aboutsummaryrefslogtreecommitdiff
path: root/gdb/irix5-nat.c
diff options
context:
space:
mode:
authorIan Lance Taylor <ian@airs.com>1993-12-06 17:12:23 +0000
committerIan Lance Taylor <ian@airs.com>1993-12-06 17:12:23 +0000
commita2f1e2e5f8bf65d1751d90540a0667696e00a8fc (patch)
tree477acbbf23be79338744cd9de7529285a3994c37 /gdb/irix5-nat.c
parenteb91665b4cae0e1824a25da81788bf486d109077 (diff)
downloadgdb-a2f1e2e5f8bf65d1751d90540a0667696e00a8fc.zip
gdb-a2f1e2e5f8bf65d1751d90540a0667696e00a8fc.tar.gz
gdb-a2f1e2e5f8bf65d1751d90540a0667696e00a8fc.tar.bz2
New files for Irix 5 support.
Diffstat (limited to 'gdb/irix5-nat.c')
-rw-r--r--gdb/irix5-nat.c1072
1 files changed, 1072 insertions, 0 deletions
diff --git a/gdb/irix5-nat.c b/gdb/irix5-nat.c
new file mode 100644
index 0000000..0ae328f
--- /dev/null
+++ b/gdb/irix5-nat.c
@@ -0,0 +1,1072 @@
+/* Native support for the SGI Iris running IRIX version 5, for GDB.
+ Copyright 1988, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+ Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
+ and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
+ Implemented for Irix 4.x by Garrett A. Wollman.
+ Modified for Irix 5.x by Ian Lance Taylor.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "target.h"
+
+#include <sys/time.h>
+#include <sys/procfs.h>
+#include <setjmp.h> /* For JB_XXX. */
+
+/* Size of elements in jmpbuf */
+
+#define JB_ELEMENT_SIZE 4
+
+/*
+ * See the comment in m68k-tdep.c regarding the utility of these functions.
+ *
+ * These definitions are from the MIPS SVR4 ABI, so they may work for
+ * any MIPS SVR4 target.
+ */
+
+void
+supply_gregset (gregsetp)
+ gregset_t *gregsetp;
+{
+ register int regi;
+ register greg_t *regp = &(*gregsetp)[0];
+
+ for(regi = 0; regi <= CTX_RA; regi++)
+ supply_register (regi, (char *)(regp + regi));
+
+ supply_register (PC_REGNUM, (char *)(regp + CTX_EPC));
+ supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI));
+ supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO));
+ supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE));
+}
+
+void
+fill_gregset (gregsetp, regno)
+ gregset_t *gregsetp;
+ int regno;
+{
+ int regi;
+ register greg_t *regp = &(*gregsetp)[0];
+
+ for (regi = 0; regi <= CTX_RA; regi++)
+ if ((regno == -1) || (regno == regi))
+ *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
+
+ if ((regno == -1) || (regno == PC_REGNUM))
+ *(regp + CTX_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
+
+ if ((regno == -1) || (regno == CAUSE_REGNUM))
+ *(regp + CTX_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (PS_REGNUM)];
+
+ if ((regno == -1) || (regno == HI_REGNUM))
+ *(regp + CTX_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
+
+ if ((regno == -1) || (regno == LO_REGNUM))
+ *(regp + CTX_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
+}
+
+/*
+ * Now we do the same thing for floating-point registers.
+ * We don't bother to condition on FP0_REGNUM since any
+ * reasonable MIPS configuration has an R3010 in it.
+ *
+ * Again, see the comments in m68k-tdep.c.
+ */
+
+void
+supply_fpregset (fpregsetp)
+ fpregset_t *fpregsetp;
+{
+ register int regi;
+
+ for (regi = 0; regi < 32; regi++)
+ supply_register (FP0_REGNUM + regi,
+ (char *)&fpregsetp->fp_r.fp_regs[regi]);
+
+ supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
+
+ /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
+}
+
+void
+fill_fpregset (fpregsetp, regno)
+ fpregset_t *fpregsetp;
+ int regno;
+{
+ int regi;
+ char *from, *to;
+
+ for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
+ {
+ if ((regno == -1) || (regno == regi))
+ {
+ from = (char *) &registers[REGISTER_BYTE (regi)];
+ to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
+ memcpy(to, from, REGISTER_RAW_SIZE (regi));
+ }
+ }
+
+ if ((regno == -1) || (regno == FCRCS_REGNUM))
+ fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
+}
+
+
+/* Figure out where the longjmp will land.
+ We expect the first arg to be a pointer to the jmp_buf structure from which
+ we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
+ This routine returns true on success. */
+
+int
+get_longjmp_target (pc)
+ CORE_ADDR *pc;
+{
+ char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
+ CORE_ADDR jb_addr;
+
+ jb_addr = read_register (A0_REGNUM);
+
+ if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
+ TARGET_PTR_BIT / TARGET_CHAR_BIT))
+ return 0;
+
+ *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
+
+ return 1;
+}
+
+void
+fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
+ char *core_reg_sect;
+ unsigned core_reg_size;
+ int which; /* Unused */
+ unsigned int reg_addr; /* Unused */
+{
+ if (core_reg_size != REGISTER_BYTES)
+ {
+ warning ("wrong size gregset struct in core file");
+ return;
+ }
+
+ memcpy ((char *)registers, core_reg_sect, core_reg_size);
+}
+
+/* Irix 5 uses what appears to be a unique form of shared library
+ support. This is a copy of solib.c modified for Irix 5. */
+
+#include <sys/types.h>
+#include <signal.h>
+#include <string.h>
+#include <sys/param.h>
+#include <fcntl.h>
+
+/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
+ with our versions of those files included by tm-mips.h. Prevent
+ <obj.h> from including them with some appropriate defines. */
+#define __SYM_H__
+#define __SYMCONST_H__
+#include <obj.h>
+
+#include "symtab.h"
+#include "bfd.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "command.h"
+#include "frame.h"
+#include "regex.h"
+#include "inferior.h"
+#include "language.h"
+
+/* We need to set a breakpoint at a point when we know that the
+ mapping of shared libraries is complete. dbx simply breaks at main
+ (or, for FORTRAN, MAIN__), so we do the same. We can not break at
+ the very beginning of main, because the startup code will jump into
+ main after the GP initialization instructions. SOLIB_BKPT_OFFSET
+ is used to skip those instructions. */
+
+#define SOLIB_BKPT_OFFSET 12
+
+static char *bkpt_names[] = {
+ "main",
+ "MAIN__",
+ NULL
+};
+
+/* The symbol which starts off the list of shared libraries. */
+#define DEBUG_BASE "__rld_obj_head"
+
+/* How to get the loaded address of a shared library. */
+#define LM_ADDR(so) ((so)->lm.o_base_address)
+
+char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
+
+extern CORE_ADDR sigtramp_address, sigtramp_end;
+
+struct so_list {
+ struct so_list *next; /* next structure in linked list */
+ struct obj_list ll;
+ struct obj lm; /* copy of link map from inferior */
+ struct obj_list *lladdr; /* addr in inferior lm was read from */
+ CORE_ADDR lmend; /* upper addr bound of mapped object */
+ char symbols_loaded; /* flag: symbols read in yet? */
+ char from_tty; /* flag: print msgs? */
+ struct objfile *objfile; /* objfile for loaded lib */
+ struct section_table *sections;
+ struct section_table *sections_end;
+ struct section_table *textsection;
+ bfd *abfd;
+};
+
+static struct so_list *so_list_head; /* List of known shared objects */
+static CORE_ADDR debug_base; /* Base of dynamic linker structures */
+static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
+
+/* Local function prototypes */
+
+static void
+sharedlibrary_command PARAMS ((char *, int));
+
+static int
+enable_break PARAMS ((void));
+
+static int
+disable_break PARAMS ((void));
+
+static void
+info_sharedlibrary_command PARAMS ((char *, int));
+
+static int
+symbol_add_stub PARAMS ((char *));
+
+static struct so_list *
+find_solib PARAMS ((struct so_list *));
+
+static struct obj_list *
+first_link_map_member PARAMS ((void));
+
+static CORE_ADDR
+locate_base PARAMS ((void));
+
+static void
+solib_map_sections PARAMS ((struct so_list *));
+
+/*
+
+LOCAL FUNCTION
+
+ solib_map_sections -- open bfd and build sections for shared lib
+
+SYNOPSIS
+
+ static void solib_map_sections (struct so_list *so)
+
+DESCRIPTION
+
+ Given a pointer to one of the shared objects in our list
+ of mapped objects, use the recorded name to open a bfd
+ descriptor for the object, build a section table, and then
+ relocate all the section addresses by the base address at
+ which the shared object was mapped.
+
+FIXMES
+
+ In most (all?) cases the shared object file name recorded in the
+ dynamic linkage tables will be a fully qualified pathname. For
+ cases where it isn't, do we really mimic the systems search
+ mechanism correctly in the below code (particularly the tilde
+ expansion stuff?).
+ */
+
+static void
+solib_map_sections (so)
+ struct so_list *so;
+{
+ char *filename;
+ char *scratch_pathname;
+ int scratch_chan;
+ struct section_table *p;
+ struct cleanup *old_chain;
+ bfd *abfd;
+
+ filename = tilde_expand (so -> lm.o_path);
+ old_chain = make_cleanup (free, filename);
+
+ scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
+ &scratch_pathname);
+ if (scratch_chan < 0)
+ {
+ scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
+ O_RDONLY, 0, &scratch_pathname);
+ }
+ if (scratch_chan < 0)
+ {
+ perror_with_name (filename);
+ }
+ /* Leave scratch_pathname allocated. abfd->name will point to it. */
+
+ abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
+ if (!abfd)
+ {
+ close (scratch_chan);
+ error ("Could not open `%s' as an executable file: %s",
+ scratch_pathname, bfd_errmsg (bfd_error));
+ }
+ /* Leave bfd open, core_xfer_memory and "info files" need it. */
+ so -> abfd = abfd;
+ abfd -> cacheable = true;
+
+ if (!bfd_check_format (abfd, bfd_object))
+ {
+ error ("\"%s\": not in executable format: %s.",
+ scratch_pathname, bfd_errmsg (bfd_error));
+ }
+ if (build_section_table (abfd, &so -> sections, &so -> sections_end))
+ {
+ error ("Can't find the file sections in `%s': %s",
+ bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
+ }
+
+ for (p = so -> sections; p < so -> sections_end; p++)
+ {
+ /* Relocate the section binding addresses as recorded in the shared
+ object's file by the base address to which the object was actually
+ mapped. */
+ p -> addr += (CORE_ADDR) LM_ADDR (so);
+ p -> endaddr += (CORE_ADDR) LM_ADDR (so);
+ so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
+ if (STREQ (p -> sec_ptr -> name, ".text"))
+ {
+ so -> textsection = p;
+ }
+ }
+
+ /* Free the file names, close the file now. */
+ do_cleanups (old_chain);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ locate_base -- locate the base address of dynamic linker structs
+
+SYNOPSIS
+
+ CORE_ADDR locate_base (void)
+
+DESCRIPTION
+
+ For both the SunOS and SVR4 shared library implementations, if the
+ inferior executable has been linked dynamically, there is a single
+ address somewhere in the inferior's data space which is the key to
+ locating all of the dynamic linker's runtime structures. This
+ address is the value of the symbol defined by the macro DEBUG_BASE.
+ The job of this function is to find and return that address, or to
+ return 0 if there is no such address (the executable is statically
+ linked for example).
+
+ For SunOS, the job is almost trivial, since the dynamic linker and
+ all of it's structures are statically linked to the executable at
+ link time. Thus the symbol for the address we are looking for has
+ already been added to the minimal symbol table for the executable's
+ objfile at the time the symbol file's symbols were read, and all we
+ have to do is look it up there. Note that we explicitly do NOT want
+ to find the copies in the shared library.
+
+ The SVR4 version is much more complicated because the dynamic linker
+ and it's structures are located in the shared C library, which gets
+ run as the executable's "interpreter" by the kernel. We have to go
+ to a lot more work to discover the address of DEBUG_BASE. Because
+ of this complexity, we cache the value we find and return that value
+ on subsequent invocations. Note there is no copy in the executable
+ symbol tables.
+
+ Irix 5 is basically like SunOS.
+
+ Note that we can assume nothing about the process state at the time
+ we need to find this address. We may be stopped on the first instruc-
+ tion of the interpreter (C shared library), the first instruction of
+ the executable itself, or somewhere else entirely (if we attached
+ to the process for example).
+
+ */
+
+static CORE_ADDR
+locate_base ()
+{
+ struct minimal_symbol *msymbol;
+ CORE_ADDR address = 0;
+
+ msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
+ if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
+ {
+ address = SYMBOL_VALUE_ADDRESS (msymbol);
+ }
+ return (address);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ first_link_map_member -- locate first member in dynamic linker's map
+
+SYNOPSIS
+
+ static struct link_map *first_link_map_member (void)
+
+DESCRIPTION
+
+ Read in a copy of the first member in the inferior's dynamic
+ link map from the inferior's dynamic linker structures, and return
+ a pointer to the copy in our address space.
+*/
+
+static struct obj_list *
+first_link_map_member ()
+{
+ struct obj_list *lm;
+ struct obj_list s;
+
+ read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *));
+
+ if (lm == NULL)
+ return NULL;
+
+ /* The first entry in the list is the object file we are debugging,
+ so skip it. */
+ read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list));
+
+ return s.next;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ find_solib -- step through list of shared objects
+
+SYNOPSIS
+
+ struct so_list *find_solib (struct so_list *so_list_ptr)
+
+DESCRIPTION
+
+ This module contains the routine which finds the names of any
+ loaded "images" in the current process. The argument in must be
+ NULL on the first call, and then the returned value must be passed
+ in on subsequent calls. This provides the capability to "step" down
+ the list of loaded objects. On the last object, a NULL value is
+ returned.
+ */
+
+static struct so_list *
+find_solib (so_list_ptr)
+ struct so_list *so_list_ptr; /* Last lm or NULL for first one */
+{
+ struct so_list *so_list_next = NULL;
+ struct obj_list *lm = NULL;
+ struct so_list *new;
+
+ if (so_list_ptr == NULL)
+ {
+ /* We are setting up for a new scan through the loaded images. */
+ if ((so_list_next = so_list_head) == NULL)
+ {
+ /* We have not already read in the dynamic linking structures
+ from the inferior, lookup the address of the base structure. */
+ debug_base = locate_base ();
+ if (debug_base != 0)
+ {
+ /* Read the base structure in and find the address of the first
+ link map list member. */
+ lm = first_link_map_member ();
+ }
+ }
+ }
+ else
+ {
+ /* We have been called before, and are in the process of walking
+ the shared library list. Advance to the next shared object. */
+ if ((lm = so_list_ptr->ll.next) == NULL)
+ {
+ /* We have hit the end of the list, so check to see if any were
+ added, but be quiet if we can't read from the target any more. */
+ int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr,
+ (char *) &(so_list_ptr -> ll),
+ sizeof (struct obj_list));
+ if (status == 0)
+ {
+ lm = so_list_ptr->ll.next;
+ }
+ else
+ {
+ lm = NULL;
+ }
+ }
+ so_list_next = so_list_ptr -> next;
+ }
+ if ((so_list_next == NULL) && (lm != NULL))
+ {
+ /* Get next link map structure from inferior image and build a local
+ abbreviated load_map structure */
+ new = (struct so_list *) xmalloc (sizeof (struct so_list));
+ memset ((char *) new, 0, sizeof (struct so_list));
+ new -> lladdr = lm;
+ /* Add the new node as the next node in the list, or as the root
+ node if this is the first one. */
+ if (so_list_ptr != NULL)
+ {
+ so_list_ptr -> next = new;
+ }
+ else
+ {
+ so_list_head = new;
+ }
+ so_list_next = new;
+ read_memory ((CORE_ADDR) lm, (char *) &(new -> ll),
+ sizeof (struct obj_list));
+ read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm),
+ sizeof (struct obj));
+ solib_map_sections (new);
+ }
+ return (so_list_next);
+}
+
+/* A small stub to get us past the arg-passing pinhole of catch_errors. */
+
+static int
+symbol_add_stub (arg)
+ char *arg;
+{
+ register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
+
+ so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty,
+ (unsigned int) so -> textsection -> addr,
+ 0, 0, 0);
+ return (1);
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_add -- add a shared library file to the symtab and section list
+
+SYNOPSIS
+
+ void solib_add (char *arg_string, int from_tty,
+ struct target_ops *target)
+
+DESCRIPTION
+
+*/
+
+void
+solib_add (arg_string, from_tty, target)
+ char *arg_string;
+ int from_tty;
+ struct target_ops *target;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+
+ /* Last shared library that we read. */
+ struct so_list *so_last = NULL;
+
+ char *re_err;
+ int count;
+ int old;
+
+ if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
+ {
+ error ("Invalid regexp: %s", re_err);
+ }
+
+ /* Getting new symbols may change our opinion about what is
+ frameless. */
+ reinit_frame_cache ();
+ /* Not to mention where _sigtramp is. */
+ sigtramp_address = 0;
+
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> lm.o_path[0] && re_exec (so -> lm.o_path))
+ {
+ so -> from_tty = from_tty;
+ if (so -> symbols_loaded)
+ {
+ if (from_tty)
+ {
+ printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path);
+ }
+ }
+ else if (catch_errors
+ (symbol_add_stub, (char *) so,
+ "Error while reading shared library symbols:\n",
+ RETURN_MASK_ALL))
+ {
+ so_last = so;
+ so -> symbols_loaded = 1;
+ }
+ }
+ }
+
+ /* Now add the shared library sections to the section table of the
+ specified target, if any. */
+ if (target)
+ {
+ /* Count how many new section_table entries there are. */
+ so = NULL;
+ count = 0;
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> lm.o_path[0])
+ {
+ count += so -> sections_end - so -> sections;
+ }
+ }
+
+ if (count)
+ {
+ /* Reallocate the target's section table including the new size. */
+ if (target -> to_sections)
+ {
+ old = target -> to_sections_end - target -> to_sections;
+ target -> to_sections = (struct section_table *)
+ xrealloc ((char *)target -> to_sections,
+ (sizeof (struct section_table)) * (count + old));
+ }
+ else
+ {
+ old = 0;
+ target -> to_sections = (struct section_table *)
+ xmalloc ((sizeof (struct section_table)) * count);
+ }
+ target -> to_sections_end = target -> to_sections + (count + old);
+
+ /* Add these section table entries to the target's table. */
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> lm.o_path[0])
+ {
+ count = so -> sections_end - so -> sections;
+ memcpy ((char *) (target -> to_sections + old),
+ so -> sections,
+ (sizeof (struct section_table)) * count);
+ old += count;
+ }
+ }
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ info_sharedlibrary_command -- code for "info sharedlibrary"
+
+SYNOPSIS
+
+ static void info_sharedlibrary_command ()
+
+DESCRIPTION
+
+ Walk through the shared library list and print information
+ about each attached library.
+*/
+
+static void
+info_sharedlibrary_command (ignore, from_tty)
+ char *ignore;
+ int from_tty;
+{
+ register struct so_list *so = NULL; /* link map state variable */
+ int header_done = 0;
+
+ if (exec_bfd == NULL)
+ {
+ printf_unfiltered ("No exec file.\n");
+ return;
+ }
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> lm.o_path[0])
+ {
+ if (!header_done)
+ {
+ printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
+ "Shared Object Library");
+ header_done++;
+ }
+ printf_unfiltered ("%-12s",
+ local_hex_string_custom ((unsigned long) LM_ADDR (so),
+ "08l"));
+ printf_unfiltered ("%-12s",
+ local_hex_string_custom ((unsigned long) so -> lmend,
+ "08l"));
+ printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
+ printf_unfiltered ("%s\n", so -> lm.o_path);
+ }
+ }
+ if (so_list_head == NULL)
+ {
+ printf_unfiltered ("No shared libraries loaded at this time.\n");
+ }
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_address -- check to see if an address is in a shared lib
+
+SYNOPSIS
+
+ int solib_address (CORE_ADDR address)
+
+DESCRIPTION
+
+ Provides a hook for other gdb routines to discover whether or
+ not a particular address is within the mapped address space of
+ a shared library. Any address between the base mapping address
+ and the first address beyond the end of the last mapping, is
+ considered to be within the shared library address space, for
+ our purposes.
+
+ For example, this routine is called at one point to disable
+ breakpoints which are in shared libraries that are not currently
+ mapped in.
+ */
+
+int
+solib_address (address)
+ CORE_ADDR address;
+{
+ register struct so_list *so = 0; /* link map state variable */
+
+ while ((so = find_solib (so)) != NULL)
+ {
+ if (so -> lm.o_path[0])
+ {
+ if ((address >= (CORE_ADDR) so->lm.o_base_address) &&
+ (address < (CORE_ADDR) so -> lmend))
+ {
+ return (1);
+ }
+ }
+ }
+ return (0);
+}
+
+/* Called by free_all_symtabs */
+
+void
+clear_solib()
+{
+ struct so_list *next;
+ char *bfd_filename;
+
+ while (so_list_head)
+ {
+ if (so_list_head -> sections)
+ {
+ free ((PTR)so_list_head -> sections);
+ }
+ if (so_list_head -> abfd)
+ {
+ bfd_filename = bfd_get_filename (so_list_head -> abfd);
+ bfd_close (so_list_head -> abfd);
+ }
+ else
+ /* This happens for the executable on SVR4. */
+ bfd_filename = NULL;
+
+ next = so_list_head -> next;
+ if (bfd_filename)
+ free ((PTR)bfd_filename);
+ free ((PTR)so_list_head);
+ so_list_head = next;
+ }
+ debug_base = 0;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ disable_break -- remove the "mapping changed" breakpoint
+
+SYNOPSIS
+
+ static int disable_break ()
+
+DESCRIPTION
+
+ Removes the breakpoint that gets hit when the dynamic linker
+ completes a mapping change.
+
+*/
+
+static int
+disable_break ()
+{
+ int status = 1;
+
+
+ /* Note that breakpoint address and original contents are in our address
+ space, so we just need to write the original contents back. */
+
+ if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
+ {
+ status = 0;
+ }
+
+ /* For the SVR4 version, we always know the breakpoint address. For the
+ SunOS version we don't know it until the above code is executed.
+ Grumble if we are stopped anywhere besides the breakpoint address. */
+
+ if (stop_pc != breakpoint_addr)
+ {
+ warning ("stopped at unknown breakpoint while handling shared libraries");
+ }
+
+ return (status);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ enable_break -- arrange for dynamic linker to hit breakpoint
+
+SYNOPSIS
+
+ int enable_break (void)
+
+DESCRIPTION
+
+ Both the SunOS and the SVR4 dynamic linkers have, as part of their
+ debugger interface, support for arranging for the inferior to hit
+ a breakpoint after mapping in the shared libraries. This function
+ enables that breakpoint.
+
+ For SunOS, there is a special flag location (in_debugger) which we
+ set to 1. When the dynamic linker sees this flag set, it will set
+ a breakpoint at a location known only to itself, after saving the
+ original contents of that place and the breakpoint address itself,
+ in it's own internal structures. When we resume the inferior, it
+ will eventually take a SIGTRAP when it runs into the breakpoint.
+ We handle this (in a different place) by restoring the contents of
+ the breakpointed location (which is only known after it stops),
+ chasing around to locate the shared libraries that have been
+ loaded, then resuming.
+
+ For SVR4, the debugger interface structure contains a member (r_brk)
+ which is statically initialized at the time the shared library is
+ built, to the offset of a function (_r_debug_state) which is guaran-
+ teed to be called once before mapping in a library, and again when
+ the mapping is complete. At the time we are examining this member,
+ it contains only the unrelocated offset of the function, so we have
+ to do our own relocation. Later, when the dynamic linker actually
+ runs, it relocates r_brk to be the actual address of _r_debug_state().
+
+ The debugger interface structure also contains an enumeration which
+ is set to either RT_ADD or RT_DELETE prior to changing the mapping,
+ depending upon whether or not the library is being mapped or unmapped,
+ and then set to RT_CONSISTENT after the library is mapped/unmapped.
+
+ Irix 5, on the other hand, has no such features. Instead, we
+ set a breakpoint at main.
+*/
+
+static int
+enable_break ()
+{
+ int success = 0;
+ struct minimal_symbol *msymbol;
+ char **bkpt_namep;
+ CORE_ADDR bkpt_addr;
+
+ /* Scan through the list of symbols, trying to look up the symbol and
+ set a breakpoint there. Terminate loop when we/if we succeed. */
+
+ breakpoint_addr = 0;
+ for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
+ {
+ msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
+ if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
+ {
+ bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
+#ifdef SOLIB_BKPT_OFFSET
+ /* We only want to skip if bkpt_addr is currently pointing
+ at a GP setting instruction. */
+ {
+ char buf[4];
+
+ if (target_read_memory (bkpt_addr, buf, 4) == 0)
+ {
+ unsigned long insn;
+
+ insn = extract_unsigned_integer (buf, 4);
+ if ((insn & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */
+ bkpt_addr += SOLIB_BKPT_OFFSET;
+ }
+ }
+#endif
+ if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
+ {
+ breakpoint_addr = bkpt_addr;
+ success = 1;
+ break;
+ }
+ }
+ }
+
+ return (success);
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ solib_create_inferior_hook -- shared library startup support
+
+SYNOPSIS
+
+ void solib_create_inferior_hook()
+
+DESCRIPTION
+
+ When gdb starts up the inferior, it nurses it along (through the
+ shell) until it is ready to execute it's first instruction. At this
+ point, this function gets called via expansion of the macro
+ SOLIB_CREATE_INFERIOR_HOOK.
+
+ For SunOS executables, this first instruction is typically the
+ one at "_start", or a similar text label, regardless of whether
+ the executable is statically or dynamically linked. The runtime
+ startup code takes care of dynamically linking in any shared
+ libraries, once gdb allows the inferior to continue.
+
+ For SVR4 executables, this first instruction is either the first
+ instruction in the dynamic linker (for dynamically linked
+ executables) or the instruction at "start" for statically linked
+ executables. For dynamically linked executables, the system
+ first exec's /lib/libc.so.N, which contains the dynamic linker,
+ and starts it running. The dynamic linker maps in any needed
+ shared libraries, maps in the actual user executable, and then
+ jumps to "start" in the user executable.
+
+ For both SunOS shared libraries, and SVR4 shared libraries, we
+ can arrange to cooperate with the dynamic linker to discover the
+ names of shared libraries that are dynamically linked, and the
+ base addresses to which they are linked.
+
+ This function is responsible for discovering those names and
+ addresses, and saving sufficient information about them to allow
+ their symbols to be read at a later time.
+
+FIXME
+
+ Between enable_break() and disable_break(), this code does not
+ properly handle hitting breakpoints which the user might have
+ set in the startup code or in the dynamic linker itself. Proper
+ handling will probably have to wait until the implementation is
+ changed to use the "breakpoint handler function" method.
+
+ Also, what if child has exit()ed? Must exit loop somehow.
+ */
+
+void
+solib_create_inferior_hook()
+{
+ if (!enable_break ())
+ {
+ warning ("shared library handler failed to enable breakpoint");
+ return;
+ }
+
+ /* Now run the target. It will eventually hit the breakpoint, at
+ which point all of the libraries will have been mapped in and we
+ can go groveling around in the dynamic linker structures to find
+ out what we need to know about them. */
+
+ clear_proceed_status ();
+ stop_soon_quietly = 1;
+ stop_signal = 0;
+ do
+ {
+ target_resume (-1, 0, stop_signal);
+ wait_for_inferior ();
+ }
+ while (stop_signal != SIGTRAP);
+ stop_soon_quietly = 0;
+
+ /* We are now either at the "mapping complete" breakpoint (or somewhere
+ else, a condition we aren't prepared to deal with anyway), so adjust
+ the PC as necessary after a breakpoint, disable the breakpoint, and
+ add any shared libraries that were mapped in. */
+
+ if (DECR_PC_AFTER_BREAK)
+ {
+ stop_pc -= DECR_PC_AFTER_BREAK;
+ write_register (PC_REGNUM, stop_pc);
+ }
+
+ if (!disable_break ())
+ {
+ warning ("shared library handler failed to disable breakpoint");
+ }
+
+ solib_add ((char *) 0, 0, (struct target_ops *) 0);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ sharedlibrary_command -- handle command to explicitly add library
+
+SYNOPSIS
+
+ static void sharedlibrary_command (char *args, int from_tty)
+
+DESCRIPTION
+
+*/
+
+static void
+sharedlibrary_command (args, from_tty)
+char *args;
+int from_tty;
+{
+ dont_repeat ();
+ solib_add (args, from_tty, (struct target_ops *) 0);
+}
+
+void
+_initialize_solib()
+{
+
+ add_com ("sharedlibrary", class_files, sharedlibrary_command,
+ "Load shared object library symbols for files matching REGEXP.");
+ add_info ("sharedlibrary", info_sharedlibrary_command,
+ "Status of loaded shared object libraries.");
+}