aboutsummaryrefslogtreecommitdiff
path: root/gdb/m2-lang.c
diff options
context:
space:
mode:
authorVladimir Prus <vladimir@codesourcery.com>2008-04-06 08:56:37 +0000
committerVladimir Prus <vladimir@codesourcery.com>2008-04-06 08:56:37 +0000
commit2b2d9e11a0bd5355936c876a8d14a06d78d4b39e (patch)
tree96d07737397754779f0b1b68d79a1f6efc8fc08a /gdb/m2-lang.c
parent2344873715652bf0296adce9f7f686e914fdd36e (diff)
downloadgdb-2b2d9e11a0bd5355936c876a8d14a06d78d4b39e.zip
gdb-2b2d9e11a0bd5355936c876a8d14a06d78d4b39e.tar.gz
gdb-2b2d9e11a0bd5355936c876a8d14a06d78d4b39e.tar.bz2
Fix breakpoint condition that use member variables.
* valops.c (check_field): Remove. (check_field_in): Rename to check_field. (value_of_this): Use la_name_of_this. * value.h (check_field): Adjust prototype. * language.h (la_value_of_this): Rename to la_name_of_this. * language.c (unknown_language_defn): Specify "this" for name_of_this. (auto_language_defn): Likewise. (local_language_defn): Likewise. * ada-lang.c (ada_language_defn): Adjust comment. * c-lang.c (c_language_defn): Adjust comment. (cplus_language_defn): Specify "this" for name_of_this. (asm_language_defn): Adjust comment. (minimal_language_defn): Adjust comment. * f-lang.c (f_language_defn): Specify NULL for name_of_this. * jv-lang.c (java_language_defn): Specify "this" for name_of_this. * m2-lang.c (m2_language_defn): Specify "this" for name_of_this. * objc-lang.c (objc_language_defn): Specify "self" for name_of_this. * p-lang.c (pascal_language_defn): Specify "this" for name_of_this. * scm-lang.c (scm_language_defn): Specify NULL for name_of_this. * symtab.c (lookup_symbol_aux): Lookup "this" in the proper scope, and check for field in type of "this", without trying to create a value.
Diffstat (limited to 'gdb/m2-lang.c')
-rw-r--r--gdb/m2-lang.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/gdb/m2-lang.c b/gdb/m2-lang.c
index 6b51fd5..bb205ad 100644
--- a/gdb/m2-lang.c
+++ b/gdb/m2-lang.c
@@ -375,7 +375,7 @@ const struct language_defn m2_language_defn =
m2_val_print, /* Print a value using appropriate syntax */
c_value_print, /* Print a top-level value */
NULL, /* Language specific skip_trampoline */
- value_of_this, /* value_of_this */
+ NULL, /* name_of_this */
basic_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
basic_lookup_transparent_type,/* lookup_transparent_type */
NULL, /* Language specific symbol demangler */
> 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347
/* Ada language support routines for GDB, the GNU debugger.  Copyright (C)

   1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
   2009 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#include "defs.h"
#include <stdio.h>
#include "gdb_string.h"
#include <ctype.h>
#include <stdarg.h>
#include "demangle.h"
#include "gdb_regex.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "c-lang.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "breakpoint.h"
#include "gdbcore.h"
#include "hashtab.h"
#include "gdb_obstack.h"
#include "ada-lang.h"
#include "completer.h"
#include "gdb_stat.h"
#ifdef UI_OUT
#include "ui-out.h"
#endif
#include "block.h"
#include "infcall.h"
#include "dictionary.h"
#include "exceptions.h"
#include "annotate.h"
#include "valprint.h"
#include "source.h"
#include "observer.h"
#include "vec.h"

/* Define whether or not the C operator '/' truncates towards zero for
   differently signed operands (truncation direction is undefined in C). 
   Copied from valarith.c.  */

#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif

static void extract_string (CORE_ADDR addr, char *buf);

static void modify_general_field (struct type *, char *, LONGEST, int, int);

static struct type *desc_base_type (struct type *);

static struct type *desc_bounds_type (struct type *);

static struct value *desc_bounds (struct value *);

static int fat_pntr_bounds_bitpos (struct type *);

static int fat_pntr_bounds_bitsize (struct type *);

static struct type *desc_data_target_type (struct type *);

static struct value *desc_data (struct value *);

static int fat_pntr_data_bitpos (struct type *);

static int fat_pntr_data_bitsize (struct type *);

static struct value *desc_one_bound (struct value *, int, int);

static int desc_bound_bitpos (struct type *, int, int);

static int desc_bound_bitsize (struct type *, int, int);

static struct type *desc_index_type (struct type *, int);

static int desc_arity (struct type *);

static int ada_type_match (struct type *, struct type *, int);

static int ada_args_match (struct symbol *, struct value **, int);

static struct value *ensure_lval (struct value *,
				  struct gdbarch *, CORE_ADDR *);

static struct value *make_array_descriptor (struct type *, struct value *,
                                            struct gdbarch *, CORE_ADDR *);

static void ada_add_block_symbols (struct obstack *,
                                   struct block *, const char *,
                                   domain_enum, struct objfile *, int);

static int is_nonfunction (struct ada_symbol_info *, int);

static void add_defn_to_vec (struct obstack *, struct symbol *,
                             struct block *);

static int num_defns_collected (struct obstack *);

static struct ada_symbol_info *defns_collected (struct obstack *, int);

static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
                                                         *, const char *, int,
                                                         domain_enum, int);

static struct value *resolve_subexp (struct expression **, int *, int,
                                     struct type *);

static void replace_operator_with_call (struct expression **, int, int, int,
                                        struct symbol *, struct block *);

static int possible_user_operator_p (enum exp_opcode, struct value **);

static char *ada_op_name (enum exp_opcode);

static const char *ada_decoded_op_name (enum exp_opcode);

static int numeric_type_p (struct type *);

static int integer_type_p (struct type *);

static int scalar_type_p (struct type *);

static int discrete_type_p (struct type *);

static enum ada_renaming_category parse_old_style_renaming (struct type *,
							    const char **,
							    int *,
							    const char **);

static struct symbol *find_old_style_renaming_symbol (const char *,
						      struct block *);

static struct type *ada_lookup_struct_elt_type (struct type *, char *,
                                                int, int, int *);

static struct value *evaluate_subexp_type (struct expression *, int *);

static int is_dynamic_field (struct type *, int);

static struct type *to_fixed_variant_branch_type (struct type *,
						  const gdb_byte *,
                                                  CORE_ADDR, struct value *);

static struct type *to_fixed_array_type (struct type *, struct value *, int);

static struct type *to_fixed_range_type (char *, struct value *,
                                         struct type *);

static struct type *to_static_fixed_type (struct type *);
static struct type *static_unwrap_type (struct type *type);

static struct value *unwrap_value (struct value *);

static struct type *constrained_packed_array_type (struct type *, long *);

static struct type *decode_constrained_packed_array_type (struct type *);

static long decode_packed_array_bitsize (struct type *);

static struct value *decode_constrained_packed_array (struct value *);

static int ada_is_packed_array_type  (struct type *);

static int ada_is_unconstrained_packed_array_type (struct type *);

static struct value *value_subscript_packed (struct value *, int,
                                             struct value **);

static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);

static struct value *coerce_unspec_val_to_type (struct value *,
                                                struct type *);

static struct value *get_var_value (char *, char *);

static int lesseq_defined_than (struct symbol *, struct symbol *);

static int equiv_types (struct type *, struct type *);

static int is_name_suffix (const char *);

static int wild_match (const char *, int, const char *);

static struct value *ada_coerce_ref (struct value *);

static LONGEST pos_atr (struct value *);

static struct value *value_pos_atr (struct type *, struct value *);

static struct value *value_val_atr (struct type *, struct value *);

static struct symbol *standard_lookup (const char *, const struct block *,
                                       domain_enum);

static struct value *ada_search_struct_field (char *, struct value *, int,
                                              struct type *);

static struct value *ada_value_primitive_field (struct value *, int, int,
                                                struct type *);

static int find_struct_field (char *, struct type *, int,
                              struct type **, int *, int *, int *, int *);

static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
                                                struct value *);

static struct value *ada_to_fixed_value (struct value *);

static int ada_resolve_function (struct ada_symbol_info *, int,
                                 struct value **, int, const char *,
                                 struct type *);

static struct value *ada_coerce_to_simple_array (struct value *);

static int ada_is_direct_array_type (struct type *);

static void ada_language_arch_info (struct gdbarch *,
				    struct language_arch_info *);

static void check_size (const struct type *);

static struct value *ada_index_struct_field (int, struct value *, int,
					     struct type *);

static struct value *assign_aggregate (struct value *, struct value *, 
				       struct expression *, int *, enum noside);

static void aggregate_assign_from_choices (struct value *, struct value *, 
					   struct expression *,
					   int *, LONGEST *, int *,
					   int, LONGEST, LONGEST);

static void aggregate_assign_positional (struct value *, struct value *,
					 struct expression *,
					 int *, LONGEST *, int *, int,
					 LONGEST, LONGEST);


static void aggregate_assign_others (struct value *, struct value *,
				     struct expression *,
				     int *, LONGEST *, int, LONGEST, LONGEST);


static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);


static struct value *ada_evaluate_subexp (struct type *, struct expression *,
					  int *, enum noside);

static void ada_forward_operator_length (struct expression *, int, int *,
					 int *);



/* Maximum-sized dynamic type.  */
static unsigned int varsize_limit;

/* FIXME: brobecker/2003-09-17: No longer a const because it is
   returned by a function that does not return a const char *.  */
static char *ada_completer_word_break_characters =
#ifdef VMS
  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
#else
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
#endif

/* The name of the symbol to use to get the name of the main subprogram.  */
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
  = "__gnat_ada_main_program_name";

/* Limit on the number of warnings to raise per expression evaluation.  */
static int warning_limit = 2;

/* Number of warning messages issued; reset to 0 by cleanups after
   expression evaluation.  */
static int warnings_issued = 0;

static const char *known_runtime_file_name_patterns[] = {
  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
};

static const char *known_auxiliary_function_name_patterns[] = {
  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
};

/* Space for allocating results of ada_lookup_symbol_list.  */
static struct obstack symbol_list_obstack;

                        /* Utilities */

/* Given DECODED_NAME a string holding a symbol name in its
   decoded form (ie using the Ada dotted notation), returns
   its unqualified name.  */

static const char *
ada_unqualified_name (const char *decoded_name)
{
  const char *result = strrchr (decoded_name, '.');

  if (result != NULL)
    result++;                   /* Skip the dot...  */
  else
    result = decoded_name;

  return result;
}

/* Return a string starting with '<', followed by STR, and '>'.
   The result is good until the next call.  */

static char *
add_angle_brackets (const char *str)
{
  static char *result = NULL;

  xfree (result);
  result = xstrprintf ("<%s>", str);
  return result;
}

static char *
ada_get_gdb_completer_word_break_characters (void)
{
  return ada_completer_word_break_characters;
}

/* Print an array element index using the Ada syntax.  */

static void
ada_print_array_index (struct value *index_value, struct ui_file *stream,
                       const struct value_print_options *options)
{
  LA_VALUE_PRINT (index_value, stream, options);
  fprintf_filtered (stream, " => ");
}

/* Read the string located at ADDR from the inferior and store the
   result into BUF.  */

static void
extract_string (CORE_ADDR addr, char *buf)
{
  int char_index = 0;

  /* Loop, reading one byte at a time, until we reach the '\000'
     end-of-string marker.  */
  do
    {
      target_read_memory (addr + char_index * sizeof (char),
                          buf + char_index * sizeof (char), sizeof (char));
      char_index++;
    }
  while (buf[char_index - 1] != '\000');
}

/* Assuming VECT points to an array of *SIZE objects of size
   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
   updating *SIZE as necessary and returning the (new) array.  */

void *
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
{
  if (*size < min_size)
    {
      *size *= 2;
      if (*size < min_size)
        *size = min_size;
      vect = xrealloc (vect, *size * element_size);
    }
  return vect;
}

/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
   suffix of FIELD_NAME beginning "___".  */

static int
field_name_match (const char *field_name, const char *target)
{
  int len = strlen (target);
  return
    (strncmp (field_name, target, len) == 0
     && (field_name[len] == '\0'
         || (strncmp (field_name + len, "___", 3) == 0
             && strcmp (field_name + strlen (field_name) - 6,
                        "___XVN") != 0)));
}


/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
   a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
   and return its index.  This function also handles fields whose name
   have ___ suffixes because the compiler sometimes alters their name
   by adding such a suffix to represent fields with certain constraints.
   If the field could not be found, return a negative number if
   MAYBE_MISSING is set.  Otherwise raise an error.  */

int
ada_get_field_index (const struct type *type, const char *field_name,
                     int maybe_missing)
{
  int fieldno;
  struct type *struct_type = check_typedef ((struct type *) type);

  for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
    if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
      return fieldno;

  if (!maybe_missing)
    error (_("Unable to find field %s in struct %s.  Aborting"),
           field_name, TYPE_NAME (struct_type));

  return -1;
}

/* The length of the prefix of NAME prior to any "___" suffix.  */

int
ada_name_prefix_len (const char *name)
{
  if (name == NULL)
    return 0;
  else
    {
      const char *p = strstr (name, "___");
      if (p == NULL)
        return strlen (name);
      else
        return p - name;
    }
}

/* Return non-zero if SUFFIX is a suffix of STR.
   Return zero if STR is null.  */

static int
is_suffix (const char *str, const char *suffix)
{
  int len1, len2;
  if (str == NULL)
    return 0;
  len1 = strlen (str);
  len2 = strlen (suffix);
  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
}

/* The contents of value VAL, treated as a value of type TYPE.  The
   result is an lval in memory if VAL is.  */

static struct value *
coerce_unspec_val_to_type (struct value *val, struct type *type)
{
  type = ada_check_typedef (type);
  if (value_type (val) == type)
    return val;
  else
    {
      struct value *result;

      /* Make sure that the object size is not unreasonable before
         trying to allocate some memory for it.  */
      check_size (type);

      result = allocate_value (type);
      set_value_component_location (result, val);
      set_value_bitsize (result, value_bitsize (val));
      set_value_bitpos (result, value_bitpos (val));
      set_value_address (result, value_address (val));
      if (value_lazy (val)
          || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
        set_value_lazy (result, 1);
      else
        memcpy (value_contents_raw (result), value_contents (val),
                TYPE_LENGTH (type));
      return result;
    }
}

static const gdb_byte *
cond_offset_host (const gdb_byte *valaddr, long offset)
{
  if (valaddr == NULL)
    return NULL;
  else
    return valaddr + offset;
}

static CORE_ADDR
cond_offset_target (CORE_ADDR address, long offset)
{
  if (address == 0)
    return 0;
  else
    return address + offset;
}

/* Issue a warning (as for the definition of warning in utils.c, but
   with exactly one argument rather than ...), unless the limit on the
   number of warnings has passed during the evaluation of the current
   expression.  */

/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
   provided by "complaint".  */
static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);

static void
lim_warning (const char *format, ...)
{
  va_list args;
  va_start (args, format);

  warnings_issued += 1;
  if (warnings_issued <= warning_limit)
    vwarning (format, args);

  va_end (args);
}

/* Issue an error if the size of an object of type T is unreasonable,
   i.e. if it would be a bad idea to allocate a value of this type in
   GDB.  */

static void
check_size (const struct type *type)
{
  if (TYPE_LENGTH (type) > varsize_limit)
    error (_("object size is larger than varsize-limit"));
}


/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
   gdbtypes.h, but some of the necessary definitions in that file
   seem to have gone missing. */

/* Maximum value of a SIZE-byte signed integer type. */
static LONGEST
max_of_size (int size)
{
  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
  return top_bit | (top_bit - 1);
}

/* Minimum value of a SIZE-byte signed integer type. */
static LONGEST
min_of_size (int size)
{
  return -max_of_size (size) - 1;
}

/* Maximum value of a SIZE-byte unsigned integer type. */
static ULONGEST
umax_of_size (int size)
{
  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
  return top_bit | (top_bit - 1);
}

/* Maximum value of integral type T, as a signed quantity. */
static LONGEST
max_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t))
    return (LONGEST) umax_of_size (TYPE_LENGTH (t));
  else
    return max_of_size (TYPE_LENGTH (t));
}

/* Minimum value of integral type T, as a signed quantity. */
static LONGEST
min_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t)) 
    return 0;
  else
    return min_of_size (TYPE_LENGTH (t));
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_high_bound (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return TYPE_HIGH_BOUND (type);
    case TYPE_CODE_ENUM:
      return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
    case TYPE_CODE_BOOL:
      return 1;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return max_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_high_bound."));
    }
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_low_bound (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type);
    case TYPE_CODE_ENUM:
      return TYPE_FIELD_BITPOS (type, 0);
    case TYPE_CODE_BOOL:
      return 0;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return min_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_low_bound."));
    }
}

/* The identity on non-range types.  For range types, the underlying
   non-range scalar type.  */

static struct type *
base_type (struct type *type)
{
  while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
    {
      if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
        return type;
      type = TYPE_TARGET_TYPE (type);
    }
  return type;
}


                                /* Language Selection */

/* If the main program is in Ada, return language_ada, otherwise return LANG
   (the main program is in Ada iif the adainit symbol is found).

   MAIN_PST is not used.  */

enum language
ada_update_initial_language (enum language lang,
                             struct partial_symtab *main_pst)
{
  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
                             (struct objfile *) NULL) != NULL)
    return language_ada;

  return lang;
}

/* If the main procedure is written in Ada, then return its name.
   The result is good until the next call.  Return NULL if the main
   procedure doesn't appear to be in Ada.  */

char *
ada_main_name (void)
{
  struct minimal_symbol *msym;
  static char *main_program_name = NULL;

  /* For Ada, the name of the main procedure is stored in a specific
     string constant, generated by the binder.  Look for that symbol,
     extract its address, and then read that string.  If we didn't find
     that string, then most probably the main procedure is not written
     in Ada.  */
  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);

  if (msym != NULL)
    {
      CORE_ADDR main_program_name_addr;
      int err_code;

      main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
      if (main_program_name_addr == 0)
        error (_("Invalid address for Ada main program name."));

      xfree (main_program_name);
      target_read_string (main_program_name_addr, &main_program_name,
                          1024, &err_code);

      if (err_code != 0)
        return NULL;
      return main_program_name;
    }

  /* The main procedure doesn't seem to be in Ada.  */
  return NULL;
}

                                /* Symbols */

/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
   of NULLs.  */

const struct ada_opname_map ada_opname_table[] = {
  {"Oadd", "\"+\"", BINOP_ADD},
  {"Osubtract", "\"-\"", BINOP_SUB},
  {"Omultiply", "\"*\"", BINOP_MUL},
  {"Odivide", "\"/\"", BINOP_DIV},
  {"Omod", "\"mod\"", BINOP_MOD},
  {"Orem", "\"rem\"", BINOP_REM},
  {"Oexpon", "\"**\"", BINOP_EXP},
  {"Olt", "\"<\"", BINOP_LESS},
  {"Ole", "\"<=\"", BINOP_LEQ},
  {"Ogt", "\">\"", BINOP_GTR},
  {"Oge", "\">=\"", BINOP_GEQ},
  {"Oeq", "\"=\"", BINOP_EQUAL},
  {"One", "\"/=\"", BINOP_NOTEQUAL},
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
  {"Oconcat", "\"&\"", BINOP_CONCAT},
  {"Oabs", "\"abs\"", UNOP_ABS},
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
  {"Oadd", "\"+\"", UNOP_PLUS},
  {"Osubtract", "\"-\"", UNOP_NEG},
  {NULL, NULL}
};

/* The "encoded" form of DECODED, according to GNAT conventions.
   The result is valid until the next call to ada_encode.  */

char *
ada_encode (const char *decoded)
{
  static char *encoding_buffer = NULL;
  static size_t encoding_buffer_size = 0;
  const char *p;
  int k;

  if (decoded == NULL)
    return NULL;

  GROW_VECT (encoding_buffer, encoding_buffer_size,
             2 * strlen (decoded) + 10);

  k = 0;
  for (p = decoded; *p != '\0'; p += 1)
    {
      if (*p == '.')
        {
          encoding_buffer[k] = encoding_buffer[k + 1] = '_';
          k += 2;
        }
      else if (*p == '"')
        {
          const struct ada_opname_map *mapping;

          for (mapping = ada_opname_table;
               mapping->encoded != NULL
               && strncmp (mapping->decoded, p,
                           strlen (mapping->decoded)) != 0; mapping += 1)
            ;
          if (mapping->encoded == NULL)
            error (_("invalid Ada operator name: %s"), p);
          strcpy (encoding_buffer + k, mapping->encoded);
          k += strlen (mapping->encoded);
          break;
        }
      else
        {
          encoding_buffer[k] = *p;
          k += 1;
        }
    }

  encoding_buffer[k] = '\0';
  return encoding_buffer;
}

/* Return NAME folded to lower case, or, if surrounded by single
   quotes, unfolded, but with the quotes stripped away.  Result good
   to next call.  */

char *
ada_fold_name (const char *name)
{
  static char *fold_buffer = NULL;
  static size_t fold_buffer_size = 0;

  int len = strlen (name);
  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);

  if (name[0] == '\'')
    {
      strncpy (fold_buffer, name + 1, len - 2);
      fold_buffer[len - 2] = '\000';
    }
  else
    {
      int i;
      for (i = 0; i <= len; i += 1)
        fold_buffer[i] = tolower (name[i]);
    }

  return fold_buffer;
}

/* Return nonzero if C is either a digit or a lowercase alphabet character.  */

static int
is_lower_alphanum (const char c)
{
  return (isdigit (c) || (isalpha (c) && islower (c)));
}

/* Remove either of these suffixes:
     . .{DIGIT}+
     . ${DIGIT}+
     . ___{DIGIT}+
     . __{DIGIT}+.
   These are suffixes introduced by the compiler for entities such as
   nested subprogram for instance, in order to avoid name clashes.
   They do not serve any purpose for the debugger.  */

static void
ada_remove_trailing_digits (const char *encoded, int *len)
{
  if (*len > 1 && isdigit (encoded[*len - 1]))
    {
      int i = *len - 2;
      while (i > 0 && isdigit (encoded[i]))
        i--;
      if (i >= 0 && encoded[i] == '.')
        *len = i;
      else if (i >= 0 && encoded[i] == '$')
        *len = i;
      else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
        *len = i - 2;
      else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
        *len = i - 1;
    }
}

/* Remove the suffix introduced by the compiler for protected object
   subprograms.  */

static void
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
{
  /* Remove trailing N.  */

  /* Protected entry subprograms are broken into two
     separate subprograms: The first one is unprotected, and has
     a 'N' suffix; the second is the protected version, and has
     the 'P' suffix. The second calls the first one after handling
     the protection.  Since the P subprograms are internally generated,
     we leave these names undecoded, giving the user a clue that this
     entity is internal.  */

  if (*len > 1
      && encoded[*len - 1] == 'N'
      && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
    *len = *len - 1;
}

/* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */

static void
ada_remove_Xbn_suffix (const char *encoded, int *len)
{
  int i = *len - 1;

  while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
    i--;

  if (encoded[i] != 'X')
    return;

  if (i == 0)
    return;

  if (isalnum (encoded[i-1]))
    *len = i;
}

/* If ENCODED follows the GNAT entity encoding conventions, then return
   the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
   replaced by ENCODED.

   The resulting string is valid until the next call of ada_decode.
   If the string is unchanged by decoding, the original string pointer
   is returned.  */

const char *
ada_decode (const char *encoded)
{
  int i, j;
  int len0;
  const char *p;
  char *decoded;
  int at_start_name;
  static char *decoding_buffer = NULL;
  static size_t decoding_buffer_size = 0;

  /* The name of the Ada main procedure starts with "_ada_".
     This prefix is not part of the decoded name, so skip this part
     if we see this prefix.  */
  if (strncmp (encoded, "_ada_", 5) == 0)
    encoded += 5;

  /* If the name starts with '_', then it is not a properly encoded
     name, so do not attempt to decode it.  Similarly, if the name
     starts with '<', the name should not be decoded.  */
  if (encoded[0] == '_' || encoded[0] == '<')
    goto Suppress;

  len0 = strlen (encoded);

  ada_remove_trailing_digits (encoded, &len0);
  ada_remove_po_subprogram_suffix (encoded, &len0);

  /* Remove the ___X.* suffix if present.  Do not forget to verify that
     the suffix is located before the current "end" of ENCODED.  We want
     to avoid re-matching parts of ENCODED that have previously been
     marked as discarded (by decrementing LEN0).  */
  p = strstr (encoded, "___");
  if (p != NULL && p - encoded < len0 - 3)
    {
      if (p[3] == 'X')
        len0 = p - encoded;
      else
        goto Suppress;
    }

  /* Remove any trailing TKB suffix.  It tells us that this symbol
     is for the body of a task, but that information does not actually
     appear in the decoded name.  */

  if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
    len0 -= 3;

  /* Remove any trailing TB suffix.  The TB suffix is slightly different
     from the TKB suffix because it is used for non-anonymous task
     bodies.  */

  if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
    len0 -= 2;

  /* Remove trailing "B" suffixes.  */
  /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */

  if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
    len0 -= 1;

  /* Make decoded big enough for possible expansion by operator name.  */

  GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
  decoded = decoding_buffer;

  /* Remove trailing __{digit}+ or trailing ${digit}+.  */

  if (len0 > 1 && isdigit (encoded[len0 - 1]))
    {
      i = len0 - 2;
      while ((i >= 0 && isdigit (encoded[i]))
             || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
        i -= 1;
      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
        len0 = i - 1;
      else if (encoded[i] == '$')
        len0 = i;
    }

  /* The first few characters that are not alphabetic are not part
     of any encoding we use, so we can copy them over verbatim.  */

  for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
    decoded[j] = encoded[i];

  at_start_name = 1;
  while (i < len0)
    {
      /* Is this a symbol function?  */
      if (at_start_name && encoded[i] == 'O')
        {
          int k;
          for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
            {
              int op_len = strlen (ada_opname_table[k].encoded);
              if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
                            op_len - 1) == 0)
                  && !isalnum (encoded[i + op_len]))
                {
                  strcpy (decoded + j, ada_opname_table[k].decoded);
                  at_start_name = 0;
                  i += op_len;
                  j += strlen (ada_opname_table[k].decoded);
                  break;
                }
            }
          if (ada_opname_table[k].encoded != NULL)
            continue;
        }
      at_start_name = 0;

      /* Replace "TK__" with "__", which will eventually be translated
         into "." (just below).  */

      if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
        i += 2;

      /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
         be translated into "." (just below).  These are internal names
         generated for anonymous blocks inside which our symbol is nested.  */

      if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
          && encoded [i+2] == 'B' && encoded [i+3] == '_'
          && isdigit (encoded [i+4]))
        {
          int k = i + 5;
          
          while (k < len0 && isdigit (encoded[k]))
            k++;  /* Skip any extra digit.  */

          /* Double-check that the "__B_{DIGITS}+" sequence we found
             is indeed followed by "__".  */
          if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
            i = k;
        }

      /* Remove _E{DIGITS}+[sb] */

      /* Just as for protected object subprograms, there are 2 categories
         of subprograms created by the compiler for each entry. The first
         one implements the actual entry code, and has a suffix following
         the convention above; the second one implements the barrier and
         uses the same convention as above, except that the 'E' is replaced
         by a 'B'.

         Just as above, we do not decode the name of barrier functions
         to give the user a clue that the code he is debugging has been
         internally generated.  */

      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
          && isdigit (encoded[i+2]))
        {
          int k = i + 3;

          while (k < len0 && isdigit (encoded[k]))
            k++;

          if (k < len0
              && (encoded[k] == 'b' || encoded[k] == 's'))
            {
              k++;
              /* Just as an extra precaution, make sure that if this
                 suffix is followed by anything else, it is a '_'.
                 Otherwise, we matched this sequence by accident.  */
              if (k == len0
                  || (k < len0 && encoded[k] == '_'))
                i = k;
            }
        }

      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
         the GNAT front-end in protected object subprograms.  */

      if (i < len0 + 3
          && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
        {
          /* Backtrack a bit up until we reach either the begining of
             the encoded name, or "__".  Make sure that we only find
             digits or lowercase characters.  */
          const char *ptr = encoded + i - 1;

          while (ptr >= encoded && is_lower_alphanum (ptr[0]))
            ptr--;
          if (ptr < encoded
              || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
            i++;
        }

      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
        {
          /* This is a X[bn]* sequence not separated from the previous
             part of the name with a non-alpha-numeric character (in other
             words, immediately following an alpha-numeric character), then
             verify that it is placed at the end of the encoded name.  If
             not, then the encoding is not valid and we should abort the
             decoding.  Otherwise, just skip it, it is used in body-nested
             package names.  */
          do
            i += 1;
          while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
          if (i < len0)
            goto Suppress;
        }
      else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
        {
         /* Replace '__' by '.'.  */
          decoded[j] = '.';
          at_start_name = 1;
          i += 2;
          j += 1;
        }
      else
        {
          /* It's a character part of the decoded name, so just copy it
             over.  */
          decoded[j] = encoded[i];
          i += 1;
          j += 1;
        }
    }
  decoded[j] = '\000';

  /* Decoded names should never contain any uppercase character.
     Double-check this, and abort the decoding if we find one.  */

  for (i = 0; decoded[i] != '\0'; i += 1)
    if (isupper (decoded[i]) || decoded[i] == ' ')
      goto Suppress;

  if (strcmp (decoded, encoded) == 0)
    return encoded;
  else
    return decoded;

Suppress:
  GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
  decoded = decoding_buffer;
  if (encoded[0] == '<')
    strcpy (decoded, encoded);
  else
    xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
  return decoded;

}

/* Table for keeping permanent unique copies of decoded names.  Once
   allocated, names in this table are never released.  While this is a
   storage leak, it should not be significant unless there are massive
   changes in the set of decoded names in successive versions of a 
   symbol table loaded during a single session.  */
static struct htab *decoded_names_store;

/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
   in the language-specific part of GSYMBOL, if it has not been
   previously computed.  Tries to save the decoded name in the same
   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
   in any case, the decoded symbol has a lifetime at least that of
   GSYMBOL).  
   The GSYMBOL parameter is "mutable" in the C++ sense: logically
   const, but nevertheless modified to a semantically equivalent form
   when a decoded name is cached in it.
*/

char *
ada_decode_symbol (const struct general_symbol_info *gsymbol)
{
  char **resultp =
    (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
  if (*resultp == NULL)
    {
      const char *decoded = ada_decode (gsymbol->name);
      if (gsymbol->obj_section != NULL)
        {
	  struct objfile *objf = gsymbol->obj_section->objfile;
	  *resultp = obsavestring (decoded, strlen (decoded),
				   &objf->objfile_obstack);
        }
      /* Sometimes, we can't find a corresponding objfile, in which
         case, we put the result on the heap.  Since we only decode
         when needed, we hope this usually does not cause a
         significant memory leak (FIXME).  */
      if (*resultp == NULL)
        {
          char **slot = (char **) htab_find_slot (decoded_names_store,
                                                  decoded, INSERT);
          if (*slot == NULL)
            *slot = xstrdup (decoded);
          *resultp = *slot;
        }
    }

  return *resultp;
}

static char *
ada_la_decode (const char *encoded, int options)
{
  return xstrdup (ada_decode (encoded));
}

/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
   suffixes that encode debugging information or leading _ada_ on
   SYM_NAME (see is_name_suffix commentary for the debugging
   information that is ignored).  If WILD, then NAME need only match a
   suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
   either argument is NULL.  */

static int
ada_match_name (const char *sym_name, const char *name, int wild)
{
  if (sym_name == NULL || name == NULL)
    return 0;
  else if (wild)
    return wild_match (name, strlen (name), sym_name);
  else
    {
      int len_name = strlen (name);
      return (strncmp (sym_name, name, len_name) == 0
              && is_name_suffix (sym_name + len_name))
        || (strncmp (sym_name, "_ada_", 5) == 0
            && strncmp (sym_name + 5, name, len_name) == 0
            && is_name_suffix (sym_name + len_name + 5));
    }
}


                                /* Arrays */

/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */

static char *bound_name[] = {
  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
};

/* Maximum number of array dimensions we are prepared to handle.  */

#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))

/* Like modify_field, but allows bitpos > wordlength.  */

static void
modify_general_field (struct type *type, char *addr,
		      LONGEST fieldval, int bitpos, int bitsize)
{
  modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
}


/* The desc_* routines return primitive portions of array descriptors
   (fat pointers).  */

/* The descriptor or array type, if any, indicated by TYPE; removes
   level of indirection, if needed.  */

static struct type *
desc_base_type (struct type *type)
{
  if (type == NULL)
    return NULL;
  type = ada_check_typedef (type);
  if (type != NULL
      && (TYPE_CODE (type) == TYPE_CODE_PTR
          || TYPE_CODE (type) == TYPE_CODE_REF))
    return ada_check_typedef (TYPE_TARGET_TYPE (type));
  else
    return type;
}

/* True iff TYPE indicates a "thin" array pointer type.  */

static int
is_thin_pntr (struct type *type)
{
  return
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
}

/* The descriptor type for thin pointer type TYPE.  */

static struct type *
thin_descriptor_type (struct type *type)
{
  struct type *base_type = desc_base_type (type);
  if (base_type == NULL)
    return NULL;
  if (is_suffix (ada_type_name (base_type), "___XVE"))
    return base_type;
  else
    {
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
      if (alt_type == NULL)
        return base_type;
      else
        return alt_type;
    }
}

/* A pointer to the array data for thin-pointer value VAL.  */

static struct value *
thin_data_pntr (struct value *val)
{
  struct type *type = value_type (val);
  struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
  data_type = lookup_pointer_type (data_type);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_cast (data_type, value_copy (val));
  else
    return value_from_longest (data_type, value_address (val));
}

/* True iff TYPE indicates a "thick" array pointer type.  */

static int
is_thick_pntr (struct type *type)
{
  type = desc_base_type (type);
  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
          && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its bounds data; otherwise, NULL.  */

static struct type *
desc_bounds_type (struct type *type)
{
  struct type *r;

  type = desc_base_type (type);

  if (type == NULL)
    return NULL;
  else if (is_thin_pntr (type))
    {
      type = thin_descriptor_type (type);
      if (type == NULL)
        return NULL;
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (r);
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
    }
  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), or pointer to
   one, a pointer to its bounds data.   Otherwise NULL.  */

static struct value *
desc_bounds (struct value *arr)
{
  struct type *type = ada_check_typedef (value_type (arr));
  if (is_thin_pntr (type))
    {
      struct type *bounds_type =
        desc_bounds_type (thin_descriptor_type (type));
      LONGEST addr;

      if (bounds_type == NULL)
        error (_("Bad GNAT array descriptor"));

      /* NOTE: The following calculation is not really kosher, but
         since desc_type is an XVE-encoded type (and shouldn't be),
         the correct calculation is a real pain.  FIXME (and fix GCC).  */
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        addr = value_as_long (arr);
      else
        addr = value_address (arr);

      return
        value_from_longest (lookup_pointer_type (bounds_type),
                            addr - TYPE_LENGTH (bounds_type));
    }

  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
                             _("Bad GNAT array descriptor"));
  else
    return NULL;
}

/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
   position of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
    return TYPE_FIELD_BITSIZE (type, 1);
  else
    return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its array data (a array-with-no-bounds type);
   otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
   data.  */

static struct type *
desc_data_target_type (struct type *type)
{
  type = desc_base_type (type);

  /* NOTE: The following is bogus; see comment in desc_bounds.  */
  if (is_thin_pntr (type))
    return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
  else if (is_thick_pntr (type))
    {
      struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);

      if (data_type
	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
	return TYPE_TARGET_TYPE (data_type);
    }

  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), a pointer to
   its array data.  */

static struct value *
desc_data (struct value *arr)
{
  struct type *type = value_type (arr);
  if (is_thin_pntr (type))
    return thin_data_pntr (arr);
  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
                             _("Bad GNAT array descriptor"));
  else
    return NULL;
}


/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the data.  */

static int
fat_pntr_data_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the data.  */

static int
fat_pntr_data_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
    return TYPE_FIELD_BITSIZE (type, 0);
  else
    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
}

/* If BOUNDS is an array-bounds structure (or pointer to one), return
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static struct value *
desc_one_bound (struct value *bounds, int i, int which)
{
  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
                           _("Bad GNAT array descriptor bounds"));
}

/* If BOUNDS is an array-bounds structure type, return the bit position
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitpos (struct type *type, int i, int which)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
}

/* If BOUNDS is an array-bounds structure type, return the bit field size
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitsize (struct type *type, int i, int which)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
  else
    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
}

/* If TYPE is the type of an array-bounds structure, the type of its
   Ith bound (numbering from 1).  Otherwise, NULL.  */

static struct type *
desc_index_type (struct type *type, int i)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
  else
    return NULL;
}

/* The number of index positions in the array-bounds type TYPE.
   Return 0 if TYPE is NULL.  */

static int
desc_arity (struct type *type)
{
  type = desc_base_type (type);

  if (type != NULL)
    return TYPE_NFIELDS (type) / 2;
  return 0;
}

/* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
   an array descriptor type (representing an unconstrained array
   type).  */

static int
ada_is_direct_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || ada_is_array_descriptor_type (type));
}

/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
 * to one. */

static int
ada_is_array_type (struct type *type)
{
  while (type != NULL 
	 && (TYPE_CODE (type) == TYPE_CODE_PTR 
	     || TYPE_CODE (type) == TYPE_CODE_REF))
    type = TYPE_TARGET_TYPE (type);
  return ada_is_direct_array_type (type);
}

/* Non-zero iff TYPE is a simple array type or pointer to one.  */

int
ada_is_simple_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || (TYPE_CODE (type) == TYPE_CODE_PTR
              && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
}

/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */

int
ada_is_array_descriptor_type (struct type *type)
{
  struct type *data_type = desc_data_target_type (type);

  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (data_type != NULL
	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
	  && desc_arity (desc_bounds_type (type)) > 0);
}

/* Non-zero iff type is a partially mal-formed GNAT array
   descriptor.  FIXME: This is to compensate for some problems with
   debugging output from GNAT.  Re-examine periodically to see if it
   is still needed.  */

int
ada_is_bogus_array_descriptor (struct type *type)
{
  return
    type != NULL
    && TYPE_CODE (type) == TYPE_CODE_STRUCT
    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
        || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
    && !ada_is_array_descriptor_type (type);
}


/* If ARR has a record type in the form of a standard GNAT array descriptor,
   (fat pointer) returns the type of the array data described---specifically,
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
   in from the descriptor; otherwise, they are left unspecified.  If
   the ARR denotes a null array descriptor and BOUNDS is non-zero,
   returns NULL.  The result is simply the type of ARR if ARR is not
   a descriptor.  */
struct type *
ada_type_of_array (struct value *arr, int bounds)
{
  if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array_type (value_type (arr));

  if (!ada_is_array_descriptor_type (value_type (arr)))
    return value_type (arr);

  if (!bounds)
    {
      struct type *array_type =
	ada_check_typedef (desc_data_target_type (value_type (arr)));

      if (ada_is_unconstrained_packed_array_type (value_type (arr)))
	TYPE_FIELD_BITSIZE (array_type, 0) =
	  decode_packed_array_bitsize (value_type (arr));
      
      return array_type;
    }
  else
    {
      struct type *elt_type;
      int arity;
      struct value *descriptor;

      elt_type = ada_array_element_type (value_type (arr), -1);
      arity = ada_array_arity (value_type (arr));

      if (elt_type == NULL || arity == 0)
        return ada_check_typedef (value_type (arr));

      descriptor = desc_bounds (arr);
      if (value_as_long (descriptor) == 0)
        return NULL;
      while (arity > 0)
        {
          struct type *range_type = alloc_type_copy (value_type (arr));
          struct type *array_type = alloc_type_copy (value_type (arr));
          struct value *low = desc_one_bound (descriptor, arity, 0);
          struct value *high = desc_one_bound (descriptor, arity, 1);
          arity -= 1;

          create_range_type (range_type, value_type (low),
                             longest_to_int (value_as_long (low)),
                             longest_to_int (value_as_long (high)));
          elt_type = create_array_type (array_type, elt_type, range_type);

	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
	    TYPE_FIELD_BITSIZE (elt_type, 0) =
	      decode_packed_array_bitsize (value_type (arr));
        }

      return lookup_pointer_type (elt_type);
    }
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns either a standard GDB array with bounds set
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
   GDB array.  Returns NULL if ARR is a null fat pointer.  */

struct value *
ada_coerce_to_simple_array_ptr (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct type *arrType = ada_type_of_array (arr, 1);
      if (arrType == NULL)
        return NULL;
      return value_cast (arrType, value_copy (desc_data (arr)));
    }
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns a standard GDB array describing ARR (which may
   be ARR itself if it already is in the proper form).  */

static struct value *
ada_coerce_to_simple_array (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
      if (arrVal == NULL)
        error (_("Bounds unavailable for null array pointer."));
      check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
      return value_ind (arrVal);
    }
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If TYPE represents a GNAT array type, return it translated to an
   ordinary GDB array type (possibly with BITSIZE fields indicating
   packing).  For other types, is the identity.  */

struct type *
ada_coerce_to_simple_array_type (struct type *type)
{
  if (ada_is_constrained_packed_array_type (type))
    return decode_constrained_packed_array_type (type);

  if (ada_is_array_descriptor_type (type))
    return ada_check_typedef (desc_data_target_type (type));

  return type;
}

/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */

static int
ada_is_packed_array_type  (struct type *type)
{
  if (type == NULL)
    return 0;
  type = desc_base_type (type);
  type = ada_check_typedef (type);
  return
    ada_type_name (type) != NULL
    && strstr (ada_type_name (type), "___XP") != NULL;
}

/* Non-zero iff TYPE represents a standard GNAT constrained
   packed-array type.  */

int
ada_is_constrained_packed_array_type (struct type *type)
{
  return ada_is_packed_array_type (type)
    && !ada_is_array_descriptor_type (type);
}

/* Non-zero iff TYPE represents an array descriptor for a
   unconstrained packed-array type.  */

static int
ada_is_unconstrained_packed_array_type (struct type *type)
{
  return ada_is_packed_array_type (type)
    && ada_is_array_descriptor_type (type);
}

/* Given that TYPE encodes a packed array type (constrained or unconstrained),
   return the size of its elements in bits.  */

static long
decode_packed_array_bitsize (struct type *type)
{
  char *raw_name = ada_type_name (ada_check_typedef (type));
  char *tail;
  long bits;

  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return 0;

  tail = strstr (raw_name, "___XP");

  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
    {
      lim_warning
	(_("could not understand bit size information on packed array"));
      return 0;
    }

  return bits;
}

/* Given that TYPE is a standard GDB array type with all bounds filled
   in, and that the element size of its ultimate scalar constituents
   (that is, either its elements, or, if it is an array of arrays, its
   elements' elements, etc.) is *ELT_BITS, return an identical type,
   but with the bit sizes of its elements (and those of any
   constituent arrays) recorded in the BITSIZE components of its
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
   in bits.  */

static struct type *
constrained_packed_array_type (struct type *type, long *elt_bits)
{
  struct type *new_elt_type;
  struct type *new_type;
  LONGEST low_bound, high_bound;

  type = ada_check_typedef (type);
  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
    return type;

  new_type = alloc_type_copy (type);
  new_elt_type =
    constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
				   elt_bits);
  create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
  TYPE_NAME (new_type) = ada_type_name (type);

  if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
                           &low_bound, &high_bound) < 0)
    low_bound = high_bound = 0;
  if (high_bound < low_bound)
    *elt_bits = TYPE_LENGTH (new_type) = 0;
  else
    {
      *elt_bits *= (high_bound - low_bound + 1);
      TYPE_LENGTH (new_type) =
        (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
    }

  TYPE_FIXED_INSTANCE (new_type) = 1;
  return new_type;
}

/* The array type encoded by TYPE, where
   ada_is_constrained_packed_array_type (TYPE).  */

static struct type *
decode_constrained_packed_array_type (struct type *type)
{
  struct symbol *sym;
  struct block **blocks;
  char *raw_name = ada_type_name (ada_check_typedef (type));
  char *name;
  char *tail;
  struct type *shadow_type;
  long bits;
  int i, n;

  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return NULL;

  name = (char *) alloca (strlen (raw_name) + 1);
  tail = strstr (raw_name, "___XP");
  type = desc_base_type (type);

  memcpy (name, raw_name, tail - raw_name);
  name[tail - raw_name] = '\000';

  sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
  if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
    {
      lim_warning (_("could not find bounds information on packed array"));
      return NULL;
    }
  shadow_type = SYMBOL_TYPE (sym);
  CHECK_TYPEDEF (shadow_type);

  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
    {
      lim_warning (_("could not understand bounds information on packed array"));
      return NULL;
    }

  bits = decode_packed_array_bitsize (type);
  return constrained_packed_array_type (shadow_type, &bits);
}

/* Given that ARR is a struct value *indicating a GNAT constrained packed
   array, returns a simple array that denotes that array.  Its type is a
   standard GDB array type except that the BITSIZEs of the array
   target types are set to the number of bits in each element, and the
   type length is set appropriately.  */

static struct value *
decode_constrained_packed_array (struct value *arr)
{
  struct type *type;

  arr = ada_coerce_ref (arr);

  /* If our value is a pointer, then dererence it.  Make sure that
     this operation does not cause the target type to be fixed, as
     this would indirectly cause this array to be decoded.  The rest
     of the routine assumes that the array hasn't been decoded yet,
     so we use the basic "value_ind" routine to perform the dereferencing,
     as opposed to using "ada_value_ind".  */
  if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
    arr = value_ind (arr);

  type = decode_constrained_packed_array_type (value_type (arr));
  if (type == NULL)
    {
      error (_("can't unpack array"));
      return NULL;
    }

  if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
      && ada_is_modular_type (value_type (arr)))
    {
       /* This is a (right-justified) modular type representing a packed
 	 array with no wrapper.  In order to interpret the value through
 	 the (left-justified) packed array type we just built, we must
 	 first left-justify it.  */
      int bit_size, bit_pos;
      ULONGEST mod;

      mod = ada_modulus (value_type (arr)) - 1;
      bit_size = 0;
      while (mod > 0)
	{
	  bit_size += 1;
	  mod >>= 1;
	}
      bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
      arr = ada_value_primitive_packed_val (arr, NULL,
					    bit_pos / HOST_CHAR_BIT,
					    bit_pos % HOST_CHAR_BIT,
					    bit_size,
					    type);
    }

  return coerce_unspec_val_to_type (arr, type);
}


/* The value of the element of packed array ARR at the ARITY indices
   given in IND.   ARR must be a simple array.  */

static struct value *
value_subscript_packed (struct value *arr, int arity, struct value **ind)
{
  int i;
  int bits, elt_off, bit_off;
  long elt_total_bit_offset;
  struct type *elt_type;
  struct value *v;

  bits = 0;
  elt_total_bit_offset = 0;
  elt_type = ada_check_typedef (value_type (arr));
  for (i = 0; i < arity; i += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
          || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
        error
          (_("attempt to do packed indexing of something other than a packed array"));
      else
        {
          struct type *range_type = TYPE_INDEX_TYPE (elt_type);
          LONGEST lowerbound, upperbound;
          LONGEST idx;

          if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
            {
              lim_warning (_("don't know bounds of array"));
              lowerbound = upperbound = 0;
            }

          idx = pos_atr (ind[i]);
          if (idx < lowerbound || idx > upperbound)
            lim_warning (_("packed array index %ld out of bounds"), (long) idx);
          bits = TYPE_FIELD_BITSIZE (elt_type, 0);
          elt_total_bit_offset += (idx - lowerbound) * bits;
          elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
        }
    }
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;

  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
                                      bits, elt_type);
  return v;
}

/* Non-zero iff TYPE includes negative integer values.  */

static int
has_negatives (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    default:
      return 0;
    case TYPE_CODE_INT:
      return !TYPE_UNSIGNED (type);
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type) < 0;
    }
}


/* Create a new value of type TYPE from the contents of OBJ starting
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
   assigning through the result will set the field fetched from.  
   VALADDR is ignored unless OBJ is NULL, in which case,
   VALADDR+OFFSET must address the start of storage containing the 
   packed value.  The value returned  in this case is never an lval.
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */

struct value *
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
				long offset, int bit_offset, int bit_size,
                                struct type *type)
{
  struct value *v;
  int src,                      /* Index into the source area */
    targ,                       /* Index into the target area */
    srcBitsLeft,                /* Number of source bits left to move */
    nsrc, ntarg,                /* Number of source and target bytes */
    unusedLS,                   /* Number of bits in next significant
                                   byte of source that are unused */
    accumSize;                  /* Number of meaningful bits in accum */
  unsigned char *bytes;         /* First byte containing data to unpack */
  unsigned char *unpacked;
  unsigned long accum;          /* Staging area for bits being transferred */
  unsigned char sign;
  int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
  /* Transmit bytes from least to most significant; delta is the direction
     the indices move.  */
  int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;

  type = ada_check_typedef (type);

  if (obj == NULL)
    {
      v = allocate_value (type);
      bytes = (unsigned char *) (valaddr + offset);
    }
  else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
    {
      v = value_at (type,
                    value_address (obj) + offset);
      bytes = (unsigned char *) alloca (len);
      read_memory (value_address (v), bytes, len);
    }
  else
    {
      v = allocate_value (type);
      bytes = (unsigned char *) value_contents (obj) + offset;
    }

  if (obj != NULL)
    {
      CORE_ADDR new_addr;
      set_value_component_location (v, obj);
      new_addr = value_address (obj) + offset;
      set_value_bitpos (v, bit_offset + value_bitpos (obj));
      set_value_bitsize (v, bit_size);
      if (value_bitpos (v) >= HOST_CHAR_BIT)
        {
	  ++new_addr;
          set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
        }
      set_value_address (v, new_addr);
    }
  else
    set_value_bitsize (v, bit_size);
  unpacked = (unsigned char *) value_contents (v);

  srcBitsLeft = bit_size;
  nsrc = len;
  ntarg = TYPE_LENGTH (type);
  sign = 0;
  if (bit_size == 0)
    {
      memset (unpacked, 0, TYPE_LENGTH (type));
      return v;
    }
  else if (gdbarch_bits_big_endian (get_type_arch (type)))
    {
      src = len - 1;
      if (has_negatives (type)
          && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
        sign = ~0;

      unusedLS =
        (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
        % HOST_CHAR_BIT;

      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_ARRAY:
        case TYPE_CODE_UNION:
        case TYPE_CODE_STRUCT:
          /* Non-scalar values must be aligned at a byte boundary...  */
          accumSize =
            (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
          /* ... And are placed at the beginning (most-significant) bytes
             of the target.  */
          targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
          ntarg = targ + 1;
          break;
        default:
          accumSize = 0;
          targ = TYPE_LENGTH (type) - 1;
          break;
        }
    }
  else
    {
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;

      src = targ = 0;
      unusedLS = bit_offset;
      accumSize = 0;

      if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
        sign = ~0;
    }

  accum = 0;
  while (nsrc > 0)
    {
      /* Mask for removing bits of the next source byte that are not
         part of the value.  */
      unsigned int unusedMSMask =
        (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
        1;
      /* Sign-extend bits for this byte.  */
      unsigned int signMask = sign & ~unusedMSMask;
      accum |=
        (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
      accumSize += HOST_CHAR_BIT - unusedLS;
      if (accumSize >= HOST_CHAR_BIT)
        {
          unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
          accumSize -= HOST_CHAR_BIT;
          accum >>= HOST_CHAR_BIT;
          ntarg -= 1;
          targ += delta;
        }
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
      unusedLS = 0;
      nsrc -= 1;
      src += delta;
    }
  while (ntarg > 0)
    {
      accum |= sign << accumSize;
      unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
      accumSize -= HOST_CHAR_BIT;
      accum >>= HOST_CHAR_BIT;
      ntarg -= 1;
      targ += delta;
    }

  return v;
}

/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
   TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
   not overlap.  */
static void
move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
	   int src_offset, int n, int bits_big_endian_p)
{
  unsigned int accum, mask;
  int accum_bits, chunk_size;

  target += targ_offset / HOST_CHAR_BIT;
  targ_offset %= HOST_CHAR_BIT;
  source += src_offset / HOST_CHAR_BIT;
  src_offset %= HOST_CHAR_BIT;
  if (bits_big_endian_p)
    {
      accum = (unsigned char) *source;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
        {
          int unused_right;
          accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
          accum_bits += HOST_CHAR_BIT;
          source += 1;
          chunk_size = HOST_CHAR_BIT - targ_offset;
          if (chunk_size > n)
            chunk_size = n;
          unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
          mask = ((1 << chunk_size) - 1) << unused_right;
          *target =
            (*target & ~mask)
            | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
          n -= chunk_size;
          accum_bits -= chunk_size;
          target += 1;
          targ_offset = 0;
        }
    }
  else
    {
      accum = (unsigned char) *source >> src_offset;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
        {
          accum = accum + ((unsigned char) *source << accum_bits);
          accum_bits += HOST_CHAR_BIT;
          source += 1;
          chunk_size = HOST_CHAR_BIT - targ_offset;
          if (chunk_size > n)
            chunk_size = n;
          mask = ((1 << chunk_size) - 1) << targ_offset;
          *target = (*target & ~mask) | ((accum << targ_offset) & mask);
          n -= chunk_size;
          accum_bits -= chunk_size;
          accum >>= chunk_size;
          target += 1;
          targ_offset = 0;
        }
    }
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of
   FROMVAL.   Handles assignment into packed fields that have
   floating-point or non-scalar types.  */

static struct value *
ada_value_assign (struct value *toval, struct value *fromval)
{
  struct type *type = value_type (toval);
  int bits = value_bitsize (toval);

  toval = ada_coerce_ref (toval);
  fromval = ada_coerce_ref (fromval);

  if (ada_is_direct_array_type (value_type (toval)))
    toval = ada_coerce_to_simple_array (toval);
  if (ada_is_direct_array_type (value_type (fromval)))
    fromval = ada_coerce_to_simple_array (fromval);

  if (!deprecated_value_modifiable (toval))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  if (VALUE_LVAL (toval) == lval_memory
      && bits > 0
      && (TYPE_CODE (type) == TYPE_CODE_FLT
          || TYPE_CODE (type) == TYPE_CODE_STRUCT))
    {
      int len = (value_bitpos (toval)
		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      int from_size;
      char *buffer = (char *) alloca (len);
      struct value *val;
      CORE_ADDR to_addr = value_address (toval);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
        fromval = value_cast (type, fromval);

      read_memory (to_addr, buffer, len);
      from_size = value_bitsize (fromval);
      if (from_size == 0)
	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
      if (gdbarch_bits_big_endian (get_type_arch (type)))
        move_bits (buffer, value_bitpos (toval),
		   value_contents (fromval), from_size - bits, bits, 1);
      else
        move_bits (buffer, value_bitpos (toval),
		   value_contents (fromval), 0, bits, 0);
      write_memory (to_addr, buffer, len);
      observer_notify_memory_changed (to_addr, len, buffer);

      val = value_copy (toval);
      memcpy (value_contents_raw (val), value_contents (fromval),
              TYPE_LENGTH (type));
      deprecated_set_value_type (val, type);

      return val;
    }

  return value_assign (toval, fromval);
}


/* Given that COMPONENT is a memory lvalue that is part of the lvalue 
 * CONTAINER, assign the contents of VAL to COMPONENTS's place in 
 * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not 
 * COMPONENT, and not the inferior's memory.  The current contents 
 * of COMPONENT are ignored.  */
static void
value_assign_to_component (struct value *container, struct value *component,
			   struct value *val)
{
  LONGEST offset_in_container =
    (LONGEST)  (value_address (component) - value_address (container));
  int bit_offset_in_container = 
    value_bitpos (component) - value_bitpos (container);
  int bits;
  
  val = value_cast (value_type (component), val);

  if (value_bitsize (component) == 0)
    bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
  else
    bits = value_bitsize (component);

  if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
    move_bits (value_contents_writeable (container) + offset_in_container, 
	       value_bitpos (container) + bit_offset_in_container,
	       value_contents (val),
	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
	       bits, 1);
  else
    move_bits (value_contents_writeable (container) + offset_in_container, 
	       value_bitpos (container) + bit_offset_in_container,
	       value_contents (val), 0, bits, 0);
}	       
			
/* The value of the element of array ARR at the ARITY indices given in IND.
   ARR may be either a simple array, GNAT array descriptor, or pointer
   thereto.  */

struct value *
ada_value_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *elt;
  struct type *elt_type;

  elt = ada_coerce_to_simple_array (arr);

  elt_type = ada_check_typedef (value_type (elt));
  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
    return value_subscript_packed (elt, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);
      elt = value_subscript (elt, pos_atr (ind[k]));
    }
  return elt;
}

/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
   value of the element of *ARR at the ARITY indices given in
   IND.  Does not read the entire array into memory.  */

static struct value *
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
                         struct value **ind)
{
  int k;

  for (k = 0; k < arity; k += 1)
    {
      LONGEST lwb, upb;

      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);
      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
                        value_copy (arr));
      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
      arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
      type = TYPE_TARGET_TYPE (type);
    }

  return value_ind (arr);
}

/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
   actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
   elements starting at index LOW.  The lower bound of this array is LOW, as
   per Ada rules. */
static struct value *
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
                          int low, int high)
{
  CORE_ADDR base = value_as_address (array_ptr)
    + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
       * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
  struct type *index_type =
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
                       low, high);
  struct type *slice_type =
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
  return value_at_lazy (slice_type, base);
}


static struct value *
ada_value_slice (struct value *array, int low, int high)
{
  struct type *type = value_type (array);
  struct type *index_type =
    create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
  struct type *slice_type =
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
  return value_cast (slice_type, value_slice (array, low, high - low + 1));
}

/* If type is a record type in the form of a standard GNAT array
   descriptor, returns the number of dimensions for type.  If arr is a
   simple array, returns the number of "array of"s that prefix its
   type designation.  Otherwise, returns 0.  */

int
ada_array_arity (struct type *type)
{
  int arity;

  if (type == NULL)
    return 0;

  type = desc_base_type (type);

  arity = 0;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return desc_arity (desc_bounds_type (type));
  else
    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
      {
        arity += 1;
        type = ada_check_typedef (TYPE_TARGET_TYPE (type));
      }

  return arity;
}

/* If TYPE is a record type in the form of a standard GNAT array
   descriptor or a simple array type, returns the element type for
   TYPE after indexing by NINDICES indices, or by all indices if
   NINDICES is -1.  Otherwise, returns NULL.  */

struct type *
ada_array_element_type (struct type *type, int nindices)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      int k;
      struct type *p_array_type;

      p_array_type = desc_data_target_type (type);

      k = ada_array_arity (type);
      if (k == 0)
        return NULL;

      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
      if (nindices >= 0 && k > nindices)
        k = nindices;
      while (k > 0 && p_array_type != NULL)
        {
          p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
          k -= 1;
        }
      return p_array_type;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
        {
          type = TYPE_TARGET_TYPE (type);
          nindices -= 1;
        }
      return type;
    }

  return NULL;
}

/* The type of nth index in arrays of given type (n numbering from 1).
   Does not examine memory.  Throws an error if N is invalid or TYPE
   is not an array type.  NAME is the name of the Ada attribute being
   evaluated ('range, 'first, 'last, or 'length); it is used in building
   the error message.  */

static struct type *
ada_index_type (struct type *type, int n, const char *name)
{
  struct type *result_type;

  type = desc_base_type (type);

  if (n < 0 || n > ada_array_arity (type))
    error (_("invalid dimension number to '%s"), name);

  if (ada_is_simple_array_type (type))
    {
      int i;

      for (i = 1; i < n; i += 1)
        type = TYPE_TARGET_TYPE (type);
      result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
      /* FIXME: The stabs type r(0,0);bound;bound in an array type
         has a target type of TYPE_CODE_UNDEF.  We compensate here, but
         perhaps stabsread.c would make more sense.  */
      if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
        result_type = NULL;
    }
  else
    {
      result_type = desc_index_type (desc_bounds_type (type), n);
      if (result_type == NULL)
	error (_("attempt to take bound of something that is not an array"));
    }

  return result_type;
}

/* Given that arr is an array type, returns the lower bound of the
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
   array-descriptor type.  It works for other arrays with bounds supplied
   by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound_from_type (struct type * arr_type, int n, int which)
{
  struct type *type, *elt_type, *index_type_desc, *index_type;
  int i;

  gdb_assert (which == 0 || which == 1);

  if (ada_is_constrained_packed_array_type (arr_type))
    arr_type = decode_constrained_packed_array_type (arr_type);

  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
    return (LONGEST) - which;

  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (arr_type);
  else
    type = arr_type;

  elt_type = type;
  for (i = n; i > 1; i--)
    elt_type = TYPE_TARGET_TYPE (type);

  index_type_desc = ada_find_parallel_type (type, "___XA");
  if (index_type_desc != NULL)
    index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
				      NULL, TYPE_INDEX_TYPE (elt_type));
  else
    index_type = TYPE_INDEX_TYPE (elt_type);

  return
    (LONGEST) (which == 0
               ? ada_discrete_type_low_bound (index_type)
               : ada_discrete_type_high_bound (index_type));
}

/* Given that arr is an array value, returns the lower bound of the
   nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound (struct value *arr, int n, int which)
{
  struct type *arr_type = value_type (arr);

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_bound (decode_constrained_packed_array (arr), n, which);
  else if (ada_is_simple_array_type (arr_type))
    return ada_array_bound_from_type (arr_type, n, which);
  else
    return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
}

/* Given that arr is an array value, returns the length of the
   nth index.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.
   Does not work for arrays indexed by enumeration types with representation
   clauses at the moment.  */

static LONGEST
ada_array_length (struct value *arr, int n)
{
  struct type *arr_type = ada_check_typedef (value_type (arr));

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_length (decode_constrained_packed_array (arr), n);

  if (ada_is_simple_array_type (arr_type))
    return (ada_array_bound_from_type (arr_type, n, 1)
	    - ada_array_bound_from_type (arr_type, n, 0) + 1);
  else
    return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
	    - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
}

/* An empty array whose type is that of ARR_TYPE (an array type),
   with bounds LOW to LOW-1.  */

static struct value *
empty_array (struct type *arr_type, int low)
{
  struct type *index_type =
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
                       low, low - 1);
  struct type *elt_type = ada_array_element_type (arr_type, 1);
  return allocate_value (create_array_type (NULL, elt_type, index_type));
}


                                /* Name resolution */

/* The "decoded" name for the user-definable Ada operator corresponding
   to OP.  */

static const char *
ada_decoded_op_name (enum exp_opcode op)
{
  int i;

  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
    {
      if (ada_opname_table[i].op == op)
        return ada_opname_table[i].decoded;
    }
  error (_("Could not find operator name for opcode"));
}


/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
   references (marked by OP_VAR_VALUE nodes in which the symbol has an
   undefined namespace) and converts operators that are
   user-defined into appropriate function calls.  If CONTEXT_TYPE is
   non-null, it provides a preferred result type [at the moment, only
   type void has any effect---causing procedures to be preferred over
   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
   return type is preferred.  May change (expand) *EXP.  */

static void
resolve (struct expression **expp, int void_context_p)
{
  struct type *context_type = NULL;
  int pc = 0;

  if (void_context_p)
    context_type = builtin_type ((*expp)->gdbarch)->builtin_void;

  resolve_subexp (expp, &pc, 1, context_type);
}

/* Resolve the operator of the subexpression beginning at
   position *POS of *EXPP.  "Resolving" consists of replacing
   the symbols that have undefined namespaces in OP_VAR_VALUE nodes
   with their resolutions, replacing built-in operators with
   function calls to user-defined operators, where appropriate, and,
   when DEPROCEDURE_P is non-zero, converting function-valued variables
   into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
   are as in ada_resolve, above.  */

static struct value *
resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
                struct type *context_type)
{
  int pc = *pos;
  int i;
  struct expression *exp;       /* Convenience: == *expp.  */
  enum exp_opcode op = (*expp)->elts[pc].opcode;
  struct value **argvec;        /* Vector of operand types (alloca'ed).  */
  int nargs;                    /* Number of operands.  */
  int oplen;

  argvec = NULL;
  nargs = 0;
  exp = *expp;

  /* Pass one: resolve operands, saving their types and updating *pos,
     if needed.  */
  switch (op)
    {
    case OP_FUNCALL:
      if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        *pos += 7;
      else
        {
          *pos += 3;
          resolve_subexp (expp, pos, 0, NULL);
        }
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case UNOP_ADDR:
      *pos += 1;
      resolve_subexp (expp, pos, 0, NULL);
      break;

    case UNOP_QUAL:
      *pos += 3;
      resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
      break;

    case OP_ATR_MODULUS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_POS:
    case OP_ATR_VAL:
    case OP_ATR_MIN:
    case OP_ATR_MAX:
    case TERNOP_IN_RANGE:
    case BINOP_IN_BOUNDS:
    case UNOP_IN_RANGE:
    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_CHOICES:
    case OP_POSITIONAL:
    case OP_DISCRETE_RANGE:
    case OP_NAME:
      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen;
      break;

    case BINOP_ASSIGN:
      {
        struct value *arg1;

        *pos += 1;
        arg1 = resolve_subexp (expp, pos, 0, NULL);
        if (arg1 == NULL)
          resolve_subexp (expp, pos, 1, NULL);
        else
          resolve_subexp (expp, pos, 1, value_type (arg1));
        break;
      }

    case UNOP_CAST:
      *pos += 3;
      nargs = 1;
      break;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_EXP:
    case BINOP_CONCAT:
    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_OR:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:

    case BINOP_REPEAT:
    case BINOP_SUBSCRIPT:
    case BINOP_COMMA:
      *pos += 1;
      nargs = 2;
      break;

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
    case UNOP_IND:
      *pos += 1;
      nargs = 1;
      break;

    case OP_LONG:
    case OP_DOUBLE:
    case OP_VAR_VALUE:
      *pos += 4;
      break;

    case OP_TYPE:
    case OP_BOOL:
    case OP_LAST:
    case OP_INTERNALVAR:
      *pos += 3;
      break;

    case UNOP_MEMVAL:
      *pos += 3;
      nargs = 1;
      break;

    case OP_REGISTER:
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
      break;

    case STRUCTOP_STRUCT:
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
      nargs = 1;
      break;

    case TERNOP_SLICE:
      *pos += 1;
      nargs = 3;
      break;

    case OP_STRING:
      break;

    default:
      error (_("Unexpected operator during name resolution"));
    }

  argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
  for (i = 0; i < nargs; i += 1)
    argvec[i] = resolve_subexp (expp, pos, 1, NULL);
  argvec[i] = NULL;
  exp = *expp;

  /* Pass two: perform any resolution on principal operator.  */
  switch (op)
    {
    default:
      break;

    case OP_VAR_VALUE:
      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        {
          struct ada_symbol_info *candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                    (exp->elts[pc + 2].symbol),
                                    exp->elts[pc + 1].block, VAR_DOMAIN,
                                    &candidates);

          if (n_candidates > 1)
            {
              /* Types tend to get re-introduced locally, so if there
                 are any local symbols that are not types, first filter
                 out all types.  */
              int j;
              for (j = 0; j < n_candidates; j += 1)
                switch (SYMBOL_CLASS (candidates[j].sym))
                  {
                  case LOC_REGISTER:
                  case LOC_ARG:
                  case LOC_REF_ARG:
                  case LOC_REGPARM_ADDR:
                  case LOC_LOCAL:
                  case LOC_COMPUTED:
                    goto FoundNonType;
                  default:
                    break;
                  }
            FoundNonType:
              if (j < n_candidates)
                {
                  j = 0;
                  while (j < n_candidates)
                    {
                      if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
                        {
                          candidates[j] = candidates[n_candidates - 1];
                          n_candidates -= 1;
                        }
                      else
                        j += 1;
                    }
                }
            }

          if (n_candidates == 0)
            error (_("No definition found for %s"),
                   SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
          else if (n_candidates == 1)
            i = 0;
          else if (deprocedure_p
                   && !is_nonfunction (candidates, n_candidates))
            {
              i = ada_resolve_function
                (candidates, n_candidates, NULL, 0,
                 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
                 context_type);
              if (i < 0)
                error (_("Could not find a match for %s"),
                       SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
            }
          else
            {
              printf_filtered (_("Multiple matches for %s\n"),
                               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
              user_select_syms (candidates, n_candidates, 1);
              i = 0;
            }

          exp->elts[pc + 1].block = candidates[i].block;
          exp->elts[pc + 2].symbol = candidates[i].sym;
          if (innermost_block == NULL
              || contained_in (candidates[i].block, innermost_block))
            innermost_block = candidates[i].block;
        }

      if (deprocedure_p
          && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
              == TYPE_CODE_FUNC))
        {
          replace_operator_with_call (expp, pc, 0, 0,
                                      exp->elts[pc + 2].symbol,
                                      exp->elts[pc + 1].block);
          exp = *expp;
        }
      break;

    case OP_FUNCALL:
      {
        if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
            && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
          {
            struct ada_symbol_info *candidates;
            int n_candidates;

            n_candidates =
              ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                      (exp->elts[pc + 5].symbol),
                                      exp->elts[pc + 4].block, VAR_DOMAIN,
                                      &candidates);
            if (n_candidates == 1)
              i = 0;
            else
              {
                i = ada_resolve_function
                  (candidates, n_candidates,
                   argvec, nargs,
                   SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
                   context_type);
                if (i < 0)
                  error (_("Could not find a match for %s"),
                         SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
              }

            exp->elts[pc + 4].block = candidates[i].block;
            exp->elts[pc + 5].symbol = candidates[i].sym;
            if (innermost_block == NULL
                || contained_in (candidates[i].block, innermost_block))
              innermost_block = candidates[i].block;
          }
      }
      break;
    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_CONCAT:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
    case BINOP_EXP:
    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      if (possible_user_operator_p (op, argvec))
        {
          struct ada_symbol_info *candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
                                    (struct block *) NULL, VAR_DOMAIN,
                                    &candidates);
          i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
                                    ada_decoded_op_name (op), NULL);
          if (i < 0)
            break;

          replace_operator_with_call (expp, pc, nargs, 1,
                                      candidates[i].sym, candidates[i].block);
          exp = *expp;
        }
      break;

    case OP_TYPE:
    case OP_REGISTER:
      return NULL;
    }

  *pos = pc;
  return evaluate_subexp_type (exp, pos);
}

/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
   MAY_DEREF is non-zero, the formal may be a pointer and the actual
   a non-pointer.  */
/* The term "match" here is rather loose.  The match is heuristic and
   liberal.  */

static int
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
{
  ftype = ada_check_typedef (ftype);
  atype = ada_check_typedef (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
    ftype = TYPE_TARGET_TYPE (ftype);
  if (TYPE_CODE (atype) == TYPE_CODE_REF)
    atype = TYPE_TARGET_TYPE (atype);

  switch (TYPE_CODE (ftype))
    {
    default:
      return TYPE_CODE (ftype) == TYPE_CODE (atype);
    case TYPE_CODE_PTR:
      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
        return ada_type_match (TYPE_TARGET_TYPE (ftype),
                               TYPE_TARGET_TYPE (atype), 0);
      else
        return (may_deref
                && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      switch (TYPE_CODE (atype))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_RANGE:
          return 1;
        default:
          return 0;
        }

    case TYPE_CODE_ARRAY:
      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
              || ada_is_array_descriptor_type (atype));

    case TYPE_CODE_STRUCT:
      if (ada_is_array_descriptor_type (ftype))
        return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
                || ada_is_array_descriptor_type (atype));
      else
        return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
                && !ada_is_array_descriptor_type (atype));

    case TYPE_CODE_UNION:
    case TYPE_CODE_FLT:
      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
    }
}

/* Return non-zero if the formals of FUNC "sufficiently match" the
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
   may also be an enumeral, in which case it is treated as a 0-
   argument function.  */

static int
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
{
  int i;
  struct type *func_type = SYMBOL_TYPE (func);

  if (SYMBOL_CLASS (func) == LOC_CONST
      && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
    return (n_actuals == 0);
  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
    return 0;

  if (TYPE_NFIELDS (func_type) != n_actuals)
    return 0;

  for (i = 0; i < n_actuals; i += 1)
    {
      if (actuals[i] == NULL)
        return 0;
      else
        {
          struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
          struct type *atype = ada_check_typedef (value_type (actuals[i]));

          if (!ada_type_match (ftype, atype, 1))
            return 0;
        }
    }
  return 1;
}

/* False iff function type FUNC_TYPE definitely does not produce a value
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
   FUNC_TYPE is not a valid function type with a non-null return type
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */

static int
return_match (struct type *func_type, struct type *context_type)
{
  struct type *return_type;

  if (func_type == NULL)
    return 1;

  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
    return_type = base_type (TYPE_TARGET_TYPE (func_type));
  else
    return_type = base_type (func_type);
  if (return_type == NULL)
    return 1;

  context_type = base_type (context_type);

  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
    return context_type == NULL || return_type == context_type;
  else if (context_type == NULL)
    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
  else
    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
}


/* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
   function (if any) that matches the types of the NARGS arguments in
   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
   that returns that type, then eliminate matches that don't.  If
   CONTEXT_TYPE is void and there is at least one match that does not
   return void, eliminate all matches that do.

   Asks the user if there is more than one match remaining.  Returns -1
   if there is no such symbol or none is selected.  NAME is used
   solely for messages.  May re-arrange and modify SYMS in
   the process; the index returned is for the modified vector.  */

static int
ada_resolve_function (struct ada_symbol_info syms[],
                      int nsyms, struct value **args, int nargs,
                      const char *name, struct type *context_type)
{
  int fallback;
  int k;
  int m;                        /* Number of hits */

  m = 0;
  /* In the first pass of the loop, we only accept functions matching
     context_type.  If none are found, we add a second pass of the loop
     where every function is accepted.  */
  for (fallback = 0; m == 0 && fallback < 2; fallback++)
    {
      for (k = 0; k < nsyms; k += 1)
        {
          struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));

          if (ada_args_match (syms[k].sym, args, nargs)
              && (fallback || return_match (type, context_type)))
            {
              syms[m] = syms[k];
              m += 1;
            }
        }
    }

  if (m == 0)
    return -1;
  else if (m > 1)
    {
      printf_filtered (_("Multiple matches for %s\n"), name);
      user_select_syms (syms, m, 1);
      return 0;
    }
  return 0;
}

/* Returns true (non-zero) iff decoded name N0 should appear before N1
   in a listing of choices during disambiguation (see sort_choices, below).
   The idea is that overloadings of a subprogram name from the
   same package should sort in their source order.  We settle for ordering
   such symbols by their trailing number (__N  or $N).  */

static int
encoded_ordered_before (char *N0, char *N1)
{
  if (N1 == NULL)
    return 0;
  else if (N0 == NULL)
    return 1;
  else
    {
      int k0, k1;
      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
        ;
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
        ;
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
          && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
        {
          int n0, n1;
          n0 = k0;
          while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
            n0 -= 1;
          n1 = k1;
          while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
            n1 -= 1;
          if (n0 == n1 && strncmp (N0, N1, n0) == 0)
            return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
        }
      return (strcmp (N0, N1) < 0);
    }
}

/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
   encoded names.  */

static void
sort_choices (struct ada_symbol_info syms[], int nsyms)
{
  int i;
  for (i = 1; i < nsyms; i += 1)
    {
      struct ada_symbol_info sym = syms[i];
      int j;

      for (j = i - 1; j >= 0; j -= 1)
        {
          if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
                                      SYMBOL_LINKAGE_NAME (sym.sym)))
            break;
          syms[j + 1] = syms[j];
        }
      syms[j + 1] = sym;
    }
}

/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 
   by asking the user (if necessary), returning the number selected, 
   and setting the first elements of SYMS items.  Error if no symbols
   selected.  */

/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
   to be re-integrated one of these days.  */

int
user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
{
  int i;
  int *chosen = (int *) alloca (sizeof (int) * nsyms);
  int n_chosen;
  int first_choice = (max_results == 1) ? 1 : 2;
  const char *select_mode = multiple_symbols_select_mode ();

  if (max_results < 1)
    error (_("Request to select 0 symbols!"));
  if (nsyms <= 1)
    return nsyms;

  if (select_mode == multiple_symbols_cancel)
    error (_("\
canceled because the command is ambiguous\n\
See set/show multiple-symbol."));
  
  /* If select_mode is "all", then return all possible symbols.
     Only do that if more than one symbol can be selected, of course.
     Otherwise, display the menu as usual.  */
  if (select_mode == multiple_symbols_all && max_results > 1)
    return nsyms;

  printf_unfiltered (_("[0] cancel\n"));
  if (max_results > 1)
    printf_unfiltered (_("[1] all\n"));

  sort_choices (syms, nsyms);

  for (i = 0; i < nsyms; i += 1)
    {
      if (syms[i].sym == NULL)
        continue;

      if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
        {
          struct symtab_and_line sal =
            find_function_start_sal (syms[i].sym, 1);
	  if (sal.symtab == NULL)
	    printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
			       i + first_choice,
			       SYMBOL_PRINT_NAME (syms[i].sym),
			       sal.line);
	  else
	    printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
			       SYMBOL_PRINT_NAME (syms[i].sym),
			       sal.symtab->filename, sal.line);
          continue;
        }
      else
        {
          int is_enumeral =
            (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
             && SYMBOL_TYPE (syms[i].sym) != NULL
             && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
          struct symtab *symtab = syms[i].sym->symtab;

          if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
            printf_unfiltered (_("[%d] %s at %s:%d\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym),
                               symtab->filename, SYMBOL_LINE (syms[i].sym));
          else if (is_enumeral
                   && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
            {
              printf_unfiltered (("[%d] "), i + first_choice);
              ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
                              gdb_stdout, -1, 0);
              printf_unfiltered (_("'(%s) (enumeral)\n"),
                                 SYMBOL_PRINT_NAME (syms[i].sym));
            }
          else if (symtab != NULL)
            printf_unfiltered (is_enumeral
                               ? _("[%d] %s in %s (enumeral)\n")
                               : _("[%d] %s at %s:?\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym),
                               symtab->filename);
          else
            printf_unfiltered (is_enumeral
                               ? _("[%d] %s (enumeral)\n")
                               : _("[%d] %s at ?\n"),
                               i + first_choice,
                               SYMBOL_PRINT_NAME (syms[i].sym));
        }
    }

  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
                             "overload-choice");

  for (i = 0; i < n_chosen; i += 1)
    syms[i] = syms[chosen[i]];

  return n_chosen;
}

/* Read and validate a set of numeric choices from the user in the
   range 0 .. N_CHOICES-1.  Place the results in increasing
   order in CHOICES[0 .. N-1], and return N.

   The user types choices as a sequence of numbers on one line
   separated by blanks, encoding them as follows:

     + A choice of 0 means to cancel the selection, throwing an error.
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
     + The user chooses k by typing k+IS_ALL_CHOICE+1.

   The user is not allowed to choose more than MAX_RESULTS values.

   ANNOTATION_SUFFIX, if present, is used to annotate the input
   prompts (for use with the -f switch).  */

int
get_selections (int *choices, int n_choices, int max_results,
                int is_all_choice, char *annotation_suffix)
{
  char *args;
  char *prompt;
  int n_chosen;
  int first_choice = is_all_choice ? 2 : 1;

  prompt = getenv ("PS2");
  if (prompt == NULL)
    prompt = "> ";

  args = command_line_input (prompt, 0, annotation_suffix);

  if (args == NULL)
    error_no_arg (_("one or more choice numbers"));

  n_chosen = 0;

  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
     order, as given in args.  Choices are validated.  */
  while (1)
    {
      char *args2;
      int choice, j;

      while (isspace (*args))
        args += 1;
      if (*args == '\0' && n_chosen == 0)
        error_no_arg (_("one or more choice numbers"));
      else if (*args == '\0')
        break;

      choice = strtol (args, &args2, 10);
      if (args == args2 || choice < 0
          || choice > n_choices + first_choice - 1)
        error (_("Argument must be choice number"));
      args = args2;

      if (choice == 0)
        error (_("cancelled"));

      if (choice < first_choice)
        {
          n_chosen = n_choices;
          for (j = 0; j < n_choices; j += 1)
            choices[j] = j;
          break;
        }
      choice -= first_choice;

      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
        {
        }

      if (j < 0 || choice != choices[j])
        {
          int k;
          for (k = n_chosen - 1; k > j; k -= 1)
            choices[k + 1] = choices[k];
          choices[j + 1] = choice;
          n_chosen += 1;
        }
    }

  if (n_chosen > max_results)
    error (_("Select no more than %d of the above"), max_results);

  return n_chosen;
}

/* Replace the operator of length OPLEN at position PC in *EXPP with a call
   on the function identified by SYM and BLOCK, and taking NARGS
   arguments.  Update *EXPP as needed to hold more space.  */

static void
replace_operator_with_call (struct expression **expp, int pc, int nargs,
                            int oplen, struct symbol *sym,
                            struct block *block)
{
  /* A new expression, with 6 more elements (3 for funcall, 4 for function
     symbol, -oplen for operator being replaced).  */
  struct expression *newexp = (struct expression *)
    xmalloc (sizeof (struct expression)
             + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
  struct expression *exp = *expp;

  newexp->nelts = exp->nelts + 7 - oplen;
  newexp->language_defn = exp->language_defn;
  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
          EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));

  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
  newexp->elts[pc + 1].longconst = (LONGEST) nargs;

  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
  newexp->elts[pc + 4].block = block;
  newexp->elts[pc + 5].symbol = sym;

  *expp = newexp;
  xfree (exp);
}

/* Type-class predicates */

/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
   or FLOAT).  */

static int
numeric_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_FLT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || numeric_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is integral (an INT or RANGE of INTs).  */

static int
integer_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || integer_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */

static int
scalar_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLT:
          return 1;
        default:
          return 0;
        }
    }
}

/* True iff TYPE is discrete (INT, RANGE, ENUM).  */

static int
discrete_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_BOOL:
          return 1;
        default:
          return 0;
        }
    }
}

/* Returns non-zero if OP with operands in the vector ARGS could be
   a user-defined function.  Errs on the side of pre-defined operators
   (i.e., result 0).  */

static int
possible_user_operator_p (enum exp_opcode op, struct value *args[])
{
  struct type *type0 =
    (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
  struct type *type1 =
    (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));

  if (type0 == NULL)
    return 0;

  switch (op)
    {
    default:
      return 0;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));

    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      return (!(integer_type_p (type0) && integer_type_p (type1)));

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));

    case BINOP_CONCAT:
      return !ada_is_array_type (type0) || !ada_is_array_type (type1);

    case BINOP_EXP:
      return (!(numeric_type_p (type0) && integer_type_p (type1)));

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      return (!numeric_type_p (type0));

    }
}

                                /* Renaming */

/* NOTES: 

   1. In the following, we assume that a renaming type's name may
      have an ___XD suffix.  It would be nice if this went away at some
      point.
   2. We handle both the (old) purely type-based representation of 
      renamings and the (new) variable-based encoding.  At some point,
      it is devoutly to be hoped that the former goes away 
      (FIXME: hilfinger-2007-07-09).
   3. Subprogram renamings are not implemented, although the XRS
      suffix is recognized (FIXME: hilfinger-2007-07-09).  */

/* If SYM encodes a renaming, 

       <renaming> renames <renamed entity>,

   sets *LEN to the length of the renamed entity's name,
   *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
   the string describing the subcomponent selected from the renamed
   entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
   (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
   are undefined).  Otherwise, returns a value indicating the category
   of entity renamed: an object (ADA_OBJECT_RENAMING), exception
   (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
   subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
   strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
   deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
   may be NULL, in which case they are not assigned.

   [Currently, however, GCC does not generate subprogram renamings.]  */

enum ada_renaming_category
ada_parse_renaming (struct symbol *sym,
		    const char **renamed_entity, int *len, 
		    const char **renaming_expr)
{
  enum ada_renaming_category kind;
  const char *info;
  const char *suffix;

  if (sym == NULL)
    return ADA_NOT_RENAMING;
  switch (SYMBOL_CLASS (sym)) 
    {
    default:
      return ADA_NOT_RENAMING;
    case LOC_TYPEDEF:
      return parse_old_style_renaming (SYMBOL_TYPE (sym), 
				       renamed_entity, len, renaming_expr);
    case LOC_LOCAL:
    case LOC_STATIC:
    case LOC_COMPUTED:
    case LOC_OPTIMIZED_OUT:
      info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
      if (info == NULL)
	return ADA_NOT_RENAMING;
      switch (info[5])
	{
	case '_':
	  kind = ADA_OBJECT_RENAMING;
	  info += 6;
	  break;
	case 'E':
	  kind = ADA_EXCEPTION_RENAMING;
	  info += 7;
	  break;
	case 'P':
	  kind = ADA_PACKAGE_RENAMING;
	  info += 7;
	  break;
	case 'S':
	  kind = ADA_SUBPROGRAM_RENAMING;
	  info += 7;
	  break;
	default:
	  return ADA_NOT_RENAMING;
	}
    }

  if (renamed_entity != NULL)
    *renamed_entity = info;
  suffix = strstr (info, "___XE");
  if (suffix == NULL || suffix == info)
    return ADA_NOT_RENAMING;
  if (len != NULL)
    *len = strlen (info) - strlen (suffix);
  suffix += 5;
  if (renaming_expr != NULL)
    *renaming_expr = suffix;
  return kind;
}

/* Assuming TYPE encodes a renaming according to the old encoding in
   exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
   *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
   ADA_NOT_RENAMING otherwise.  */
static enum ada_renaming_category
parse_old_style_renaming (struct type *type,
			  const char **renamed_entity, int *len, 
			  const char **renaming_expr)
{
  enum ada_renaming_category kind;
  const char *name;
  const char *info;
  const char *suffix;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 
      || TYPE_NFIELDS (type) != 1)
    return ADA_NOT_RENAMING;

  name = type_name_no_tag (type);
  if (name == NULL)
    return ADA_NOT_RENAMING;
  
  name = strstr (name, "___XR");
  if (name == NULL)
    return ADA_NOT_RENAMING;
  switch (name[5])
    {
    case '\0':
    case '_':
      kind = ADA_OBJECT_RENAMING;
      break;
    case 'E':
      kind = ADA_EXCEPTION_RENAMING;
      break;
    case 'P':
      kind = ADA_PACKAGE_RENAMING;
      break;
    case 'S':
      kind = ADA_SUBPROGRAM_RENAMING;
      break;
    default:
      return ADA_NOT_RENAMING;
    }

  info = TYPE_FIELD_NAME (type, 0);
  if (info == NULL)
    return ADA_NOT_RENAMING;
  if (renamed_entity != NULL)
    *renamed_entity = info;
  suffix = strstr (info, "___XE");
  if (renaming_expr != NULL)
    *renaming_expr = suffix + 5;
  if (suffix == NULL || suffix == info)
    return ADA_NOT_RENAMING;
  if (len != NULL)
    *len = suffix - info;
  return kind;
}  



                                /* Evaluation: Function Calls */

/* Return an lvalue containing the value VAL.  This is the identity on
   lvalues, and otherwise has the side-effect of pushing a copy of VAL 
   on the stack, using and updating *SP as the stack pointer, and 
   returning an lvalue whose value_address points to the copy.  */

static struct value *
ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
{
  if (! VALUE_LVAL (val))
    {
      int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));

      /* The following is taken from the structure-return code in
	 call_function_by_hand. FIXME: Therefore, some refactoring seems 
	 indicated. */
      if (gdbarch_inner_than (gdbarch, 1, 2))
	{
	  /* Stack grows downward.  Align SP and value_address (val) after
	     reserving sufficient space. */
	  *sp -= len;
	  if (gdbarch_frame_align_p (gdbarch))
	    *sp = gdbarch_frame_align (gdbarch, *sp);
	  set_value_address (val, *sp);
	}
      else
	{
	  /* Stack grows upward.  Align the frame, allocate space, and
	     then again, re-align the frame. */
	  if (gdbarch_frame_align_p (gdbarch))
	    *sp = gdbarch_frame_align (gdbarch, *sp);
	  set_value_address (val, *sp);
	  *sp += len;
	  if (gdbarch_frame_align_p (gdbarch))
	    *sp = gdbarch_frame_align (gdbarch, *sp);
	}
      VALUE_LVAL (val) = lval_memory;

      write_memory (value_address (val), value_contents_raw (val), len);
    }

  return val;
}

/* Return the value ACTUAL, converted to be an appropriate value for a
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
   allocating any necessary descriptors (fat pointers), or copies of
   values not residing in memory, updating it as needed.  */

struct value *
ada_convert_actual (struct value *actual, struct type *formal_type0,
                    struct gdbarch *gdbarch, CORE_ADDR *sp)
{
  struct type *actual_type = ada_check_typedef (value_type (actual));
  struct type *formal_type = ada_check_typedef (formal_type0);
  struct type *formal_target =
    TYPE_CODE (formal_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
  struct type *actual_target =
    TYPE_CODE (actual_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;

  if (ada_is_array_descriptor_type (formal_target)
      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
    return make_array_descriptor (formal_type, actual, gdbarch, sp);
  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
    {
      struct value *result;
      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
          && ada_is_array_descriptor_type (actual_target))
	result = desc_data (actual);
      else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
        {
          if (VALUE_LVAL (actual) != lval_memory)
            {
              struct value *val;
              actual_type = ada_check_typedef (value_type (actual));
              val = allocate_value (actual_type);
              memcpy ((char *) value_contents_raw (val),
                      (char *) value_contents (actual),
                      TYPE_LENGTH (actual_type));
              actual = ensure_lval (val, gdbarch, sp);
            }
          result = value_addr (actual);
        }
      else
	return actual;
      return value_cast_pointers (formal_type, result);
    }
  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
    return ada_value_ind (actual);

  return actual;
}


/* Push a descriptor of type TYPE for array value ARR on the stack at
   *SP, updating *SP to reflect the new descriptor.  Return either
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
   to-descriptor type rather than a descriptor type), a struct value *
   representing a pointer to this descriptor.  */

static struct value *
make_array_descriptor (struct type *type, struct value *arr,
		       struct gdbarch *gdbarch, CORE_ADDR *sp)
{
  struct type *bounds_type = desc_bounds_type (type);
  struct type *desc_type = desc_base_type (type);
  struct value *descriptor = allocate_value (desc_type);
  struct value *bounds = allocate_value (bounds_type);
  int i;

  for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
    {
      modify_general_field (value_type (bounds),
			    value_contents_writeable (bounds),
                            ada_array_bound (arr, i, 0),
                            desc_bound_bitpos (bounds_type, i, 0),
                            desc_bound_bitsize (bounds_type, i, 0));
      modify_general_field (value_type (bounds),
			    value_contents_writeable (bounds),
                            ada_array_bound (arr, i, 1),
                            desc_bound_bitpos (bounds_type, i, 1),
                            desc_bound_bitsize (bounds_type, i, 1));
    }

  bounds = ensure_lval (bounds, gdbarch, sp);

  modify_general_field (value_type (descriptor),
			value_contents_writeable (descriptor),
                        value_address (ensure_lval (arr, gdbarch, sp)),
                        fat_pntr_data_bitpos (desc_type),
                        fat_pntr_data_bitsize (desc_type));

  modify_general_field (value_type (descriptor),
			value_contents_writeable (descriptor),
                        value_address (bounds),
                        fat_pntr_bounds_bitpos (desc_type),
                        fat_pntr_bounds_bitsize (desc_type));

  descriptor = ensure_lval (descriptor, gdbarch, sp);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_addr (descriptor);
  else
    return descriptor;
}

/* Dummy definitions for an experimental caching module that is not
 * used in the public sources. */

static int
lookup_cached_symbol (const char *name, domain_enum namespace,
                      struct symbol **sym, struct block **block)
{
  return 0;
}

static void
cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
              struct block *block)
{
}

                                /* Symbol Lookup */

/* Return the result of a standard (literal, C-like) lookup of NAME in
   given DOMAIN, visible from lexical block BLOCK.  */

static struct symbol *
standard_lookup (const char *name, const struct block *block,
                 domain_enum domain)
{
  struct symbol *sym;

  if (lookup_cached_symbol (name, domain, &sym, NULL))
    return sym;
  sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
  cache_symbol (name, domain, sym, block_found);
  return sym;
}


/* Non-zero iff there is at least one non-function/non-enumeral symbol
   in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions, 
   since they contend in overloading in the same way.  */
static int
is_nonfunction (struct ada_symbol_info syms[], int n)
{
  int i;

  for (i = 0; i < n; i += 1)
    if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
        && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
            || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
      return 1;

  return 0;
}

/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
   struct types.  Otherwise, they may not.  */

static int
equiv_types (struct type *type0, struct type *type1)
{
  if (type0 == type1)
    return 1;
  if (type0 == NULL || type1 == NULL
      || TYPE_CODE (type0) != TYPE_CODE (type1))
    return 0;
  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
    return 1;

  return 0;
}

/* True iff SYM0 represents the same entity as SYM1, or one that is
   no more defined than that of SYM1.  */

static int
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
{
  if (sym0 == sym1)
    return 1;
  if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
    return 0;

  switch (SYMBOL_CLASS (sym0))
    {
    case LOC_UNDEF:
      return 1;
    case LOC_TYPEDEF:
      {
        struct type *type0 = SYMBOL_TYPE (sym0);
        struct type *type1 = SYMBOL_TYPE (sym1);
        char *name0 = SYMBOL_LINKAGE_NAME (sym0);
        char *name1 = SYMBOL_LINKAGE_NAME (sym1);
        int len0 = strlen (name0);
        return
          TYPE_CODE (type0) == TYPE_CODE (type1)
          && (equiv_types (type0, type1)
              || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
                  && strncmp (name1 + len0, "___XV", 5) == 0));
      }
    case LOC_CONST:
      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
        && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
    default:
      return 0;
    }
}

/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
   records in OBSTACKP.  Do nothing if SYM is a duplicate.  */

static void
add_defn_to_vec (struct obstack *obstackp,
                 struct symbol *sym,
                 struct block *block)
{
  int i;
  size_t tmp;
  struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);

  /* Do not try to complete stub types, as the debugger is probably
     already scanning all symbols matching a certain name at the
     time when this function is called.  Trying to replace the stub
     type by its associated full type will cause us to restart a scan
     which may lead to an infinite recursion.  Instead, the client
     collecting the matching symbols will end up collecting several
     matches, with at least one of them complete.  It can then filter
     out the stub ones if needed.  */

  for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
    {
      if (lesseq_defined_than (sym, prevDefns[i].sym))
        return;
      else if (lesseq_defined_than (prevDefns[i].sym, sym))
        {
          prevDefns[i].sym = sym;
          prevDefns[i].block = block;
          return;
        }
    }

  {
    struct ada_symbol_info info;

    info.sym = sym;
    info.block = block;
    obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
  }
}

/* Number of ada_symbol_info structures currently collected in 
   current vector in *OBSTACKP.  */

static int
num_defns_collected (struct obstack *obstackp)
{
  return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
}

/* Vector of ada_symbol_info structures currently collected in current 
   vector in *OBSTACKP.  If FINISH, close off the vector and return
   its final address.  */

static struct ada_symbol_info *
defns_collected (struct obstack *obstackp, int finish)
{
  if (finish)
    return obstack_finish (obstackp);
  else
    return (struct ada_symbol_info *) obstack_base (obstackp);
}

/* Look, in partial_symtab PST, for symbol NAME in given namespace.
   Check the global symbols if GLOBAL, the static symbols if not.
   Do wild-card match if WILD.  */

static struct partial_symbol *
ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
                           int global, domain_enum namespace, int wild)
{
  struct partial_symbol **start;
  int name_len = strlen (name);
  int length = (global ? pst->n_global_syms : pst->n_static_syms);
  int i;

  if (length == 0)
    {
      return (NULL);
    }

  start = (global ?
           pst->objfile->global_psymbols.list + pst->globals_offset :
           pst->objfile->static_psymbols.list + pst->statics_offset);

  if (wild)
    {
      for (i = 0; i < length; i += 1)
        {
          struct partial_symbol *psym = start[i];

          if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
                                     SYMBOL_DOMAIN (psym), namespace)
              && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
            return psym;
        }
      return NULL;
    }
  else
    {
      if (global)
        {
          int U;
          i = 0;
          U = length - 1;
          while (U - i > 4)
            {
              int M = (U + i) >> 1;
              struct partial_symbol *psym = start[M];
              if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
                i = M + 1;
              else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
                U = M - 1;
              else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
                i = M + 1;
              else
                U = M;
            }
        }
      else
        i = 0;

      while (i < length)
        {
          struct partial_symbol *psym = start[i];

          if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
                                     SYMBOL_DOMAIN (psym), namespace))
            {
              int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);

              if (cmp < 0)
                {
                  if (global)
                    break;
                }
              else if (cmp == 0
                       && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
                                          + name_len))
                return psym;
            }
          i += 1;
        }

      if (global)
        {
          int U;
          i = 0;
          U = length - 1;
          while (U - i > 4)
            {
              int M = (U + i) >> 1;
              struct partial_symbol *psym = start[M];
              if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
                i = M + 1;
              else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
                U = M - 1;
              else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
                i = M + 1;
              else
                U = M;
            }
        }
      else
        i = 0;

      while (i < length)
        {
          struct partial_symbol *psym = start[i];

          if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
                                     SYMBOL_DOMAIN (psym), namespace))
            {
              int cmp;

              cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
              if (cmp == 0)
                {
                  cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
                  if (cmp == 0)
                    cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
                                   name_len);
                }

              if (cmp < 0)
                {
                  if (global)
                    break;
                }
              else if (cmp == 0
                       && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
                                          + name_len + 5))
                return psym;
            }
          i += 1;
        }
    }
  return NULL;
}

/* Return a minimal symbol matching NAME according to Ada decoding
   rules.  Returns NULL if there is no such minimal symbol.  Names 
   prefixed with "standard__" are handled specially: "standard__" is 
   first stripped off, and only static and global symbols are searched.  */

struct minimal_symbol *
ada_lookup_simple_minsym (const char *name)
{
  struct objfile *objfile;
  struct minimal_symbol *msymbol;
  int wild_match;

  if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
    {
      name += sizeof ("standard__") - 1;
      wild_match = 0;
    }
  else
    wild_match = (strstr (name, "__") == NULL);

  ALL_MSYMBOLS (objfile, msymbol)
  {
    if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
        && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
      return msymbol;
  }

  return NULL;
}

/* For all subprograms that statically enclose the subprogram of the
   selected frame, add symbols matching identifier NAME in DOMAIN
   and their blocks to the list of data in OBSTACKP, as for
   ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
   wildcard prefix.  */

static void
add_symbols_from_enclosing_procs (struct obstack *obstackp,
                                  const char *name, domain_enum namespace,
                                  int wild_match)
{
}

/* True if TYPE is definitely an artificial type supplied to a symbol
   for which no debugging information was given in the symbol file.  */

static int
is_nondebugging_type (struct type *type)
{
  char *name = ada_type_name (type);
  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
}

/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
   duplicate other symbols in the list (The only case I know of where
   this happens is when object files containing stabs-in-ecoff are
   linked with files containing ordinary ecoff debugging symbols (or no
   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
   Returns the number of items in the modified list.  */

static int
remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
{
  int i, j;

  i = 0;
  while (i < nsyms)
    {
      int remove = 0;

      /* If two symbols have the same name and one of them is a stub type,
         the get rid of the stub.  */

      if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
          && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
        {
          for (j = 0; j < nsyms; j++)
            {
              if (j != i
                  && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
                remove = 1;
            }
        }

      /* Two symbols with the same name, same class and same address
         should be identical.  */

      else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
          && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
          && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
        {
          for (j = 0; j < nsyms; j += 1)
            {
              if (i != j
                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
                  && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
                  && SYMBOL_VALUE_ADDRESS (syms[i].sym)
                  == SYMBOL_VALUE_ADDRESS (syms[j].sym))
                remove = 1;
            }
        }
      
      if (remove)
        {
          for (j = i + 1; j < nsyms; j += 1)
            syms[j - 1] = syms[j];
          nsyms -= 1;
        }

      i += 1;
    }
  return nsyms;
}

/* Given a type that corresponds to a renaming entity, use the type name
   to extract the scope (package name or function name, fully qualified,
   and following the GNAT encoding convention) where this renaming has been
   defined.  The string returned needs to be deallocated after use.  */

static char *
xget_renaming_scope (struct type *renaming_type)
{
  /* The renaming types adhere to the following convention:
     <scope>__<rename>___<XR extension>. 
     So, to extract the scope, we search for the "___XR" extension,
     and then backtrack until we find the first "__".  */

  const char *name = type_name_no_tag (renaming_type);
  char *suffix = strstr (name, "___XR");
  char *last;
  int scope_len;
  char *scope;

  /* Now, backtrack a bit until we find the first "__".  Start looking
     at suffix - 3, as the <rename> part is at least one character long.  */

  for (last = suffix - 3; last > name; last--)
    if (last[0] == '_' && last[1] == '_')
      break;

  /* Make a copy of scope and return it.  */

  scope_len = last - name;
  scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));

  strncpy (scope, name, scope_len);
  scope[scope_len] = '\0';

  return scope;
}

/* Return nonzero if NAME corresponds to a package name.  */

static int
is_package_name (const char *name)
{
  /* Here, We take advantage of the fact that no symbols are generated
     for packages, while symbols are generated for each function.
     So the condition for NAME represent a package becomes equivalent
     to NAME not existing in our list of symbols.  There is only one
     small complication with library-level functions (see below).  */

  char *fun_name;

  /* If it is a function that has not been defined at library level,
     then we should be able to look it up in the symbols.  */
  if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
    return 0;

  /* Library-level function names start with "_ada_".  See if function
     "_ada_" followed by NAME can be found.  */

  /* Do a quick check that NAME does not contain "__", since library-level
     functions names cannot contain "__" in them.  */
  if (strstr (name, "__") != NULL)
    return 0;

  fun_name = xstrprintf ("_ada_%s", name);

  return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
}

/* Return nonzero if SYM corresponds to a renaming entity that is
   not visible from FUNCTION_NAME.  */

static int
old_renaming_is_invisible (const struct symbol *sym, char *function_name)
{
  char *scope;

  if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
    return 0;

  scope = xget_renaming_scope (SYMBOL_TYPE (sym));

  make_cleanup (xfree, scope);

  /* If the rename has been defined in a package, then it is visible.  */
  if (is_package_name (scope))
    return 0;

  /* Check that the rename is in the current function scope by checking
     that its name starts with SCOPE.  */

  /* If the function name starts with "_ada_", it means that it is
     a library-level function.  Strip this prefix before doing the
     comparison, as the encoding for the renaming does not contain
     this prefix.  */
  if (strncmp (function_name, "_ada_", 5) == 0)
    function_name += 5;

  return (strncmp (function_name, scope, strlen (scope)) != 0);
}

/* Remove entries from SYMS that corresponds to a renaming entity that
   is not visible from the function associated with CURRENT_BLOCK or
   that is superfluous due to the presence of more specific renaming
   information.  Places surviving symbols in the initial entries of
   SYMS and returns the number of surviving symbols.
   
   Rationale:
   First, in cases where an object renaming is implemented as a
   reference variable, GNAT may produce both the actual reference
   variable and the renaming encoding.  In this case, we discard the
   latter.

   Second, GNAT emits a type following a specified encoding for each renaming
   entity.  Unfortunately, STABS currently does not support the definition
   of types that are local to a given lexical block, so all renamings types
   are emitted at library level.  As a consequence, if an application
   contains two renaming entities using the same name, and a user tries to
   print the value of one of these entities, the result of the ada symbol
   lookup will also contain the wrong renaming type.

   This function partially covers for this limitation by attempting to
   remove from the SYMS list renaming symbols that should be visible
   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
   method with the current information available.  The implementation
   below has a couple of limitations (FIXME: brobecker-2003-05-12):  
   
      - When the user tries to print a rename in a function while there
        is another rename entity defined in a package:  Normally, the
        rename in the function has precedence over the rename in the
        package, so the latter should be removed from the list.  This is
        currently not the case.
        
      - This function will incorrectly remove valid renames if
        the CURRENT_BLOCK corresponds to a function which symbol name
        has been changed by an "Export" pragma.  As a consequence,
        the user will be unable to print such rename entities.  */

static int
remove_irrelevant_renamings (struct ada_symbol_info *syms,
			     int nsyms, const struct block *current_block)
{
  struct symbol *current_function;
  char *current_function_name;
  int i;
  int is_new_style_renaming;

  /* If there is both a renaming foo___XR... encoded as a variable and
     a simple variable foo in the same block, discard the latter.
     First, zero out such symbols, then compress. */
  is_new_style_renaming = 0;
  for (i = 0; i < nsyms; i += 1)
    {
      struct symbol *sym = syms[i].sym;
      struct block *block = syms[i].block;
      const char *name;
      const char *suffix;

      if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
	continue;
      name = SYMBOL_LINKAGE_NAME (sym);
      suffix = strstr (name, "___XR");

      if (suffix != NULL)
	{
	  int name_len = suffix - name;
	  int j;
	  is_new_style_renaming = 1;
	  for (j = 0; j < nsyms; j += 1)
	    if (i != j && syms[j].sym != NULL
		&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
			    name_len) == 0
		&& block == syms[j].block)
	      syms[j].sym = NULL;
	}
    }
  if (is_new_style_renaming)
    {
      int j, k;

      for (j = k = 0; j < nsyms; j += 1)
	if (syms[j].sym != NULL)
	    {
	      syms[k] = syms[j];
	      k += 1;
	    }
      return k;
    }

  /* Extract the function name associated to CURRENT_BLOCK.
     Abort if unable to do so.  */

  if (current_block == NULL)
    return nsyms;

  current_function = block_linkage_function (current_block);
  if (current_function == NULL)
    return nsyms;

  current_function_name = SYMBOL_LINKAGE_NAME (current_function);
  if (current_function_name == NULL)
    return nsyms;

  /* Check each of the symbols, and remove it from the list if it is
     a type corresponding to a renaming that is out of the scope of
     the current block.  */

  i = 0;
  while (i < nsyms)
    {
      if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
          == ADA_OBJECT_RENAMING
          && old_renaming_is_invisible (syms[i].sym, current_function_name))
        {
          int j;
          for (j = i + 1; j < nsyms; j += 1)
            syms[j - 1] = syms[j];
          nsyms -= 1;
        }
      else
        i += 1;
    }

  return nsyms;
}

/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
   whose name and domain match NAME and DOMAIN respectively.
   If no match was found, then extend the search to "enclosing"
   routines (in other words, if we're inside a nested function,
   search the symbols defined inside the enclosing functions).

   Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */

static void
ada_add_local_symbols (struct obstack *obstackp, const char *name,
                       struct block *block, domain_enum domain,
                       int wild_match)
{
  int block_depth = 0;

  while (block != NULL)
    {
      block_depth += 1;
      ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);

      /* If we found a non-function match, assume that's the one.  */
      if (is_nonfunction (defns_collected (obstackp, 0),
                          num_defns_collected (obstackp)))
        return;

      block = BLOCK_SUPERBLOCK (block);
    }

  /* If no luck so far, try to find NAME as a local symbol in some lexically
     enclosing subprogram.  */
  if (num_defns_collected (obstackp) == 0 && block_depth > 2)
    add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
}

/* Add to OBSTACKP all non-local symbols whose name and domain match
   NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
   symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */

static void
ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
                           domain_enum domain, int global,
                           int wild_match)
{
  struct objfile *objfile;
  struct partial_symtab *ps;

  ALL_PSYMTABS (objfile, ps)
  {
    QUIT;
    if (ps->readin
        || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
      {
        struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
        const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;

        if (s == NULL || !s->primary)
          continue;
        ada_add_block_symbols (obstackp,
                               BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
                               name, domain, objfile, wild_match);
      }
  }
}

/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
   scope and in global scopes, returning the number of matches.  Sets
   *RESULTS to point to a vector of (SYM,BLOCK) tuples,
   indicating the symbols found and the blocks and symbol tables (if
   any) in which they were found.  This vector are transient---good only to 
   the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral 
   symbol match within the nest of blocks whose innermost member is BLOCK0,
   is the one match returned (no other matches in that or
     enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK0, then these alone are returned.  Otherwise, the
   search extends to global and file-scope (static) symbol tables.
   Names prefixed with "standard__" are handled specially: "standard__" 
   is first stripped off, and only static and global symbols are searched.  */

int
ada_lookup_symbol_list (const char *name0, const struct block *block0,
                        domain_enum namespace,
                        struct ada_symbol_info **results)
{
  struct symbol *sym;
  struct block *block;
  const char *name;
  int wild_match;
  int cacheIfUnique;
  int ndefns;

  obstack_free (&symbol_list_obstack, NULL);
  obstack_init (&symbol_list_obstack);

  cacheIfUnique = 0;

  /* Search specified block and its superiors.  */

  wild_match = (strstr (name0, "__") == NULL);
  name = name0;
  block = (struct block *) block0;      /* FIXME: No cast ought to be
                                           needed, but adding const will
                                           have a cascade effect.  */

  /* Special case: If the user specifies a symbol name inside package
     Standard, do a non-wild matching of the symbol name without
     the "standard__" prefix.  This was primarily introduced in order
     to allow the user to specifically access the standard exceptions
     using, for instance, Standard.Constraint_Error when Constraint_Error
     is ambiguous (due to the user defining its own Constraint_Error
     entity inside its program).  */
  if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
    {
      wild_match = 0;
      block = NULL;
      name = name0 + sizeof ("standard__") - 1;
    }

  /* Check the non-global symbols.  If we have ANY match, then we're done.  */

  ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
                         wild_match);
  if (num_defns_collected (&symbol_list_obstack) > 0)
    goto done;

  /* No non-global symbols found.  Check our cache to see if we have
     already performed this search before.  If we have, then return
     the same result.  */

  cacheIfUnique = 1;
  if (lookup_cached_symbol (name0, namespace, &sym, &block))
    {
      if (sym != NULL)
        add_defn_to_vec (&symbol_list_obstack, sym, block);
      goto done;
    }

  /* Search symbols from all global blocks.  */
 
  ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
                             wild_match);

  /* Now add symbols from all per-file blocks if we've gotten no hits
     (not strictly correct, but perhaps better than an error).  */

  if (num_defns_collected (&symbol_list_obstack) == 0)
    ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
                               wild_match);

done:
  ndefns = num_defns_collected (&symbol_list_obstack);
  *results = defns_collected (&symbol_list_obstack, 1);

  ndefns = remove_extra_symbols (*results, ndefns);

  if (ndefns == 0)
    cache_symbol (name0, namespace, NULL, NULL);

  if (ndefns == 1 && cacheIfUnique)
    cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);

  ndefns = remove_irrelevant_renamings (*results, ndefns, block0);

  return ndefns;
}

struct symbol *
ada_lookup_encoded_symbol (const char *name, const struct block *block0,
			   domain_enum namespace, struct block **block_found)
{
  struct ada_symbol_info *candidates;
  int n_candidates;

  n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);

  if (n_candidates == 0)
    return NULL;

  if (block_found != NULL)
    *block_found = candidates[0].block;

  return fixup_symbol_section (candidates[0].sym, NULL);
}  

/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
   scope and in global scopes, or NULL if none.  NAME is folded and
   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
   choosing the first symbol if there are multiple choices.  
   *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
   table in which the symbol was found (in both cases, these
   assignments occur only if the pointers are non-null).  */
struct symbol *
ada_lookup_symbol (const char *name, const struct block *block0,
                   domain_enum namespace, int *is_a_field_of_this)
{
  if (is_a_field_of_this != NULL)
    *is_a_field_of_this = 0;

  return
    ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
			       block0, namespace, NULL);
}

static struct symbol *
ada_lookup_symbol_nonlocal (const char *name,
                            const char *linkage_name,
                            const struct block *block,
                            const domain_enum domain)
{
  if (linkage_name == NULL)
    linkage_name = name;
  return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
                            NULL);
}


/* True iff STR is a possible encoded suffix of a normal Ada name
   that is to be ignored for matching purposes.  Suffixes of parallel
   names (e.g., XVE) are not included here.  Currently, the possible suffixes
   are given by any of the regular expressions:

   [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
   ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
   _E[0-9]+[bs]$    [protected object entry suffixes]
   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$

   Also, any leading "__[0-9]+" sequence is skipped before the suffix
   match is performed.  This sequence is used to differentiate homonyms,
   is an optional part of a valid name suffix.  */

static int
is_name_suffix (const char *str)
{
  int k;
  const char *matching;
  const int len = strlen (str);

  /* Skip optional leading __[0-9]+.  */

  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
    {
      str += 3;
      while (isdigit (str[0]))
        str += 1;
    }
  
  /* [.$][0-9]+ */

  if (str[0] == '.' || str[0] == '$')
    {
      matching = str + 1;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

  /* ___[0-9]+ */

  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

#if 0
  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
     with a N at the end. Unfortunately, the compiler uses the same
     convention for other internal types it creates. So treating
     all entity names that end with an "N" as a name suffix causes
     some regressions. For instance, consider the case of an enumerated
     type. To support the 'Image attribute, it creates an array whose
     name ends with N.
     Having a single character like this as a suffix carrying some
     information is a bit risky. Perhaps we should change the encoding
     to be something like "_N" instead.  In the meantime, do not do
     the following check.  */
  /* Protected Object Subprograms */
  if (len == 1 && str [0] == 'N')
    return 1;
#endif

  /* _E[0-9]+[bs]$ */
  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if ((matching[0] == 'b' || matching[0] == 's')
          && matching [1] == '\0')
        return 1;
    }

  /* ??? We should not modify STR directly, as we are doing below.  This
     is fine in this case, but may become problematic later if we find
     that this alternative did not work, and want to try matching
     another one from the begining of STR.  Since we modified it, we
     won't be able to find the begining of the string anymore!  */
  if (str[0] == 'X')
    {
      str += 1;
      while (str[0] != '_' && str[0] != '\0')
        {
          if (str[0] != 'n' && str[0] != 'b')
            return 0;
          str += 1;
        }
    }

  if (str[0] == '\000')
    return 1;

  if (str[0] == '_')
    {
      if (str[1] != '_' || str[2] == '\000')
        return 0;
      if (str[2] == '_')
        {
          if (strcmp (str + 3, "JM") == 0)
            return 1;
          /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
             the LJM suffix in favor of the JM one.  But we will
             still accept LJM as a valid suffix for a reasonable
             amount of time, just to allow ourselves to debug programs
             compiled using an older version of GNAT.  */
          if (strcmp (str + 3, "LJM") == 0)
            return 1;
          if (str[3] != 'X')
            return 0;
          if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
              || str[4] == 'U' || str[4] == 'P')
            return 1;
          if (str[4] == 'R' && str[5] != 'T')
            return 1;
          return 0;
        }
      if (!isdigit (str[2]))
        return 0;
      for (k = 3; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  if (str[0] == '$' && isdigit (str[1]))
    {
      for (k = 2; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  return 0;
}

/* Return non-zero if the string starting at NAME and ending before
   NAME_END contains no capital letters.  */

static int
is_valid_name_for_wild_match (const char *name0)
{
  const char *decoded_name = ada_decode (name0);
  int i;

  /* If the decoded name starts with an angle bracket, it means that
     NAME0 does not follow the GNAT encoding format.  It should then
     not be allowed as a possible wild match.  */
  if (decoded_name[0] == '<')
    return 0;

  for (i=0; decoded_name[i] != '\0'; i++)
    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
      return 0;

  return 1;
}

/* True if NAME represents a name of the form A1.A2....An, n>=1 and
   PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1.  Ignores
   informational suffixes of NAME (i.e., for which is_name_suffix is
   true).  */

static int
wild_match (const char *patn0, int patn_len, const char *name0)
{
  char* match;
  const char* start;
  start = name0;
  while (1)
    {
      match = strstr (start, patn0);
      if (match == NULL)
	return 0;
      if ((match == name0 
	   || match[-1] == '.' 
	   || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
	   || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
          && is_name_suffix (match + patn_len))
        return (match == name0 || is_valid_name_for_wild_match (name0));
      start = match + 1;
    }
}

/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
   vector *defn_symbols, updating the list of symbols in OBSTACKP 
   (if necessary).  If WILD, treat as NAME with a wildcard prefix. 
   OBJFILE is the section containing BLOCK.
   SYMTAB is recorded with each symbol added.  */

static void
ada_add_block_symbols (struct obstack *obstackp,
                       struct block *block, const char *name,
                       domain_enum domain, struct objfile *objfile,
                       int wild)
{
  struct dict_iterator iter;
  int name_len = strlen (name);
  /* A matching argument symbol, if any.  */
  struct symbol *arg_sym;
  /* Set true when we find a matching non-argument symbol.  */
  int found_sym;
  struct symbol *sym;

  arg_sym = NULL;
  found_sym = 0;
  if (wild)
    {
      struct symbol *sym;
      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
                                   SYMBOL_DOMAIN (sym), domain)
            && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
          {
	    if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
	      continue;
	    else if (SYMBOL_IS_ARGUMENT (sym))
	      arg_sym = sym;
	    else
	      {
                found_sym = 1;
                add_defn_to_vec (obstackp,
                                 fixup_symbol_section (sym, objfile),
                                 block);
              }
          }
      }
    }
  else
    {
      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
                                   SYMBOL_DOMAIN (sym), domain))
          {
            int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
            if (cmp == 0
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
              {
		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
		  {
		    if (SYMBOL_IS_ARGUMENT (sym))
		      arg_sym = sym;
		    else
		      {
			found_sym = 1;
			add_defn_to_vec (obstackp,
					 fixup_symbol_section (sym, objfile),
					 block);
		      }
		  }
              }
          }
      }
    }

  if (!found_sym && arg_sym != NULL)
    {
      add_defn_to_vec (obstackp,
                       fixup_symbol_section (arg_sym, objfile),
                       block);
    }

  if (!wild)
    {
      arg_sym = NULL;
      found_sym = 0;

      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
                                   SYMBOL_DOMAIN (sym), domain))
          {
            int cmp;

            cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
            if (cmp == 0)
              {
                cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
                if (cmp == 0)
                  cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
                                 name_len);
              }

            if (cmp == 0
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
              {
		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
		  {
		    if (SYMBOL_IS_ARGUMENT (sym))
		      arg_sym = sym;
		    else
		      {
			found_sym = 1;
			add_defn_to_vec (obstackp,
					 fixup_symbol_section (sym, objfile),
					 block);
		      }
		  }
              }
          }
      }

      /* NOTE: This really shouldn't be needed for _ada_ symbols.
         They aren't parameters, right?  */
      if (!found_sym && arg_sym != NULL)
        {
          add_defn_to_vec (obstackp,
                           fixup_symbol_section (arg_sym, objfile),
                           block);
        }
    }
}


                                /* Symbol Completion */

/* If SYM_NAME is a completion candidate for TEXT, return this symbol
   name in a form that's appropriate for the completion.  The result
   does not need to be deallocated, but is only good until the next call.

   TEXT_LEN is equal to the length of TEXT.
   Perform a wild match if WILD_MATCH is set.
   ENCODED should be set if TEXT represents the start of a symbol name
   in its encoded form.  */

static const char *
symbol_completion_match (const char *sym_name,
                         const char *text, int text_len,
                         int wild_match, int encoded)
{
  char *result;
  const int verbatim_match = (text[0] == '<');
  int match = 0;

  if (verbatim_match)
    {
      /* Strip the leading angle bracket.  */
      text = text + 1;
      text_len--;
    }

  /* First, test against the fully qualified name of the symbol.  */

  if (strncmp (sym_name, text, text_len) == 0)
    match = 1;

  if (match && !encoded)
    {
      /* One needed check before declaring a positive match is to verify
         that iff we are doing a verbatim match, the decoded version
         of the symbol name starts with '<'.  Otherwise, this symbol name
         is not a suitable completion.  */
      const char *sym_name_copy = sym_name;
      int has_angle_bracket;

      sym_name = ada_decode (sym_name);
      has_angle_bracket = (sym_name[0] == '<');
      match = (has_angle_bracket == verbatim_match);
      sym_name = sym_name_copy;
    }

  if (match && !verbatim_match)
    {
      /* When doing non-verbatim match, another check that needs to
         be done is to verify that the potentially matching symbol name
         does not include capital letters, because the ada-mode would
         not be able to understand these symbol names without the
         angle bracket notation.  */
      const char *tmp;

      for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
      if (*tmp != '\0')
        match = 0;
    }

  /* Second: Try wild matching...  */

  if (!match && wild_match)
    {
      /* Since we are doing wild matching, this means that TEXT
         may represent an unqualified symbol name.  We therefore must
         also compare TEXT against the unqualified name of the symbol.  */
      sym_name = ada_unqualified_name (ada_decode (sym_name));

      if (strncmp (sym_name, text, text_len) == 0)
        match = 1;
    }

  /* Finally: If we found a mach, prepare the result to return.  */

  if (!match)
    return NULL;

  if (verbatim_match)
    sym_name = add_angle_brackets (sym_name);

  if (!encoded)
    sym_name = ada_decode (sym_name);

  return sym_name;
}

typedef char *char_ptr;
DEF_VEC_P (char_ptr);

/* A companion function to ada_make_symbol_completion_list().
   Check if SYM_NAME represents a symbol which name would be suitable
   to complete TEXT (TEXT_LEN is the length of TEXT), in which case
   it is appended at the end of the given string vector SV.

   ORIG_TEXT is the string original string from the user command
   that needs to be completed.  WORD is the entire command on which
   completion should be performed.  These two parameters are used to
   determine which part of the symbol name should be added to the
   completion vector.
   if WILD_MATCH is set, then wild matching is performed.
   ENCODED should be set if TEXT represents a symbol name in its
   encoded formed (in which case the completion should also be
   encoded).  */

static void
symbol_completion_add (VEC(char_ptr) **sv,
                       const char *sym_name,
                       const char *text, int text_len,
                       const char *orig_text, const char *word,
                       int wild_match, int encoded)
{
  const char *match = symbol_completion_match (sym_name, text, text_len,
                                               wild_match, encoded);
  char *completion;

  if (match == NULL)
    return;

  /* We found a match, so add the appropriate completion to the given
     string vector.  */

  if (word == orig_text)
    {
      completion = xmalloc (strlen (match) + 5);
      strcpy (completion, match);
    }
  else if (word > orig_text)
    {
      /* Return some portion of sym_name.  */
      completion = xmalloc (strlen (match) + 5);
      strcpy (completion, match + (word - orig_text));
    }
  else
    {
      /* Return some of ORIG_TEXT plus sym_name.  */
      completion = xmalloc (strlen (match) + (orig_text - word) + 5);
      strncpy (completion, word, orig_text - word);
      completion[orig_text - word] = '\0';
      strcat (completion, match);
    }

  VEC_safe_push (char_ptr, *sv, completion);
}

/* Return a list of possible symbol names completing TEXT0.  The list
   is NULL terminated.  WORD is the entire command on which completion
   is made.  */

static char **
ada_make_symbol_completion_list (char *text0, char *word)
{
  char *text;
  int text_len;
  int wild_match;
  int encoded;
  VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
  struct symbol *sym;
  struct symtab *s;
  struct partial_symtab *ps;
  struct minimal_symbol *msymbol;
  struct objfile *objfile;
  struct block *b, *surrounding_static_block = 0;
  int i;
  struct dict_iterator iter;

  if (text0[0] == '<')
    {
      text = xstrdup (text0);
      make_cleanup (xfree, text);
      text_len = strlen (text);
      wild_match = 0;
      encoded = 1;
    }
  else
    {
      text = xstrdup (ada_encode (text0));
      make_cleanup (xfree, text);
      text_len = strlen (text);
      for (i = 0; i < text_len; i++)
        text[i] = tolower (text[i]);

      encoded = (strstr (text0, "__") != NULL);
      /* If the name contains a ".", then the user is entering a fully
         qualified entity name, and the match must not be done in wild
         mode.  Similarly, if the user wants to complete what looks like
         an encoded name, the match must not be done in wild mode.  */
      wild_match = (strchr (text0, '.') == NULL && !encoded);
    }

  /* First, look at the partial symtab symbols.  */
  ALL_PSYMTABS (objfile, ps)
  {
    struct partial_symbol **psym;

    /* If the psymtab's been read in we'll get it when we search
       through the blockvector.  */
    if (ps->readin)
      continue;

    for (psym = objfile->global_psymbols.list + ps->globals_offset;
         psym < (objfile->global_psymbols.list + ps->globals_offset
                 + ps->n_global_syms); psym++)
      {
        QUIT;
        symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
                               text, text_len, text0, word,
                               wild_match, encoded);
      }

    for (psym = objfile->static_psymbols.list + ps->statics_offset;
         psym < (objfile->static_psymbols.list + ps->statics_offset
                 + ps->n_static_syms); psym++)
      {
        QUIT;
        symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
                               text, text_len, text0, word,
                               wild_match, encoded);
      }
  }

  /* At this point scan through the misc symbol vectors and add each
     symbol you find to the list.  Eventually we want to ignore
     anything that isn't a text symbol (everything else will be
     handled by the psymtab code above).  */

  ALL_MSYMBOLS (objfile, msymbol)
  {
    QUIT;
    symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
                           text, text_len, text0, word, wild_match, encoded);
  }

  /* Search upwards from currently selected frame (so that we can
     complete on local vars.  */

  for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
    {
      if (!BLOCK_SUPERBLOCK (b))
        surrounding_static_block = b;   /* For elmin of dups */

      ALL_BLOCK_SYMBOLS (b, iter, sym)
      {
        symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
                               text, text_len, text0, word,
                               wild_match, encoded);
      }
    }

  /* Go through the symtabs and check the externs and statics for
     symbols which match.  */

  ALL_SYMTABS (objfile, s)
  {
    QUIT;
    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
    ALL_BLOCK_SYMBOLS (b, iter, sym)
    {
      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
                             text, text_len, text0, word,
                             wild_match, encoded);
    }
  }

  ALL_SYMTABS (objfile, s)
  {
    QUIT;
    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
    /* Don't do this block twice.  */
    if (b == surrounding_static_block)
      continue;
    ALL_BLOCK_SYMBOLS (b, iter, sym)
    {
      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
                             text, text_len, text0, word,
                             wild_match, encoded);
    }
  }

  /* Append the closing NULL entry.  */
  VEC_safe_push (char_ptr, completions, NULL);

  /* Make a copy of the COMPLETIONS VEC before we free it, and then
     return the copy.  It's unfortunate that we have to make a copy
     of an array that we're about to destroy, but there is nothing much
     we can do about it.  Fortunately, it's typically not a very large
     array.  */
  {
    const size_t completions_size = 
      VEC_length (char_ptr, completions) * sizeof (char *);
    char **result = malloc (completions_size);
    
    memcpy (result, VEC_address (char_ptr, completions), completions_size);

    VEC_free (char_ptr, completions);
    return result;
  }
}

                                /* Field Access */

/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
   for tagged types.  */

static int
ada_is_dispatch_table_ptr_type (struct type *type)
{
  char *name;

  if (TYPE_CODE (type) != TYPE_CODE_PTR)
    return 0;

  name = TYPE_NAME (TYPE_TARGET_TYPE (type));
  if (name == NULL)
    return 0;

  return (strcmp (name, "ada__tags__dispatch_table") == 0);
}

/* True if field number FIELD_NUM in struct or union type TYPE is supposed
   to be invisible to users.  */

int
ada_is_ignored_field (struct type *type, int field_num)
{
  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
    return 1;
   
  /* Check the name of that field.  */
  {
    const char *name = TYPE_FIELD_NAME (type, field_num);

    /* Anonymous field names should not be printed.
       brobecker/2007-02-20: I don't think this can actually happen
       but we don't want to print the value of annonymous fields anyway.  */
    if (name == NULL)
      return 1;

    /* A field named "_parent" is internally generated by GNAT for
       tagged types, and should not be printed either.  */
    if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
      return 1;
  }

  /* If this is the dispatch table of a tagged type, then ignore.  */
  if (ada_is_tagged_type (type, 1)
      && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
    return 1;

  /* Not a special field, so it should not be ignored.  */
  return 0;
}

/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
   pointer or reference type whose ultimate target has a tag field. */

int
ada_is_tagged_type (struct type *type, int refok)
{
  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
}

/* True iff TYPE represents the type of X'Tag */

int
ada_is_tag_type (struct type *type)
{
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
    return 0;
  else
    {
      const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
      return (name != NULL
              && strcmp (name, "ada__tags__dispatch_table") == 0);
    }
}

/* The type of the tag on VAL.  */

struct type *
ada_tag_type (struct value *val)
{
  return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
}

/* The value of the tag on VAL.  */

struct value *
ada_value_tag (struct value *val)
{
  return ada_value_struct_elt (val, "_tag", 0);
}

/* The value of the tag on the object of type TYPE whose contents are
   saved at VALADDR, if it is non-null, or is at memory address
   ADDRESS. */

static struct value *
value_tag_from_contents_and_address (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address)
{
  int tag_byte_offset, dummy1, dummy2;
  struct type *tag_type;
  if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
                         NULL, NULL, NULL))
    {
      const gdb_byte *valaddr1 = ((valaddr == NULL)
				  ? NULL
				  : valaddr + tag_byte_offset);
      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;

      return value_from_contents_and_address (tag_type, valaddr1, address1);
    }
  return NULL;
}

static struct type *
type_from_tag (struct value *tag)
{
  const char *type_name = ada_tag_name (tag);
  if (type_name != NULL)
    return ada_find_any_type (ada_encode (type_name));
  return NULL;
}

struct tag_args
{
  struct value *tag;
  char *name;
};


static int ada_tag_name_1 (void *);
static int ada_tag_name_2 (struct tag_args *);

/* Wrapper function used by ada_tag_name.  Given a struct tag_args*
   value ARGS, sets ARGS->name to the tag name of ARGS->tag.  
   The value stored in ARGS->name is valid until the next call to 
   ada_tag_name_1.  */

static int
ada_tag_name_1 (void *args0)
{
  struct tag_args *args = (struct tag_args *) args0;
  static char name[1024];
  char *p;
  struct value *val;
  args->name = NULL;
  val = ada_value_struct_elt (args->tag, "tsd", 1);
  if (val == NULL)
    return ada_tag_name_2 (args);
  val = ada_value_struct_elt (val, "expanded_name", 1);
  if (val == NULL)
    return 0;
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
  for (p = name; *p != '\0'; p += 1)
    if (isalpha (*p))
      *p = tolower (*p);
  args->name = name;
  return 0;
}

/* Utility function for ada_tag_name_1 that tries the second
   representation for the dispatch table (in which there is no
   explicit 'tsd' field in the referent of the tag pointer, and instead
   the tsd pointer is stored just before the dispatch table. */
   
static int
ada_tag_name_2 (struct tag_args *args)
{
  struct type *info_type;
  static char name[1024];
  char *p;
  struct value *val, *valp;

  args->name = NULL;
  info_type = ada_find_any_type ("ada__tags__type_specific_data");
  if (info_type == NULL)
    return 0;
  info_type = lookup_pointer_type (lookup_pointer_type (info_type));
  valp = value_cast (info_type, args->tag);
  if (valp == NULL)
    return 0;
  val = value_ind (value_ptradd (valp, -1));
  if (val == NULL)
    return 0;
  val = ada_value_struct_elt (val, "expanded_name", 1);
  if (val == NULL)
    return 0;
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
  for (p = name; *p != '\0'; p += 1)
    if (isalpha (*p))
      *p = tolower (*p);
  args->name = name;
  return 0;
}

/* The type name of the dynamic type denoted by the 'tag value TAG, as
 * a C string.  */

const char *
ada_tag_name (struct value *tag)
{
  struct tag_args args;
  if (!ada_is_tag_type (value_type (tag)))
    return NULL;
  args.tag = tag;
  args.name = NULL;
  catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
  return args.name;
}

/* The parent type of TYPE, or NULL if none.  */

struct type *
ada_parent_type (struct type *type)
{
  int i;

  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return NULL;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    if (ada_is_parent_field (type, i))
      {
        struct type *parent_type = TYPE_FIELD_TYPE (type, i);

        /* If the _parent field is a pointer, then dereference it.  */
        if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
          parent_type = TYPE_TARGET_TYPE (parent_type);
        /* If there is a parallel XVS type, get the actual base type.  */
        parent_type = ada_get_base_type (parent_type);

        return ada_check_typedef (parent_type);
      }

  return NULL;
}

/* True iff field number FIELD_NUM of structure type TYPE contains the
   parent-type (inherited) fields of a derived type.  Assumes TYPE is
   a structure type with at least FIELD_NUM+1 fields.  */

int
ada_is_parent_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
  return (name != NULL
          && (strncmp (name, "PARENT", 6) == 0
              || strncmp (name, "_parent", 7) == 0));
}

/* True iff field number FIELD_NUM of structure type TYPE is a
   transparent wrapper field (which should be silently traversed when doing
   field selection and flattened when printing).  Assumes TYPE is a
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
   structures.  */

int
ada_is_wrapper_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL
          && (strncmp (name, "PARENT", 6) == 0
              || strcmp (name, "REP") == 0
              || strncmp (name, "_parent", 7) == 0
              || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
}

/* True iff field number FIELD_NUM of structure or union type TYPE
   is a variant wrapper.  Assumes TYPE is a structure type with at least
   FIELD_NUM+1 fields.  */

int
ada_is_variant_part (struct type *type, int field_num)
{
  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
          || (is_dynamic_field (type, field_num)
              && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 
		  == TYPE_CODE_UNION)));
}

/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
   whose discriminants are contained in the record type OUTER_TYPE,
   returns the type of the controlling discriminant for the variant.
   May return NULL if the type could not be found.  */

struct type *
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
{
  char *name = ada_variant_discrim_name (var_type);
  return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
}

/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
   represents a 'when others' clause; otherwise 0.  */

int
ada_is_others_clause (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL && name[0] == 'O');
}

/* Assuming that TYPE0 is the type of the variant part of a record,
   returns the name of the discriminant controlling the variant.
   The value is valid until the next call to ada_variant_discrim_name.  */

char *
ada_variant_discrim_name (struct type *type0)
{
  static char *result = NULL;
  static size_t result_len = 0;
  struct type *type;
  const char *name;
  const char *discrim_end;
  const char *discrim_start;

  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (type0);
  else
    type = type0;

  name = ada_type_name (type);

  if (name == NULL || name[0] == '\000')
    return "";

  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
       discrim_end -= 1)
    {
      if (strncmp (discrim_end, "___XVN", 6) == 0)
        break;
    }
  if (discrim_end == name)
    return "";

  for (discrim_start = discrim_end; discrim_start != name + 3;
       discrim_start -= 1)
    {
      if (discrim_start == name + 1)
        return "";
      if ((discrim_start > name + 3
           && strncmp (discrim_start - 3, "___", 3) == 0)
          || discrim_start[-1] == '.')
        break;
    }

  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
  strncpy (result, discrim_start, discrim_end - discrim_start);
  result[discrim_end - discrim_start] = '\0';
  return result;
}

/* Scan STR for a subtype-encoded number, beginning at position K.
   Put the position of the character just past the number scanned in
   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
   Return 1 if there was a valid number at the given position, and 0
   otherwise.  A "subtype-encoded" number consists of the absolute value
   in decimal, followed by the letter 'm' to indicate a negative number.
   Assumes 0m does not occur.  */

int
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
{
  ULONGEST RU;

  if (!isdigit (str[k]))
    return 0;

  /* Do it the hard way so as not to make any assumption about
     the relationship of unsigned long (%lu scan format code) and
     LONGEST.  */
  RU = 0;
  while (isdigit (str[k]))
    {
      RU = RU * 10 + (str[k] - '0');
      k += 1;
    }

  if (str[k] == 'm')
    {
      if (R != NULL)
        *R = (-(LONGEST) (RU - 1)) - 1;
      k += 1;
    }
  else if (R != NULL)
    *R = (LONGEST) RU;

  /* NOTE on the above: Technically, C does not say what the results of
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
     number representable as a LONGEST (although either would probably work
     in most implementations).  When RU>0, the locution in the then branch
     above is always equivalent to the negative of RU.  */

  if (new_k != NULL)
    *new_k = k;
  return 1;
}

/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */

int
ada_in_variant (LONGEST val, struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  int p;

  p = 0;
  while (1)
    {
      switch (name[p])
        {
        case '\0':
          return 0;
        case 'S':
          {
            LONGEST W;
            if (!ada_scan_number (name, p + 1, &W, &p))
              return 0;
            if (val == W)
              return 1;
            break;
          }
        case 'R':
          {
            LONGEST L, U;
            if (!ada_scan_number (name, p + 1, &L, &p)
                || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
              return 0;
            if (val >= L && val <= U)
              return 1;
            break;
          }
        case 'O':
          return 1;
        default:
          return 0;
        }
    }
}

/* FIXME: Lots of redundancy below.  Try to consolidate. */

/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
   ARG_TYPE, extract and return the value of one of its (non-static)
   fields.  FIELDNO says which field.   Differs from value_primitive_field
   only in that it can handle packed values of arbitrary type.  */

static struct value *
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
                           struct type *arg_type)
{
  struct type *type;

  arg_type = ada_check_typedef (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Handle packed fields.  */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
    {
      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);

      return ada_value_primitive_packed_val (arg1, value_contents (arg1),
                                             offset + bit_pos / 8,
                                             bit_pos % 8, bit_size, type);
    }
  else
    return value_primitive_field (arg1, offset, fieldno, arg_type);
}

/* Find field with name NAME in object of type TYPE.  If found, 
   set the following for each argument that is non-null:
    - *FIELD_TYPE_P to the field's type; 
    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
      an object of that type;
    - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
    - *BIT_SIZE_P to its size in bits if the field is packed, and 
      0 otherwise;
   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
   fields up to but not including the desired field, or by the total
   number of fields if not found.   A NULL value of NAME never
   matches; the function just counts visible fields in this case.
   
   Returns 1 if found, 0 otherwise. */

static int
find_struct_field (char *name, struct type *type, int offset,
                   struct type **field_type_p,
                   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
		   int *index_p)
{
  int i;

  type = ada_check_typedef (type);

  if (field_type_p != NULL)
    *field_type_p = NULL;
  if (byte_offset_p != NULL)
    *byte_offset_p = 0;
  if (bit_offset_p != NULL)
    *bit_offset_p = 0;
  if (bit_size_p != NULL)
    *bit_size_p = 0;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      int bit_pos = TYPE_FIELD_BITPOS (type, i);
      int fld_offset = offset + bit_pos / 8;
      char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (name != NULL && field_name_match (t_field_name, name))
        {
          int bit_size = TYPE_FIELD_BITSIZE (type, i);
	  if (field_type_p != NULL)
	    *field_type_p = TYPE_FIELD_TYPE (type, i);
	  if (byte_offset_p != NULL)
	    *byte_offset_p = fld_offset;
	  if (bit_offset_p != NULL)
	    *bit_offset_p = bit_pos % 8;
	  if (bit_size_p != NULL)
	    *bit_size_p = bit_size;
          return 1;
        }
      else if (ada_is_wrapper_field (type, i))
        {
	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
				 field_type_p, byte_offset_p, bit_offset_p,
				 bit_size_p, index_p))
            return 1;
        }
      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
	     fixed type?? */
          int j;
          struct type *field_type
	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
                                     fld_offset
                                     + TYPE_FIELD_BITPOS (field_type, j) / 8,
                                     field_type_p, byte_offset_p,
                                     bit_offset_p, bit_size_p, index_p))
                return 1;
            }
        }
      else if (index_p != NULL)
	*index_p += 1;
    }
  return 0;
}

/* Number of user-visible fields in record type TYPE. */

static int
num_visible_fields (struct type *type)
{
  int n;
  n = 0;
  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
  return n;
}

/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   Searches recursively through wrapper fields (e.g., '_parent').  */

static struct value *
ada_search_struct_field (char *name, struct value *arg, int offset,
                         struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (field_name_match (t_field_name, name))
        return ada_value_primitive_field (arg, offset, i, type);

      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here. */
            ada_search_struct_field (name, arg,
                                     offset + TYPE_FIELD_BITPOS (type, i) / 8,
                                     TYPE_FIELD_TYPE (type, i));
          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See find_struct_field. */
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
          int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              struct value *v = ada_search_struct_field /* Force line break.  */
                (name, arg,
                 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
                 TYPE_FIELD_TYPE (field_type, j));
              if (v != NULL)
                return v;
            }
        }
    }
  return NULL;
}

static struct value *ada_index_struct_field_1 (int *, struct value *,
					       int, struct type *);


/* Return field #INDEX in ARG, where the index is that returned by
 * find_struct_field through its INDEX_P argument.  Adjust the address
 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
 * If found, return value, else return NULL. */

static struct value *
ada_index_struct_field (int index, struct value *arg, int offset,
			struct type *type)
{
  return ada_index_struct_field_1 (&index, arg, offset, type);
}


/* Auxiliary function for ada_index_struct_field.  Like
 * ada_index_struct_field, but takes index from *INDEX_P and modifies
 * *INDEX_P. */

static struct value *
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
			  struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      if (TYPE_FIELD_NAME (type, i) == NULL)
        continue;
      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here. */
            ada_index_struct_field_1 (index_p, arg,
				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
				      TYPE_FIELD_TYPE (type, i));
          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See ada_search_struct_field,
	     find_struct_field. */
	  error (_("Cannot assign this kind of variant record"));
        }
      else if (*index_p == 0)
        return ada_value_primitive_field (arg, offset, i, type);
      else
	*index_p -= 1;
    }
  return NULL;
}

/* Given ARG, a value of type (pointer or reference to a)*
   structure/union, extract the component named NAME from the ultimate
   target structure/union and return it as a value with its
   appropriate type.

   The routine searches for NAME among all members of the structure itself
   and (recursively) among all members of any wrapper members
   (e.g., '_parent').

   If NO_ERR, then simply return NULL in case of error, rather than 
   calling error.  */

struct value *
ada_value_struct_elt (struct value *arg, char *name, int no_err)
{
  struct type *t, *t1;
  struct value *v;

  v = NULL;
  t1 = t = ada_check_typedef (value_type (arg));
  if (TYPE_CODE (t) == TYPE_CODE_REF)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = coerce_ref (arg);
          t = t1;
        }
    }

  while (TYPE_CODE (t) == TYPE_CODE_PTR)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = value_ind (arg);
          t = t1;
        }
      else
        break;
    }

  if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
    goto BadValue;

  if (t1 == t)
    v = ada_search_struct_field (name, arg, 0, t);
  else
    {
      int bit_offset, bit_size, byte_offset;
      struct type *field_type;
      CORE_ADDR address;

      if (TYPE_CODE (t) == TYPE_CODE_PTR)
        address = value_as_address (arg);
      else
        address = unpack_pointer (t, value_contents (arg));

      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
      if (find_struct_field (name, t1, 0,
                             &field_type, &byte_offset, &bit_offset,
                             &bit_size, NULL))
        {
          if (bit_size != 0)
            {
              if (TYPE_CODE (t) == TYPE_CODE_REF)
                arg = ada_coerce_ref (arg);
              else
                arg = ada_value_ind (arg);
              v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
                                                  bit_offset, bit_size,
                                                  field_type);
            }
          else
            v = value_at_lazy (field_type, address + byte_offset);
        }
    }

  if (v != NULL || no_err)
    return v;
  else
    error (_("There is no member named %s."), name);

 BadValue:
  if (no_err)
    return NULL;
  else
    error (_("Attempt to extract a component of a value that is not a record."));
}

/* Given a type TYPE, look up the type of the component of type named NAME.
   If DISPP is non-null, add its byte displacement from the beginning of a
   structure (pointed to by a value) of type TYPE to *DISPP (does not
   work for packed fields).

   Matches any field whose name has NAME as a prefix, possibly
   followed by "___".

   TYPE can be either a struct or union. If REFOK, TYPE may also 
   be a (pointer or reference)+ to a struct or union, and the
   ultimate target type will be searched.

   Looks recursively into variant clauses and parent types.

   If NOERR is nonzero, return NULL if NAME is not suitably defined or
   TYPE is not a type of the right kind.  */

static struct type *
ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
                            int noerr, int *dispp)
{
  int i;

  if (name == NULL)
    goto BadName;

  if (refok && type != NULL)
    while (1)
      {
        type = ada_check_typedef (type);
        if (TYPE_CODE (type) != TYPE_CODE_PTR
            && TYPE_CODE (type) != TYPE_CODE_REF)
          break;
        type = TYPE_TARGET_TYPE (type);
      }

  if (type == NULL
      || (TYPE_CODE (type) != TYPE_CODE_STRUCT
          && TYPE_CODE (type) != TYPE_CODE_UNION))
    {
      if (noerr)
        return NULL;
      else
        {
          target_terminal_ours ();
          gdb_flush (gdb_stdout);
	  if (type == NULL)
	    error (_("Type (null) is not a structure or union type"));
	  else
	    {
	      /* XXX: type_sprint */
	      fprintf_unfiltered (gdb_stderr, _("Type "));
	      type_print (type, "", gdb_stderr, -1);
	      error (_(" is not a structure or union type"));
	    }
        }
    }

  type = to_static_fixed_type (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      struct type *t;
      int disp;

      if (t_field_name == NULL)
        continue;

      else if (field_name_match (t_field_name, name))
        {
          if (dispp != NULL)
            *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
          return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
        }

      else if (ada_is_wrapper_field (type, i))
        {
          disp = 0;
          t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
                                          0, 1, &disp);
          if (t != NULL)
            {
              if (dispp != NULL)
                *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
              return t;
            }
        }

      else if (ada_is_variant_part (type, i))
        {
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));

          for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
            {
	      /* FIXME pnh 2008/01/26: We check for a field that is
	         NOT wrapped in a struct, since the compiler sometimes
		 generates these for unchecked variant types.  Revisit
	         if the compiler changes this practice. */
	      char *v_field_name = TYPE_FIELD_NAME (field_type, j);
              disp = 0;
	      if (v_field_name != NULL 
		  && field_name_match (v_field_name, name))
		t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
	      else
		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
						name, 0, 1, &disp);

              if (t != NULL)
                {
                  if (dispp != NULL)
                    *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
                  return t;
                }
            }
        }

    }

BadName:
  if (!noerr)
    {
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      if (name == NULL)
        {
	  /* XXX: type_sprint */
	  fprintf_unfiltered (gdb_stderr, _("Type "));
	  type_print (type, "", gdb_stderr, -1);
	  error (_(" has no component named <null>"));
	}
      else
	{
	  /* XXX: type_sprint */
	  fprintf_unfiltered (gdb_stderr, _("Type "));
	  type_print (type, "", gdb_stderr, -1);
	  error (_(" has no component named %s"), name);
	}
    }

  return NULL;
}

/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE, return true iff VAR_TYPE
   represents an unchecked union (that is, the variant part of a
   record that is named in an Unchecked_Union pragma). */

static int
is_unchecked_variant (struct type *var_type, struct type *outer_type)
{
  char *discrim_name = ada_variant_discrim_name (var_type);
  return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) 
	  == NULL);
}


/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE that is stored in GDB at
   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
   numbering from 0) is applicable.  Returns -1 if none are.  */

int
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
                           const gdb_byte *outer_valaddr)
{
  int others_clause;
  int i;
  char *discrim_name = ada_variant_discrim_name (var_type);
  struct value *outer;
  struct value *discrim;
  LONGEST discrim_val;

  outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
  discrim = ada_value_struct_elt (outer, discrim_name, 1);
  if (discrim == NULL)
    return -1;
  discrim_val = value_as_long (discrim);

  others_clause = -1;
  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
    {
      if (ada_is_others_clause (var_type, i))
        others_clause = i;
      else if (ada_in_variant (discrim_val, var_type, i))
        return i;
    }

  return others_clause;
}



                                /* Dynamic-Sized Records */

/* Strategy: The type ostensibly attached to a value with dynamic size
   (i.e., a size that is not statically recorded in the debugging
   data) does not accurately reflect the size or layout of the value.
   Our strategy is to convert these values to values with accurate,
   conventional types that are constructed on the fly.  */

/* There is a subtle and tricky problem here.  In general, we cannot
   determine the size of dynamic records without its data.  However,
   the 'struct value' data structure, which GDB uses to represent
   quantities in the inferior process (the target), requires the size
   of the type at the time of its allocation in order to reserve space
   for GDB's internal copy of the data.  That's why the
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
   rather than struct value*s.

   However, GDB's internal history variables ($1, $2, etc.) are
   struct value*s containing internal copies of the data that are not, in
   general, the same as the data at their corresponding addresses in
   the target.  Fortunately, the types we give to these values are all
   conventional, fixed-size types (as per the strategy described
   above), so that we don't usually have to perform the
   'to_fixed_xxx_type' conversions to look at their values.
   Unfortunately, there is one exception: if one of the internal
   history variables is an array whose elements are unconstrained
   records, then we will need to create distinct fixed types for each
   element selected.  */

/* The upshot of all of this is that many routines take a (type, host
   address, target address) triple as arguments to represent a value.
   The host address, if non-null, is supposed to contain an internal
   copy of the relevant data; otherwise, the program is to consult the
   target at the target address.  */

/* Assuming that VAL0 represents a pointer value, the result of
   dereferencing it.  Differs from value_ind in its treatment of
   dynamic-sized types.  */

struct value *
ada_value_ind (struct value *val0)
{
  struct value *val = unwrap_value (value_ind (val0));
  return ada_to_fixed_value (val);
}

/* The value resulting from dereferencing any "reference to"
   qualifiers on VAL0.  */

static struct value *
ada_coerce_ref (struct value *val0)
{
  if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
    {
      struct value *val = val0;
      val = coerce_ref (val);
      val = unwrap_value (val);
      return ada_to_fixed_value (val);
    }
  else
    return val0;
}

/* Return OFF rounded upward if necessary to a multiple of
   ALIGNMENT (a power of 2).  */

static unsigned int
align_value (unsigned int off, unsigned int alignment)
{
  return (off + alignment - 1) & ~(alignment - 1);
}

/* Return the bit alignment required for field #F of template type TYPE.  */

static unsigned int
field_alignment (struct type *type, int f)
{
  const char *name = TYPE_FIELD_NAME (type, f);
  int len;
  int align_offset;

  /* The field name should never be null, unless the debugging information
     is somehow malformed.  In this case, we assume the field does not
     require any alignment.  */
  if (name == NULL)
    return 1;

  len = strlen (name);

  if (!isdigit (name[len - 1]))
    return 1;

  if (isdigit (name[len - 2]))
    align_offset = len - 2;
  else
    align_offset = len - 1;

  if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
    return TARGET_CHAR_BIT;

  return atoi (name + align_offset) * TARGET_CHAR_BIT;
}

/* Find a symbol named NAME.  Ignores ambiguity.  */

struct symbol *
ada_find_any_symbol (const char *name)
{
  struct symbol *sym;

  sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return sym;

  sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
  return sym;
}

/* Find a type named NAME.  Ignores ambiguity.  This routine will look
   solely for types defined by debug info, it will not search the GDB
   primitive types.  */

struct type *
ada_find_any_type (const char *name)
{
  struct symbol *sym = ada_find_any_symbol (name);

  if (sym != NULL)
    return SYMBOL_TYPE (sym);

  return NULL;
}

/* Given NAME and an associated BLOCK, search all symbols for
   NAME suffixed with  "___XR", which is the ``renaming'' symbol
   associated to NAME.  Return this symbol if found, return
   NULL otherwise.  */

struct symbol *
ada_find_renaming_symbol (const char *name, struct block *block)
{
  struct symbol *sym;

  sym = find_old_style_renaming_symbol (name, block);

  if (sym != NULL)
    return sym;

  /* Not right yet.  FIXME pnh 7/20/2007. */
  sym = ada_find_any_symbol (name);
  if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
    return sym;
  else
    return NULL;
}

static struct symbol *
find_old_style_renaming_symbol (const char *name, struct block *block)
{
  const struct symbol *function_sym = block_linkage_function (block);
  char *rename;

  if (function_sym != NULL)
    {
      /* If the symbol is defined inside a function, NAME is not fully
         qualified.  This means we need to prepend the function name
         as well as adding the ``___XR'' suffix to build the name of
         the associated renaming symbol.  */
      char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
      /* Function names sometimes contain suffixes used
         for instance to qualify nested subprograms.  When building
         the XR type name, we need to make sure that this suffix is
         not included.  So do not include any suffix in the function
         name length below.  */
      int function_name_len = ada_name_prefix_len (function_name);
      const int rename_len = function_name_len + 2      /*  "__" */
        + strlen (name) + 6 /* "___XR\0" */ ;

      /* Strip the suffix if necessary.  */
      ada_remove_trailing_digits (function_name, &function_name_len);
      ada_remove_po_subprogram_suffix (function_name, &function_name_len);
      ada_remove_Xbn_suffix (function_name, &function_name_len);

      /* Library-level functions are a special case, as GNAT adds
         a ``_ada_'' prefix to the function name to avoid namespace
         pollution.  However, the renaming symbols themselves do not
         have this prefix, so we need to skip this prefix if present.  */
      if (function_name_len > 5 /* "_ada_" */
          && strstr (function_name, "_ada_") == function_name)
        {
	  function_name += 5;
	  function_name_len -= 5;
        }

      rename = (char *) alloca (rename_len * sizeof (char));
      strncpy (rename, function_name, function_name_len);
      xsnprintf (rename + function_name_len, rename_len - function_name_len,
		 "__%s___XR", name);
    }
  else
    {
      const int rename_len = strlen (name) + 6;
      rename = (char *) alloca (rename_len * sizeof (char));
      xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
    }

  return ada_find_any_symbol (rename);
}

/* Because of GNAT encoding conventions, several GDB symbols may match a
   given type name.  If the type denoted by TYPE0 is to be preferred to
   that of TYPE1 for purposes of type printing, return non-zero;
   otherwise return 0.  */

int
ada_prefer_type (struct type *type0, struct type *type1)
{
  if (type1 == NULL)
    return 1;
  else if (type0 == NULL)
    return 0;
  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
    return 1;
  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
    return 0;
  else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
    return 1;
  else if (ada_is_constrained_packed_array_type (type0))
    return 1;
  else if (ada_is_array_descriptor_type (type0)
           && !ada_is_array_descriptor_type (type1))
    return 1;
  else
    {
      const char *type0_name = type_name_no_tag (type0);
      const char *type1_name = type_name_no_tag (type1);

      if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
	return 1;
    }
  return 0;
}

/* The name of TYPE, which is either its TYPE_NAME, or, if that is
   null, its TYPE_TAG_NAME.  Null if TYPE is null.  */

char *
ada_type_name (struct type *type)
{
  if (type == NULL)
    return NULL;
  else if (TYPE_NAME (type) != NULL)
    return TYPE_NAME (type);
  else
    return TYPE_TAG_NAME (type);
}

/* Find a parallel type to TYPE whose name is formed by appending
   SUFFIX to the name of TYPE.  */

struct type *
ada_find_parallel_type (struct type *type, const char *suffix)
{
  static char *name;
  static size_t name_len = 0;
  int len;
  char *typename = ada_type_name (type);

  if (typename == NULL)
    return NULL;

  len = strlen (typename);

  GROW_VECT (name, name_len, len + strlen (suffix) + 1);

  strcpy (name, typename);
  strcpy (name + len, suffix);

  return ada_find_any_type (name);
}


/* If TYPE is a variable-size record type, return the corresponding template
   type describing its fields.  Otherwise, return NULL.  */

static struct type *
dynamic_template_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
      || ada_type_name (type) == NULL)
    return NULL;
  else
    {
      int len = strlen (ada_type_name (type));
      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
        return type;
      else
        return ada_find_parallel_type (type, "___XVE");
    }
}

/* Assuming that TEMPL_TYPE is a union or struct type, returns
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */

static int
is_dynamic_field (struct type *templ_type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (templ_type, field_num);
  return name != NULL
    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
    && strstr (name, "___XVL") != NULL;
}

/* The index of the variant field of TYPE, or -1 if TYPE does not
   represent a variant record type.  */

static int
variant_field_index (struct type *type)
{
  int f;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return -1;

  for (f = 0; f < TYPE_NFIELDS (type); f += 1)
    {
      if (ada_is_variant_part (type, f))
        return f;
    }
  return -1;
}

/* A record type with no fields.  */

static struct type *
empty_record (struct type *template)
{
  struct type *type = alloc_type_copy (template);
  TYPE_CODE (type) = TYPE_CODE_STRUCT;
  TYPE_NFIELDS (type) = 0;
  TYPE_FIELDS (type) = NULL;
  INIT_CPLUS_SPECIFIC (type);
  TYPE_NAME (type) = "<empty>";
  TYPE_TAG_NAME (type) = NULL;
  TYPE_LENGTH (type) = 0;
  return type;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value of type TYPE at VALADDR or ADDRESS (see comments at
   the beginning of this section) VAL according to GNAT conventions.
   DVAL0 should describe the (portion of a) record that contains any
   necessary discriminants.  It should be NULL if value_type (VAL) is
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant.

   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
   length are not statically known are discarded.  As a consequence,
   VALADDR, ADDRESS and DVAL0 are ignored.

   NOTE: Limitations: For now, we assume that dynamic fields and
   variants occupy whole numbers of bytes.  However, they need not be
   byte-aligned.  */

struct type *
ada_template_to_fixed_record_type_1 (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address, struct value *dval0,
                                     int keep_dynamic_fields)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  int nfields, bit_len;
  int variant_field;
  long off;
  int fld_bit_len, bit_incr;
  int f;

  /* Compute the number of fields in this record type that are going
     to be processed: unless keep_dynamic_fields, this includes only
     fields whose position and length are static will be processed.  */
  if (keep_dynamic_fields)
    nfields = TYPE_NFIELDS (type);
  else
    {
      nfields = 0;
      while (nfields < TYPE_NFIELDS (type)
             && !ada_is_variant_part (type, nfields)
             && !is_dynamic_field (type, nfields))
        nfields++;
    }

  rtype = alloc_type_copy (type);
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) = (struct field *)
    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  TYPE_FIXED_INSTANCE (rtype) = 1;

  off = 0;
  bit_len = 0;
  variant_field = -1;

  for (f = 0; f < nfields; f += 1)
    {
      off = align_value (off, field_alignment (type, f))
	+ TYPE_FIELD_BITPOS (type, f);
      TYPE_FIELD_BITPOS (rtype, f) = off;
      TYPE_FIELD_BITSIZE (rtype, f) = 0;

      if (ada_is_variant_part (type, f))
        {
          variant_field = f;
          fld_bit_len = bit_incr = 0;
        }
      else if (is_dynamic_field (type, f))
        {
	  const gdb_byte *field_valaddr = valaddr;
	  CORE_ADDR field_address = address;
	  struct type *field_type =
	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));

          if (dval0 == NULL)
	    {
	      /* rtype's length is computed based on the run-time
		 value of discriminants.  If the discriminants are not
		 initialized, the type size may be completely bogus and
		 GDB may fail to allocate a value for it. So check the
		 size first before creating the value.  */
	      check_size (rtype);
	      dval = value_from_contents_and_address (rtype, valaddr, address);
	    }
          else
            dval = dval0;

	  /* If the type referenced by this field is an aligner type, we need
	     to unwrap that aligner type, because its size might not be set.
	     Keeping the aligner type would cause us to compute the wrong
	     size for this field, impacting the offset of the all the fields
	     that follow this one.  */
	  if (ada_is_aligner_type (field_type))
	    {
	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);

	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
	      field_address = cond_offset_target (field_address, field_offset);
	      field_type = ada_aligned_type (field_type);
	    }

	  field_valaddr = cond_offset_host (field_valaddr,
					    off / TARGET_CHAR_BIT);
	  field_address = cond_offset_target (field_address,
					      off / TARGET_CHAR_BIT);

	  /* Get the fixed type of the field.  Note that, in this case,
	     we do not want to get the real type out of the tag: if
	     the current field is the parent part of a tagged record,
	     we will get the tag of the object.  Clearly wrong: the real
	     type of the parent is not the real type of the child.  We
	     would end up in an infinite loop.	*/
	  field_type = ada_get_base_type (field_type);
	  field_type = ada_to_fixed_type (field_type, field_valaddr,
					  field_address, dval, 0);

	  TYPE_FIELD_TYPE (rtype, f) = field_type;
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
          bit_incr = fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
        }
      else
        {
          TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
          if (TYPE_FIELD_BITSIZE (type, f) > 0)
            bit_incr = fld_bit_len =
              TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
          else
            bit_incr = fld_bit_len =
              TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
        }
      if (off + fld_bit_len > bit_len)
        bit_len = off + fld_bit_len;
      off += bit_incr;
      TYPE_LENGTH (rtype) =
        align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
    }

  /* We handle the variant part, if any, at the end because of certain
     odd cases in which it is re-ordered so as NOT to be the last field of
     the record.  This can happen in the presence of representation
     clauses.  */
  if (variant_field >= 0)
    {
      struct type *branch_type;

      off = TYPE_FIELD_BITPOS (rtype, variant_field);

      if (dval0 == NULL)
        dval = value_from_contents_and_address (rtype, valaddr, address);
      else
        dval = dval0;

      branch_type =
        to_fixed_variant_branch_type
        (TYPE_FIELD_TYPE (type, variant_field),
         cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
         cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
      if (branch_type == NULL)
        {
          for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
            TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
          TYPE_NFIELDS (rtype) -= 1;
        }
      else
        {
          TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
          TYPE_FIELD_NAME (rtype, variant_field) = "S";
          fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
            TARGET_CHAR_BIT;
          if (off + fld_bit_len > bit_len)
            bit_len = off + fld_bit_len;
          TYPE_LENGTH (rtype) =
            align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
        }
    }

  /* According to exp_dbug.ads, the size of TYPE for variable-size records
     should contain the alignment of that record, which should be a strictly
     positive value.  If null or negative, then something is wrong, most
     probably in the debug info.  In that case, we don't round up the size
     of the resulting type. If this record is not part of another structure,
     the current RTYPE length might be good enough for our purposes.  */
  if (TYPE_LENGTH (type) <= 0)
    {
      if (TYPE_NAME (rtype))
	warning (_("Invalid type size for `%s' detected: %d."),
		 TYPE_NAME (rtype), TYPE_LENGTH (type));
      else
	warning (_("Invalid type size for <unnamed> detected: %d."),
		 TYPE_LENGTH (type));
    }
  else
    {
      TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
                                         TYPE_LENGTH (type));
    }

  value_free_to_mark (mark);
  if (TYPE_LENGTH (rtype) > varsize_limit)
    error (_("record type with dynamic size is larger than varsize-limit"));
  return rtype;
}

/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
   of 1.  */

static struct type *
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
                               CORE_ADDR address, struct value *dval0)
{
  return ada_template_to_fixed_record_type_1 (type, valaddr,
                                              address, dval0, 1);
}

/* An ordinary record type in which ___XVL-convention fields and
   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
   static approximations, containing all possible fields.  Uses
   no runtime values.  Useless for use in values, but that's OK,
   since the results are used only for type determinations.   Works on both
   structs and unions.  Representation note: to save space, we memorize
   the result of this function in the TYPE_TARGET_TYPE of the
   template type.  */

static struct type *
template_to_static_fixed_type (struct type *type0)
{
  struct type *type;
  int nfields;
  int f;

  if (TYPE_TARGET_TYPE (type0) != NULL)
    return TYPE_TARGET_TYPE (type0);

  nfields = TYPE_NFIELDS (type0);
  type = type0;

  for (f = 0; f < nfields; f += 1)
    {
      struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
      struct type *new_type;

      if (is_dynamic_field (type0, f))
        new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
      else
        new_type = static_unwrap_type (field_type);
      if (type == type0 && new_type != field_type)
        {
          TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
          TYPE_CODE (type) = TYPE_CODE (type0);
          INIT_CPLUS_SPECIFIC (type);
          TYPE_NFIELDS (type) = nfields;
          TYPE_FIELDS (type) = (struct field *)
            TYPE_ALLOC (type, nfields * sizeof (struct field));
          memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
                  sizeof (struct field) * nfields);
          TYPE_NAME (type) = ada_type_name (type0);
          TYPE_TAG_NAME (type) = NULL;
	  TYPE_FIXED_INSTANCE (type) = 1;
          TYPE_LENGTH (type) = 0;
        }
      TYPE_FIELD_TYPE (type, f) = new_type;
      TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
    }
  return type;
}

/* Given an object of type TYPE whose contents are at VALADDR and
   whose address in memory is ADDRESS, returns a revision of TYPE,
   which should be a non-dynamic-sized record, in which the variant
   part, if any, is replaced with the appropriate branch.  Looks
   for discriminant values in DVAL0, which can be NULL if the record
   contains the necessary discriminant values.  */

static struct type *
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
                                   CORE_ADDR address, struct value *dval0)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  struct type *branch_type;
  int nfields = TYPE_NFIELDS (type);
  int variant_field = variant_field_index (type);

  if (variant_field == -1)
    return type;

  if (dval0 == NULL)
    dval = value_from_contents_and_address (type, valaddr, address);
  else
    dval = dval0;

  rtype = alloc_type_copy (type);
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) =
    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
          sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  TYPE_FIXED_INSTANCE (rtype) = 1;
  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);

  branch_type = to_fixed_variant_branch_type
    (TYPE_FIELD_TYPE (type, variant_field),
     cond_offset_host (valaddr,
                       TYPE_FIELD_BITPOS (type, variant_field)
                       / TARGET_CHAR_BIT),
     cond_offset_target (address,
                         TYPE_FIELD_BITPOS (type, variant_field)
                         / TARGET_CHAR_BIT), dval);
  if (branch_type == NULL)
    {
      int f;
      for (f = variant_field + 1; f < nfields; f += 1)
        TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
      TYPE_NFIELDS (rtype) -= 1;
    }
  else
    {
      TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
      TYPE_FIELD_NAME (rtype, variant_field) = "S";
      TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
    }
  TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));

  value_free_to_mark (mark);
  return rtype;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
   beginning of this section].   Any necessary discriminants' values
   should be in DVAL, a record value; it may be NULL if the object
   at ADDR itself contains any necessary discriminant values.
   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
   values from the record are needed.  Except in the case that DVAL,
   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
   unchecked) is replaced by a particular branch of the variant.

   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
   is questionable and may be removed.  It can arise during the
   processing of an unconstrained-array-of-record type where all the
   variant branches have exactly the same size.  This is because in
   such cases, the compiler does not bother to use the XVS convention
   when encoding the record.  I am currently dubious of this
   shortcut and suspect the compiler should be altered.  FIXME.  */

static struct type *
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
                      CORE_ADDR address, struct value *dval)
{
  struct type *templ_type;

  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  templ_type = dynamic_template_type (type0);

  if (templ_type != NULL)
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
  else if (variant_field_index (type0) >= 0)
    {
      if (dval == NULL && valaddr == NULL && address == 0)
        return type0;
      return to_record_with_fixed_variant_part (type0, valaddr, address,
                                                dval);
    }
  else
    {
      TYPE_FIXED_INSTANCE (type0) = 1;
      return type0;
    }

}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
   union type.  Any necessary discriminants' values should be in DVAL,
   a record value.  That is, this routine selects the appropriate
   branch of the union at ADDR according to the discriminant value
   indicated in the union's type name.  Returns VAR_TYPE0 itself if
   it represents a variant subject to a pragma Unchecked_Union. */

static struct type *
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
                              CORE_ADDR address, struct value *dval)
{
  int which;
  struct type *templ_type;
  struct type *var_type;

  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
    var_type = TYPE_TARGET_TYPE (var_type0);
  else
    var_type = var_type0;

  templ_type = ada_find_parallel_type (var_type, "___XVU");

  if (templ_type != NULL)
    var_type = templ_type;

  if (is_unchecked_variant (var_type, value_type (dval)))
      return var_type0;
  which =
    ada_which_variant_applies (var_type,
                               value_type (dval), value_contents (dval));

  if (which < 0)
    return empty_record (var_type);
  else if (is_dynamic_field (var_type, which))
    return to_fixed_record_type
      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
       valaddr, address, dval);
  else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
    return
      to_fixed_record_type
      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
  else
    return TYPE_FIELD_TYPE (var_type, which);
}

/* Assuming that TYPE0 is an array type describing the type of a value
   at ADDR, and that DVAL describes a record containing any
   discriminants used in TYPE0, returns a type for the value that
   contains no dynamic components (that is, no components whose sizes
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
   true, gives an error message if the resulting type's size is over
   varsize_limit.  */

static struct type *
to_fixed_array_type (struct type *type0, struct value *dval,
                     int ignore_too_big)
{
  struct type *index_type_desc;
  struct type *result;
  int constrained_packed_array_p;

  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
  if (constrained_packed_array_p)
    type0 = decode_constrained_packed_array_type (type0);

  index_type_desc = ada_find_parallel_type (type0, "___XA");
  if (index_type_desc == NULL)
    {
      struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
      /* NOTE: elt_type---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);

      /* Make sure we always create a new array type when dealing with
	 packed array types, since we're going to fix-up the array
	 type length and element bitsize a little further down.  */
      if (elt_type0 == elt_type && !constrained_packed_array_p)
        result = type0;
      else
        result = create_array_type (alloc_type_copy (type0),
                                    elt_type, TYPE_INDEX_TYPE (type0));
    }
  else
    {
      int i;
      struct type *elt_type0;

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
        elt_type0 = TYPE_TARGET_TYPE (elt_type0);

      /* NOTE: result---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      result =
        ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
        {
          struct type *range_type =
            to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
                                 dval, TYPE_INDEX_TYPE (elt_type0));
          result = create_array_type (alloc_type_copy (elt_type0),
                                      result, range_type);
	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
        }
      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
        error (_("array type with dynamic size is larger than varsize-limit"));
    }

  if (constrained_packed_array_p)
    {
      /* So far, the resulting type has been created as if the original
	 type was a regular (non-packed) array type.  As a result, the
	 bitsize of the array elements needs to be set again, and the array
	 length needs to be recomputed based on that bitsize.  */
      int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
      int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);

      TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
      TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
      if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
        TYPE_LENGTH (result)++;
    }

  TYPE_FIXED_INSTANCE (result) = 1;
  return result;
}


/* A standard type (containing no dynamically sized components)
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
   DVAL describes a record containing any discriminants used in TYPE0,
   and may be NULL if there are none, or if the object of type TYPE at
   ADDRESS or in VALADDR contains these discriminants.
   
   If CHECK_TAG is not null, in the case of tagged types, this function
   attempts to locate the object's tag and use it to compute the actual
   type.  However, when ADDRESS is null, we cannot use it to determine the
   location of the tag, and therefore compute the tagged type's actual type.
   So we return the tagged type without consulting the tag.  */
   
static struct type *
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
                   CORE_ADDR address, struct value *dval, int check_tag)
{
  type = ada_check_typedef (type);
  switch (TYPE_CODE (type))
    {
    default:
      return type;
    case TYPE_CODE_STRUCT:
      {
        struct type *static_type = to_static_fixed_type (type);
        struct type *fixed_record_type =
          to_fixed_record_type (type, valaddr, address, NULL);
        /* If STATIC_TYPE is a tagged type and we know the object's address,
           then we can determine its tag, and compute the object's actual
           type from there. Note that we have to use the fixed record
           type (the parent part of the record may have dynamic fields
           and the way the location of _tag is expressed may depend on
           them).  */

        if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
          {
            struct type *real_type =
              type_from_tag (value_tag_from_contents_and_address
                             (fixed_record_type,
                              valaddr,
                              address));
            if (real_type != NULL)
              return to_fixed_record_type (real_type, valaddr, address, NULL);
          }

        /* Check to see if there is a parallel ___XVZ variable.
           If there is, then it provides the actual size of our type.  */
        else if (ada_type_name (fixed_record_type) != NULL)
          {
            char *name = ada_type_name (fixed_record_type);
            char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
            int xvz_found = 0;
            LONGEST size;

            xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
            size = get_int_var_value (xvz_name, &xvz_found);
            if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
              {
                fixed_record_type = copy_type (fixed_record_type);
                TYPE_LENGTH (fixed_record_type) = size;

                /* The FIXED_RECORD_TYPE may have be a stub.  We have
                   observed this when the debugging info is STABS, and
                   apparently it is something that is hard to fix.

                   In practice, we don't need the actual type definition
                   at all, because the presence of the XVZ variable allows us
                   to assume that there must be a XVS type as well, which we
                   should be able to use later, when we need the actual type
                   definition.

                   In the meantime, pretend that the "fixed" type we are
                   returning is NOT a stub, because this can cause trouble
                   when using this type to create new types targeting it.
                   Indeed, the associated creation routines often check
                   whether the target type is a stub and will try to replace
                   it, thus using a type with the wrong size. This, in turn,
                   might cause the new type to have the wrong size too.
                   Consider the case of an array, for instance, where the size
                   of the array is computed from the number of elements in
                   our array multiplied by the size of its element.  */
                TYPE_STUB (fixed_record_type) = 0;
              }
          }
        return fixed_record_type;
      }
    case TYPE_CODE_ARRAY:
      return to_fixed_array_type (type, dval, 1);
    case TYPE_CODE_UNION:
      if (dval == NULL)
        return type;
      else
        return to_fixed_variant_branch_type (type, valaddr, address, dval);
    }
}

/* The same as ada_to_fixed_type_1, except that it preserves the type
   if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
   ada_to_fixed_type_1 would return the type referenced by TYPE.  */

struct type *
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
                   CORE_ADDR address, struct value *dval, int check_tag)

{
  struct type *fixed_type =
    ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);

  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
      && TYPE_TARGET_TYPE (type) == fixed_type)
    return type;

  return fixed_type;
}

/* A standard (static-sized) type corresponding as well as possible to
   TYPE0, but based on no runtime data.  */

static struct type *
to_static_fixed_type (struct type *type0)
{
  struct type *type;

  if (type0 == NULL)
    return NULL;

  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  type0 = ada_check_typedef (type0);

  switch (TYPE_CODE (type0))
    {
    default:
      return type0;
    case TYPE_CODE_STRUCT:
      type = dynamic_template_type (type0);
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    case TYPE_CODE_UNION:
      type = ada_find_parallel_type (type0, "___XVU");
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    }
}

/* A static approximation of TYPE with all type wrappers removed.  */

static struct type *
static_unwrap_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    {
      struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
      if (ada_type_name (type1) == NULL)
        TYPE_NAME (type1) = ada_type_name (type);

      return static_unwrap_type (type1);
    }
  else
    {
      struct type *raw_real_type = ada_get_base_type (type);
      if (raw_real_type == type)
        return type;
      else
        return to_static_fixed_type (raw_real_type);
    }
}

/* In some cases, incomplete and private types require
   cross-references that are not resolved as records (for example,
      type Foo;
      type FooP is access Foo;
      V: FooP;
      type Foo is array ...;
   ).  In these cases, since there is no mechanism for producing
   cross-references to such types, we instead substitute for FooP a
   stub enumeration type that is nowhere resolved, and whose tag is
   the name of the actual type.  Call these types "non-record stubs".  */

/* A type equivalent to TYPE that is not a non-record stub, if one
   exists, otherwise TYPE.  */

struct type *
ada_check_typedef (struct type *type)
{
  if (type == NULL)
    return NULL;

  CHECK_TYPEDEF (type);
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
      || !TYPE_STUB (type)
      || TYPE_TAG_NAME (type) == NULL)
    return type;
  else
    {
      char *name = TYPE_TAG_NAME (type);
      struct type *type1 = ada_find_any_type (name);
      return (type1 == NULL) ? type : type1;
    }
}

/* A value representing the data at VALADDR/ADDRESS as described by
   type TYPE0, but with a standard (static-sized) type that correctly
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
   type, then return VAL0 [this feature is simply to avoid redundant
   creation of struct values].  */

static struct value *
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
                           struct value *val0)
{
  struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
  if (type == type0 && val0 != NULL)
    return val0;
  else
    return value_from_contents_and_address (type, 0, address);
}

/* A value representing VAL, but with a standard (static-sized) type
   that correctly describes it.  Does not necessarily create a new
   value.  */

static struct value *
ada_to_fixed_value (struct value *val)
{
  return ada_to_fixed_value_create (value_type (val),
                                    value_address (val),
                                    val);
}

/* A value representing VAL, but with a standard (static-sized) type
   chosen to approximate the real type of VAL as well as possible, but
   without consulting any runtime values.  For Ada dynamic-sized
   types, therefore, the type of the result is likely to be inaccurate.  */

static struct value *
ada_to_static_fixed_value (struct value *val)
{
  struct type *type =
    to_static_fixed_type (static_unwrap_type (value_type (val)));
  if (type == value_type (val))
    return val;
  else
    return coerce_unspec_val_to_type (val, type);
}


/* Attributes */

/* Table mapping attribute numbers to names.
   NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */

static const char *attribute_names[] = {
  "<?>",

  "first",
  "last",
  "length",
  "image",
  "max",
  "min",
  "modulus",
  "pos",
  "size",
  "tag",
  "val",
  0
};

const char *
ada_attribute_name (enum exp_opcode n)
{
  if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
    return attribute_names[n - OP_ATR_FIRST + 1];
  else
    return attribute_names[0];
}

/* Evaluate the 'POS attribute applied to ARG.  */

static LONGEST
pos_atr (struct value *arg)
{
  struct value *val = coerce_ref (arg);
  struct type *type = value_type (val);

  if (!discrete_type_p (type))
    error (_("'POS only defined on discrete types"));

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      int i;
      LONGEST v = value_as_long (val);

      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
        {
          if (v == TYPE_FIELD_BITPOS (type, i))
            return i;
        }
      error (_("enumeration value is invalid: can't find 'POS"));
    }
  else
    return value_as_long (val);
}

static struct value *
value_pos_atr (struct type *type, struct value *arg)
{
  return value_from_longest (type, pos_atr (arg));
}

/* Evaluate the TYPE'VAL attribute applied to ARG.  */

static struct value *
value_val_atr (struct type *type, struct value *arg)
{
  if (!discrete_type_p (type))
    error (_("'VAL only defined on discrete types"));
  if (!integer_type_p (value_type (arg)))
    error (_("'VAL requires integral argument"));

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      long pos = value_as_long (arg);
      if (pos < 0 || pos >= TYPE_NFIELDS (type))
        error (_("argument to 'VAL out of range"));
      return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
    }
  else
    return value_from_longest (type, value_as_long (arg));
}


                                /* Evaluation */

/* True if TYPE appears to be an Ada character type.
   [At the moment, this is true only for Character and Wide_Character;
   It is a heuristic test that could stand improvement].  */

int
ada_is_character_type (struct type *type)
{
  const char *name;

  /* If the type code says it's a character, then assume it really is,
     and don't check any further.  */
  if (TYPE_CODE (type) == TYPE_CODE_CHAR)
    return 1;
  
  /* Otherwise, assume it's a character type iff it is a discrete type
     with a known character type name.  */
  name = ada_type_name (type);
  return (name != NULL
          && (TYPE_CODE (type) == TYPE_CODE_INT
              || TYPE_CODE (type) == TYPE_CODE_RANGE)
          && (strcmp (name, "character") == 0
              || strcmp (name, "wide_character") == 0
              || strcmp (name, "wide_wide_character") == 0
              || strcmp (name, "unsigned char") == 0));
}

/* True if TYPE appears to be an Ada string type.  */

int
ada_is_string_type (struct type *type)
{
  type = ada_check_typedef (type);
  if (type != NULL
      && TYPE_CODE (type) != TYPE_CODE_PTR
      && (ada_is_simple_array_type (type)
          || ada_is_array_descriptor_type (type))
      && ada_array_arity (type) == 1)
    {
      struct type *elttype = ada_array_element_type (type, 1);

      return ada_is_character_type (elttype);
    }
  else
    return 0;
}


/* True if TYPE is a struct type introduced by the compiler to force the
   alignment of a value.  Such types have a single field with a
   distinctive name.  */

int
ada_is_aligner_type (struct type *type)
{
  type = ada_check_typedef (type);

  /* If we can find a parallel XVS type, then the XVS type should
     be used instead of this type.  And hence, this is not an aligner
     type.  */
  if (ada_find_parallel_type (type, "___XVS") != NULL)
    return 0;

  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          && TYPE_NFIELDS (type) == 1
          && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
}

/* If there is an ___XVS-convention type parallel to SUBTYPE, return
   the parallel type.  */

struct type *
ada_get_base_type (struct type *raw_type)
{
  struct type *real_type_namer;
  struct type *raw_real_type;

  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
    return raw_type;

  if (ada_is_aligner_type (raw_type))
    /* The encoding specifies that we should always use the aligner type.
       So, even if this aligner type has an associated XVS type, we should
       simply ignore it.

       According to the compiler gurus, an XVS type parallel to an aligner
       type may exist because of a stabs limitation.  In stabs, aligner
       types are empty because the field has a variable-sized type, and
       thus cannot actually be used as an aligner type.  As a result,
       we need the associated parallel XVS type to decode the type.
       Since the policy in the compiler is to not change the internal
       representation based on the debugging info format, we sometimes
       end up having a redundant XVS type parallel to the aligner type.  */
    return raw_type;

  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
  if (real_type_namer == NULL
      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
      || TYPE_NFIELDS (real_type_namer) != 1)
    return raw_type;

  raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
  if (raw_real_type == NULL)
    return raw_type;
  else
    return raw_real_type;
}

/* The type of value designated by TYPE, with all aligners removed.  */

struct type *
ada_aligned_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
  else
    return ada_get_base_type (type);
}


/* The address of the aligned value in an object at address VALADDR
   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */

const gdb_byte *
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
                                   valaddr +
                                   TYPE_FIELD_BITPOS (type,
                                                      0) / TARGET_CHAR_BIT);
  else
    return valaddr;
}



/* The printed representation of an enumeration literal with encoded
   name NAME.  The value is good to the next call of ada_enum_name.  */
const char *
ada_enum_name (const char *name)
{
  static char *result;
  static size_t result_len = 0;
  char *tmp;

  /* First, unqualify the enumeration name:
     1. Search for the last '.' character.  If we find one, then skip
     all the preceeding characters, the unqualified name starts
     right after that dot.
     2. Otherwise, we may be debugging on a target where the compiler
     translates dots into "__".  Search forward for double underscores,
     but stop searching when we hit an overloading suffix, which is
     of the form "__" followed by digits.  */

  tmp = strrchr (name, '.');
  if (tmp != NULL)
    name = tmp + 1;
  else
    {
      while ((tmp = strstr (name, "__")) != NULL)
        {
          if (isdigit (tmp[2]))
            break;
          else
            name = tmp + 2;
        }
    }

  if (name[0] == 'Q')
    {
      int v;
      if (name[1] == 'U' || name[1] == 'W')
        {
          if (sscanf (name + 2, "%x", &v) != 1)
            return name;
        }
      else
        return name;

      GROW_VECT (result, result_len, 16);
      if (isascii (v) && isprint (v))
        xsnprintf (result, result_len, "'%c'", v);
      else if (name[1] == 'U')
        xsnprintf (result, result_len, "[\"%02x\"]", v);
      else
        xsnprintf (result, result_len, "[\"%04x\"]", v);

      return result;
    }
  else
    {
      tmp = strstr (name, "__");
      if (tmp == NULL)
	tmp = strstr (name, "$");
      if (tmp != NULL)
        {
          GROW_VECT (result, result_len, tmp - name + 1);
          strncpy (result, name, tmp - name);
          result[tmp - name] = '\0';
          return result;
        }

      return name;
    }
}

/* Evaluate the subexpression of EXP starting at *POS as for
   evaluate_type, updating *POS to point just past the evaluated
   expression.  */

static struct value *
evaluate_subexp_type (struct expression *exp, int *pos)
{
  return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
}

/* If VAL is wrapped in an aligner or subtype wrapper, return the
   value it wraps.  */

static struct value *
unwrap_value (struct value *val)
{
  struct type *type = ada_check_typedef (value_type (val));
  if (ada_is_aligner_type (type))
    {
      struct value *v = ada_value_struct_elt (val, "F", 0);
      struct type *val_type = ada_check_typedef (value_type (v));
      if (ada_type_name (val_type) == NULL)
        TYPE_NAME (val_type) = ada_type_name (type);

      return unwrap_value (v);
    }
  else
    {
      struct type *raw_real_type =
        ada_check_typedef (ada_get_base_type (type));

      if (type == raw_real_type)
        return val;

      return
        coerce_unspec_val_to_type
        (val, ada_to_fixed_type (raw_real_type, 0,
                                 value_address (val),
                                 NULL, 1));
    }
}

static struct value *
cast_to_fixed (struct type *type, struct value *arg)
{
  LONGEST val;

  if (type == value_type (arg))
    return arg;
  else if (ada_is_fixed_point_type (value_type (arg)))
    val = ada_float_to_fixed (type,
                              ada_fixed_to_float (value_type (arg),
                                                  value_as_long (arg)));
  else
    {
      DOUBLEST argd = value_as_double (arg);
      val = ada_float_to_fixed (type, argd);
    }

  return value_from_longest (type, val);
}

static struct value *
cast_from_fixed (struct type *type, struct value *arg)
{
  DOUBLEST val = ada_fixed_to_float (value_type (arg),
                                     value_as_long (arg));
  return value_from_double (type, val);
}

/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
   return the converted value.  */

static struct value *
coerce_for_assign (struct type *type, struct value *val)
{
  struct type *type2 = value_type (val);
  if (type == type2)
    return val;

  type2 = ada_check_typedef (type2);
  type = ada_check_typedef (type);

  if (TYPE_CODE (type2) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      val = ada_value_ind (val);
      type2 = value_type (val);
    }

  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
          || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
          != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
        error (_("Incompatible types in assignment"));
      deprecated_set_value_type (val, type);
    }
  return val;
}

static struct value *
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
  struct value *val;
  struct type *type1, *type2;
  LONGEST v, v1, v2;

  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  type1 = base_type (ada_check_typedef (value_type (arg1)));
  type2 = base_type (ada_check_typedef (value_type (arg2)));

  if (TYPE_CODE (type1) != TYPE_CODE_INT
      || TYPE_CODE (type2) != TYPE_CODE_INT)
    return value_binop (arg1, arg2, op);

  switch (op)
    {
    case BINOP_MOD:
    case BINOP_DIV:
    case BINOP_REM:
      break;
    default:
      return value_binop (arg1, arg2, op);
    }

  v2 = value_as_long (arg2);
  if (v2 == 0)
    error (_("second operand of %s must not be zero."), op_string (op));

  if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
    return value_binop (arg1, arg2, op);

  v1 = value_as_long (arg1);
  switch (op)
    {
    case BINOP_DIV:
      v = v1 / v2;
      if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
        v += v > 0 ? -1 : 1;
      break;
    case BINOP_REM:
      v = v1 % v2;
      if (v * v1 < 0)
        v -= v2;
      break;
    default:
      /* Should not reach this point.  */
      v = 0;
    }

  val = allocate_value (type1);
  store_unsigned_integer (value_contents_raw (val),
                          TYPE_LENGTH (value_type (val)),
			  gdbarch_byte_order (get_type_arch (type1)), v);
  return val;
}

static int
ada_value_equal (struct value *arg1, struct value *arg2)
{
  if (ada_is_direct_array_type (value_type (arg1))
      || ada_is_direct_array_type (value_type (arg2)))
    {
      /* Automatically dereference any array reference before
         we attempt to perform the comparison.  */
      arg1 = ada_coerce_ref (arg1);
      arg2 = ada_coerce_ref (arg2);
      
      arg1 = ada_coerce_to_simple_array (arg1);
      arg2 = ada_coerce_to_simple_array (arg2);
      if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
          || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
        error (_("Attempt to compare array with non-array"));
      /* FIXME: The following works only for types whose
         representations use all bits (no padding or undefined bits)
         and do not have user-defined equality.  */
      return
        TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
        && memcmp (value_contents (arg1), value_contents (arg2),
                   TYPE_LENGTH (value_type (arg1))) == 0;
    }
  return value_equal (arg1, arg2);
}

/* Total number of component associations in the aggregate starting at
   index PC in EXP.  Assumes that index PC is the start of an
   OP_AGGREGATE. */

static int
num_component_specs (struct expression *exp, int pc)
{
  int n, m, i;
  m = exp->elts[pc + 1].longconst;
  pc += 3;
  n = 0;
  for (i = 0; i < m; i += 1)
    {
      switch (exp->elts[pc].opcode) 
	{
	default:
	  n += 1;
	  break;
	case OP_CHOICES:
	  n += exp->elts[pc + 1].longconst;
	  break;
	}
      ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
    }
  return n;
}

/* Assign the result of evaluating EXP starting at *POS to the INDEXth 
   component of LHS (a simple array or a record), updating *POS past
   the expression, assuming that LHS is contained in CONTAINER.  Does
   not modify the inferior's memory, nor does it modify LHS (unless
   LHS == CONTAINER).  */

static void
assign_component (struct value *container, struct value *lhs, LONGEST index,
		  struct expression *exp, int *pos)
{
  struct value *mark = value_mark ();
  struct value *elt;
  if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
    {
      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
      struct value *index_val = value_from_longest (index_type, index);
      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
    }
  else
    {
      elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
      elt = ada_to_fixed_value (unwrap_value (elt));
    }

  if (exp->elts[*pos].opcode == OP_AGGREGATE)
    assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
  else
    value_assign_to_component (container, elt, 
			       ada_evaluate_subexp (NULL, exp, pos, 
						    EVAL_NORMAL));

  value_free_to_mark (mark);
}

/* Assuming that LHS represents an lvalue having a record or array
   type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
   of that aggregate's value to LHS, advancing *POS past the
   aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
   lvalue containing LHS (possibly LHS itself).  Does not modify
   the inferior's memory, nor does it modify the contents of 
   LHS (unless == CONTAINER).  Returns the modified CONTAINER. */

static struct value *
assign_aggregate (struct value *container, 
		  struct value *lhs, struct expression *exp, 
		  int *pos, enum noside noside)
{
  struct type *lhs_type;
  int n = exp->elts[*pos+1].longconst;
  LONGEST low_index, high_index;
  int num_specs;
  LONGEST *indices;
  int max_indices, num_indices;
  int is_array_aggregate;
  int i;
  struct value *mark = value_mark ();

  *pos += 3;
  if (noside != EVAL_NORMAL)
    {
      int i;
      for (i = 0; i < n; i += 1)
	ada_evaluate_subexp (NULL, exp, pos, noside);
      return container;
    }

  container = ada_coerce_ref (container);
  if (ada_is_direct_array_type (value_type (container)))
    container = ada_coerce_to_simple_array (container);
  lhs = ada_coerce_ref (lhs);
  if (!deprecated_value_modifiable (lhs))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  lhs_type = value_type (lhs);
  if (ada_is_direct_array_type (lhs_type))
    {
      lhs = ada_coerce_to_simple_array (lhs);
      lhs_type = value_type (lhs);
      low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
      high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
      is_array_aggregate = 1;
    }
  else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
    {
      low_index = 0;
      high_index = num_visible_fields (lhs_type) - 1;
      is_array_aggregate = 0;
    }
  else
    error (_("Left-hand side must be array or record."));

  num_specs = num_component_specs (exp, *pos - 3);
  max_indices = 4 * num_specs + 4;
  indices = alloca (max_indices * sizeof (indices[0]));
  indices[0] = indices[1] = low_index - 1;
  indices[2] = indices[3] = high_index + 1;
  num_indices = 4;

  for (i = 0; i < n; i += 1)
    {
      switch (exp->elts[*pos].opcode)
	{
	case OP_CHOICES:
	  aggregate_assign_from_choices (container, lhs, exp, pos, indices, 
					 &num_indices, max_indices,
					 low_index, high_index);
	  break;
	case OP_POSITIONAL:
	  aggregate_assign_positional (container, lhs, exp, pos, indices,
				       &num_indices, max_indices,
				       low_index, high_index);
	  break;
	case OP_OTHERS:
	  if (i != n-1)
	    error (_("Misplaced 'others' clause"));
	  aggregate_assign_others (container, lhs, exp, pos, indices, 
				   num_indices, low_index, high_index);
	  break;
	default:
	  error (_("Internal error: bad aggregate clause"));
	}
    }

  return container;
}
	      
/* Assign into the component of LHS indexed by the OP_POSITIONAL
   construct at *POS, updating *POS past the construct, given that
   the positions are relative to lower bound LOW, where HIGH is the 
   upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
   updating *NUM_INDICES as needed.  CONTAINER is as for
   assign_aggregate. */
static void
aggregate_assign_positional (struct value *container,
			     struct value *lhs, struct expression *exp,
			     int *pos, LONGEST *indices, int *num_indices,
			     int max_indices, LONGEST low, LONGEST high) 
{
  LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
  
  if (ind - 1 == high)
    warning (_("Extra components in aggregate ignored."));
  if (ind <= high)
    {
      add_component_interval (ind, ind, indices, num_indices, max_indices);
      *pos += 3;
      assign_component (container, lhs, ind, exp, pos);
    }
  else
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Assign into the components of LHS indexed by the OP_CHOICES
   construct at *POS, updating *POS past the construct, given that
   the allowable indices are LOW..HIGH.  Record the indices assigned
   to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
   needed.  CONTAINER is as for assign_aggregate. */
static void
aggregate_assign_from_choices (struct value *container,
			       struct value *lhs, struct expression *exp,
			       int *pos, LONGEST *indices, int *num_indices,
			       int max_indices, LONGEST low, LONGEST high) 
{
  int j;
  int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
  int choice_pos, expr_pc;
  int is_array = ada_is_direct_array_type (value_type (lhs));

  choice_pos = *pos += 3;

  for (j = 0; j < n_choices; j += 1)
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  expr_pc = *pos;
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  
  for (j = 0; j < n_choices; j += 1)
    {
      LONGEST lower, upper;
      enum exp_opcode op = exp->elts[choice_pos].opcode;
      if (op == OP_DISCRETE_RANGE)
	{
	  choice_pos += 1;
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
						      EVAL_NORMAL));
	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 
						      EVAL_NORMAL));
	}
      else if (is_array)
	{
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 
						      EVAL_NORMAL));
	  upper = lower;
	}
      else
	{
	  int ind;
	  char *name;
	  switch (op)
	    {
	    case OP_NAME:
	      name = &exp->elts[choice_pos + 2].string;
	      break;
	    case OP_VAR_VALUE:
	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
	      break;
	    default:
	      error (_("Invalid record component association."));
	    }
	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
	  ind = 0;
	  if (! find_struct_field (name, value_type (lhs), 0, 
				   NULL, NULL, NULL, NULL, &ind))
	    error (_("Unknown component name: %s."), name);
	  lower = upper = ind;
	}

      if (lower <= upper && (lower < low || upper > high))
	error (_("Index in component association out of bounds."));

      add_component_interval (lower, upper, indices, num_indices,
			      max_indices);
      while (lower <= upper)
	{
	  int pos1;
	  pos1 = expr_pc;
	  assign_component (container, lhs, lower, exp, &pos1);
	  lower += 1;
	}
    }
}

/* Assign the value of the expression in the OP_OTHERS construct in
   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
   have not been previously assigned.  The index intervals already assigned
   are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the 
   OP_OTHERS clause.  CONTAINER is as for assign_aggregate*/
static void
aggregate_assign_others (struct value *container,
			 struct value *lhs, struct expression *exp,
			 int *pos, LONGEST *indices, int num_indices,
			 LONGEST low, LONGEST high) 
{
  int i;
  int expr_pc = *pos+1;
  
  for (i = 0; i < num_indices - 2; i += 2)
    {
      LONGEST ind;
      for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
	{
	  int pos;
	  pos = expr_pc;
	  assign_component (container, lhs, ind, exp, &pos);
	}
    }
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Add the interval [LOW .. HIGH] to the sorted set of intervals 
   [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
   modifying *SIZE as needed.  It is an error if *SIZE exceeds
   MAX_SIZE.  The resulting intervals do not overlap.  */
static void
add_component_interval (LONGEST low, LONGEST high, 
			LONGEST* indices, int *size, int max_size)
{
  int i, j;
  for (i = 0; i < *size; i += 2) {
    if (high >= indices[i] && low <= indices[i + 1])
      {
	int kh;
	for (kh = i + 2; kh < *size; kh += 2)
	  if (high < indices[kh])
	    break;
	if (low < indices[i])
	  indices[i] = low;
	indices[i + 1] = indices[kh - 1];
	if (high > indices[i + 1])
	  indices[i + 1] = high;
	memcpy (indices + i + 2, indices + kh, *size - kh);
	*size -= kh - i - 2;
	return;
      }
    else if (high < indices[i])
      break;
  }
	
  if (*size == max_size)
    error (_("Internal error: miscounted aggregate components."));
  *size += 2;
  for (j = *size-1; j >= i+2; j -= 1)
    indices[j] = indices[j - 2];
  indices[i] = low;
  indices[i + 1] = high;
}

/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
   is different.  */

static struct value *
ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
{
  if (type == ada_check_typedef (value_type (arg2)))
    return arg2;

  if (ada_is_fixed_point_type (type))
    return (cast_to_fixed (type, arg2));

  if (ada_is_fixed_point_type (value_type (arg2)))
    return cast_from_fixed (type, arg2);

  return value_cast (type, arg2);
}

/*  Evaluating Ada expressions, and printing their result.
    ------------------------------------------------------

    1. Introduction:
    ----------------

    We usually evaluate an Ada expression in order to print its value.
    We also evaluate an expression in order to print its type, which
    happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
    but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
    EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
    the evaluation compared to the EVAL_NORMAL, but is otherwise very
    similar.

    Evaluating expressions is a little more complicated for Ada entities
    than it is for entities in languages such as C.  The main reason for
    this is that Ada provides types whose definition might be dynamic.
    One example of such types is variant records.  Or another example
    would be an array whose bounds can only be known at run time.

    The following description is a general guide as to what should be
    done (and what should NOT be done) in order to evaluate an expression
    involving such types, and when.  This does not cover how the semantic
    information is encoded by GNAT as this is covered separatly.  For the
    document used as the reference for the GNAT encoding, see exp_dbug.ads
    in the GNAT sources.

    Ideally, we should embed each part of this description next to its
    associated code.  Unfortunately, the amount of code is so vast right
    now that it's hard to see whether the code handling a particular
    situation might be duplicated or not.  One day, when the code is
    cleaned up, this guide might become redundant with the comments
    inserted in the code, and we might want to remove it.

    2. ``Fixing'' an Entity, the Simple Case:
    -----------------------------------------

    When evaluating Ada expressions, the tricky issue is that they may
    reference entities whose type contents and size are not statically
    known.  Consider for instance a variant record:

       type Rec (Empty : Boolean := True) is record
          case Empty is
             when True => null;
             when False => Value : Integer;
          end case;
       end record;
       Yes : Rec := (Empty => False, Value => 1);
       No  : Rec := (empty => True);

    The size and contents of that record depends on the value of the
    descriminant (Rec.Empty).  At this point, neither the debugging
    information nor the associated type structure in GDB are able to
    express such dynamic types.  So what the debugger does is to create
    "fixed" versions of the type that applies to the specific object.
    We also informally refer to this opperation as "fixing" an object,
    which means creating its associated fixed type.

    Example: when printing the value of variable "Yes" above, its fixed
    type would look like this:

       type Rec is record
          Empty : Boolean;
          Value : Integer;
       end record;

    On the other hand, if we printed the value of "No", its fixed type
    would become:

       type Rec is record
          Empty : Boolean;
       end record;

    Things become a little more complicated when trying to fix an entity
    with a dynamic type that directly contains another dynamic type,
    such as an array of variant records, for instance.  There are
    two possible cases: Arrays, and records.

    3. ``Fixing'' Arrays:
    ---------------------

    The type structure in GDB describes an array in terms of its bounds,
    and the type of its elements.  By design, all elements in the array
    have the same type and we cannot represent an array of variant elements
    using the current type structure in GDB.  When fixing an array,
    we cannot fix the array element, as we would potentially need one
    fixed type per element of the array.  As a result, the best we can do
    when fixing an array is to produce an array whose bounds and size
    are correct (allowing us to read it from memory), but without having
    touched its element type.  Fixing each element will be done later,
    when (if) necessary.

    Arrays are a little simpler to handle than records, because the same
    amount of memory is allocated for each element of the array, even if
    the amount of space actually used by each element differs from element
    to element.  Consider for instance the following array of type Rec:

       type Rec_Array is array (1 .. 2) of Rec;

    The actual amount of memory occupied by each element might be different
    from element to element, depending on the value of their discriminant.
    But the amount of space reserved for each element in the array remains
    fixed regardless.  So we simply need to compute that size using
    the debugging information available, from which we can then determine
    the array size (we multiply the number of elements of the array by
    the size of each element).

    The simplest case is when we have an array of a constrained element
    type. For instance, consider the following type declarations:

        type Bounded_String (Max_Size : Integer) is
           Length : Integer;
           Buffer : String (1 .. Max_Size);
        end record;
        type Bounded_String_Array is array (1 ..2) of Bounded_String (80);

    In this case, the compiler describes the array as an array of
    variable-size elements (identified by its XVS suffix) for which
    the size can be read in the parallel XVZ variable.

    In the case of an array of an unconstrained element type, the compiler
    wraps the array element inside a private PAD type.  This type should not
    be shown to the user, and must be "unwrap"'ed before printing.  Note
    that we also use the adjective "aligner" in our code to designate
    these wrapper types.

    In some cases, the size allocated for each element is statically
    known.  In that case, the PAD type already has the correct size,
    and the array element should remain unfixed.

    But there are cases when this size is not statically known.
    For instance, assuming that "Five" is an integer variable:

        type Dynamic is array (1 .. Five) of Integer;
        type Wrapper (Has_Length : Boolean := False) is record
           Data : Dynamic;
           case Has_Length is
              when True => Length : Integer;
              when False => null;
           end case;
        end record;
        type Wrapper_Array is array (1 .. 2) of Wrapper;

        Hello : Wrapper_Array := (others => (Has_Length => True,
                                             Data => (others => 17),
                                             Length => 1));


    The debugging info would describe variable Hello as being an
    array of a PAD type.  The size of that PAD type is not statically
    known, but can be determined using a parallel XVZ variable.
    In that case, a copy of the PAD type with the correct size should
    be used for the fixed array.

    3. ``Fixing'' record type objects:
    ----------------------------------

    Things are slightly different from arrays in the case of dynamic
    record types.  In this case, in order to compute the associated
    fixed type, we need to determine the size and offset of each of
    its components.  This, in turn, requires us to compute the fixed
    type of each of these components.

    Consider for instance the example:

        type Bounded_String (Max_Size : Natural) is record
           Str : String (1 .. Max_Size);
           Length : Natural;
        end record;
        My_String : Bounded_String (Max_Size => 10);

    In that case, the position of field "Length" depends on the size
    of field Str, which itself depends on the value of the Max_Size
    discriminant.  In order to fix the type of variable My_String,
    we need to fix the type of field Str.  Therefore, fixing a variant
    record requires us to fix each of its components.

    However, if a component does not have a dynamic size, the component
    should not be fixed.  In particular, fields that use a PAD type
    should not fixed.  Here is an example where this might happen
    (assuming type Rec above):

       type Container (Big : Boolean) is record
          First : Rec;
          After : Integer;
          case Big is
             when True => Another : Integer;
             when False => null;
          end case;
       end record;
       My_Container : Container := (Big => False,
                                    First => (Empty => True),
                                    After => 42);

    In that example, the compiler creates a PAD type for component First,
    whose size is constant, and then positions the component After just
    right after it.  The offset of component After is therefore constant
    in this case.

    The debugger computes the position of each field based on an algorithm
    that uses, among other things, the actual position and size of the field
    preceding it.  Let's now imagine that the user is trying to print
    the value of My_Container.  If the type fixing was recursive, we would
    end up computing the offset of field After based on the size of the
    fixed version of field First.  And since in our example First has
    only one actual field, the size of the fixed type is actually smaller
    than the amount of space allocated to that field, and thus we would
    compute the wrong offset of field After.

    To make things more complicated, we need to watch out for dynamic
    components of variant records (identified by the ___XVL suffix in
    the component name).  Even if the target type is a PAD type, the size
    of that type might not be statically known.  So the PAD type needs
    to be unwrapped and the resulting type needs to be fixed.  Otherwise,
    we might end up with the wrong size for our component.  This can be
    observed with the following type declarations:

        type Octal is new Integer range 0 .. 7;
        type Octal_Array is array (Positive range <>) of Octal;
        pragma Pack (Octal_Array);

        type Octal_Buffer (Size : Positive) is record
           Buffer : Octal_Array (1 .. Size);
           Length : Integer;
        end record;

    In that case, Buffer is a PAD type whose size is unset and needs
    to be computed by fixing the unwrapped type.

    4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
    ----------------------------------------------------------

    Lastly, when should the sub-elements of an entity that remained unfixed
    thus far, be actually fixed?

    The answer is: Only when referencing that element.  For instance
    when selecting one component of a record, this specific component
    should be fixed at that point in time.  Or when printing the value
    of a record, each component should be fixed before its value gets
    printed.  Similarly for arrays, the element of the array should be
    fixed when printing each element of the array, or when extracting
    one element out of that array.  On the other hand, fixing should
    not be performed on the elements when taking a slice of an array!

    Note that one of the side-effects of miscomputing the offset and
    size of each field is that we end up also miscomputing the size
    of the containing type.  This can have adverse results when computing
    the value of an entity.  GDB fetches the value of an entity based
    on the size of its type, and thus a wrong size causes GDB to fetch
    the wrong amount of memory.  In the case where the computed size is
    too small, GDB fetches too little data to print the value of our
    entiry.  Results in this case as unpredicatble, as we usually read
    past the buffer containing the data =:-o.  */

/* Implement the evaluate_exp routine in the exp_descriptor structure
   for the Ada language.  */

static struct value *
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
                     int *pos, enum noside noside)
{
  enum exp_opcode op;
  int tem, tem2, tem3;
  int pc;
  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
  struct type *type;
  int nargs, oplen;
  struct value **argvec;

  pc = *pos;
  *pos += 1;
  op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      *pos -= 1;
      arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
      arg1 = unwrap_value (arg1);

      /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
         then we need to perform the conversion manually, because
         evaluate_subexp_standard doesn't do it.  This conversion is
         necessary in Ada because the different kinds of float/fixed
         types in Ada have different representations.

         Similarly, we need to perform the conversion from OP_LONG
         ourselves.  */
      if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
        arg1 = ada_value_cast (expect_type, arg1, noside);

      return arg1;

    case OP_STRING:
      {
        struct value *result;
        *pos -= 1;
        result = evaluate_subexp_standard (expect_type, exp, pos, noside);
        /* The result type will have code OP_STRING, bashed there from 
           OP_ARRAY.  Bash it back.  */
        if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
          TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
        return result;
      }

    case UNOP_CAST:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      arg1 = evaluate_subexp (type, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      arg1 = ada_value_cast (type, arg1, noside);
      return arg1;

    case UNOP_QUAL:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      return ada_evaluate_subexp (type, exp, pos, noside);

    case BINOP_ASSIGN:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (exp->elts[*pos].opcode == OP_AGGREGATE)
	{
	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
	    return arg1;
	  return ada_value_assign (arg1, arg1);
	}
      /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
         except if the lhs of our assignment is a convenience variable.
         In the case of assigning to a convenience variable, the lhs
         should be exactly the result of the evaluation of the rhs.  */
      type = value_type (arg1);
      if (VALUE_LVAL (arg1) == lval_internalvar)
         type = NULL;
      arg2 = evaluate_subexp (type, exp, pos, noside);
      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
        return arg1;
      if (ada_is_fixed_point_type (value_type (arg1)))
        arg2 = cast_to_fixed (value_type (arg1), arg2);
      else if (ada_is_fixed_point_type (value_type (arg2)))
        error
          (_("Fixed-point values must be assigned to fixed-point variables"));
      else
        arg2 = coerce_for_assign (value_type (arg1), arg2);
      return ada_value_assign (arg1, arg2);

    case BINOP_ADD:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg1),
                  value_as_long (arg1) + value_as_long (arg2)));
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point addition must have the same type"));
      /* Do the addition, and cast the result to the type of the first
         argument.  We cannot cast the result to a reference type, so if
         ARG1 is a reference type, find its underlying type.  */
      type = value_type (arg1);
      while (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));

    case BINOP_SUB:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg1),
                  value_as_long (arg1) - value_as_long (arg2)));
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point subtraction must have the same type"));
      /* Do the substraction, and cast the result to the type of the first
         argument.  We cannot cast the result to a reference type, so if
         ARG1 is a reference type, find its underlying type.  */
      type = value_type (arg1);
      while (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));

    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
          return value_zero (value_type (arg1), not_lval);
        }
      else
        {
          type = builtin_type (exp->gdbarch)->builtin_double;
          if (ada_is_fixed_point_type (value_type (arg1)))
            arg1 = cast_from_fixed (type, arg1);
          if (ada_is_fixed_point_type (value_type (arg2)))
            arg2 = cast_from_fixed (type, arg2);
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
          return ada_value_binop (arg1, arg2, op);
        }

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        tem = 0;
      else
	{
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  tem = ada_value_equal (arg1, arg2);
	}
      if (op == BINOP_NOTEQUAL)
        tem = !tem;
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return value_from_longest (type, (LONGEST) tem);

    case UNOP_NEG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (ada_is_fixed_point_type (value_type (arg1)))
        return value_cast (value_type (arg1), value_neg (arg1));
      else
	{
	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
	  return value_neg (arg1);
	}

    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_OR:
    case UNOP_LOGICAL_NOT:
      {
        struct value *val;

        *pos -= 1;
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
	type = language_bool_type (exp->language_defn, exp->gdbarch);
        return value_cast (type, val);
      }

    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      {
        struct value *val;

        arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
        *pos = pc;
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);

        return value_cast (value_type (arg1), val);
      }

    case OP_VAR_VALUE:
      *pos -= 1;

      if (noside == EVAL_SKIP)
        {
          *pos += 4;
          goto nosideret;
        }
      else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        /* Only encountered when an unresolved symbol occurs in a
           context other than a function call, in which case, it is
           invalid.  */
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
          if (ada_is_tagged_type (type, 0))
          {
            /* Tagged types are a little special in the fact that the real
               type is dynamic and can only be determined by inspecting the
               object's tag.  This means that we need to get the object's
               value first (EVAL_NORMAL) and then extract the actual object
               type from its tag.

               Note that we cannot skip the final step where we extract
               the object type from its tag, because the EVAL_NORMAL phase
               results in dynamic components being resolved into fixed ones.
               This can cause problems when trying to print the type
               description of tagged types whose parent has a dynamic size:
               We use the type name of the "_parent" component in order
               to print the name of the ancestor type in the type description.
               If that component had a dynamic size, the resolution into
               a fixed type would result in the loss of that type name,
               thus preventing us from printing the name of the ancestor
               type in the type description.  */
            struct type *actual_type;

            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
            actual_type = type_from_tag (ada_value_tag (arg1));
            if (actual_type == NULL)
              /* If, for some reason, we were unable to determine
                 the actual type from the tag, then use the static
                 approximation that we just computed as a fallback.
                 This can happen if the debugging information is
                 incomplete, for instance.  */
              actual_type = type;

            return value_zero (actual_type, not_lval);
          }

          *pos += 4;
          return value_zero
            (to_static_fixed_type
             (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
             not_lval);
        }
      else
        {
          arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
          arg1 = unwrap_value (arg1);
          return ada_to_fixed_value (arg1);
        }

    case OP_FUNCALL:
      (*pos) += 2;

      /* Allocate arg vector, including space for the function to be
         called in argvec[0] and a terminating NULL.  */
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      argvec =
        (struct value **) alloca (sizeof (struct value *) * (nargs + 2));

      if (exp->elts[*pos].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
      else
        {
          for (tem = 0; tem <= nargs; tem += 1)
            argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
          argvec[tem] = 0;

          if (noside == EVAL_SKIP)
            goto nosideret;
        }

      if (ada_is_constrained_packed_array_type
	  (desc_base_type (value_type (argvec[0]))))
        argvec[0] = ada_coerce_to_simple_array (argvec[0]);
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
               && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
        /* This is a packed array that has already been fixed, and
	   therefore already coerced to a simple array.  Nothing further
	   to do.  */
        ;
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
               || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
                   && VALUE_LVAL (argvec[0]) == lval_memory))
        argvec[0] = value_addr (argvec[0]);

      type = ada_check_typedef (value_type (argvec[0]));
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        {
          switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
            {
            case TYPE_CODE_FUNC:
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            case TYPE_CODE_ARRAY:
              break;
            case TYPE_CODE_STRUCT:
              if (noside != EVAL_AVOID_SIDE_EFFECTS)
                argvec[0] = ada_value_ind (argvec[0]);
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            default:
              error (_("cannot subscript or call something of type `%s'"),
                     ada_type_name (value_type (argvec[0])));
              break;
            }
        }

      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_FUNC:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            return allocate_value (TYPE_TARGET_TYPE (type));
          return call_function_by_hand (argvec[0], nargs, argvec + 1);
        case TYPE_CODE_STRUCT:
          {
            int arity;

            arity = ada_array_arity (type);
            type = ada_array_element_type (type, nargs);
            if (type == NULL)
              error (_("cannot subscript or call a record"));
            if (arity != nargs)
              error (_("wrong number of subscripts; expecting %d"), arity);
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return value_zero (ada_aligned_type (type), lval_memory);
            return
              unwrap_value (ada_value_subscript
                            (argvec[0], nargs, argvec + 1));
          }
        case TYPE_CODE_ARRAY:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return value_zero (ada_aligned_type (type), lval_memory);
            }
          return
            unwrap_value (ada_value_subscript
                          (ada_coerce_to_simple_array (argvec[0]),
                           nargs, argvec + 1));
        case TYPE_CODE_PTR:     /* Pointer to array */
          type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return value_zero (ada_aligned_type (type), lval_memory);
            }
          return
            unwrap_value (ada_value_ptr_subscript (argvec[0], type,
                                                   nargs, argvec + 1));

        default:
          error (_("Attempt to index or call something other than an "
		   "array or function"));
        }

    case TERNOP_SLICE:
      {
        struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *low_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *high_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        LONGEST low_bound;
        LONGEST high_bound;
        low_bound_val = coerce_ref (low_bound_val);
        high_bound_val = coerce_ref (high_bound_val);
        low_bound = pos_atr (low_bound_val);
        high_bound = pos_atr (high_bound_val);

        if (noside == EVAL_SKIP)
          goto nosideret;

        /* If this is a reference to an aligner type, then remove all
           the aligners.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
          TYPE_TARGET_TYPE (value_type (array)) =
            ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));

        if (ada_is_constrained_packed_array_type (value_type (array)))
          error (_("cannot slice a packed array"));

        /* If this is a reference to an array or an array lvalue,
           convert to a pointer.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
                && VALUE_LVAL (array) == lval_memory))
          array = value_addr (array);

        if (noside == EVAL_AVOID_SIDE_EFFECTS
            && ada_is_array_descriptor_type (ada_check_typedef
                                             (value_type (array))))
          return empty_array (ada_type_of_array (array, 0), low_bound);

        array = ada_coerce_to_simple_array_ptr (array);

        /* If we have more than one level of pointer indirection,
           dereference the value until we get only one level.  */
        while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
               && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
                     == TYPE_CODE_PTR))
          array = value_ind (array);

        /* Make sure we really do have an array type before going further,
           to avoid a SEGV when trying to get the index type or the target
           type later down the road if the debug info generated by
           the compiler is incorrect or incomplete.  */
        if (!ada_is_simple_array_type (value_type (array)))
          error (_("cannot take slice of non-array"));

        if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
          {
            if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
              return empty_array (TYPE_TARGET_TYPE (value_type (array)),
                                  low_bound);
            else
              {
                struct type *arr_type0 =
                  to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
                                       NULL, 1);
                return ada_value_slice_from_ptr (array, arr_type0,
                                                 longest_to_int (low_bound),
                                                 longest_to_int (high_bound));
              }
          }
        else if (noside == EVAL_AVOID_SIDE_EFFECTS)
          return array;
        else if (high_bound < low_bound)
          return empty_array (value_type (array), low_bound);
        else
          return ada_value_slice (array, longest_to_int (low_bound),
				  longest_to_int (high_bound));
      }

    case UNOP_IN_RANGE:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = check_typedef (exp->elts[pc + 1].type);

      if (noside == EVAL_SKIP)
        goto nosideret;

      switch (TYPE_CODE (type))
        {
        default:
          lim_warning (_("Membership test incompletely implemented; "
			 "always returns true"));
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return value_from_longest (type, (LONGEST) 1);

        case TYPE_CODE_RANGE:
	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return
	    value_from_longest (type,
                                (value_less (arg1, arg3)
                                 || value_equal (arg1, arg3))
                                && (value_less (arg2, arg1)
                                    || value_equal (arg2, arg1)));
        }

    case BINOP_IN_BOUNDS:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return value_zero (type, not_lval);
	}

      tem = longest_to_int (exp->elts[pc + 1].longconst);

      type = ada_index_type (value_type (arg2), tem, "range");
      if (!type)
	type = value_type (arg1);

      arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
      arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));

      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return
        value_from_longest (type,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case TERNOP_IN_RANGE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return
        value_from_longest (type,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
      {
        struct type *type_arg;
        if (exp->elts[*pos].opcode == OP_TYPE)
          {
            evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
            arg1 = NULL;
            type_arg = check_typedef (exp->elts[pc + 2].type);
          }
        else
          {
            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
            type_arg = NULL;
          }

        if (exp->elts[*pos].opcode != OP_LONG)
          error (_("Invalid operand to '%s"), ada_attribute_name (op));
        tem = longest_to_int (exp->elts[*pos + 2].longconst);
        *pos += 4;

        if (noside == EVAL_SKIP)
          goto nosideret;

        if (type_arg == NULL)
          {
            arg1 = ada_coerce_ref (arg1);

            if (ada_is_constrained_packed_array_type (value_type (arg1)))
              arg1 = ada_coerce_to_simple_array (arg1);

            type = ada_index_type (value_type (arg1), tem,
				   ada_attribute_name (op));
            if (type == NULL)
	      type = builtin_type (exp->gdbarch)->builtin_int;

            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (type);

            switch (op)
              {
              default:          /* Should never happen.  */
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                return value_from_longest
			(type, ada_array_bound (arg1, tem, 0));
              case OP_ATR_LAST:
                return value_from_longest
			(type, ada_array_bound (arg1, tem, 1));
              case OP_ATR_LENGTH:
                return value_from_longest
			(type, ada_array_length (arg1, tem));
              }
          }
        else if (discrete_type_p (type_arg))
          {
            struct type *range_type;
            char *name = ada_type_name (type_arg);
            range_type = NULL;
            if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
              range_type = to_fixed_range_type (name, NULL, type_arg);
            if (range_type == NULL)
              range_type = type_arg;
            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
		return value_from_longest 
		  (range_type, ada_discrete_type_low_bound (range_type));
              case OP_ATR_LAST:
                return value_from_longest
		  (range_type, ada_discrete_type_high_bound (range_type));
              case OP_ATR_LENGTH:
                error (_("the 'length attribute applies only to array types"));
              }
          }
        else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
          error (_("unimplemented type attribute"));
        else
          {
            LONGEST low, high;

            if (ada_is_constrained_packed_array_type (type_arg))
              type_arg = decode_constrained_packed_array_type (type_arg);

            type = ada_index_type (type_arg, tem, ada_attribute_name (op));
            if (type == NULL)
	      type = builtin_type (exp->gdbarch)->builtin_int;

            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (type);

            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                low = ada_array_bound_from_type (type_arg, tem, 0);
                return value_from_longest (type, low);
              case OP_ATR_LAST:
                high = ada_array_bound_from_type (type_arg, tem, 1);
                return value_from_longest (type, high);
              case OP_ATR_LENGTH:
                low = ada_array_bound_from_type (type_arg, tem, 0);
                high = ada_array_bound_from_type (type_arg, tem, 1);
                return value_from_longest (type, high - low + 1);
              }
          }
      }

    case OP_ATR_TAG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (ada_tag_type (arg1), not_lval);

      return ada_value_tag (arg1);

    case OP_ATR_MIN:
    case OP_ATR_MAX:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
	{
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  return value_binop (arg1, arg2,
			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
	}

    case OP_ATR_MODULUS:
      {
        struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
        evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);

        if (noside == EVAL_SKIP)
          goto nosideret;

        if (!ada_is_modular_type (type_arg))
          error (_("'modulus must be applied to modular type"));

        return value_from_longest (TYPE_TARGET_TYPE (type_arg),
                                   ada_modulus (type_arg));
      }


    case OP_ATR_POS:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      type = builtin_type (exp->gdbarch)->builtin_int;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return value_zero (type, not_lval);
      else
	return value_pos_atr (type, arg1);

    case OP_ATR_SIZE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = value_type (arg1);

      /* If the argument is a reference, then dereference its type, since
         the user is really asking for the size of the actual object,
         not the size of the pointer.  */
      if (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);

      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
      else
        return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
                                   TARGET_CHAR_BIT * TYPE_LENGTH (type));

    case OP_ATR_VAL:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = exp->elts[pc + 2].type;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (type, not_lval);
      else
        return value_val_atr (type, arg1);

    case BINOP_EXP:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
	{
	  /* For integer exponentiation operations,
	     only promote the first argument.  */
	  if (is_integral_type (value_type (arg2)))
	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
	  else
	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);

	  return value_binop (arg1, arg2, op);
	}

    case UNOP_PLUS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else
        return arg1;

    case UNOP_ABS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      unop_promote (exp->language_defn, exp->gdbarch, &arg1);
      if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
        return value_neg (arg1);
      else
        return arg1;

    case UNOP_IND:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      type = ada_check_typedef (value_type (arg1));
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          if (ada_is_array_descriptor_type (type))
            /* GDB allows dereferencing GNAT array descriptors.  */
            {
              struct type *arrType = ada_type_of_array (arg1, 0);
              if (arrType == NULL)
                error (_("Attempt to dereference null array pointer."));
              return value_at_lazy (arrType, 0);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_PTR
                   || TYPE_CODE (type) == TYPE_CODE_REF
                   /* In C you can dereference an array to get the 1st elt.  */
                   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
            {
              type = to_static_fixed_type
                (ada_aligned_type
                 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
              check_size (type);
              return value_zero (type, lval_memory);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_INT)
	    {
	      /* GDB allows dereferencing an int.  */
	      if (expect_type == NULL)
		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
				   lval_memory);
	      else
		{
		  expect_type = 
		    to_static_fixed_type (ada_aligned_type (expect_type));
		  return value_zero (expect_type, lval_memory);
		}
	    }
          else
            error (_("Attempt to take contents of a non-pointer value."));
        }
      arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for?? */
      type = ada_check_typedef (value_type (arg1));

      if (TYPE_CODE (type) == TYPE_CODE_INT)
          /* GDB allows dereferencing an int.  If we were given
             the expect_type, then use that as the target type.
             Otherwise, assume that the target type is an int.  */
        {
          if (expect_type != NULL)
	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
					      arg1));
	  else
	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
				  (CORE_ADDR) value_as_address (arg1));
        }

      if (ada_is_array_descriptor_type (type))
        /* GDB allows dereferencing GNAT array descriptors.  */
        return ada_coerce_to_simple_array (arg1);
      else
        return ada_value_ind (arg1);

    case STRUCTOP_STRUCT:
      tem = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          struct type *type1 = value_type (arg1);
          if (ada_is_tagged_type (type1, 1))
            {
              type = ada_lookup_struct_elt_type (type1,
                                                 &exp->elts[pc + 2].string,
                                                 1, 1, NULL);
              if (type == NULL)
                /* In this case, we assume that the field COULD exist
                   in some extension of the type.  Return an object of 
                   "type" void, which will match any formal 
                   (see ada_type_match). */
                return value_zero (builtin_type (exp->gdbarch)->builtin_void,
				   lval_memory);
            }
          else
            type =
              ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
                                          0, NULL);

          return value_zero (ada_aligned_type (type), lval_memory);
        }
      else
        arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
        arg1 = unwrap_value (arg1);
        return ada_to_fixed_value (arg1);

    case OP_TYPE:
      /* The value is not supposed to be used.  This is here to make it
         easier to accommodate expressions that contain types.  */
      (*pos) += 2;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return allocate_value (exp->elts[pc + 1].type);
      else
        error (_("Attempt to use a type name as an expression"));

    case OP_AGGREGATE:
    case OP_CHOICES:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_NAME:
      if (noside == EVAL_NORMAL)
	switch (op) 
	  {
	  case OP_NAME:
	    error (_("Undefined name, ambiguous name, or renaming used in "
		     "component association: %s."), &exp->elts[pc+2].string);
	  case OP_AGGREGATE:
	    error (_("Aggregates only allowed on the right of an assignment"));
	  default:
	    internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
	  }

      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen - 1;
      for (tem = 0; tem < nargs; tem += 1) 
	ada_evaluate_subexp (NULL, exp, pos, noside);
      goto nosideret;
    }

nosideret:
  return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
}


                                /* Fixed point */

/* If TYPE encodes an Ada fixed-point type, return the suffix of the
   type name that encodes the 'small and 'delta information.
   Otherwise, return NULL.  */

static const char *
fixed_type_info (struct type *type)
{
  const char *name = ada_type_name (type);
  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);

  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
    {
      const char *tail = strstr (name, "___XF_");
      if (tail == NULL)
        return NULL;
      else
        return tail + 5;
    }
  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
    return fixed_type_info (TYPE_TARGET_TYPE (type));
  else
    return NULL;
}

/* Returns non-zero iff TYPE represents an Ada fixed-point type.  */

int
ada_is_fixed_point_type (struct type *type)
{
  return fixed_type_info (type) != NULL;
}

/* Return non-zero iff TYPE represents a System.Address type.  */

int
ada_is_system_address_type (struct type *type)
{
  return (TYPE_NAME (type)
          && strcmp (TYPE_NAME (type), "system__address") == 0);
}

/* Assuming that TYPE is the representation of an Ada fixed-point
   type, return its delta, or -1 if the type is malformed and the
   delta cannot be determined.  */

DOUBLEST
ada_delta (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  DOUBLEST num, den;

  /* Strictly speaking, num and den are encoded as integer.  However,
     they may not fit into a long, and they will have to be converted
     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
  if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
	      &num, &den) < 2)
    return -1.0;
  else
    return num / den;
}

/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
   factor ('SMALL value) associated with the type.  */

static DOUBLEST
scaling_factor (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  DOUBLEST num0, den0, num1, den1;
  int n;

  /* Strictly speaking, num's and den's are encoded as integer.  However,
     they may not fit into a long, and they will have to be converted
     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
  n = sscanf (encoding,
	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
	      &num0, &den0, &num1, &den1);

  if (n < 2)
    return 1.0;
  else if (n == 4)
    return num1 / den1;
  else
    return num0 / den0;
}


/* Assuming that X is the representation of a value of fixed-point
   type TYPE, return its floating-point equivalent.  */

DOUBLEST
ada_fixed_to_float (struct type *type, LONGEST x)
{
  return (DOUBLEST) x *scaling_factor (type);
}

/* The representation of a fixed-point value of type TYPE
   corresponding to the value X.  */

LONGEST
ada_float_to_fixed (struct type *type, DOUBLEST x)
{
  return (LONGEST) (x / scaling_factor (type) + 0.5);
}



                                /* Range types */

/* Scan STR beginning at position K for a discriminant name, and
   return the value of that discriminant field of DVAL in *PX.  If
   PNEW_K is not null, put the position of the character beyond the
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
   not alter *PX and *PNEW_K if unsuccessful.  */

static int
scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
                    int *pnew_k)
{
  static char *bound_buffer = NULL;
  static size_t bound_buffer_len = 0;
  char *bound;
  char *pend;
  struct value *bound_val;

  if (dval == NULL || str == NULL || str[k] == '\0')
    return 0;

  pend = strstr (str + k, "__");
  if (pend == NULL)
    {
      bound = str + k;
      k += strlen (bound);
    }
  else
    {
      GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
      bound = bound_buffer;
      strncpy (bound_buffer, str + k, pend - (str + k));
      bound[pend - (str + k)] = '\0';
      k = pend - str;
    }

  bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
  if (bound_val == NULL)
    return 0;

  *px = value_as_long (bound_val);
  if (pnew_k != NULL)
    *pnew_k = k;
  return 1;
}

/* Value of variable named NAME in the current environment.  If
   no such variable found, then if ERR_MSG is null, returns 0, and
   otherwise causes an error with message ERR_MSG.  */

static struct value *
get_var_value (char *name, char *err_msg)
{
  struct ada_symbol_info *syms;
  int nsyms;

  nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
                                  &syms);

  if (nsyms != 1)
    {
      if (err_msg == NULL)
        return 0;
      else
        error (("%s"), err_msg);
    }

  return value_of_variable (syms[0].sym, syms[0].block);
}

/* Value of integer variable named NAME in the current environment.  If
   no such variable found, returns 0, and sets *FLAG to 0.  If
   successful, sets *FLAG to 1.  */

LONGEST
get_int_var_value (char *name, int *flag)
{
  struct value *var_val = get_var_value (name, 0);

  if (var_val == 0)
    {
      if (flag != NULL)
        *flag = 0;
      return 0;
    }
  else
    {
      if (flag != NULL)
        *flag = 1;
      return value_as_long (var_val);
    }
}


/* Return a range type whose base type is that of the range type named
   NAME in the current environment, and whose bounds are calculated
   from NAME according to the GNAT range encoding conventions.
   Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
   corresponding range type from debug information; fall back to using it
   if symbol lookup fails.  If a new type must be created, allocate it
   like ORIG_TYPE was.  The bounds information, in general, is encoded
   in NAME, the base type given in the named range type.  */

static struct type *
to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
{
  struct type *raw_type = ada_find_any_type (name);
  struct type *base_type;
  char *subtype_info;

  /* Fall back to the original type if symbol lookup failed.  */
  if (raw_type == NULL)
    raw_type = orig_type;

  if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
    base_type = TYPE_TARGET_TYPE (raw_type);
  else
    base_type = raw_type;

  subtype_info = strstr (name, "___XD");
  if (subtype_info == NULL)
    {
      LONGEST L = ada_discrete_type_low_bound (raw_type);
      LONGEST U = ada_discrete_type_high_bound (raw_type);
      if (L < INT_MIN || U > INT_MAX)
	return raw_type;
      else
	return create_range_type (alloc_type_copy (orig_type), raw_type,
				  ada_discrete_type_low_bound (raw_type),
				  ada_discrete_type_high_bound (raw_type));
    }
  else
    {
      static char *name_buf = NULL;
      static size_t name_len = 0;
      int prefix_len = subtype_info - name;
      LONGEST L, U;
      struct type *type;
      char *bounds_str;
      int n;

      GROW_VECT (name_buf, name_len, prefix_len + 5);
      strncpy (name_buf, name, prefix_len);
      name_buf[prefix_len] = '\0';

      subtype_info += 5;
      bounds_str = strchr (subtype_info, '_');
      n = 1;

      if (*subtype_info == 'L')
        {
          if (!ada_scan_number (bounds_str, n, &L, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
            return raw_type;
          if (bounds_str[n] == '_')
            n += 2;
          else if (bounds_str[n] == '.')        /* FIXME? SGI Workshop kludge.  */
            n += 1;
          subtype_info += 1;
        }
      else
        {
          int ok;
          strcpy (name_buf + prefix_len, "___L");
          L = get_int_var_value (name_buf, &ok);
          if (!ok)
            {
              lim_warning (_("Unknown lower bound, using 1."));
              L = 1;
            }
        }

      if (*subtype_info == 'U')
        {
          if (!ada_scan_number (bounds_str, n, &U, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
            return raw_type;
        }
      else
        {
          int ok;
          strcpy (name_buf + prefix_len, "___U");
          U = get_int_var_value (name_buf, &ok);
          if (!ok)
            {
              lim_warning (_("Unknown upper bound, using %ld."), (long) L);
              U = L;
            }
        }

      type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
      TYPE_NAME (type) = name;
      return type;
    }
}

/* True iff NAME is the name of a range type.  */

int
ada_is_range_type_name (const char *name)
{
  return (name != NULL && strstr (name, "___XD"));
}


                                /* Modular types */

/* True iff TYPE is an Ada modular type.  */

int
ada_is_modular_type (struct type *type)
{
  struct type *subranged_type = base_type (type);

  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
          && TYPE_CODE (subranged_type) == TYPE_CODE_INT
          && TYPE_UNSIGNED (subranged_type));
}

/* Try to determine the lower and upper bounds of the given modular type
   using the type name only.  Return non-zero and set L and U as the lower
   and upper bounds (respectively) if successful.  */

int
ada_modulus_from_name (struct type *type, ULONGEST *modulus)
{
  char *name = ada_type_name (type);
  char *suffix;
  int k;
  LONGEST U;

  if (name == NULL)
    return 0;

  /* Discrete type bounds are encoded using an __XD suffix.  In our case,
     we are looking for static bounds, which means an __XDLU suffix.
     Moreover, we know that the lower bound of modular types is always
     zero, so the actual suffix should start with "__XDLU_0__", and
     then be followed by the upper bound value.  */
  suffix = strstr (name, "__XDLU_0__");
  if (suffix == NULL)
    return 0;
  k = 10;
  if (!ada_scan_number (suffix, k, &U, NULL))
    return 0;

  *modulus = (ULONGEST) U + 1;
  return 1;
}

/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */

ULONGEST
ada_modulus (struct type *type)
{
  return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
}


/* Ada exception catchpoint support:
   ---------------------------------

   We support 3 kinds of exception catchpoints:
     . catchpoints on Ada exceptions
     . catchpoints on unhandled Ada exceptions
     . catchpoints on failed assertions

   Exceptions raised during failed assertions, or unhandled exceptions
   could perfectly be caught with the general catchpoint on Ada exceptions.
   However, we can easily differentiate these two special cases, and having
   the option to distinguish these two cases from the rest can be useful
   to zero-in on certain situations.

   Exception catchpoints are a specialized form of breakpoint,
   since they rely on inserting breakpoints inside known routines
   of the GNAT runtime.  The implementation therefore uses a standard
   breakpoint structure of the BP_BREAKPOINT type, but with its own set
   of breakpoint_ops.

   Support in the runtime for exception catchpoints have been changed
   a few times already, and these changes affect the implementation
   of these catchpoints.  In order to be able to support several
   variants of the runtime, we use a sniffer that will determine
   the runtime variant used by the program being debugged.

   At this time, we do not support the use of conditions on Ada exception
   catchpoints.  The COND and COND_STRING fields are therefore set
   to NULL (most of the time, see below).
   
   Conditions where EXP_STRING, COND, and COND_STRING are used:

     When a user specifies the name of a specific exception in the case
     of catchpoints on Ada exceptions, we store the name of that exception
     in the EXP_STRING.  We then translate this request into an actual
     condition stored in COND_STRING, and then parse it into an expression
     stored in COND.  */

/* The different types of catchpoints that we introduced for catching
   Ada exceptions.  */

enum exception_catchpoint_kind
{
  ex_catch_exception,
  ex_catch_exception_unhandled,
  ex_catch_assert
};

/* Ada's standard exceptions.  */

static char *standard_exc[] = {
  "constraint_error",
  "program_error",
  "storage_error",
  "tasking_error"
};

typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);

/* A structure that describes how to support exception catchpoints
   for a given executable.  */

struct exception_support_info
{
   /* The name of the symbol to break on in order to insert
      a catchpoint on exceptions.  */
   const char *catch_exception_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on unhandled exceptions.  */
   const char *catch_exception_unhandled_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on failed assertions.  */
   const char *catch_assert_sym;

   /* Assuming that the inferior just triggered an unhandled exception
      catchpoint, this function is responsible for returning the address
      in inferior memory where the name of that exception is stored.
      Return zero if the address could not be computed.  */
   ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
};

static CORE_ADDR ada_unhandled_exception_name_addr (void);
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);

/* The following exception support info structure describes how to
   implement exception catchpoints with the latest version of the
   Ada runtime (as of 2007-03-06).  */

static const struct exception_support_info default_exception_support_info =
{
  "__gnat_debug_raise_exception", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
  ada_unhandled_exception_name_addr
};

/* The following exception support info structure describes how to
   implement exception catchpoints with a slightly older version
   of the Ada runtime.  */

static const struct exception_support_info exception_support_info_fallback =
{
  "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "system__assertions__raise_assert_failure",  /* catch_assert_sym */
  ada_unhandled_exception_name_addr_from_raise
};

/* For each executable, we sniff which exception info structure to use
   and cache it in the following global variable.  */

static const struct exception_support_info *exception_info = NULL;

/* Inspect the Ada runtime and determine which exception info structure
   should be used to provide support for exception catchpoints.

   This function will always set exception_info, or raise an error.  */

static void
ada_exception_support_info_sniffer (void)
{
  struct symbol *sym;

  /* If the exception info is already known, then no need to recompute it.  */
  if (exception_info != NULL)
    return;

  /* Check the latest (default) exception support info.  */
  sym = standard_lookup (default_exception_support_info.catch_exception_sym,
                         NULL, VAR_DOMAIN);
  if (sym != NULL)
    {
      exception_info = &default_exception_support_info;
      return;
    }

  /* Try our fallback exception suport info.  */
  sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
                         NULL, VAR_DOMAIN);
  if (sym != NULL)
    {
      exception_info = &exception_support_info_fallback;
      return;
    }

  /* Sometimes, it is normal for us to not be able to find the routine
     we are looking for.  This happens when the program is linked with
     the shared version of the GNAT runtime, and the program has not been
     started yet.  Inform the user of these two possible causes if
     applicable.  */

  if (ada_update_initial_language (language_unknown, NULL) != language_ada)
    error (_("Unable to insert catchpoint.  Is this an Ada main program?"));

  /* If the symbol does not exist, then check that the program is
     already started, to make sure that shared libraries have been
     loaded.  If it is not started, this may mean that the symbol is
     in a shared library.  */

  if (ptid_get_pid (inferior_ptid) == 0)
    error (_("Unable to insert catchpoint. Try to start the program first."));

  /* At this point, we know that we are debugging an Ada program and
     that the inferior has been started, but we still are not able to
     find the run-time symbols. That can mean that we are in
     configurable run time mode, or that a-except as been optimized
     out by the linker...  In any case, at this point it is not worth
     supporting this feature.  */

  error (_("Cannot insert catchpoints in this configuration."));
}

/* An observer of "executable_changed" events.
   Its role is to clear certain cached values that need to be recomputed
   each time a new executable is loaded by GDB.  */

static void
ada_executable_changed_observer (void)
{
  /* If the executable changed, then it is possible that the Ada runtime
     is different.  So we need to invalidate the exception support info
     cache.  */
  exception_info = NULL;
}

/* Return the name of the function at PC, NULL if could not find it.
   This function only checks the debugging information, not the symbol
   table.  */

static char *
function_name_from_pc (CORE_ADDR pc)
{
  char *func_name;

  if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
    return NULL;

  return func_name;
}

/* True iff FRAME is very likely to be that of a function that is
   part of the runtime system.  This is all very heuristic, but is
   intended to be used as advice as to what frames are uninteresting
   to most users.  */

static int
is_known_support_routine (struct frame_info *frame)
{
  struct symtab_and_line sal;
  char *func_name;
  int i;

  /* If this code does not have any debugging information (no symtab),
     This cannot be any user code.  */

  find_frame_sal (frame, &sal);
  if (sal.symtab == NULL)
    return 1;

  /* If there is a symtab, but the associated source file cannot be
     located, then assume this is not user code:  Selecting a frame
     for which we cannot display the code would not be very helpful
     for the user.  This should also take care of case such as VxWorks
     where the kernel has some debugging info provided for a few units.  */

  if (symtab_to_fullname (sal.symtab) == NULL)
    return 1;

  /* Check the unit filename againt the Ada runtime file naming.
     We also check the name of the objfile against the name of some
     known system libraries that sometimes come with debugging info
     too.  */

  for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_runtime_file_name_patterns[i]);
      if (re_exec (sal.symtab->filename))
        return 1;
      if (sal.symtab->objfile != NULL
          && re_exec (sal.symtab->objfile->name))
        return 1;
    }

  /* Check whether the function is a GNAT-generated entity.  */

  func_name = function_name_from_pc (get_frame_address_in_block (frame));
  if (func_name == NULL)
    return 1;

  for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_auxiliary_function_name_patterns[i]);
      if (re_exec (func_name))
        return 1;
    }

  return 0;
}

/* Find the first frame that contains debugging information and that is not
   part of the Ada run-time, starting from FI and moving upward.  */

void
ada_find_printable_frame (struct frame_info *fi)
{
  for (; fi != NULL; fi = get_prev_frame (fi))
    {
      if (!is_known_support_routine (fi))
        {
          select_frame (fi);
          break;
        }
    }

}

/* Assuming that the inferior just triggered an unhandled exception
   catchpoint, return the address in inferior memory where the name
   of the exception is stored.
   
   Return zero if the address could not be computed.  */

static CORE_ADDR
ada_unhandled_exception_name_addr (void)
{
  return parse_and_eval_address ("e.full_name");
}

/* Same as ada_unhandled_exception_name_addr, except that this function
   should be used when the inferior uses an older version of the runtime,
   where the exception name needs to be extracted from a specific frame
   several frames up in the callstack.  */

static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void)
{
  int frame_level;
  struct frame_info *fi;

  /* To determine the name of this exception, we need to select
     the frame corresponding to RAISE_SYM_NAME.  This frame is
     at least 3 levels up, so we simply skip the first 3 frames
     without checking the name of their associated function.  */
  fi = get_current_frame ();
  for (frame_level = 0; frame_level < 3; frame_level += 1)
    if (fi != NULL)
      fi = get_prev_frame (fi); 

  while (fi != NULL)
    {
      const char *func_name =
        function_name_from_pc (get_frame_address_in_block (fi));
      if (func_name != NULL
          && strcmp (func_name, exception_info->catch_exception_sym) == 0)
        break; /* We found the frame we were looking for...  */
      fi = get_prev_frame (fi);
    }

  if (fi == NULL)
    return 0;

  select_frame (fi);
  return parse_and_eval_address ("id.full_name");
}

/* Assuming the inferior just triggered an Ada exception catchpoint
   (of any type), return the address in inferior memory where the name
   of the exception is stored, if applicable.

   Return zero if the address could not be computed, or if not relevant.  */

static CORE_ADDR
ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
                           struct breakpoint *b)
{
  switch (ex)
    {
      case ex_catch_exception:
        return (parse_and_eval_address ("e.full_name"));
        break;

      case ex_catch_exception_unhandled:
        return exception_info->unhandled_exception_name_addr ();
        break;
      
      case ex_catch_assert:
        return 0;  /* Exception name is not relevant in this case.  */
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }

  return 0; /* Should never be reached.  */
}

/* Same as ada_exception_name_addr_1, except that it intercepts and contains
   any error that ada_exception_name_addr_1 might cause to be thrown.
   When an error is intercepted, a warning with the error message is printed,
   and zero is returned.  */

static CORE_ADDR
ada_exception_name_addr (enum exception_catchpoint_kind ex,
                         struct breakpoint *b)
{
  struct gdb_exception e;
  CORE_ADDR result = 0;

  TRY_CATCH (e, RETURN_MASK_ERROR)
    {
      result = ada_exception_name_addr_1 (ex, b);
    }

  if (e.reason < 0)
    {
      warning (_("failed to get exception name: %s"), e.message);
      return 0;
    }

  return result;
}

/* Implement the PRINT_IT method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static enum print_stop_action
print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
{
  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
  char exception_name[256];

  if (addr != 0)
    {
      read_memory (addr, exception_name, sizeof (exception_name) - 1);
      exception_name [sizeof (exception_name) - 1] = '\0';
    }

  ada_find_printable_frame (get_current_frame ());

  annotate_catchpoint (b->number);
  switch (ex)
    {
      case ex_catch_exception:
        if (addr != 0)
          printf_filtered (_("\nCatchpoint %d, %s at "),
                           b->number, exception_name);
        else
          printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
        break;
      case ex_catch_exception_unhandled:
        if (addr != 0)
          printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
                           b->number, exception_name);
        else
          printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
                           b->number);
        break;
      case ex_catch_assert:
        printf_filtered (_("\nCatchpoint %d, failed assertion at "),
                         b->number);
        break;
    }

  return PRINT_SRC_AND_LOC;
}

/* Implement the PRINT_ONE method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
print_one_exception (enum exception_catchpoint_kind ex,
                     struct breakpoint *b, struct bp_location **last_loc)
{ 
  struct value_print_options opts;

  get_user_print_options (&opts);
  if (opts.addressprint)
    {
      annotate_field (4);
      ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
    }

  annotate_field (5);
  *last_loc = b->loc;
  switch (ex)
    {
      case ex_catch_exception:
        if (b->exp_string != NULL)
          {
            char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
            
            ui_out_field_string (uiout, "what", msg);
            xfree (msg);
          }
        else
          ui_out_field_string (uiout, "what", "all Ada exceptions");
        
        break;

      case ex_catch_exception_unhandled:
        ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
        break;
      
      case ex_catch_assert:
        ui_out_field_string (uiout, "what", "failed Ada assertions");
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }
}

/* Implement the PRINT_MENTION method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
print_mention_exception (enum exception_catchpoint_kind ex,
                         struct breakpoint *b)
{
  switch (ex)
    {
      case ex_catch_exception:
        if (b->exp_string != NULL)
          printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
                           b->number, b->exp_string);
        else
          printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
        
        break;

      case ex_catch_exception_unhandled:
        printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
                         b->number);
        break;
      
      case ex_catch_assert:
        printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }
}

/* Virtual table for "catch exception" breakpoints.  */

static enum print_stop_action
print_it_catch_exception (struct breakpoint *b)
{
  return print_it_exception (ex_catch_exception, b);
}

static void
print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
{
  print_one_exception (ex_catch_exception, b, last_loc);
}

static void
print_mention_catch_exception (struct breakpoint *b)
{
  print_mention_exception (ex_catch_exception, b);
}

static struct breakpoint_ops catch_exception_breakpoint_ops =
{
  NULL, /* insert */
  NULL, /* remove */
  NULL, /* breakpoint_hit */
  print_it_catch_exception,
  print_one_catch_exception,
  print_mention_catch_exception
};

/* Virtual table for "catch exception unhandled" breakpoints.  */

static enum print_stop_action
print_it_catch_exception_unhandled (struct breakpoint *b)
{
  return print_it_exception (ex_catch_exception_unhandled, b);
}

static void
print_one_catch_exception_unhandled (struct breakpoint *b,
				     struct bp_location **last_loc)
{
  print_one_exception (ex_catch_exception_unhandled, b, last_loc);
}

static void
print_mention_catch_exception_unhandled (struct breakpoint *b)
{
  print_mention_exception (ex_catch_exception_unhandled, b);
}

static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
  NULL, /* insert */
  NULL, /* remove */
  NULL, /* breakpoint_hit */
  print_it_catch_exception_unhandled,
  print_one_catch_exception_unhandled,
  print_mention_catch_exception_unhandled
};

/* Virtual table for "catch assert" breakpoints.  */

static enum print_stop_action
print_it_catch_assert (struct breakpoint *b)
{
  return print_it_exception (ex_catch_assert, b);
}

static void
print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
{
  print_one_exception (ex_catch_assert, b, last_loc);
}

static void
print_mention_catch_assert (struct breakpoint *b)
{
  print_mention_exception (ex_catch_assert, b);
}

static struct breakpoint_ops catch_assert_breakpoint_ops = {
  NULL, /* insert */
  NULL, /* remove */
  NULL, /* breakpoint_hit */
  print_it_catch_assert,
  print_one_catch_assert,
  print_mention_catch_assert
};

/* Return non-zero if B is an Ada exception catchpoint.  */

int
ada_exception_catchpoint_p (struct breakpoint *b)
{
  return (b->ops == &catch_exception_breakpoint_ops
          || b->ops == &catch_exception_unhandled_breakpoint_ops
          || b->ops == &catch_assert_breakpoint_ops);
}

/* Return a newly allocated copy of the first space-separated token
   in ARGSP, and then adjust ARGSP to point immediately after that
   token.

   Return NULL if ARGPS does not contain any more tokens.  */

static char *
ada_get_next_arg (char **argsp)
{
  char *args = *argsp;
  char *end;
  char *result;

  /* Skip any leading white space.  */

  while (isspace (*args))
    args++;

  if (args[0] == '\0')
    return NULL; /* No more arguments.  */
  
  /* Find the end of the current argument.  */

  end = args;
  while (*end != '\0' && !isspace (*end))
    end++;

  /* Adjust ARGSP to point to the start of the next argument.  */

  *argsp = end;

  /* Make a copy of the current argument and return it.  */

  result = xmalloc (end - args + 1);
  strncpy (result, args, end - args);
  result[end - args] = '\0';
  
  return result;
}

/* Split the arguments specified in a "catch exception" command.  
   Set EX to the appropriate catchpoint type.
   Set EXP_STRING to the name of the specific exception if
   specified by the user.  */

static void
catch_ada_exception_command_split (char *args,
                                   enum exception_catchpoint_kind *ex,
                                   char **exp_string)
{
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
  char *exception_name;

  exception_name = ada_get_next_arg (&args);
  make_cleanup (xfree, exception_name);

  /* Check that we do not have any more arguments.  Anything else
     is unexpected.  */

  while (isspace (*args))
    args++;

  if (args[0] != '\0')
    error (_("Junk at end of expression"));

  discard_cleanups (old_chain);

  if (exception_name == NULL)
    {
      /* Catch all exceptions.  */
      *ex = ex_catch_exception;
      *exp_string = NULL;
    }
  else if (strcmp (exception_name, "unhandled") == 0)
    {
      /* Catch unhandled exceptions.  */
      *ex = ex_catch_exception_unhandled;
      *exp_string = NULL;
    }
  else
    {
      /* Catch a specific exception.  */
      *ex = ex_catch_exception;
      *exp_string = exception_name;
    }
}

/* Return the name of the symbol on which we should break in order to
   implement a catchpoint of the EX kind.  */

static const char *
ada_exception_sym_name (enum exception_catchpoint_kind ex)
{
  gdb_assert (exception_info != NULL);

  switch (ex)
    {
      case ex_catch_exception:
        return (exception_info->catch_exception_sym);
        break;
      case ex_catch_exception_unhandled:
        return (exception_info->catch_exception_unhandled_sym);
        break;
      case ex_catch_assert:
        return (exception_info->catch_assert_sym);
        break;
      default:
        internal_error (__FILE__, __LINE__,
                        _("unexpected catchpoint kind (%d)"), ex);
    }
}

/* Return the breakpoint ops "virtual table" used for catchpoints
   of the EX kind.  */

static struct breakpoint_ops *
ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
{
  switch (ex)
    {
      case ex_catch_exception:
        return (&catch_exception_breakpoint_ops);
        break;
      case ex_catch_exception_unhandled:
        return (&catch_exception_unhandled_breakpoint_ops);
        break;
      case ex_catch_assert:
        return (&catch_assert_breakpoint_ops);
        break;
      default:
        internal_error (__FILE__, __LINE__,
                        _("unexpected catchpoint kind (%d)"), ex);
    }
}

/* Return the condition that will be used to match the current exception
   being raised with the exception that the user wants to catch.  This
   assumes that this condition is used when the inferior just triggered
   an exception catchpoint.
   
   The string returned is a newly allocated string that needs to be
   deallocated later.  */

static char *
ada_exception_catchpoint_cond_string (const char *exp_string)
{
  int i;

  /* The standard exceptions are a special case. They are defined in
     runtime units that have been compiled without debugging info; if
     EXP_STRING is the not-fully-qualified name of a standard
     exception (e.g. "constraint_error") then, during the evaluation
     of the condition expression, the symbol lookup on this name would
     *not* return this standard exception. The catchpoint condition
     may then be set only on user-defined exceptions which have the
     same not-fully-qualified name (e.g. my_package.constraint_error).

     To avoid this unexcepted behavior, these standard exceptions are
     systematically prefixed by "standard". This means that "catch
     exception constraint_error" is rewritten into "catch exception
     standard.constraint_error".

     If an exception named contraint_error is defined in another package of
     the inferior program, then the only way to specify this exception as a
     breakpoint condition is to use its fully-qualified named:
     e.g. my_package.constraint_error.  */

  for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
    {
      if (strcmp (standard_exc [i], exp_string) == 0)
	{
          return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
                             exp_string);
	}
    }
  return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
}

/* Return the expression corresponding to COND_STRING evaluated at SAL.  */

static struct expression *
ada_parse_catchpoint_condition (char *cond_string,
                                struct symtab_and_line sal)
{
  return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
}

/* Return the symtab_and_line that should be used to insert an exception
   catchpoint of the TYPE kind.

   EX_STRING should contain the name of a specific exception
   that the catchpoint should catch, or NULL otherwise.

   The idea behind all the remaining parameters is that their names match
   the name of certain fields in the breakpoint structure that are used to
   handle exception catchpoints.  This function returns the value to which
   these fields should be set, depending on the type of catchpoint we need
   to create.
   
   If COND and COND_STRING are both non-NULL, any value they might
   hold will be free'ed, and then replaced by newly allocated ones.
   These parameters are left untouched otherwise.  */

static struct symtab_and_line
ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
                   char **addr_string, char **cond_string,
                   struct expression **cond, struct breakpoint_ops **ops)
{
  const char *sym_name;
  struct symbol *sym;
  struct symtab_and_line sal;

  /* First, find out which exception support info to use.  */
  ada_exception_support_info_sniffer ();

  /* Then lookup the function on which we will break in order to catch
     the Ada exceptions requested by the user.  */

  sym_name = ada_exception_sym_name (ex);
  sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);

  /* The symbol we're looking up is provided by a unit in the GNAT runtime
     that should be compiled with debugging information.  As a result, we
     expect to find that symbol in the symtabs.  If we don't find it, then
     the target most likely does not support Ada exceptions, or we cannot
     insert exception breakpoints yet, because the GNAT runtime hasn't been
     loaded yet.  */

  /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
     in such a way that no debugging information is produced for the symbol
     we are looking for.  In this case, we could search the minimal symbols
     as a fall-back mechanism.  This would still be operating in degraded
     mode, however, as we would still be missing the debugging information
     that is needed in order to extract the name of the exception being
     raised (this name is printed in the catchpoint message, and is also
     used when trying to catch a specific exception).  We do not handle
     this case for now.  */

  if (sym == NULL)
    error (_("Unable to break on '%s' in this configuration."), sym_name);

  /* Make sure that the symbol we found corresponds to a function.  */
  if (SYMBOL_CLASS (sym) != LOC_BLOCK)
    error (_("Symbol \"%s\" is not a function (class = %d)"),
           sym_name, SYMBOL_CLASS (sym));

  sal = find_function_start_sal (sym, 1);

  /* Set ADDR_STRING.  */

  *addr_string = xstrdup (sym_name);

  /* Set the COND and COND_STRING (if not NULL).  */

  if (cond_string != NULL && cond != NULL)
    {
      if (*cond_string != NULL)
        {
          xfree (*cond_string);
          *cond_string = NULL;
        }
      if (*cond != NULL)
        {
          xfree (*cond);
          *cond = NULL;
        }
      if (exp_string != NULL)
        {
          *cond_string = ada_exception_catchpoint_cond_string (exp_string);
          *cond = ada_parse_catchpoint_condition (*cond_string, sal);
        }
    }

  /* Set OPS.  */
  *ops = ada_exception_breakpoint_ops (ex);

  return sal;
}

/* Parse the arguments (ARGS) of the "catch exception" command.
 
   Set TYPE to the appropriate exception catchpoint type.
   If the user asked the catchpoint to catch only a specific
   exception, then save the exception name in ADDR_STRING.

   See ada_exception_sal for a description of all the remaining
   function arguments of this function.  */

struct symtab_and_line
ada_decode_exception_location (char *args, char **addr_string,
                               char **exp_string, char **cond_string,
                               struct expression **cond,
                               struct breakpoint_ops **ops)
{
  enum exception_catchpoint_kind ex;

  catch_ada_exception_command_split (args, &ex, exp_string);
  return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
                            cond, ops);
}

struct symtab_and_line
ada_decode_assert_location (char *args, char **addr_string,
                            struct breakpoint_ops **ops)
{
  /* Check that no argument where provided at the end of the command.  */

  if (args != NULL)
    {
      while (isspace (*args))
        args++;
      if (*args != '\0')
        error (_("Junk at end of arguments."));
    }

  return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
                            ops);
}

                                /* Operators */
/* Information about operators given special treatment in functions
   below.  */
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */

#define ADA_OPERATORS \
    OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
    OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
    OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
    OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
    OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
    OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
    OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
    OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
    OP_DEFN (OP_ATR_POS, 1, 2, 0) \
    OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
    OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
    OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
    OP_DEFN (UNOP_QUAL, 3, 1, 0) \
    OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
    OP_DEFN (OP_OTHERS, 1, 1, 0) \
    OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
    OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)

static void
ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
{
  switch (exp->elts[pc - 1].opcode)
    {
    default:
      operator_length_standard (exp, pc, oplenp, argsp);
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
      break;
    }
}

static char *
ada_op_name (enum exp_opcode opcode)
{
  switch (opcode)
    {
    default:
      return op_name_standard (opcode);

#define OP_DEFN(op, len, args, binop) case op: return #op;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      return "OP_AGGREGATE";
    case OP_CHOICES:
      return "OP_CHOICES";
    case OP_NAME:
      return "OP_NAME";
    }
}

/* As for operator_length, but assumes PC is pointing at the first
   element of the operator, and gives meaningful results only for the 
   Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */

static void
ada_forward_operator_length (struct expression *exp, int pc,
                             int *oplenp, int *argsp)
{
  switch (exp->elts[pc].opcode)
    {
    default:
      *oplenp = *argsp = 0;
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
      break;

    case OP_STRING:
    case OP_NAME:
      {
	int len = longest_to_int (exp->elts[pc + 1].longconst);
	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
	*argsp = 0;
	break;
      }
    }
}

static int
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
{
  enum exp_opcode op = exp->elts[elt].opcode;
  int oplen, nargs;
  int pc = elt;
  int i;

  ada_forward_operator_length (exp, elt, &oplen, &nargs);

  switch (op)
    {
      /* Ada attributes ('Foo).  */
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      break;

    case UNOP_IN_RANGE:
    case UNOP_QUAL:
      /* XXX: gdb_sprint_host_address, type_sprint */
      fprintf_filtered (stream, _("Type @"));
      gdb_print_host_address (exp->elts[pc + 1].type, stream);
      fprintf_filtered (stream, " (");
      type_print (exp->elts[pc + 1].type, NULL, stream, 0);
      fprintf_filtered (stream, ")");
      break;
    case BINOP_IN_BOUNDS:
      fprintf_filtered (stream, " (%d)",
			longest_to_int (exp->elts[pc + 2].longconst));
      break;
    case TERNOP_IN_RANGE:
      break;

    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_CHOICES:
      break;

    case OP_NAME:
    case OP_STRING:
      {
	char *name = &exp->elts[elt + 2].string;
	int len = longest_to_int (exp->elts[elt + 1].longconst);
	fprintf_filtered (stream, "Text: `%.*s'", len, name);
	break;
      }

    default:
      return dump_subexp_body_standard (exp, stream, elt);
    }

  elt += oplen;
  for (i = 0; i < nargs; i += 1)
    elt = dump_subexp (exp, stream, elt);

  return elt;
}

/* The Ada extension of print_subexp (q.v.).  */

static void
ada_print_subexp (struct expression *exp, int *pos,
                  struct ui_file *stream, enum precedence prec)
{
  int oplen, nargs, i;
  int pc = *pos;
  enum exp_opcode op = exp->elts[pc].opcode;

  ada_forward_operator_length (exp, pc, &oplen, &nargs);

  *pos += oplen;
  switch (op)
    {
    default:
      *pos -= oplen;
      print_subexp_standard (exp, pos, stream, prec);
      return;

    case OP_VAR_VALUE:
      fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
      return;

    case BINOP_IN_BOUNDS:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("'range", stream);
      if (exp->elts[pc + 1].longconst > 1)
        fprintf_filtered (stream, "(%ld)",
                          (long) exp->elts[pc + 1].longconst);
      return;

    case TERNOP_IN_RANGE:
      if (prec >= PREC_EQUAL)
        fputs_filtered ("(", stream);
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      fputs_filtered (" .. ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      if (prec >= PREC_EQUAL)
        fputs_filtered (")", stream);
      return;

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      if (exp->elts[*pos].opcode == OP_TYPE)
        {
          if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
            LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
          *pos += 3;
        }
      else
        print_subexp (exp, pos, stream, PREC_SUFFIX);
      fprintf_filtered (stream, "'%s", ada_attribute_name (op));
      if (nargs > 1)
        {
          int tem;
          for (tem = 1; tem < nargs; tem += 1)
            {
              fputs_filtered ((tem == 1) ? " (" : ", ", stream);
              print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
            }
          fputs_filtered (")", stream);
        }
      return;

    case UNOP_QUAL:
      type_print (exp->elts[pc + 1].type, "", stream, 0);
      fputs_filtered ("'(", stream);
      print_subexp (exp, pos, stream, PREC_PREFIX);
      fputs_filtered (")", stream);
      return;

    case UNOP_IN_RANGE:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
      return;

    case OP_DISCRETE_RANGE:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("..", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_OTHERS:
      fputs_filtered ("others => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_CHOICES:
      for (i = 0; i < nargs-1; i += 1)
	{
	  if (i > 0)
	    fputs_filtered ("|", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (" => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;
      
    case OP_POSITIONAL:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_AGGREGATE:
      fputs_filtered ("(", stream);
      for (i = 0; i < nargs; i += 1)
	{
	  if (i > 0)
	    fputs_filtered (", ", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (")", stream);
      return;
    }
}

/* Table mapping opcodes into strings for printing operators
   and precedences of the operators.  */

static const struct op_print ada_op_print_tab[] = {
  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
  {"<=", BINOP_LEQ, PREC_ORDER, 0},
  {">=", BINOP_GEQ, PREC_ORDER, 0},
  {">", BINOP_GTR, PREC_ORDER, 0},
  {"<", BINOP_LESS, PREC_ORDER, 0},
  {">>", BINOP_RSH, PREC_SHIFT, 0},
  {"<<", BINOP_LSH, PREC_SHIFT, 0},
  {"+", BINOP_ADD, PREC_ADD, 0},
  {"-", BINOP_SUB, PREC_ADD, 0},
  {"&", BINOP_CONCAT, PREC_ADD, 0},
  {"*", BINOP_MUL, PREC_MUL, 0},
  {"/", BINOP_DIV, PREC_MUL, 0},
  {"rem", BINOP_REM, PREC_MUL, 0},
  {"mod", BINOP_MOD, PREC_MUL, 0},
  {"**", BINOP_EXP, PREC_REPEAT, 0},
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
  {"-", UNOP_NEG, PREC_PREFIX, 0},
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
  {".all", UNOP_IND, PREC_SUFFIX, 1},
  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
  {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
  {NULL, 0, 0, 0}
};

enum ada_primitive_types {
  ada_primitive_type_int,
  ada_primitive_type_long,
  ada_primitive_type_short,
  ada_primitive_type_char,
  ada_primitive_type_float,
  ada_primitive_type_double,
  ada_primitive_type_void,
  ada_primitive_type_long_long,
  ada_primitive_type_long_double,
  ada_primitive_type_natural,
  ada_primitive_type_positive,
  ada_primitive_type_system_address,
  nr_ada_primitive_types
};

static void
ada_language_arch_info (struct gdbarch *gdbarch,
			struct language_arch_info *lai)
{
  const struct builtin_type *builtin = builtin_type (gdbarch);
  lai->primitive_type_vector
    = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
			      struct type *);

  lai->primitive_type_vector [ada_primitive_type_int]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "integer");
  lai->primitive_type_vector [ada_primitive_type_long]
    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
			 0, "long_integer");
  lai->primitive_type_vector [ada_primitive_type_short]
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
			 0, "short_integer");
  lai->string_char_type
    = lai->primitive_type_vector [ada_primitive_type_char]
    = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
  lai->primitive_type_vector [ada_primitive_type_float]
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
		       "float", NULL);
  lai->primitive_type_vector [ada_primitive_type_double]
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "long_float", NULL);
  lai->primitive_type_vector [ada_primitive_type_long_long]
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
			 0, "long_long_integer");
  lai->primitive_type_vector [ada_primitive_type_long_double]
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "long_long_float", NULL);
  lai->primitive_type_vector [ada_primitive_type_natural]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "natural");
  lai->primitive_type_vector [ada_primitive_type_positive]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "positive");
  lai->primitive_type_vector [ada_primitive_type_void]
    = builtin->builtin_void;

  lai->primitive_type_vector [ada_primitive_type_system_address]
    = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
  TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
    = "system__address";

  lai->bool_type_symbol = NULL;
  lai->bool_type_default = builtin->builtin_bool;
}

				/* Language vector */

/* Not really used, but needed in the ada_language_defn.  */

static void
emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
{
  ada_emit_char (c, type, stream, quoter, 1);
}

static int
parse (void)
{
  warnings_issued = 0;
  return ada_parse ();
}

static const struct exp_descriptor ada_exp_descriptor = {
  ada_print_subexp,
  ada_operator_length,
  ada_op_name,
  ada_dump_subexp_body,
  ada_evaluate_subexp
};

const struct language_defn ada_language_defn = {
  "ada",                        /* Language name */
  language_ada,
  range_check_off,
  type_check_off,
  case_sensitive_on,            /* Yes, Ada is case-insensitive, but
                                   that's not quite what this means.  */
  array_row_major,
  macro_expansion_no,
  &ada_exp_descriptor,
  parse,
  ada_error,
  resolve,
  ada_printchar,                /* Print a character constant */
  ada_printstr,                 /* Function to print string constant */
  emit_char,                    /* Function to print single char (not used) */
  ada_print_type,               /* Print a type using appropriate syntax */
  default_print_typedef,	/* Print a typedef using appropriate syntax */
  ada_val_print,                /* Print a value using appropriate syntax */
  ada_value_print,              /* Print a top-level value */
  NULL,                         /* Language specific skip_trampoline */
  NULL,                         /* name_of_this */
  ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
  basic_lookup_transparent_type,        /* lookup_transparent_type */
  ada_la_decode,                /* Language specific symbol demangler */
  NULL,                         /* Language specific class_name_from_physname */
  ada_op_print_tab,             /* expression operators for printing */
  0,                            /* c-style arrays */
  1,                            /* String lower bound */
  ada_get_gdb_completer_word_break_characters,
  ada_make_symbol_completion_list,
  ada_language_arch_info,
  ada_print_array_index,
  default_pass_by_reference,
  c_get_string,
  LANG_MAGIC
};

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_ada_language;

void
_initialize_ada_language (void)
{
  add_language (&ada_language_defn);

  varsize_limit = 65536;

  obstack_init (&symbol_list_obstack);

  decoded_names_store = htab_create_alloc
    (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
     NULL, xcalloc, xfree);

  observer_attach_executable_changed (ada_executable_changed_observer);
}