aboutsummaryrefslogtreecommitdiff
path: root/gdb/i960-tdep.c
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2002-12-16 20:39:23 +0000
committerAndrew Cagney <cagney@redhat.com>2002-12-16 20:39:23 +0000
commit1a14e23479eb187b1837310243d1a3ffe7b95e0c (patch)
treeabd21a673167499137de7ee3a335eca5b159f120 /gdb/i960-tdep.c
parentda81390ba627de5fee7615d00f2116253c65a5a4 (diff)
downloadgdb-1a14e23479eb187b1837310243d1a3ffe7b95e0c.zip
gdb-1a14e23479eb187b1837310243d1a3ffe7b95e0c.tar.gz
gdb-1a14e23479eb187b1837310243d1a3ffe7b95e0c.tar.bz2
2002-12-16 Andrew Cagney <ac131313@redhat.com>
* config/arc/arc.mt, config/arc/tm-arc.h: Delete. * config/d30v/d30v.mt, config/d30v/tm-d30v.h: Delete. * config/fr30/fr30.mt, config/fr30/tm-fr30.h: Delete. * config/i386/i386aix.mh, config/i386/i386aix.mt: Delete. * config/i386/i386m3.mh, config/i386/i386m3.mt: Delete. * config/i386/i386mach.mh, config/i386/i386os9k.mt: Delete. * config/i386/nm-i386aix.h, config/i386/nm-i386mach.h: Delete. * config/i386/nm-m3.h, config/i386/tm-i386aix.h: Delete. * config/i386/tm-i386m3.h, config/i386/tm-i386mk.h: Delete. * config/i386/xm-i386aix.h, config/i386/xm-i386m3.h: Delete. * config/i386/xm-i386mach.h, config/i386/xm-i386mk.h: Delete. * config/i960/mon960.mt, config/i960/nindy960.mt: Delete. * config/i960/tm-i960.h, config/i960/tm-mon960.h: Delete. * config/i960/tm-nindy960.h, config/i960/tm-vx960.h: Delete. * config/i960/vxworks960.mt, config/m68k/apollo68b.mh: Delete. * config/m68k/apollo68b.mt, config/m68k/apollo68v.mh: Delete. * config/m68k/hp300bsd.mh, config/m68k/hp300bsd.mt: Delete. * config/m68k/hp300hpux.mh, config/m68k/hp300hpux.mt: Delete. * config/m88k/delta88.mh, config/m88k/delta88.mt: Delete. * config/m88k/delta88v4.mh, config/m88k/delta88v4.mt: Delete. * config/m88k/m88k.mh, config/m88k/m88k.mt: Delete. * config/m88k/nm-delta88v4.h, config/m88k/nm-m88k.h: Delete. * config/m88k/tm-delta88.h, config/m88k/tm-delta88v4.h: Delete. * config/m88k/tm-m88k.h, config/m88k/xm-delta88.h: Delete. * config/m88k/xm-dgux.h: Delete. * fr30-tdep.c, i386aix-nat.c, i386m3-nat.c: Delete. * i386mach-nat.c, i960-tdep.c, m88k-nat.c: Delete. * os9kread.c, remote-bug.c, remote-nindy.c: Delete. * remote-nrom.c, remote-os9k.c, remote-vx960.c: Delete. * d30v-tdep.c, arc-tdep.c, cxux-nat.c, dst.h, dstread.c: Delete. * ch-exp.c, ch-lang.c, ch-lang.h, ch-typeprint.c: Delete. * ch-valprint.c: Delete.
Diffstat (limited to 'gdb/i960-tdep.c')
-rw-r--r--gdb/i960-tdep.c1056
1 files changed, 0 insertions, 1056 deletions
diff --git a/gdb/i960-tdep.c b/gdb/i960-tdep.c
deleted file mode 100644
index d059a7b..0000000
--- a/gdb/i960-tdep.c
+++ /dev/null
@@ -1,1056 +0,0 @@
-// OBSOLETE /* Target-machine dependent code for the Intel 960
-// OBSOLETE
-// OBSOLETE Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
-// OBSOLETE 2001, 2002 Free Software Foundation, Inc.
-// OBSOLETE
-// OBSOLETE Contributed by Intel Corporation.
-// OBSOLETE examine_prologue and other parts contributed by Wind River Systems.
-// OBSOLETE
-// OBSOLETE This file is part of GDB.
-// OBSOLETE
-// OBSOLETE This program is free software; you can redistribute it and/or modify
-// OBSOLETE it under the terms of the GNU General Public License as published by
-// OBSOLETE the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE (at your option) any later version.
-// OBSOLETE
-// OBSOLETE This program is distributed in the hope that it will be useful,
-// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// OBSOLETE GNU General Public License for more details.
-// OBSOLETE
-// OBSOLETE You should have received a copy of the GNU General Public License
-// OBSOLETE along with this program; if not, write to the Free Software
-// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE Boston, MA 02111-1307, USA. */
-// OBSOLETE
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "symtab.h"
-// OBSOLETE #include "value.h"
-// OBSOLETE #include "frame.h"
-// OBSOLETE #include "floatformat.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "inferior.h"
-// OBSOLETE #include "regcache.h"
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE
-// OBSOLETE static CORE_ADDR next_insn (CORE_ADDR memaddr,
-// OBSOLETE unsigned int *pword1, unsigned int *pword2);
-// OBSOLETE
-// OBSOLETE struct type *
-// OBSOLETE i960_register_type (int regnum)
-// OBSOLETE {
-// OBSOLETE if (regnum < FP0_REGNUM)
-// OBSOLETE return builtin_type_int32;
-// OBSOLETE else
-// OBSOLETE return builtin_type_i960_ext;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Does the specified function use the "struct returning" convention
-// OBSOLETE or the "value returning" convention? The "value returning" convention
-// OBSOLETE almost invariably returns the entire value in registers. The
-// OBSOLETE "struct returning" convention often returns the entire value in
-// OBSOLETE memory, and passes a pointer (out of or into the function) saying
-// OBSOLETE where the value (is or should go).
-// OBSOLETE
-// OBSOLETE Since this sometimes depends on whether it was compiled with GCC,
-// OBSOLETE this is also an argument. This is used in call_function to build a
-// OBSOLETE stack, and in value_being_returned to print return values.
-// OBSOLETE
-// OBSOLETE On i960, a structure is returned in registers g0-g3, if it will fit.
-// OBSOLETE If it's more than 16 bytes long, g13 pointed to it on entry. */
-// OBSOLETE
-// OBSOLETE int
-// OBSOLETE i960_use_struct_convention (int gcc_p, struct type *type)
-// OBSOLETE {
-// OBSOLETE return (TYPE_LENGTH (type) > 16);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* gdb960 is always running on a non-960 host. Check its characteristics.
-// OBSOLETE This routine must be called as part of gdb initialization. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE check_host (void)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE
-// OBSOLETE static struct typestruct
-// OBSOLETE {
-// OBSOLETE int hostsize; /* Size of type on host */
-// OBSOLETE int i960size; /* Size of type on i960 */
-// OBSOLETE char *typename; /* Name of type, for error msg */
-// OBSOLETE }
-// OBSOLETE types[] =
-// OBSOLETE {
-// OBSOLETE {
-// OBSOLETE sizeof (short), 2, "short"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE {
-// OBSOLETE sizeof (int), 4, "int"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE {
-// OBSOLETE sizeof (long), 4, "long"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE {
-// OBSOLETE sizeof (float), 4, "float"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE {
-// OBSOLETE sizeof (double), 8, "double"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE {
-// OBSOLETE sizeof (char *), 4, "pointer"
-// OBSOLETE }
-// OBSOLETE ,
-// OBSOLETE };
-// OBSOLETE #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
-// OBSOLETE
-// OBSOLETE /* Make sure that host type sizes are same as i960
-// OBSOLETE */
-// OBSOLETE for (i = 0; i < TYPELEN; i++)
-// OBSOLETE {
-// OBSOLETE if (types[i].hostsize != types[i].i960size)
-// OBSOLETE {
-// OBSOLETE printf_unfiltered ("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
-// OBSOLETE types[i].typename, types[i].i960size);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Is this register part of the register window system? A yes answer
-// OBSOLETE implies that 1) The name of this register will not be the same in
-// OBSOLETE other frames, and 2) This register is automatically "saved" upon
-// OBSOLETE subroutine calls and thus there is no need to search more than one
-// OBSOLETE stack frame for it.
-// OBSOLETE
-// OBSOLETE On the i960, in fact, the name of this register in another frame is
-// OBSOLETE "mud" -- there is no overlap between the windows. Each window is
-// OBSOLETE simply saved into the stack (true for our purposes, after having been
-// OBSOLETE flushed; normally they reside on-chip and are restored from on-chip
-// OBSOLETE without ever going to memory). */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE register_in_window_p (int regnum)
-// OBSOLETE {
-// OBSOLETE return regnum <= R15_REGNUM;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* i960_find_saved_register ()
-// OBSOLETE
-// OBSOLETE Return the address in which frame FRAME's value of register REGNUM
-// OBSOLETE has been saved in memory. Or return zero if it has not been saved.
-// OBSOLETE If REGNUM specifies the SP, the value we return is actually the SP
-// OBSOLETE value, not an address where it was saved. */
-// OBSOLETE
-// OBSOLETE static CORE_ADDR
-// OBSOLETE i960_find_saved_register (struct frame_info *frame, int regnum)
-// OBSOLETE {
-// OBSOLETE register struct frame_info *frame1 = NULL;
-// OBSOLETE register CORE_ADDR addr = 0;
-// OBSOLETE
-// OBSOLETE if (frame == NULL) /* No regs saved if want current frame */
-// OBSOLETE return 0;
-// OBSOLETE
-// OBSOLETE /* We assume that a register in a register window will only be saved
-// OBSOLETE in one place (since the name changes and/or disappears as you go
-// OBSOLETE towards inner frames), so we only call get_frame_saved_regs on
-// OBSOLETE the current frame. This is directly in contradiction to the
-// OBSOLETE usage below, which assumes that registers used in a frame must be
-// OBSOLETE saved in a lower (more interior) frame. This change is a result
-// OBSOLETE of working on a register window machine; get_frame_saved_regs
-// OBSOLETE always returns the registers saved within a frame, within the
-// OBSOLETE context (register namespace) of that frame. */
-// OBSOLETE
-// OBSOLETE /* However, note that we don't want this to return anything if
-// OBSOLETE nothing is saved (if there's a frame inside of this one). Also,
-// OBSOLETE callers to this routine asking for the stack pointer want the
-// OBSOLETE stack pointer saved for *this* frame; this is returned from the
-// OBSOLETE next frame. */
-// OBSOLETE
-// OBSOLETE if (register_in_window_p (regnum))
-// OBSOLETE {
-// OBSOLETE frame1 = get_next_frame (frame);
-// OBSOLETE if (!frame1)
-// OBSOLETE return 0; /* Registers of this frame are active. */
-// OBSOLETE
-// OBSOLETE /* Get the SP from the next frame in; it will be this
-// OBSOLETE current frame. */
-// OBSOLETE if (regnum != SP_REGNUM)
-// OBSOLETE frame1 = frame;
-// OBSOLETE
-// OBSOLETE FRAME_INIT_SAVED_REGS (frame1);
-// OBSOLETE return frame1->saved_regs[regnum]; /* ... which might be zero */
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Note that this next routine assumes that registers used in
-// OBSOLETE frame x will be saved only in the frame that x calls and
-// OBSOLETE frames interior to it. This is not true on the sparc, but the
-// OBSOLETE above macro takes care of it, so we should be all right. */
-// OBSOLETE while (1)
-// OBSOLETE {
-// OBSOLETE QUIT;
-// OBSOLETE frame1 = get_next_frame (frame);
-// OBSOLETE if (frame1 == 0)
-// OBSOLETE break;
-// OBSOLETE frame = frame1;
-// OBSOLETE FRAME_INIT_SAVED_REGS (frame1);
-// OBSOLETE if (frame1->saved_regs[regnum])
-// OBSOLETE addr = frame1->saved_regs[regnum];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return addr;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* i960_get_saved_register ()
-// OBSOLETE
-// OBSOLETE Find register number REGNUM relative to FRAME and put its (raw,
-// OBSOLETE target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
-// OBSOLETE variable was optimized out (and thus can't be fetched). Set *LVAL
-// OBSOLETE to lval_memory, lval_register, or not_lval, depending on whether
-// OBSOLETE the value was fetched from memory, from a register, or in a strange
-// OBSOLETE and non-modifiable way (e.g. a frame pointer which was calculated
-// OBSOLETE rather than fetched). Set *ADDRP to the address, either in memory
-// OBSOLETE on as a REGISTER_BYTE offset into the registers array.
-// OBSOLETE
-// OBSOLETE Note that this implementation never sets *LVAL to not_lval. But it
-// OBSOLETE can be replaced by defining GET_SAVED_REGISTER and supplying your
-// OBSOLETE own.
-// OBSOLETE
-// OBSOLETE The argument RAW_BUFFER must point to aligned memory. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE i960_get_saved_register (char *raw_buffer,
-// OBSOLETE int *optimized,
-// OBSOLETE CORE_ADDR *addrp,
-// OBSOLETE struct frame_info *frame,
-// OBSOLETE int regnum,
-// OBSOLETE enum lval_type *lval)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR addr;
-// OBSOLETE
-// OBSOLETE if (!target_has_registers)
-// OBSOLETE error ("No registers.");
-// OBSOLETE
-// OBSOLETE /* Normal systems don't optimize out things with register numbers. */
-// OBSOLETE if (optimized != NULL)
-// OBSOLETE *optimized = 0;
-// OBSOLETE addr = i960_find_saved_register (frame, regnum);
-// OBSOLETE if (addr != 0)
-// OBSOLETE {
-// OBSOLETE if (lval != NULL)
-// OBSOLETE *lval = lval_memory;
-// OBSOLETE if (regnum == SP_REGNUM)
-// OBSOLETE {
-// OBSOLETE if (raw_buffer != NULL)
-// OBSOLETE {
-// OBSOLETE /* Put it back in target format. */
-// OBSOLETE store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
-// OBSOLETE (LONGEST) addr);
-// OBSOLETE }
-// OBSOLETE if (addrp != NULL)
-// OBSOLETE *addrp = 0;
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE if (raw_buffer != NULL)
-// OBSOLETE target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (lval != NULL)
-// OBSOLETE *lval = lval_register;
-// OBSOLETE addr = REGISTER_BYTE (regnum);
-// OBSOLETE if (raw_buffer != NULL)
-// OBSOLETE read_register_gen (regnum, raw_buffer);
-// OBSOLETE }
-// OBSOLETE if (addrp != NULL)
-// OBSOLETE *addrp = addr;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Examine an i960 function prologue, recording the addresses at which
-// OBSOLETE registers are saved explicitly by the prologue code, and returning
-// OBSOLETE the address of the first instruction after the prologue (but not
-// OBSOLETE after the instruction at address LIMIT, as explained below).
-// OBSOLETE
-// OBSOLETE LIMIT places an upper bound on addresses of the instructions to be
-// OBSOLETE examined. If the prologue code scan reaches LIMIT, the scan is
-// OBSOLETE aborted and LIMIT is returned. This is used, when examining the
-// OBSOLETE prologue for the current frame, to keep examine_prologue () from
-// OBSOLETE claiming that a given register has been saved when in fact the
-// OBSOLETE instruction that saves it has not yet been executed. LIMIT is used
-// OBSOLETE at other times to stop the scan when we hit code after the true
-// OBSOLETE function prologue (e.g. for the first source line) which might
-// OBSOLETE otherwise be mistaken for function prologue.
-// OBSOLETE
-// OBSOLETE The format of the function prologue matched by this routine is
-// OBSOLETE derived from examination of the source to gcc960 1.21, particularly
-// OBSOLETE the routine i960_function_prologue (). A "regular expression" for
-// OBSOLETE the function prologue is given below:
-// OBSOLETE
-// OBSOLETE (lda LRn, g14
-// OBSOLETE mov g14, g[0-7]
-// OBSOLETE (mov 0, g14) | (lda 0, g14))?
-// OBSOLETE
-// OBSOLETE (mov[qtl]? g[0-15], r[4-15])*
-// OBSOLETE ((addo [1-31], sp, sp) | (lda n(sp), sp))?
-// OBSOLETE (st[qtl]? g[0-15], n(fp))*
-// OBSOLETE
-// OBSOLETE (cmpobne 0, g14, LFn
-// OBSOLETE mov sp, g14
-// OBSOLETE lda 0x30(sp), sp
-// OBSOLETE LFn: stq g0, (g14)
-// OBSOLETE stq g4, 0x10(g14)
-// OBSOLETE stq g8, 0x20(g14))?
-// OBSOLETE
-// OBSOLETE (st g14, n(fp))?
-// OBSOLETE (mov g13,r[4-15])?
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE /* Macros for extracting fields from i960 instructions. */
-// OBSOLETE
-// OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
-// OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
-// OBSOLETE
-// OBSOLETE #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
-// OBSOLETE #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
-// OBSOLETE #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
-// OBSOLETE #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
-// OBSOLETE #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
-// OBSOLETE
-// OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
-// OBSOLETE is not the address of a valid instruction, the address of the next
-// OBSOLETE instruction beyond ADDR otherwise. *PWORD1 receives the first word
-// OBSOLETE of the instruction, and (for two-word instructions), *PWORD2 receives
-// OBSOLETE the second. */
-// OBSOLETE
-// OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
-// OBSOLETE (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
-// OBSOLETE
-// OBSOLETE static CORE_ADDR
-// OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
-// OBSOLETE CORE_ADDR frame_addr, struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE register CORE_ADDR next_ip;
-// OBSOLETE register int src, dst;
-// OBSOLETE register unsigned int *pcode;
-// OBSOLETE unsigned int insn1, insn2;
-// OBSOLETE int size;
-// OBSOLETE int within_leaf_prologue;
-// OBSOLETE CORE_ADDR save_addr;
-// OBSOLETE static unsigned int varargs_prologue_code[] =
-// OBSOLETE {
-// OBSOLETE 0x3507a00c, /* cmpobne 0x0, g14, LFn */
-// OBSOLETE 0x5cf01601, /* mov sp, g14 */
-// OBSOLETE 0x8c086030, /* lda 0x30(sp), sp */
-// OBSOLETE 0xb2879000, /* LFn: stq g0, (g14) */
-// OBSOLETE 0xb2a7a010, /* stq g4, 0x10(g14) */
-// OBSOLETE 0xb2c7a020 /* stq g8, 0x20(g14) */
-// OBSOLETE };
-// OBSOLETE
-// OBSOLETE /* Accept a leaf procedure prologue code fragment if present.
-// OBSOLETE Note that ip might point to either the leaf or non-leaf
-// OBSOLETE entry point; we look for the non-leaf entry point first: */
-// OBSOLETE
-// OBSOLETE within_leaf_prologue = 0;
-// OBSOLETE if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
-// OBSOLETE && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
-// OBSOLETE || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
-// OBSOLETE {
-// OBSOLETE within_leaf_prologue = 1;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Now look for the prologue code at a leaf entry point: */
-// OBSOLETE
-// OBSOLETE if (next_ip
-// OBSOLETE && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
-// OBSOLETE && REG_SRCDST (insn1) <= G0_REGNUM + 7)
-// OBSOLETE {
-// OBSOLETE within_leaf_prologue = 1;
-// OBSOLETE if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
-// OBSOLETE && (insn1 == 0x8cf00000 /* lda 0, g14 */
-// OBSOLETE || insn1 == 0x5cf01e00)) /* mov 0, g14 */
-// OBSOLETE {
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE within_leaf_prologue = 0;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* If something that looks like the beginning of a leaf prologue
-// OBSOLETE has been seen, but the remainder of the prologue is missing, bail.
-// OBSOLETE We don't know what we've got. */
-// OBSOLETE
-// OBSOLETE if (within_leaf_prologue)
-// OBSOLETE return (ip);
-// OBSOLETE
-// OBSOLETE /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
-// OBSOLETE This may cause us to mistake the moving of a register
-// OBSOLETE parameter to a local register for the saving of a callee-saved
-// OBSOLETE register, but that can't be helped, since with the
-// OBSOLETE "-fcall-saved" flag, any register can be made callee-saved. */
-// OBSOLETE
-// OBSOLETE while (next_ip
-// OBSOLETE && (insn1 & 0xfc802fb0) == 0x5c000610
-// OBSOLETE && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
-// OBSOLETE {
-// OBSOLETE src = REG_SRC1 (insn1);
-// OBSOLETE size = EXTRACT_FIELD (insn1, 24, 2) + 1;
-// OBSOLETE save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
-// OBSOLETE while (size--)
-// OBSOLETE {
-// OBSOLETE fsr->regs[src++] = save_addr;
-// OBSOLETE save_addr += 4;
-// OBSOLETE }
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
-// OBSOLETE
-// OBSOLETE if (next_ip &&
-// OBSOLETE ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
-// OBSOLETE || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
-// OBSOLETE || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
-// OBSOLETE {
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
-// OBSOLETE This may cause us to mistake the copying of a register
-// OBSOLETE parameter to the frame for the saving of a callee-saved
-// OBSOLETE register, but that can't be helped, since with the
-// OBSOLETE "-fcall-saved" flag, any register can be made callee-saved.
-// OBSOLETE We can, however, refuse to accept a save of register g14,
-// OBSOLETE since that is matched explicitly below. */
-// OBSOLETE
-// OBSOLETE while (next_ip &&
-// OBSOLETE ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
-// OBSOLETE || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
-// OBSOLETE || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
-// OBSOLETE || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
-// OBSOLETE && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
-// OBSOLETE {
-// OBSOLETE save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
-// OBSOLETE ? insn2 : MEMA_OFFSET (insn1));
-// OBSOLETE size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
-// OBSOLETE : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
-// OBSOLETE while (size--)
-// OBSOLETE {
-// OBSOLETE fsr->regs[src++] = save_addr;
-// OBSOLETE save_addr += 4;
-// OBSOLETE }
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Accept the varargs prologue code if present. */
-// OBSOLETE
-// OBSOLETE size = sizeof (varargs_prologue_code) / sizeof (int);
-// OBSOLETE pcode = varargs_prologue_code;
-// OBSOLETE while (size-- && next_ip && *pcode++ == insn1)
-// OBSOLETE {
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Accept an optional "st g14, n(fp)". */
-// OBSOLETE
-// OBSOLETE if (next_ip &&
-// OBSOLETE ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
-// OBSOLETE || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
-// OBSOLETE {
-// OBSOLETE fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
-// OBSOLETE ? insn2 : MEMA_OFFSET (insn1));
-// OBSOLETE ip = next_ip;
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Accept zero or one instance of "mov g13, ry", where y >= 4.
-// OBSOLETE This is saving the address where a struct should be returned. */
-// OBSOLETE
-// OBSOLETE if (next_ip
-// OBSOLETE && (insn1 & 0xff802fbf) == 0x5c00061d
-// OBSOLETE && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
-// OBSOLETE {
-// OBSOLETE save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
-// OBSOLETE fsr->regs[G0_REGNUM + 13] = save_addr;
-// OBSOLETE ip = next_ip;
-// OBSOLETE #if 0 /* We'll need this once there is a subsequent instruction examined. */
-// OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
-// OBSOLETE #endif
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return (ip);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Given an ip value corresponding to the start of a function,
-// OBSOLETE return the ip of the first instruction after the function
-// OBSOLETE prologue. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE i960_skip_prologue (CORE_ADDR ip)
-// OBSOLETE {
-// OBSOLETE struct frame_saved_regs saved_regs_dummy;
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE CORE_ADDR limit;
-// OBSOLETE
-// OBSOLETE sal = find_pc_line (ip, 0);
-// OBSOLETE limit = (sal.end) ? sal.end : 0xffffffff;
-// OBSOLETE
-// OBSOLETE return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Put here the code to store, into a struct frame_saved_regs,
-// OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO.
-// OBSOLETE This includes special registers such as pc and fp saved in special
-// OBSOLETE ways in the stack frame. sp is even more special:
-// OBSOLETE the address we return for it IS the sp for the next frame.
-// OBSOLETE
-// OBSOLETE We cache the result of doing this in the frame_obstack, since it is
-// OBSOLETE fairly expensive. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE register CORE_ADDR next_addr;
-// OBSOLETE register CORE_ADDR *saved_regs;
-// OBSOLETE register int regnum;
-// OBSOLETE register struct frame_saved_regs *cache_fsr;
-// OBSOLETE CORE_ADDR ip;
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE CORE_ADDR limit;
-// OBSOLETE
-// OBSOLETE if (!fi->fsr)
-// OBSOLETE {
-// OBSOLETE cache_fsr = (struct frame_saved_regs *)
-// OBSOLETE frame_obstack_alloc (sizeof (struct frame_saved_regs));
-// OBSOLETE memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
-// OBSOLETE fi->fsr = cache_fsr;
-// OBSOLETE
-// OBSOLETE /* Find the start and end of the function prologue. If the PC
-// OBSOLETE is in the function prologue, we only consider the part that
-// OBSOLETE has executed already. */
-// OBSOLETE
-// OBSOLETE ip = get_pc_function_start (fi->pc);
-// OBSOLETE sal = find_pc_line (ip, 0);
-// OBSOLETE limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
-// OBSOLETE
-// OBSOLETE examine_prologue (ip, limit, fi->frame, cache_fsr);
-// OBSOLETE
-// OBSOLETE /* Record the addresses at which the local registers are saved.
-// OBSOLETE Strictly speaking, we should only do this for non-leaf procedures,
-// OBSOLETE but no one will ever look at these values if it is a leaf procedure,
-// OBSOLETE since local registers are always caller-saved. */
-// OBSOLETE
-// OBSOLETE next_addr = (CORE_ADDR) fi->frame;
-// OBSOLETE saved_regs = cache_fsr->regs;
-// OBSOLETE for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
-// OBSOLETE {
-// OBSOLETE *saved_regs++ = next_addr;
-// OBSOLETE next_addr += 4;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE *fsr = *fi->fsr;
-// OBSOLETE
-// OBSOLETE /* Fetch the value of the sp from memory every time, since it
-// OBSOLETE is conceivable that it has changed since the cache was flushed.
-// OBSOLETE This unfortunately undoes much of the savings from caching the
-// OBSOLETE saved register values. I suggest adding an argument to
-// OBSOLETE get_frame_saved_regs () specifying the register number we're
-// OBSOLETE interested in (or -1 for all registers). This would be passed
-// OBSOLETE through to FRAME_FIND_SAVED_REGS (), permitting more efficient
-// OBSOLETE computation of saved register addresses (e.g., on the i960,
-// OBSOLETE we don't have to examine the prologue to find local registers).
-// OBSOLETE -- markf@wrs.com
-// OBSOLETE FIXME, we don't need to refetch this, since the cache is cleared
-// OBSOLETE every time the child process is restarted. If GDB itself
-// OBSOLETE modifies SP, it has to clear the cache by hand (does it?). -gnu */
-// OBSOLETE
-// OBSOLETE fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Return the address of the argument block for the frame
-// OBSOLETE described by FI. Returns 0 if the address is unknown. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE frame_args_address (struct frame_info *fi, int must_be_correct)
-// OBSOLETE {
-// OBSOLETE struct frame_saved_regs fsr;
-// OBSOLETE CORE_ADDR ap;
-// OBSOLETE
-// OBSOLETE /* If g14 was saved in the frame by the function prologue code, return
-// OBSOLETE the saved value. If the frame is current and we are being sloppy,
-// OBSOLETE return the value of g14. Otherwise, return zero. */
-// OBSOLETE
-// OBSOLETE get_frame_saved_regs (fi, &fsr);
-// OBSOLETE if (fsr.regs[G14_REGNUM])
-// OBSOLETE ap = read_memory_integer (fsr.regs[G14_REGNUM], 4);
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (must_be_correct)
-// OBSOLETE return 0; /* Don't cache this result */
-// OBSOLETE if (get_next_frame (fi))
-// OBSOLETE ap = 0;
-// OBSOLETE else
-// OBSOLETE ap = read_register (G14_REGNUM);
-// OBSOLETE if (ap == 0)
-// OBSOLETE ap = fi->frame;
-// OBSOLETE }
-// OBSOLETE fi->arg_pointer = ap; /* Cache it for next time */
-// OBSOLETE return ap;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Return the address of the return struct for the frame
-// OBSOLETE described by FI. Returns 0 if the address is unknown. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE frame_struct_result_address (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE struct frame_saved_regs fsr;
-// OBSOLETE CORE_ADDR ap;
-// OBSOLETE
-// OBSOLETE /* If the frame is non-current, check to see if g14 was saved in the
-// OBSOLETE frame by the function prologue code; return the saved value if so,
-// OBSOLETE zero otherwise. If the frame is current, return the value of g14.
-// OBSOLETE
-// OBSOLETE FIXME, shouldn't this use the saved value as long as we are past
-// OBSOLETE the function prologue, and only use the current value if we have
-// OBSOLETE no saved value and are at TOS? -- gnu@cygnus.com */
-// OBSOLETE
-// OBSOLETE if (get_next_frame (fi))
-// OBSOLETE {
-// OBSOLETE get_frame_saved_regs (fi, &fsr);
-// OBSOLETE if (fsr.regs[G13_REGNUM])
-// OBSOLETE ap = read_memory_integer (fsr.regs[G13_REGNUM], 4);
-// OBSOLETE else
-// OBSOLETE ap = 0;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE ap = read_register (G13_REGNUM);
-// OBSOLETE
-// OBSOLETE return ap;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Return address to which the currently executing leafproc will return,
-// OBSOLETE or 0 if IP, the value of the instruction pointer from the currently
-// OBSOLETE executing function, is not in a leafproc (or if we can't tell if it
-// OBSOLETE is).
-// OBSOLETE
-// OBSOLETE Do this by finding the starting address of the routine in which IP lies.
-// OBSOLETE If the instruction there is "mov g14, gx" (where x is in [0,7]), this
-// OBSOLETE is a leafproc and the return address is in register gx. Well, this is
-// OBSOLETE true unless the return address points at a RET instruction in the current
-// OBSOLETE procedure, which indicates that we have a 'dual entry' routine that
-// OBSOLETE has been entered through the CALL entry point. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE leafproc_return (CORE_ADDR ip)
-// OBSOLETE {
-// OBSOLETE register struct minimal_symbol *msymbol;
-// OBSOLETE char *p;
-// OBSOLETE int dst;
-// OBSOLETE unsigned int insn1, insn2;
-// OBSOLETE CORE_ADDR return_addr;
-// OBSOLETE
-// OBSOLETE if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
-// OBSOLETE {
-// OBSOLETE if ((p = strchr (SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
-// OBSOLETE {
-// OBSOLETE if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
-// OBSOLETE && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
-// OBSOLETE && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
-// OBSOLETE {
-// OBSOLETE /* Get the return address. If the "mov g14, gx"
-// OBSOLETE instruction hasn't been executed yet, read
-// OBSOLETE the return address from g14; otherwise, read it
-// OBSOLETE from the register into which g14 was moved. */
-// OBSOLETE
-// OBSOLETE return_addr =
-// OBSOLETE read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
-// OBSOLETE ? G14_REGNUM : dst);
-// OBSOLETE
-// OBSOLETE /* We know we are in a leaf procedure, but we don't know
-// OBSOLETE whether the caller actually did a "bal" to the ".lf"
-// OBSOLETE entry point, or a normal "call" to the non-leaf entry
-// OBSOLETE point one instruction before. In the latter case, the
-// OBSOLETE return address will be the address of a "ret"
-// OBSOLETE instruction within the procedure itself. We test for
-// OBSOLETE this below. */
-// OBSOLETE
-// OBSOLETE if (!next_insn (return_addr, &insn1, &insn2)
-// OBSOLETE || (insn1 & 0xff000000) != 0xa000000 /* ret */
-// OBSOLETE || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
-// OBSOLETE return (return_addr);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return (0);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Immediately after a function call, return the saved pc.
-// OBSOLETE Can't go through the frames for this because on some machines
-// OBSOLETE the new frame is not set up until the new function executes
-// OBSOLETE some instructions.
-// OBSOLETE On the i960, the frame *is* set up immediately after the call,
-// OBSOLETE unless the function is a leaf procedure. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE saved_pc_after_call (struct frame_info *frame)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR saved_pc;
-// OBSOLETE
-// OBSOLETE saved_pc = leafproc_return (get_frame_pc (frame));
-// OBSOLETE if (!saved_pc)
-// OBSOLETE saved_pc = FRAME_SAVED_PC (frame);
-// OBSOLETE
-// OBSOLETE return saved_pc;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Discard from the stack the innermost frame,
-// OBSOLETE restoring all saved registers. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE i960_pop_frame (void)
-// OBSOLETE {
-// OBSOLETE register struct frame_info *current_fi, *prev_fi;
-// OBSOLETE register int i;
-// OBSOLETE CORE_ADDR save_addr;
-// OBSOLETE CORE_ADDR leaf_return_addr;
-// OBSOLETE struct frame_saved_regs fsr;
-// OBSOLETE char local_regs_buf[16 * 4];
-// OBSOLETE
-// OBSOLETE current_fi = get_current_frame ();
-// OBSOLETE
-// OBSOLETE /* First, undo what the hardware does when we return.
-// OBSOLETE If this is a non-leaf procedure, restore local registers from
-// OBSOLETE the save area in the calling frame. Otherwise, load the return
-// OBSOLETE address obtained from leafproc_return () into the rip. */
-// OBSOLETE
-// OBSOLETE leaf_return_addr = leafproc_return (current_fi->pc);
-// OBSOLETE if (!leaf_return_addr)
-// OBSOLETE {
-// OBSOLETE /* Non-leaf procedure. Restore local registers, incl IP. */
-// OBSOLETE prev_fi = get_prev_frame (current_fi);
-// OBSOLETE read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
-// OBSOLETE write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
-// OBSOLETE sizeof (local_regs_buf));
-// OBSOLETE
-// OBSOLETE /* Restore frame pointer. */
-// OBSOLETE write_register (FP_REGNUM, prev_fi->frame);
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE /* Leaf procedure. Just restore the return address into the IP. */
-// OBSOLETE write_register (RIP_REGNUM, leaf_return_addr);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Now restore any global regs that the current function had saved. */
-// OBSOLETE get_frame_saved_regs (current_fi, &fsr);
-// OBSOLETE for (i = G0_REGNUM; i < G14_REGNUM; i++)
-// OBSOLETE {
-// OBSOLETE save_addr = fsr.regs[i];
-// OBSOLETE if (save_addr != 0)
-// OBSOLETE write_register (i, read_memory_integer (save_addr, 4));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Flush the frame cache, create a frame for the new innermost frame,
-// OBSOLETE and make it the current frame. */
-// OBSOLETE
-// OBSOLETE flush_cached_frames ();
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Given a 960 stop code (fault or trace), return the signal which
-// OBSOLETE corresponds. */
-// OBSOLETE
-// OBSOLETE enum target_signal
-// OBSOLETE i960_fault_to_signal (int fault)
-// OBSOLETE {
-// OBSOLETE switch (fault)
-// OBSOLETE {
-// OBSOLETE case 0:
-// OBSOLETE return TARGET_SIGNAL_BUS; /* parallel fault */
-// OBSOLETE case 1:
-// OBSOLETE return TARGET_SIGNAL_UNKNOWN;
-// OBSOLETE case 2:
-// OBSOLETE return TARGET_SIGNAL_ILL; /* operation fault */
-// OBSOLETE case 3:
-// OBSOLETE return TARGET_SIGNAL_FPE; /* arithmetic fault */
-// OBSOLETE case 4:
-// OBSOLETE return TARGET_SIGNAL_FPE; /* floating point fault */
-// OBSOLETE
-// OBSOLETE /* constraint fault. This appears not to distinguish between
-// OBSOLETE a range constraint fault (which should be SIGFPE) and a privileged
-// OBSOLETE fault (which should be SIGILL). */
-// OBSOLETE case 5:
-// OBSOLETE return TARGET_SIGNAL_ILL;
-// OBSOLETE
-// OBSOLETE case 6:
-// OBSOLETE return TARGET_SIGNAL_SEGV; /* virtual memory fault */
-// OBSOLETE
-// OBSOLETE /* protection fault. This is for an out-of-range argument to
-// OBSOLETE "calls". I guess it also could be SIGILL. */
-// OBSOLETE case 7:
-// OBSOLETE return TARGET_SIGNAL_SEGV;
-// OBSOLETE
-// OBSOLETE case 8:
-// OBSOLETE return TARGET_SIGNAL_BUS; /* machine fault */
-// OBSOLETE case 9:
-// OBSOLETE return TARGET_SIGNAL_BUS; /* structural fault */
-// OBSOLETE case 0xa:
-// OBSOLETE return TARGET_SIGNAL_ILL; /* type fault */
-// OBSOLETE case 0xb:
-// OBSOLETE return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
-// OBSOLETE case 0xc:
-// OBSOLETE return TARGET_SIGNAL_BUS; /* process fault */
-// OBSOLETE case 0xd:
-// OBSOLETE return TARGET_SIGNAL_SEGV; /* descriptor fault */
-// OBSOLETE case 0xe:
-// OBSOLETE return TARGET_SIGNAL_BUS; /* event fault */
-// OBSOLETE case 0xf:
-// OBSOLETE return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
-// OBSOLETE case 0x10:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* single-step trace */
-// OBSOLETE case 0x11:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* branch trace */
-// OBSOLETE case 0x12:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* call trace */
-// OBSOLETE case 0x13:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* return trace */
-// OBSOLETE case 0x14:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* pre-return trace */
-// OBSOLETE case 0x15:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* supervisor call trace */
-// OBSOLETE case 0x16:
-// OBSOLETE return TARGET_SIGNAL_TRAP; /* breakpoint trace */
-// OBSOLETE default:
-// OBSOLETE return TARGET_SIGNAL_UNKNOWN;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /****************************************/
-// OBSOLETE /* MEM format */
-// OBSOLETE /****************************************/
-// OBSOLETE
-// OBSOLETE struct tabent
-// OBSOLETE {
-// OBSOLETE char *name;
-// OBSOLETE char numops;
-// OBSOLETE };
-// OBSOLETE
-// OBSOLETE /* Return instruction length, either 4 or 8. When NOPRINT is non-zero
-// OBSOLETE (TRUE), don't output any text. (Actually, as implemented, if NOPRINT
-// OBSOLETE is 0, abort() is called.) */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE mem (unsigned long memaddr, unsigned long word1, unsigned long word2,
-// OBSOLETE int noprint)
-// OBSOLETE {
-// OBSOLETE int i, j;
-// OBSOLETE int len;
-// OBSOLETE int mode;
-// OBSOLETE int offset;
-// OBSOLETE const char *reg1, *reg2, *reg3;
-// OBSOLETE
-// OBSOLETE /* This lookup table is too sparse to make it worth typing in, but not
-// OBSOLETE * so large as to make a sparse array necessary. We allocate the
-// OBSOLETE * table at runtime, initialize all entries to empty, and copy the
-// OBSOLETE * real ones in from an initialization table.
-// OBSOLETE *
-// OBSOLETE * NOTE: In this table, the meaning of 'numops' is:
-// OBSOLETE * 1: single operand
-// OBSOLETE * 2: 2 operands, load instruction
-// OBSOLETE * -2: 2 operands, store instruction
-// OBSOLETE */
-// OBSOLETE static struct tabent *mem_tab = NULL;
-// OBSOLETE /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
-// OBSOLETE #define MEM_MIN 0x80
-// OBSOLETE #define MEM_MAX 0xcf
-// OBSOLETE #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
-// OBSOLETE
-// OBSOLETE static struct
-// OBSOLETE {
-// OBSOLETE int opcode;
-// OBSOLETE char *name;
-// OBSOLETE char numops;
-// OBSOLETE }
-// OBSOLETE mem_init[] =
-// OBSOLETE {
-// OBSOLETE 0x80, "ldob", 2,
-// OBSOLETE 0x82, "stob", -2,
-// OBSOLETE 0x84, "bx", 1,
-// OBSOLETE 0x85, "balx", 2,
-// OBSOLETE 0x86, "callx", 1,
-// OBSOLETE 0x88, "ldos", 2,
-// OBSOLETE 0x8a, "stos", -2,
-// OBSOLETE 0x8c, "lda", 2,
-// OBSOLETE 0x90, "ld", 2,
-// OBSOLETE 0x92, "st", -2,
-// OBSOLETE 0x98, "ldl", 2,
-// OBSOLETE 0x9a, "stl", -2,
-// OBSOLETE 0xa0, "ldt", 2,
-// OBSOLETE 0xa2, "stt", -2,
-// OBSOLETE 0xb0, "ldq", 2,
-// OBSOLETE 0xb2, "stq", -2,
-// OBSOLETE 0xc0, "ldib", 2,
-// OBSOLETE 0xc2, "stib", -2,
-// OBSOLETE 0xc8, "ldis", 2,
-// OBSOLETE 0xca, "stis", -2,
-// OBSOLETE 0, NULL, 0
-// OBSOLETE };
-// OBSOLETE
-// OBSOLETE if (mem_tab == NULL)
-// OBSOLETE {
-// OBSOLETE mem_tab = (struct tabent *) xmalloc (MEM_SIZ);
-// OBSOLETE memset (mem_tab, '\0', MEM_SIZ);
-// OBSOLETE for (i = 0; mem_init[i].opcode != 0; i++)
-// OBSOLETE {
-// OBSOLETE j = mem_init[i].opcode - MEM_MIN;
-// OBSOLETE mem_tab[j].name = mem_init[i].name;
-// OBSOLETE mem_tab[j].numops = mem_init[i].numops;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE i = ((word1 >> 24) & 0xff) - MEM_MIN;
-// OBSOLETE mode = (word1 >> 10) & 0xf;
-// OBSOLETE
-// OBSOLETE if ((mem_tab[i].name != NULL) /* Valid instruction */
-// OBSOLETE && ((mode == 5) || (mode >= 12)))
-// OBSOLETE { /* With 32-bit displacement */
-// OBSOLETE len = 8;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE len = 4;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (noprint)
-// OBSOLETE {
-// OBSOLETE return len;
-// OBSOLETE }
-// OBSOLETE internal_error (__FILE__, __LINE__, "failed internal consistency check");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Read the i960 instruction at 'memaddr' and return the address of
-// OBSOLETE the next instruction after that, or 0 if 'memaddr' is not the
-// OBSOLETE address of a valid instruction. The first word of the instruction
-// OBSOLETE is stored at 'pword1', and the second word, if any, is stored at
-// OBSOLETE 'pword2'. */
-// OBSOLETE
-// OBSOLETE static CORE_ADDR
-// OBSOLETE next_insn (CORE_ADDR memaddr, unsigned int *pword1, unsigned int *pword2)
-// OBSOLETE {
-// OBSOLETE int len;
-// OBSOLETE char buf[8];
-// OBSOLETE
-// OBSOLETE /* Read the two (potential) words of the instruction at once,
-// OBSOLETE to eliminate the overhead of two calls to read_memory ().
-// OBSOLETE FIXME: Loses if the first one is readable but the second is not
-// OBSOLETE (e.g. last word of the segment). */
-// OBSOLETE
-// OBSOLETE read_memory (memaddr, buf, 8);
-// OBSOLETE *pword1 = extract_unsigned_integer (buf, 4);
-// OBSOLETE *pword2 = extract_unsigned_integer (buf + 4, 4);
-// OBSOLETE
-// OBSOLETE /* Divide instruction set into classes based on high 4 bits of opcode */
-// OBSOLETE
-// OBSOLETE switch ((*pword1 >> 28) & 0xf)
-// OBSOLETE {
-// OBSOLETE case 0x0:
-// OBSOLETE case 0x1: /* ctrl */
-// OBSOLETE
-// OBSOLETE case 0x2:
-// OBSOLETE case 0x3: /* cobr */
-// OBSOLETE
-// OBSOLETE case 0x5:
-// OBSOLETE case 0x6:
-// OBSOLETE case 0x7: /* reg */
-// OBSOLETE len = 4;
-// OBSOLETE break;
-// OBSOLETE
-// OBSOLETE case 0x8:
-// OBSOLETE case 0x9:
-// OBSOLETE case 0xa:
-// OBSOLETE case 0xb:
-// OBSOLETE case 0xc:
-// OBSOLETE len = mem (memaddr, *pword1, *pword2, 1);
-// OBSOLETE break;
-// OBSOLETE
-// OBSOLETE default: /* invalid instruction */
-// OBSOLETE len = 0;
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (len)
-// OBSOLETE return memaddr + len;
-// OBSOLETE else
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* 'start_frame' is a variable in the MON960 runtime startup routine
-// OBSOLETE that contains the frame pointer of the 'start' routine (the routine
-// OBSOLETE that calls 'main'). By reading its contents out of remote memory,
-// OBSOLETE we can tell where the frame chain ends: backtraces should halt before
-// OBSOLETE they display this frame. */
-// OBSOLETE
-// OBSOLETE int
-// OBSOLETE mon960_frame_chain_valid (CORE_ADDR chain, struct frame_info *curframe)
-// OBSOLETE {
-// OBSOLETE struct symbol *sym;
-// OBSOLETE struct minimal_symbol *msymbol;
-// OBSOLETE
-// OBSOLETE /* crtmon960.o is an assembler module that is assumed to be linked
-// OBSOLETE * first in an i80960 executable. It contains the true entry point;
-// OBSOLETE * it performs startup up initialization and then calls 'main'.
-// OBSOLETE *
-// OBSOLETE * 'sf' is the name of a variable in crtmon960.o that is set
-// OBSOLETE * during startup to the address of the first frame.
-// OBSOLETE *
-// OBSOLETE * 'a' is the address of that variable in 80960 memory.
-// OBSOLETE */
-// OBSOLETE static char sf[] = "start_frame";
-// OBSOLETE CORE_ADDR a;
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
-// OBSOLETE contain return status info in them. */
-// OBSOLETE if (chain == 0)
-// OBSOLETE {
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE sym = lookup_symbol (sf, 0, VAR_NAMESPACE, (int *) NULL,
-// OBSOLETE (struct symtab **) NULL);
-// OBSOLETE if (sym != 0)
-// OBSOLETE {
-// OBSOLETE a = SYMBOL_VALUE (sym);
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE msymbol = lookup_minimal_symbol (sf, NULL, NULL);
-// OBSOLETE if (msymbol == NULL)
-// OBSOLETE return 0;
-// OBSOLETE a = SYMBOL_VALUE_ADDRESS (msymbol);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return (chain != read_memory_integer (a, 4));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE _initialize_i960_tdep (void)
-// OBSOLETE {
-// OBSOLETE check_host ();
-// OBSOLETE
-// OBSOLETE tm_print_insn = print_insn_i960;
-// OBSOLETE }