loop without finding the end
-// OBSOLETE of the prologue. No way to win -- we should report failure.
-// OBSOLETE The way we do that is to return the original start_pc.
-// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */
-// OBSOLETE *pl_endptr = start_pc;
-// OBSOLETE }
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE if (after_prologue == 0)
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE
-// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
-// OBSOLETE if (framelength)
-// OBSOLETE *framelength = framesize;
-// OBSOLETE if (pl_endptr)
-// OBSOLETE *pl_endptr = after_prologue;
-// OBSOLETE } /* decode_prologue */
-// OBSOLETE
-// OBSOLETE /* Function: skip_prologue
-// OBSOLETE Find end of function prologue */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR func_addr, func_end;
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE
-// OBSOLETE /* See what the symbol table says */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
-// OBSOLETE {
-// OBSOLETE sal = find_pc_line (func_addr, 0);
-// OBSOLETE
-// OBSOLETE if (sal.line != 0 && sal.end <= func_end)
-// OBSOLETE {
-// OBSOLETE
-// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end));
-// OBSOLETE func_end = sal.end;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE /* Either there's no line info, or the line after the prologue is after
-// OBSOLETE the end of the function. In this case, there probably isn't a
-// OBSOLETE prologue. */
-// OBSOLETE {
-// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
-// OBSOLETE sal.line, sal.end, func_end));
-// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT;
-// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
-// OBSOLETE return sal.end;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static unsigned long
-// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
-// OBSOLETE unsigned long framesize = 0;
-// OBSOLETE
-// OBSOLETE /* this code essentially duplicates skip_prologue,
-// OBSOLETE but we need the start address below. */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
-// OBSOLETE {
-// OBSOLETE sal = find_pc_line (prologue_start, 0);
-// OBSOLETE
-// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
-// OBSOLETE if (prologue_start == entry_point_address ())
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE prologue_start = fi->pc;
-// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks:
-// OBSOLETE allow for 16 pushes, an add,
-// OBSOLETE and "mv fp,sp" */
-// OBSOLETE }
-// OBSOLETE #if 0
-// OBSOLETE prologue_end = min (prologue_end, fi->pc);
-// OBSOLETE #endif
-// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
-// OBSOLETE fi->pc, prologue_start, prologue_end));
-// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
-// OBSOLETE fi, fsr);
-// OBSOLETE return framesize;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: init_extra_frame_info
-// OBSOLETE This function actually figures out the frame address for a given pc and
-// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit
-// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded
-// OBSOLETE on the stack. The only reliable way to get this info is to
-// OBSOLETE examine the prologue. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE int reg;
-// OBSOLETE
-// OBSOLETE if (fi->next)
-// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
-// OBSOLETE
-// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
-// OBSOLETE
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE {
-// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
-// OBSOLETE by assuming it's always FP. */
-// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
-// OBSOLETE SP_REGNUM);
-// OBSOLETE fi->framesize = 0;
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE fi->using_frame_pointer = 0;
-// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
-// OBSOLETE
-// OBSOLETE if (!fi->next)
-// OBSOLETE if (fi->using_frame_pointer)
-// OBSOLETE {
-// OBSOLETE fi->frame = read_register (FP_REGNUM);
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE fi->frame = read_register (SP_REGNUM);
-// OBSOLETE else
-// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
-// OBSOLETE /* we have an FP */
-// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
-// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
-// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
-// OBSOLETE if (fi->fsr.regs[reg] != 0)
-// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: m32r_virtual_frame_pointer
-// OBSOLETE Return the register that the function uses for a frame pointer,
-// OBSOLETE plus any necessary offset to be applied to the register before
-// OBSOLETE any frame pointer offsets. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
-// OBSOLETE {
-// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc ();
-// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi);
-// OBSOLETE
-// OBSOLETE /* Set up a dummy frame_info. */
-// OBSOLETE fi->next = NULL;
-// OBSOLETE fi->prev = NULL;
-// OBSOLETE fi->frame = 0;
-// OBSOLETE fi->pc = pc;
-// OBSOLETE
-// OBSOLETE /* Analyze the prolog and fill in the extra info. */
-// OBSOLETE m32r_init_extra_frame_info (fi);
-// OBSOLETE
-// OBSOLETE /* Results will tell us which type of frame it uses. */
-// OBSOLETE if (fi->using_frame_pointer)
-// OBSOLETE {
-// OBSOLETE *reg = FP_REGNUM;
-// OBSOLETE *offset = 0;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE *reg = SP_REGNUM;
-// OBSOLETE *offset = 0;
-// OBSOLETE }
-// OBSOLETE do_cleanups (old_chain);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: find_callers_reg
-// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing
-// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and
-// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This
-// OBSOLETE would provide a graceful failure mode when trying to get the value of
-// OBSOLETE caller-saves registers for an inner frame. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
-// OBSOLETE {
-// OBSOLETE for (; fi; fi = fi->next)
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
-// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
-// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum],
-// OBSOLETE REGISTER_RAW_SIZE (regnum));
-// OBSOLETE return read_register (regnum);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
-// OBSOLETE the calling function's frame. This will be used to create a new
-// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
-// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
-// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_chain (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
-// OBSOLETE
-// OBSOLETE /* is this a dummy frame? */
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
-// OBSOLETE
-// OBSOLETE /* is caller-of-this a dummy frame? */
-// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
-// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM);
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
-// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
-// OBSOLETE if (fn_start == entry_point_address ())
-// OBSOLETE return 0; /* in _start fn, don't chain further */
-// OBSOLETE if (fi->framesize == 0)
-// OBSOLETE {
-// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
-// OBSOLETE paddr (fi->frame),
-// OBSOLETE paddr (fi->pc));
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
-// OBSOLETE return fi->frame + fi->framesize;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: push_return_address (pc)
-// OBSOLETE Set up the return address for the inferior function call.
-// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction
-// OBSOLETE (ie. when using an empty CALL_DUMMY) */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-// OBSOLETE {
-// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
-// OBSOLETE return sp;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Function: pop_frame
-// OBSOLETE Discard from the stack the innermost frame,
-// OBSOLETE restoring all saved registers. */
-// OBSOLETE
-// OBSOLETE struct frame_info *
-// OBSOLETE m32r_pop_frame (struct frame_info *frame)
-// OBSOLETE {
-// OBSOLETE int regnum;
-// OBSOLETE
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-// OBSOLETE generic_pop_dummy_frame ();
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
-// OBSOLETE if (frame->fsr.regs[regnum] != 0)
-// OBSOLETE write_register (regnum,
-// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4));
-// OBSOLETE
-// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
-// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM));
-// OBSOLETE if (read_register (PSW_REGNUM) & 0x80)
-// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE else
-// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE }
-// OBSOLETE flush_cached_frames ();
-// OBSOLETE return NULL;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_saved_pc
-// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
-// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
-// OBSOLETE else
-// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: push_arguments
-// OBSOLETE Setup the function arguments for calling a function in the inferior.
-// OBSOLETE
-// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
-// OBSOLETE which are dedicated for passing function arguments. Up to the first
-// OBSOLETE four arguments (depending on size) may go into these registers.
-// OBSOLETE The rest go on the stack.
-// OBSOLETE
-// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole
-// OBSOLETE register or a whole 32-bit word on the stack, and will be
-// OBSOLETE right-justified in the register or the stack word. This includes
-// OBSOLETE chars, shorts, and small aggregate types.
-// OBSOLETE
-// OBSOLETE Arguments of 8 bytes size are split between two registers, if
-// OBSOLETE available. If only one register is available, the argument will
-// OBSOLETE be split between the register and the stack. Otherwise it is
-// OBSOLETE passed entirely on the stack. Aggregate types with sizes between
-// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified
-// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes
-// OBSOLETE which are right-justified).
-// OBSOLETE
-// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack,
-// OBSOLETE and then a pointer to the copy is passed in the place of the normal
-// OBSOLETE argument (either in a register if available, or on the stack).
-// OBSOLETE
-// OBSOLETE Functions that must return an aggregate type can return it in the
-// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or
-// OBSOLETE less. For larger return values, the caller must allocate space for
-// OBSOLETE the callee to copy the return value to. A pointer to this space is
-// OBSOLETE passed as an implicit first argument, always in R0. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr)
-// OBSOLETE {
-// OBSOLETE int stack_offset, stack_alloc;
-// OBSOLETE int argreg;
-// OBSOLETE int argnum;
-// OBSOLETE struct type *type;
-// OBSOLETE CORE_ADDR regval;
-// OBSOLETE char *val;
-// OBSOLETE char valbuf[4];
-// OBSOLETE int len;
-// OBSOLETE int odd_sized_struct;
-// OBSOLETE
-// OBSOLETE /* first force sp to a 4-byte alignment */
-// OBSOLETE sp = sp & ~3;
-// OBSOLETE
-// OBSOLETE argreg = ARG0_REGNUM;
-// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */
-// OBSOLETE if (struct_return)
-// OBSOLETE write_register (argreg++, struct_addr);
-// OBSOLETE
-// OBSOLETE /* Now make sure there's space on the stack */
-// OBSOLETE for (argnum = 0, stack_alloc = 0;
-// OBSOLETE argnum < nargs; argnum++)
-// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
-// OBSOLETE sp -= stack_alloc; /* make room on stack for args */
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Now load as many as possible of the first arguments into
-// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes
-// OBSOLETE in four registers available. Loop thru args from first to last. */
-// OBSOLETE
-// OBSOLETE argreg = ARG0_REGNUM;
-// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
-// OBSOLETE {
-// OBSOLETE type = VALUE_TYPE (args[argnum]);
-// OBSOLETE len = TYPE_LENGTH (type);
-// OBSOLETE memset (valbuf, 0, sizeof (valbuf));
-// OBSOLETE if (len < 4)
-// OBSOLETE { /* value gets right-justified in the register or stack word */
-// OBSOLETE memcpy (valbuf + (4 - len),
-// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len);
-// OBSOLETE val = valbuf;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]);
-// OBSOLETE
-// OBSOLETE if (len > 4 && (len & 3) != 0)
-// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */
-// OBSOLETE else
-// OBSOLETE odd_sized_struct = 0;
-// OBSOLETE while (len > 0)
-// OBSOLETE {
-// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct)
-// OBSOLETE { /* must go on the stack */
-// OBSOLETE write_memory (sp + stack_offset, val, 4);
-// OBSOLETE stack_offset += 4;
-// OBSOLETE }
-// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!!
-// OBSOLETE That's because some *&^%$ things get passed on the stack
-// OBSOLETE AND in the registers! */
-// OBSOLETE if (argreg <= ARGLAST_REGNUM)
-// OBSOLETE { /* there's room in a register */
-// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
-// OBSOLETE write_register (argreg++, regval);
-// OBSOLETE }
-// OBSOLETE /* Store the value 4 bytes at a time. This means that things
-// OBSOLETE larger than 4 bytes may go partly in registers and partly
-// OBSOLETE on the stack. */
-// OBSOLETE len -= REGISTER_RAW_SIZE (argreg);
-// OBSOLETE val += REGISTER_RAW_SIZE (argreg);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE return sp;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: fix_call_dummy
-// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function
-// OBSOLETE has the responsability to insert the address of the actual code that
-// OBSOLETE is the target of the target function call. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
-// OBSOLETE struct value **args, struct type *type, int gcc_p)
-// OBSOLETE {
-// OBSOLETE /* ld24 r8, <(imm24) fun> */
-// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Function: m32r_write_sp
-// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI,
-// OBSOLETE we must actually write one of those two as well, depending on PSW. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_write_sp (CORE_ADDR val)
-// OBSOLETE {
-// OBSOLETE unsigned long psw = read_register (PSW_REGNUM);
-// OBSOLETE
-// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */
-// OBSOLETE write_register (SPU_REGNUM, val);
-// OBSOLETE else
-// OBSOLETE write_register (SPI_REGNUM, val);
-// OBSOLETE write_register (SP_REGNUM, val);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE _initialize_m32r_tdep (void)
-// OBSOLETE {
-// OBSOLETE tm_print_insn = print_insn_m32r;
-// OBSOLETE }
+/* Target-dependent code for Renesas M32R, for GDB.
+
+ Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "gdb_string.h"
+#include "value.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "language.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "trad-frame.h"
+
+#include "gdb_assert.h"
+
+struct gdbarch_tdep
+{
+ /* gdbarch target dependent data here. Currently unused for M32R. */
+};
+
+/* m32r register names. */
+
+enum
+{
+ R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ M32R_FP_REGNUM = 13,
+ LR_REGNUM = 14,
+ M32R_SP_REGNUM = 15,
+ PSW_REGNUM = 16,
+ M32R_PC_REGNUM = 21,
+ /* m32r calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
+};
+
+/* Local functions */
+
+extern void _initialize_m32r_tdep (void);
+
+static CORE_ADDR
+m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+ /* Align to the size of an instruction (so that they can safely be
+ pushed onto the stack. */
+ return sp & ~3;
+}
+
+/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
+ EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
+ and TYPE is the type (which is known to be struct, union or array).
+
+ The m32r returns anything less than 8 bytes in size in
+ registers. */
+
+static int
+m32r_use_struct_convention (int gcc_p, struct type *type)
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
+
+/* BREAKPOINT */
+#define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
+#define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
+#define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
+#define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
+
+static int
+m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+ int val;
+ unsigned char *bp;
+ int bplen;
+
+ bplen = (addr & 3) ? 2 : 4;
+
+ /* Save the memory contents. */
+ val = target_read_memory (addr, contents_cache, bplen);
+ if (val != 0)
+ return val; /* return error */
+
+ /* Determine appropriate breakpoint contents and size for this address. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if (((addr & 3) == 0) &&
+ ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ }
+ else
+ { /* little-endian */
+ if (((addr & 3) == 0) &&
+ ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ }
+
+ /* Write the breakpoint. */
+ val = target_write_memory (addr, (char *) bp, bplen);
+ return val;
+}
+
+static int
+m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+ int val;
+ int bplen;
+
+ /* Determine appropriate breakpoint contents and size for this address. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if (((addr & 3) == 0) &&
+ ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bplen = sizeof (insn);
+ }
+ }
+ else
+ {
+ /* little-endian */
+ if (((addr & 3) == 0) &&
+ ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bplen = sizeof (insn);
+ }
+ }
+
+ /* Write contents. */
+ val = target_write_memory (addr, contents_cache, bplen);
+ return val;
+}
+
+static const unsigned char *
+m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ unsigned char *bp;
+
+ /* Determine appropriate breakpoint. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if ((*pcptr & 3) == 0)
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ }
+ else
+ {
+ if ((*pcptr & 3) == 0)
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ }
+
+ return bp;
+}
+
+
+char *m32r_register_names[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
+ "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
+ "evb"
+};
+
+static int
+m32r_num_regs (void)
+{
+ return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
+}
+
+static const char *
+m32r_register_name (int reg_nr)
+{
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= m32r_num_regs ())
+ return NULL;
+ return m32r_register_names[reg_nr];
+}
+
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+static struct type *
+m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+ if (reg_nr == M32R_PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else
+ return builtin_type_int32;
+}
+
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format.
+
+ Things always get returned in RET1_REGNUM, RET2_REGNUM. */
+
+static void
+m32r_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
+{
+ CORE_ADDR regval;
+ int len = TYPE_LENGTH (type);
+
+ regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
+ regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
+
+ if (len > 4)
+ {
+ regval = extract_unsigned_integer (valbuf + 4, len - 4);
+ regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
+ }
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+static CORE_ADDR
+m32r_extract_struct_value_address (struct regcache *regcache)
+{
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return addr;
+}
+
+
+/* This is required by skip_prologue. The results of decoding a prologue
+ should be cached because this thrashing is getting nuts. */
+
+static void
+decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
+ CORE_ADDR *pl_endptr)
+{
+ unsigned long framesize;
+ int insn;
+ int op1;
+ int maybe_one_more = 0;
+ CORE_ADDR after_prologue = 0;
+ CORE_ADDR after_stack_adjust = 0;
+ CORE_ADDR current_pc;
+
+ framesize = 0;
+ after_prologue = 0;
+
+ for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
+ {
+ insn = read_memory_unsigned_integer (current_pc, 2);
+
+ /* If this is a 32 bit instruction, we dont want to examine its
+ immediate data as though it were an instruction */
+ if (current_pc & 0x02)
+ {
+ /* Clear the parallel execution bit from 16 bit instruction */
+ if (maybe_one_more)
+ {
+ /* The last instruction was a branch, usually terminates
+ the series, but if this is a parallel instruction,
+ it may be a stack framing instruction */
+ if (!(insn & 0x8000))
+ {
+ /* nope, we are really done */
+ break;
+ }
+ }
+ /* decode this instruction further */
+ insn &= 0x7fff;
+ }
+ else
+ {
+ if (maybe_one_more)
+ break; /* This isnt the one more */
+ if (insn & 0x8000)
+ {
+ if (current_pc == scan_limit)
+ scan_limit += 2; /* extend the search */
+ current_pc += 2; /* skip the immediate data */
+ if (insn == 0x8faf) /* add3 sp, sp, xxxx */
+ /* add 16 bit sign-extended offset */
+ {
+ framesize +=
+ -((short) read_memory_unsigned_integer (current_pc, 2));
+ }
+ else
+ {
+ if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
+ read_memory_unsigned_integer (current_pc + 2,
+ 2) == 0x0f24)
+ /* subtract 24 bit sign-extended negative-offset */
+ {
+ insn = read_memory_unsigned_integer (current_pc - 2, 4);
+ if (insn & 0x00800000) /* sign extend */
+ insn |= 0xff000000; /* negative */
+ else
+ insn &= 0x00ffffff; /* positive */
+ framesize += insn;
+ }
+ }
+ after_prologue = current_pc;
+ continue;
+ }
+ }
+ op1 = insn & 0xf000; /* isolate just the first nibble */
+
+ if ((insn & 0xf0ff) == 0x207f)
+ { /* st reg, @-sp */
+ int regno;
+ framesize += 4;
+ regno = ((insn >> 8) & 0xf);
+ after_prologue = 0;
+ continue;
+ }
+ if ((insn >> 8) == 0x4f) /* addi sp, xx */
+ /* add 8 bit sign-extended offset */
+ {
+ int stack_adjust = (char) (insn & 0xff);
+
+ /* there are probably two of these stack adjustments:
+ 1) A negative one in the prologue, and
+ 2) A positive one in the epilogue.
+ We are only interested in the first one. */
+
+ if (stack_adjust < 0)
+ {
+ framesize -= stack_adjust;
+ after_prologue = 0;
+ /* A frameless function may have no "mv fp, sp".
+ In that case, this is the end of the prologue. */
+ after_stack_adjust = current_pc + 2;
+ }
+ continue;
+ }
+ if (insn == 0x1d8f)
+ { /* mv fp, sp */
+ after_prologue = current_pc + 2;
+ break; /* end of stack adjustments */
+ }
+ /* Nop looks like a branch, continue explicitly */
+ if (insn == 0x7000)
+ {
+ after_prologue = current_pc + 2;
+ continue; /* nop occurs between pushes */
+ }
+ /* End of prolog if any of these are branch instructions */
+ if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
+ {
+ after_prologue = current_pc;
+ maybe_one_more = 1;
+ continue;
+ }
+ /* Some of the branch instructions are mixed with other types */
+ if (op1 == 0x1000)
+ {
+ int subop = insn & 0x0ff0;
+ if ((subop == 0x0ec0) || (subop == 0x0fc0))
+ {
+ after_prologue = current_pc;
+ maybe_one_more = 1;
+ continue; /* jmp , jl */
+ }
+ }
+ }
+
+ if (current_pc >= scan_limit)
+ {
+ if (pl_endptr)
+ {
+ if (after_stack_adjust != 0)
+ /* We did not find a "mv fp,sp", but we DID find
+ a stack_adjust. Is it safe to use that as the
+ end of the prologue? I just don't know. */
+ {
+ *pl_endptr = after_stack_adjust;
+ }
+ else
+ /* We reached the end of the loop without finding the end
+ of the prologue. No way to win -- we should report failure.
+ The way we do that is to return the original start_pc.
+ GDB will set a breakpoint at the start of the function (etc.) */
+ *pl_endptr = start_pc;
+ }
+ return;
+ }
+ if (after_prologue == 0)
+ after_prologue = current_pc;
+
+ if (pl_endptr)
+ *pl_endptr = after_prologue;
+} /* decode_prologue */
+
+/* Function: skip_prologue
+ Find end of function prologue */
+
+#define DEFAULT_SEARCH_LIMIT 44
+
+CORE_ADDR
+m32r_skip_prologue (CORE_ADDR pc)
+{
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* See what the symbol table says */
+
+ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+
+ if (sal.line != 0 && sal.end <= func_end)
+ {
+ func_end = sal.end;
+ }
+ else
+ /* Either there's no line info, or the line after the prologue is after
+ the end of the function. In this case, there probably isn't a
+ prologue. */
+ {
+ func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
+ }
+ }
+ else
+ func_end = pc + DEFAULT_SEARCH_LIMIT;
+ decode_prologue (pc, func_end, &sal.end);
+ return sal.end;
+}
+
+
+struct m32r_unwind_cache
+{
+ /* The previous frame's inner most stack address. Used as this
+ frame ID's stack_addr. */
+ CORE_ADDR prev_sp;
+ /* The frame's base, optionally used by the high-level debug info. */
+ CORE_ADDR base;
+ int size;
+ /* How far the SP and r13 (FP) have been offset from the start of
+ the stack frame (as defined by the previous frame's stack
+ pointer). */
+ LONGEST sp_offset;
+ LONGEST r13_offset;
+ int uses_frame;
+ /* Table indicating the location of each and every register. */
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+/* Put here the code to store, into fi->saved_regs, the addresses of
+ the saved registers of frame described by FRAME_INFO. This
+ includes special registers such as pc and fp saved in special ways
+ in the stack frame. sp is even more special: the address we return
+ for it IS the sp for the next frame. */
+
+static struct m32r_unwind_cache *
+m32r_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
+{
+ CORE_ADDR pc;
+ ULONGEST prev_sp;
+ ULONGEST this_base;
+ unsigned long op;
+ int i;
+ struct m32r_unwind_cache *info;
+
+ if ((*this_prologue_cache))
+ return (*this_prologue_cache);
+
+ info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
+ (*this_prologue_cache) = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ info->size = 0;
+ info->sp_offset = 0;
+
+ info->uses_frame = 0;
+ for (pc = frame_func_unwind (next_frame);
+ pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
+ {
+ if ((pc & 2) == 0)
+ {
+ op = get_frame_memory_unsigned (next_frame, pc, 4);
+ if ((op & 0x80000000) == 0x80000000)
+ {
+ /* 32-bit instruction */
+ if ((op & 0xffff0000) == 0x8faf0000)
+ {
+ /* add3 sp,sp,xxxx */
+ short n = op & 0xffff;
+ info->sp_offset += n;
+ }
+ else if (((op >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
+ get_frame_memory_unsigned (next_frame, pc + 4,
+ 2) == 0x0f24)
+ {
+ unsigned long n = op & 0xffffff;
+ info->sp_offset += n;
+ pc += 2;
+ }
+ else
+ break;
+
+ pc += 2;
+ continue;
+ }
+ }
+
+ /* 16-bit instructions */
+ op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
+ if ((op & 0xf0ff) == 0x207f)
+ {
+ /* st rn, @-sp */
+ int regno = ((op >> 8) & 0xf);
+ info->sp_offset -= 4;
+ info->saved_regs[regno].addr = info->sp_offset;
+ }
+ else if ((op & 0xff00) == 0x4f00)
+ {
+ /* addi sp, xx */
+ int n = (char) (op & 0xff);
+ info->sp_offset += n;
+ }
+ else if (op == 0x1d8f)
+ {
+ /* mv fp, sp */
+ info->uses_frame = 1;
+ info->r13_offset = info->sp_offset;
+ }
+ else if (op == 0x7000)
+ /* nop */
+ continue;
+ else
+ break;
+ }
+
+ info->size = -info->sp_offset;
+
+ /* Compute the previous frame's stack pointer (which is also the
+ frame's ID's stack address), and this frame's base pointer. */
+ if (info->uses_frame)
+ {
+ /* The SP was moved to the FP. This indicates that a new frame
+ was created. Get THIS frame's FP value by unwinding it from
+ the next frame. */
+ frame_unwind_unsigned_register (next_frame, M32R_FP_REGNUM, &this_base);
+ /* The FP points at the last saved register. Adjust the FP back
+ to before the first saved register giving the SP. */
+ prev_sp = this_base + info->size;
+ }
+ else
+ {
+ /* Assume that the FP is this frame's SP but with that pushed
+ stack space added back. */
+ frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &this_base);
+ prev_sp = this_base + info->size;
+ }
+
+ /* Convert that SP/BASE into real addresses. */
+ info->prev_sp = prev_sp;
+ info->base = this_base;
+
+ /* Adjust all the saved registers so that they contain addresses and
+ not offsets. */
+ for (i = 0; i < NUM_REGS - 1; i++)
+ if (trad_frame_addr_p (info->saved_regs, i))
+ info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
+
+ /* The call instruction moves the caller's PC in the callee's LR.
+ Since this is an unwind, do the reverse. Copy the location of LR
+ into PC (the address / regnum) so that a request for PC will be
+ converted into a request for the LR. */
+ info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
+
+ /* The previous frame's SP needed to be computed. Save the computed
+ value. */
+ trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
+
+ return info;
+}
+
+static CORE_ADDR
+m32r_read_pc (ptid_t ptid)
+{
+ ptid_t save_ptid;
+ CORE_ADDR pc;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ pc = (int) read_register (M32R_PC_REGNUM);
+ inferior_ptid = save_ptid;
+ return pc;
+}
+
+static void
+m32r_write_pc (CORE_ADDR val, ptid_t ptid)
+{
+ ptid_t save_ptid;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (M32R_PC_REGNUM, val);
+ inferior_ptid = save_ptid;
+}
+
+static CORE_ADDR
+m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST sp;
+ frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &sp);
+ return sp;
+}
+
+
+static CORE_ADDR
+m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+ struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return,
+ CORE_ADDR struct_addr)
+{
+ int stack_offset, stack_alloc;
+ int argreg = ARG1_REGNUM;
+ int argnum;
+ struct type *type;
+ enum type_code typecode;
+ CORE_ADDR regval;
+ char *val;
+ char valbuf[MAX_REGISTER_SIZE];
+ int len;
+ int odd_sized_struct;
+
+ /* first force sp to a 4-byte alignment */
+ sp = sp & ~3;
+
+ /* Set the return address. For the m32r, the return breakpoint is
+ always at BP_ADDR. */
+ regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
+
+ /* If STRUCT_RETURN is true, then the struct return address (in
+ STRUCT_ADDR) will consume the first argument-passing register.
+ Both adjust the register count and store that value. */
+ if (struct_return)
+ {
+ regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
+ argreg++;
+ }
+
+ /* Now make sure there's space on the stack */
+ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
+ stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
+ sp -= stack_alloc; /* make room on stack for args */
+
+ for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+ {
+ type = VALUE_TYPE (args[argnum]);
+ typecode = TYPE_CODE (type);
+ len = TYPE_LENGTH (type);
+
+ memset (valbuf, 0, sizeof (valbuf));
+
+ /* Passes structures that do not fit in 2 registers by reference. */
+ if (len > 8
+ && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
+ {
+ store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
+ typecode = TYPE_CODE_PTR;
+ len = 4;
+ val = valbuf;
+ }
+ else if (len < 4)
+ {
+ /* value gets right-justified in the register or stack word */
+ memcpy (valbuf + (REGISTER_RAW_SIZE (argreg) - len),
+ (char *) VALUE_CONTENTS (args[argnum]), len);
+ val = valbuf;
+ }
+ else
+ val = (char *) VALUE_CONTENTS (args[argnum]);
+
+ while (len > 0)
+ {
+ if (argreg > ARGN_REGNUM)
+ {
+ /* must go on the stack */
+ write_memory (sp + stack_offset, val, 4);
+ stack_offset += 4;
+ }
+ else if (argreg <= ARGN_REGNUM)
+ {
+ /* there's room in a register */
+ regval =
+ extract_unsigned_integer (val, REGISTER_RAW_SIZE (argreg));
+ regcache_cooked_write_unsigned (regcache, argreg++, regval);
+ }
+
+ /* Store the value 4 bytes at a time. This means that things
+ larger than 4 bytes may go partly in registers and partly
+ on the stack. */
+ len -= REGISTER_RAW_SIZE (argreg);
+ val += REGISTER_RAW_SIZE (argreg);
+ }
+ }
+
+ /* Finally, update the SP register. */
+ regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
+
+ return sp;
+}
+
+
+/* Given a return value in `regbuf' with a type `valtype',
+ extract and copy its value into `valbuf'. */
+
+static void
+m32r_extract_return_value (struct type *type, struct regcache *regcache,
+ void *dst)
+{
+ bfd_byte *valbuf = dst;
+ int len = TYPE_LENGTH (type);
+ ULONGEST tmp;
+
+ /* By using store_unsigned_integer we avoid having to do
+ anything special for small big-endian values. */
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
+ store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
+
+ /* Ignore return values more than 8 bytes in size because the m32r
+ returns anything more than 8 bytes in the stack. */
+ if (len > 4)
+ {
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
+ store_unsigned_integer (valbuf + len - 4, 4, tmp);
+ }
+}
+
+
+static CORE_ADDR
+m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST pc;
+ frame_unwind_unsigned_register (next_frame, M32R_PC_REGNUM, &pc);
+ return pc;
+}
+
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct. */
+
+static void
+m32r_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache, struct frame_id *this_id)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+ CORE_ADDR base;
+ CORE_ADDR func;
+ struct minimal_symbol *msym_stack;
+ struct frame_id id;
+
+ /* The FUNC is easy. */
+ func = frame_func_unwind (next_frame);
+
+ /* This is meant to halt the backtrace at "_start". Make sure we
+ don't halt it at a generic dummy frame. */
+ if (inside_entry_file (func))
+ return;
+
+ /* Check if the stack is empty. */
+ msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
+ if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
+ return;
+
+ /* Hopefully the prologue analysis either correctly determined the
+ frame's base (which is the SP from the previous frame), or set
+ that base to "NULL". */
+ base = info->prev_sp;
+ if (base == 0)
+ return;
+
+ id = frame_id_build (base, func);
+
+ /* Check that we're not going round in circles with the same frame
+ ID (but avoid applying the test to sentinel frames which do go
+ round in circles). Can't use frame_id_eq() as that doesn't yet
+ compare the frame's PC value. */
+ if (frame_relative_level (next_frame) >= 0
+ && get_frame_type (next_frame) != DUMMY_FRAME
+ && frame_id_eq (get_frame_id (next_frame), id))
+ return;
+
+ (*this_id) = id;
+}
+
+static void
+m32r_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+ trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+ optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind m32r_frame_unwind = {
+ NORMAL_FRAME,
+ m32r_frame_this_id,
+ m32r_frame_prev_register
+};
+
+static const struct frame_unwind *
+m32r_frame_p (CORE_ADDR pc)
+{
+ return &m32r_frame_unwind;
+}
+
+static CORE_ADDR
+m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_cache);
+ return info->base;
+}
+
+static const struct frame_base m32r_frame_base = {
+ &m32r_frame_unwind,
+ m32r_frame_base_address,
+ m32r_frame_base_address,
+ m32r_frame_base_address
+};
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
+ frame_pc_unwind (next_frame));
+}
+
+
+static gdbarch_init_ftype m32r_gdbarch_init;
+
+static struct gdbarch *
+m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+
+ /* If there is already a candidate, use it. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ /* Allocate space for the new architecture. */
+ tdep = XMALLOC (struct gdbarch_tdep);
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ set_gdbarch_read_pc (gdbarch, m32r_read_pc);
+ set_gdbarch_write_pc (gdbarch, m32r_write_pc);
+ set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
+
+ set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
+ set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
+ set_gdbarch_register_name (gdbarch, m32r_register_name);
+ set_gdbarch_register_type (gdbarch, m32r_register_type);
+
+ set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
+ set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
+ set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
+ set_gdbarch_extract_struct_value_address (gdbarch,
+ m32r_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);
+
+ set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
+ set_gdbarch_memory_insert_breakpoint (gdbarch,
+ m32r_memory_insert_breakpoint);
+ set_gdbarch_memory_remove_breakpoint (gdbarch,
+ m32r_memory_remove_breakpoint);
+
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ frameless_look_for_prologue);
+
+ set_gdbarch_frame_align (gdbarch, m32r_frame_align);
+
+ frame_unwind_append_predicate (gdbarch, m32r_frame_p);
+ frame_base_set_default (gdbarch, &m32r_frame_base);
+
+ /* Methods for saving / extracting a dummy frame's ID. The ID's
+ stack address must match the SP value returned by
+ PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
+ set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
+
+ /* Return the unwound PC value. */
+ set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
+
+ set_gdbarch_print_insn (gdbarch, print_insn_m32r);
+
+ return gdbarch;
+}
+
+void
+_initialize_m32r_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
+}