diff options
author | gdb-3.1 <gdb@fsf.org> | 1989-01-31 17:56:40 +0000 |
---|---|---|
committer | Pedro Alves <palves@redhat.com> | 2012-06-03 15:36:31 +0100 |
commit | e91b87a36830d061ef87d67be5f309e4d4ed918f (patch) | |
tree | 3408ea913a9cccd51c9b7d0b3bc7d7897cac8a5b /gdb/m-i386.h | |
parent | bb7592f01006b09c846831a9fb9c306307ba34f6 (diff) | |
download | gdb-e91b87a36830d061ef87d67be5f309e4d4ed918f.zip gdb-e91b87a36830d061ef87d67be5f309e4d4ed918f.tar.gz gdb-e91b87a36830d061ef87d67be5f309e4d4ed918f.tar.bz2 |
gdb-3.1
Diffstat (limited to 'gdb/m-i386.h')
-rw-r--r-- | gdb/m-i386.h | 394 |
1 files changed, 394 insertions, 0 deletions
diff --git a/gdb/m-i386.h b/gdb/m-i386.h new file mode 100644 index 0000000..f7d9cd2 --- /dev/null +++ b/gdb/m-i386.h @@ -0,0 +1,394 @@ +/* + * Changes for 80386 by Pace Willisson (pace@prep.ai.mit.edu) + * July 1988 + */ + +/* + Copyright (C) 1986, 1987 Free Software Foundation, Inc. + +GDB is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY. No author or distributor accepts responsibility to anyone +for the consequences of using it or for whether it serves any +particular purpose or works at all, unless he says so in writing. +Refer to the GDB General Public License for full details. + +Everyone is granted permission to copy, modify and redistribute GDB, +but only under the conditions described in the GDB General Public +License. A copy of this license is supposed to have been given to you +along with GDB so you can know your rights and responsibilities. It +should be in a file named COPYING. Among other things, the copyright +notice and this notice must be preserved on all copies. + +In other words, go ahead and share GDB, but don't try to stop +anyone else from sharing it farther. Help stamp out software hoarding! +*/ + +#ifndef i386 +#define i386 +#endif + +/* define USG if you are using sys5 /usr/include's */ +#define USG + +/* USG systems need these */ +#define vfork() fork() +#define MAXPATHLEN 500 + +/* define this if you don't have the extension to coff that allows + * file names to appear in the string table + * (aux.x_file.x_foff) + */ +#define COFF_NO_LONG_FILE_NAMES + +/* turn this on when rest of gdb is ready */ +/* #define IEEE_FLOAT */ + +#define NBPG NBPC +#define UPAGES USIZE + +#define HAVE_TERMIO + +/* Get rid of any system-imposed stack limit if possible. */ + +/* #define SET_STACK_LIMIT_HUGE not in sys5 */ + +/* Define this if the C compiler puts an underscore at the front + of external names before giving them to the linker. */ + +/* #define NAMES_HAVE_UNDERSCORE */ + +/* Specify debugger information format. */ + +/* #define READ_DBX_FORMAT */ +#define COFF_FORMAT + +/* number of traps that happen between exec'ing the shell + * to run an inferior, and when we finally get to + * the inferior code. This is 2 on most implementations. + */ +#define START_INFERIOR_TRAPS_EXPECTED 4 + +/* Offset from address of function to start of its code. + Zero on most machines. */ + +#define FUNCTION_START_OFFSET 0 + +/* Advance PC across any function entry prologue instructions + to reach some "real" code. */ + +#define SKIP_PROLOGUE(frompc) {(frompc) = i386_skip_prologue((frompc));} + +/* Immediately after a function call, return the saved pc. + Can't always go through the frames for this because on some machines + the new frame is not set up until the new function executes + some instructions. */ + +#define SAVED_PC_AFTER_CALL(frame) \ + (read_memory_integer (read_register (SP_REGNUM), 4)) + +/* This is the amount to subtract from u.u_ar0 + to get the offset in the core file of the register values. */ + +#define KERNEL_U_ADDR 0xe0000000 + +/* Address of end of stack space. */ + +#define STACK_END_ADDR 0x80000000 + +/* Stack grows downward. */ + +#define INNER_THAN < + +/* Sequence of bytes for breakpoint instruction. */ + +#define BREAKPOINT {0xcc} + +/* Amount PC must be decremented by after a breakpoint. + This is often the number of bytes in BREAKPOINT + but not always. */ + +#define DECR_PC_AFTER_BREAK 1 + +/* Nonzero if instruction at PC is a return instruction. */ + +#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc3) + +/* Return 1 if P points to an invalid floating point value. + LEN is the length in bytes -- not relevant on the 386. */ + +#define INVALID_FLOAT(p, len) (0) + +/* code to execute to print interesting information about the + * floating point processor (if any) + * No need to define if there is nothing to do. + */ +#define FLOAT_INFO { i386_float_info (); } + + +/* Largest integer type */ +#define LONGEST long + +/* Name of the builtin type for the LONGEST type above. */ +#define BUILTIN_TYPE_LONGEST builtin_type_long + +/* Say how long (ordinary) registers are. */ + +#define REGISTER_TYPE long + +/* Number of machine registers */ + +#define NUM_REGS 16 + +/* Initializer for an array of names of registers. + There should be NUM_REGS strings in this initializer. */ + +/* the order of the first 8 registers must match the compiler's + * numbering scheme (which is the same as the 386 scheme) + * also, this table must match regmap in i386-pinsn.c. + */ +#define REGISTER_NAMES { "eax", "ecx", "edx", "ebx", \ + "esp", "ebp", "esi", "edi", \ + "eip", "ps", "cs", "ss", \ + "ds", "es", "fs", "gs", \ + } + +/* Register numbers of various important registers. + Note that some of these values are "real" register numbers, + and correspond to the general registers of the machine, + and some are "phony" register numbers which are too large + to be actual register numbers as far as the user is concerned + but do serve to get the desired values when passed to read_register. */ + +#define FP_REGNUM 5 /* Contains address of executing stack frame */ +#define SP_REGNUM 4 /* Contains address of top of stack */ + +#define PC_REGNUM 8 +#define PS_REGNUM 9 + +#define REGISTER_U_ADDR(addr, blockend, regno) \ + (addr) = i386_register_u_addr ((blockend),(regno)); + +/* Total amount of space needed to store our copies of the machine's + register state, the array `registers'. */ +#define REGISTER_BYTES (NUM_REGS * 4) + +/* Index within `registers' of the first byte of the space for + register N. */ + +#define REGISTER_BYTE(N) ((N)*4) + +/* Number of bytes of storage in the actual machine representation + for register N. */ + +#define REGISTER_RAW_SIZE(N) (4) + +/* Number of bytes of storage in the program's representation + for register N. */ + +#define REGISTER_VIRTUAL_SIZE(N) (4) + +/* Largest value REGISTER_RAW_SIZE can have. */ + +#define MAX_REGISTER_RAW_SIZE 4 + +/* Largest value REGISTER_VIRTUAL_SIZE can have. */ + +#define MAX_REGISTER_VIRTUAL_SIZE 4 + +/* Nonzero if register N requires conversion + from raw format to virtual format. */ + +#define REGISTER_CONVERTIBLE(N) (0) + +/* Convert data from raw format for register REGNUM + to virtual format for register REGNUM. */ + +#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) {bcopy ((FROM), (TO), 4);} + +/* Convert data from virtual format for register REGNUM + to raw format for register REGNUM. */ + +#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) {bcopy ((FROM), (TO), 4);} + +/* Return the GDB type object for the "standard" data type + of data in register N. */ + +#define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int) + +/* Store the address of the place in which to copy the structure the + subroutine will return. This is called from call_function. */ + +#define STORE_STRUCT_RETURN(ADDR, SP) \ + { (SP) -= sizeof (ADDR); \ + write_memory ((SP), &(ADDR), sizeof (ADDR)); } + +/* Extract from an array REGBUF containing the (raw) register state + a function return value of type TYPE, and copy that, in virtual format, + into VALBUF. */ + +#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ + bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) + +/* Write into appropriate registers a function return value + of type TYPE, given in virtual format. */ + +#define STORE_RETURN_VALUE(TYPE,VALBUF) \ + write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE)) + +/* Extract from an array REGBUF containing the (raw) register state + the address in which a function should return its structure value, + as a CORE_ADDR (or an expression that can be used as one). */ + +#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) + + +/* Describe the pointer in each stack frame to the previous stack frame + (its caller). */ + +/* FRAME_CHAIN takes a frame's nominal address + and produces the frame's chain-pointer. + + FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address + and produces the nominal address of the caller frame. + + However, if FRAME_CHAIN_VALID returns zero, + it means the given frame is the outermost one and has no caller. + In that case, FRAME_CHAIN_COMBINE is not used. */ + +#define FRAME_CHAIN(thisframe) (read_memory_integer ((thisframe)->frame, 4)) + +#define FRAME_CHAIN_VALID(chain, thisframe) \ + (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end)) + +#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) + +/* Define other aspects of the stack frame. */ + +#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4)) + +#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame) + +#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame) + +/* Return number of args passed to a frame. + Can return -1, meaning no way to tell. */ + +/* on the 386, the instruction following the call could be: + * popl %ecx - one arg + * addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits + * anything else - zero args + */ +#define FRAME_NUM_ARGS(numargs, fi) { \ + int retpc; \ + unsigned char op; \ + struct frame_info *pfi; \ + pfi = get_prev_frame_info ((fi)); \ + retpc = pfi->pc; \ + numargs = 0; \ + op = read_memory_integer (retpc, 1); \ + if (op == 0x59) \ + /* pop %ecx */ \ + (numargs) = 1; \ + else if (op == 0x83) { \ + op = read_memory_integer (retpc+1, 1); \ + if (op == 0xc4) \ + /* addl $<signed imm 8 bits>, %esp */ \ + (numargs) = (read_memory_integer (retpc+2,1)&0xff)/4;\ + } else if (op == 0x81) { /* add with 32 bit immediate */\ + op = read_memory_integer (retpc+1, 1); \ + if (op == 0xc4) \ + /* addl $<imm 32>, %esp */ \ + (numargs) = read_memory_integer (retpc+2, 4) / 4;\ + } \ +} + +/* Return number of bytes at start of arglist that are not really args. */ + +#define FRAME_ARGS_SKIP 8 + +/* Put here the code to store, into a struct frame_saved_regs, + the addresses of the saved registers of frame described by FRAME_INFO. + This includes special registers such as pc and fp saved in special + ways in the stack frame. sp is even more special: + the address we return for it IS the sp for the next frame. */ + +#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ +{ i386_frame_find_saved_regs ((frame_info), &(frame_saved_regs)); } + + +/* Things needed for making the inferior call functions. */ + +/* Push an empty stack frame, to record the current PC, etc. */ + +#define PUSH_DUMMY_FRAME { i386_push_dummy_frame (); } + +/* Discard from the stack the innermost frame, restoring all registers. */ + +#define POP_FRAME { i386_pop_frame (); } + +/* this is + * call 11223344 (32 bit relative) + * int3 + */ + +#define CALL_DUMMY { 0x223344e8, 0xcc11 } + +#define CALL_DUMMY_LENGTH 8 + +#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */ + +/* Insert the specified number of args and function address + into a call sequence of the above form stored at DUMMYNAME. */ + +#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \ +{ \ + int from, to, delta, loc; \ + loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH); \ + from = loc + 5; \ + to = (int)(fun); \ + delta = to - from; \ + *(int *)((char *)(dummyname) + 1) = delta; \ +} + + +#if 0 +/* Interface definitions for kernel debugger KDB. */ + +/* Map machine fault codes into signal numbers. + First subtract 0, divide by 4, then index in a table. + Faults for which the entry in this table is 0 + are not handled by KDB; the program's own trap handler + gets to handle then. */ + +#define FAULT_CODE_ORIGIN 0 +#define FAULT_CODE_UNITS 4 +#define FAULT_TABLE \ +{ 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0} + +/* Start running with a stack stretching from BEG to END. + BEG and END should be symbols meaningful to the assembler. + This is used only for kdb. */ + +#define INIT_STACK(beg, end) {} + +/* Push the frame pointer register on the stack. */ +#define PUSH_FRAME_PTR {} + +/* Copy the top-of-stack to the frame pointer register. */ +#define POP_FRAME_PTR {} + +/* After KDB is entered by a fault, push all registers + that GDB thinks about (all NUM_REGS of them), + so that they appear in order of ascending GDB register number. + The fault code will be on the stack beyond the last register. */ + +#define PUSH_REGISTERS {} + +/* Assuming the registers (including processor status) have been + pushed on the stack in order of ascending GDB register number, + restore them and return to the address in the saved PC register. */ + +#define POP_REGISTERS {} +#endif |