aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppah-nat.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/hppah-nat.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadgdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/hppah-nat.c')
-rw-r--r--gdb/hppah-nat.c1059
1 files changed, 1059 insertions, 0 deletions
diff --git a/gdb/hppah-nat.c b/gdb/hppah-nat.c
new file mode 100644
index 0000000..ac7f69f
--- /dev/null
+++ b/gdb/hppah-nat.c
@@ -0,0 +1,1059 @@
+/* Native support code for HPUX PA-RISC.
+ Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998
+ Free Software Foundation, Inc.
+
+ Contributed by the Center for Software Science at the
+ University of Utah (pa-gdb-bugs@cs.utah.edu).
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+
+#include "defs.h"
+#include "inferior.h"
+#include "target.h"
+#include <sys/ptrace.h>
+#include "gdbcore.h"
+#include <wait.h>
+#include <signal.h>
+
+extern CORE_ADDR text_end;
+
+static void fetch_register PARAMS ((int));
+
+void
+fetch_inferior_registers (regno)
+ int regno;
+{
+ if (regno == -1)
+ for (regno = 0; regno < NUM_REGS; regno++)
+ fetch_register (regno);
+ else
+ fetch_register (regno);
+}
+
+/* Store our register values back into the inferior.
+ If REGNO is -1, do this for all registers.
+ Otherwise, REGNO specifies which register (so we can save time). */
+
+void
+store_inferior_registers (regno)
+ int regno;
+{
+ register unsigned int regaddr;
+ char buf[80];
+ extern char registers[];
+ register int i;
+ unsigned int offset = U_REGS_OFFSET;
+ int scratch;
+
+ if (regno >= 0)
+ {
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+ regaddr = register_addr (regno, offset);
+ errno = 0;
+ if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
+ {
+ scratch = *(int *) &registers[REGISTER_BYTE (regno)] | 0x3;
+ call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
+ scratch);
+ if (errno != 0)
+ {
+ /* Error, even if attached. Failing to write these two
+ registers is pretty serious. */
+ sprintf (buf, "writing register number %d", regno);
+ perror_with_name (buf);
+ }
+ }
+ else
+ for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
+ {
+ errno = 0;
+ call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
+ *(int *) &registers[REGISTER_BYTE (regno) + i]);
+ if (errno != 0)
+ {
+ /* Warning, not error, in case we are attached; sometimes the
+ kernel doesn't let us at the registers. */
+ char *err = safe_strerror (errno);
+ char *msg = alloca (strlen (err) + 128);
+ sprintf (msg, "writing register %s: %s",
+ REGISTER_NAME (regno), err);
+ warning (msg);
+ return;
+ }
+ regaddr += sizeof(int);
+ }
+ }
+ else
+ for (regno = 0; regno < NUM_REGS; regno++)
+ store_inferior_registers (regno);
+}
+
+/* Fetch one register. */
+
+static void
+fetch_register (regno)
+ int regno;
+{
+ register unsigned int regaddr;
+ char buf[MAX_REGISTER_RAW_SIZE];
+ register int i;
+
+ /* Offset of registers within the u area. */
+ unsigned int offset;
+
+ offset = U_REGS_OFFSET;
+
+ regaddr = register_addr (regno, offset);
+ for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
+ {
+ errno = 0;
+ *(int *) &buf[i] = call_ptrace (PT_RUREGS, inferior_pid,
+ (PTRACE_ARG3_TYPE) regaddr, 0);
+ regaddr += sizeof (int);
+ if (errno != 0)
+ {
+ /* Warning, not error, in case we are attached; sometimes the
+ * kernel doesn't let us at the registers.
+ */
+ char *err = safe_strerror (errno);
+ char *msg = alloca (strlen (err) + 128);
+ sprintf (msg, "reading register %s: %s", REGISTER_NAME (regno), err);
+ warning (msg);
+ goto error_exit;
+ }
+ }
+ if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
+ buf[3] &= ~0x3;
+ supply_register (regno, buf);
+ error_exit:;
+}
+
+/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
+ to debugger memory starting at MYADDR. Copy to inferior if
+ WRITE is nonzero.
+
+ Returns the length copied, which is either the LEN argument or zero.
+ This xfer function does not do partial moves, since child_ops
+ doesn't allow memory operations to cross below us in the target stack
+ anyway. */
+
+int
+child_xfer_memory (memaddr, myaddr, len, write, target)
+ CORE_ADDR memaddr;
+ char *myaddr;
+ int len;
+ int write;
+ struct target_ops *target; /* ignored */
+{
+ register int i;
+ /* Round starting address down to longword boundary. */
+ register CORE_ADDR addr = memaddr & - sizeof (int);
+ /* Round ending address up; get number of longwords that makes. */
+ register int count
+ = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
+
+ /* Allocate buffer of that many longwords. */
+ /* Note (RT) - This code formerly used alloca, which I have
+ * replaced with xmalloc and a matching free() at the end.
+ * The problem with alloca() is that there is no guarantee of
+ * when it'll be freed, and we were seeing cases of memory
+ * leaks on:
+ * (gdb) watch x
+ * (gdb) cont
+ * where the piled-up alloca's for the child_xfer_memory buffers
+ * were not getting freed.
+ */
+ register int *buffer = (int *) xmalloc (count * sizeof (int));
+
+ if (write)
+ {
+ /* Fill start and end extra bytes of buffer with existing memory data. */
+
+ if (addr != memaddr || len < (int)sizeof (int)) {
+ /* Need part of initial word -- fetch it. */
+ buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
+ inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
+ }
+
+ if (count > 1) /* FIXME, avoid if even boundary */
+ {
+ buffer[count - 1]
+ = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, inferior_pid,
+ (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
+ 0);
+ }
+
+ /* Copy data to be written over corresponding part of buffer */
+
+ memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
+
+ /* Write the entire buffer. */
+
+ for (i = 0; i < count; i++, addr += sizeof (int))
+ {
+ int pt_status;
+ int pt_request;
+ /* The HP-UX kernel crashes if you use PT_WDUSER to write into the text
+ segment. FIXME -- does it work to write into the data segment using
+ WIUSER, or do these idiots really expect us to figure out which segment
+ the address is in, so we can use a separate system call for it??! */
+ errno = 0;
+ pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
+ pt_status = call_ptrace (pt_request,
+ inferior_pid,
+ (PTRACE_ARG3_TYPE) addr,
+ buffer[i]);
+
+ /* Did we fail? Might we've guessed wrong about which
+ segment this address resides in? Try the other request,
+ and see if that works...
+ */
+ if ((pt_status == -1) && errno) {
+ errno = 0;
+ pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
+ pt_status = call_ptrace (pt_request,
+ inferior_pid,
+ (PTRACE_ARG3_TYPE) addr,
+ buffer[i]);
+
+ /* No, we still fail. Okay, time to punt. */
+ if ((pt_status == -1) && errno)
+ {
+ free(buffer);
+ return 0;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Read all the longwords */
+ for (i = 0; i < count; i++, addr += sizeof (int))
+ {
+ errno = 0;
+ buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
+ inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
+ if (errno) {
+ free(buffer);
+ return 0;
+ }
+ QUIT;
+ }
+
+ /* Copy appropriate bytes out of the buffer. */
+ memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
+ }
+ free(buffer);
+ return len;
+}
+
+
+void
+child_post_follow_inferior_by_clone ()
+{
+ int status;
+
+ /* This function is used when following both the parent and child
+ of a fork. In this case, the debugger clones itself. The original
+ debugger follows the parent, the clone follows the child. The
+ original detaches from the child, delivering a SIGSTOP to it to
+ keep it from running away until the clone can attach itself.
+
+ At this point, the clone has attached to the child. Because of
+ the SIGSTOP, we must now deliver a SIGCONT to the child, or it
+ won't behave properly. */
+ status = kill (inferior_pid, SIGCONT);
+}
+
+
+void
+child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
+ int parent_pid;
+ int followed_parent;
+ int child_pid;
+ int followed_child;
+{
+
+ /* Are we a debugger that followed the parent of a vfork? If so,
+ then recall that the child's vfork event was delivered to us
+ first. And, that the parent was suspended by the OS until the
+ child's exec or exit events were received.
+
+ Upon receiving that child vfork, then, we were forced to remove
+ all breakpoints in the child and continue it so that it could
+ reach the exec or exit point.
+
+ But also recall that the parent and child of a vfork share the
+ same address space. Thus, removing bp's in the child also
+ removed them from the parent.
+
+ Now that the child has safely exec'd or exited, we must restore
+ the parent's breakpoints before we continue it. Else, we may
+ cause it run past expected stopping points. */
+ if (followed_parent)
+ {
+ reattach_breakpoints (parent_pid);
+ }
+
+ /* Are we a debugger that followed the child of a vfork? If so,
+ then recall that we don't actually acquire control of the child
+ until after it has exec'd or exited.
+ */
+ if (followed_child)
+ {
+ /* If the child has exited, then there's nothing for us to do.
+ In the case of an exec event, we'll let that be handled by
+ the normal mechanism that notices and handles exec events, in
+ resume(). */
+
+ }
+}
+
+/* Format a process id, given a pid. Be sure to terminate
+ * this with a null--it's going to be printed via a "%s".
+ */
+char *
+hppa_pid_to_str( pid )
+ pid_t pid;
+{
+ static char buf[30]; /* Static because address returned */
+
+ sprintf( buf, "process %d\0\0\0\0", pid );
+ /* Extra NULLs for paranoia's sake */
+
+ return buf;
+}
+
+/* Format a thread id, given a tid. Be sure to terminate
+ * this with a null--it's going to be printed via a "%s".
+ *
+ * Note: This is a core-gdb tid, not the actual system tid.
+ * See infttrace.c for details.
+ */
+char *
+hppa_tid_to_str( tid )
+ pid_t tid;
+{
+ static char buf[30]; /* Static because address returned */
+
+ sprintf( buf, "system thread %d\0\0\0\0", tid );
+ /* Extra NULLs for paranoia's sake */
+
+ return buf;
+}
+
+#if !defined (GDB_NATIVE_HPUX_11)
+
+/* The following code is a substitute for the infttrace.c versions used
+ with ttrace() in HPUX 11. */
+
+/* This value is an arbitrary integer. */
+#define PT_VERSION 123456
+
+/* This semaphore is used to coordinate the child and parent processes
+ after a fork(), and before an exec() by the child. See
+ parent_attach_all for details. */
+
+typedef struct {
+ int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
+ int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
+} startup_semaphore_t;
+
+#define SEM_TALK (1)
+#define SEM_LISTEN (0)
+
+static startup_semaphore_t startup_semaphore;
+
+extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int));
+
+#ifdef PT_SETTRC
+/* This function causes the caller's process to be traced by its
+ parent. This is intended to be called after GDB forks itself,
+ and before the child execs the target.
+
+ Note that HP-UX ptrace is rather funky in how this is done.
+ If the parent wants to get the initial exec event of a child,
+ it must set the ptrace event mask of the child to include execs.
+ (The child cannot do this itself.) This must be done after the
+ child is forked, but before it execs.
+
+ To coordinate the parent and child, we implement a semaphore using
+ pipes. After SETTRC'ing itself, the child tells the parent that
+ it is now traceable by the parent, and waits for the parent's
+ acknowledgement. The parent can then set the child's event mask,
+ and notify the child that it can now exec.
+
+ (The acknowledgement by parent happens as a result of a call to
+ child_acknowledge_created_inferior.) */
+
+int
+parent_attach_all (pid, addr, data)
+ int pid;
+ PTRACE_ARG3_TYPE addr;
+ int data;
+{
+ int pt_status = 0;
+
+ /* We need a memory home for a constant. */
+ int tc_magic_child = PT_VERSION;
+ int tc_magic_parent = 0;
+
+ /* The remainder of this function is only useful for HPUX 10.0 and
+ later, as it depends upon the ability to request notification
+ of specific kinds of events by the kernel. */
+#if defined(PT_SET_EVENT_MASK)
+
+ /* Notify the parent that we're potentially ready to exec(). */
+ write (startup_semaphore.child_channel[SEM_TALK],
+ &tc_magic_child,
+ sizeof (tc_magic_child));
+
+ /* Wait for acknowledgement from the parent. */
+ read (startup_semaphore.parent_channel[SEM_LISTEN],
+ &tc_magic_parent,
+ sizeof (tc_magic_parent));
+ if (tc_magic_child != tc_magic_parent)
+ warning ("mismatched semaphore magic");
+
+ /* Discard our copy of the semaphore. */
+ (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
+ (void) close (startup_semaphore.parent_channel[SEM_TALK]);
+ (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
+ (void) close (startup_semaphore.child_channel[SEM_TALK]);
+#endif
+
+ return 0;
+}
+#endif
+
+int
+hppa_require_attach (pid)
+ int pid;
+{
+ int pt_status;
+ CORE_ADDR pc;
+ CORE_ADDR pc_addr;
+ unsigned int regs_offset;
+
+ /* Are we already attached? There appears to be no explicit way to
+ answer this via ptrace, so we try something which should be
+ innocuous if we are attached. If that fails, then we assume
+ we're not attached, and so attempt to make it so. */
+
+ errno = 0;
+ regs_offset = U_REGS_OFFSET;
+ pc_addr = register_addr (PC_REGNUM, regs_offset);
+ pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
+
+ if (errno)
+ {
+ errno = 0;
+ pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
+
+ if (errno)
+ return -1;
+
+ /* Now we really are attached. */
+ errno = 0;
+ }
+ attach_flag = 1;
+ return pid;
+}
+
+int
+hppa_require_detach (pid, signal)
+ int pid;
+ int signal;
+{
+ errno = 0;
+ call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
+ errno = 0; /* Ignore any errors. */
+ return pid;
+}
+
+/* Since ptrace doesn't support memory page-protection events, which
+ are used to implement "hardware" watchpoints on HP-UX, these are
+ dummy versions, which perform no useful work. */
+
+void
+hppa_enable_page_protection_events (pid)
+ int pid;
+{
+}
+
+void
+hppa_disable_page_protection_events (pid)
+ int pid;
+{
+}
+
+int
+hppa_insert_hw_watchpoint (pid, start, len, type)
+ int pid;
+ CORE_ADDR start;
+ LONGEST len;
+ int type;
+{
+ error ("Hardware watchpoints not implemented on this platform.");
+}
+
+int
+hppa_remove_hw_watchpoint (pid, start, len, type)
+ int pid;
+ CORE_ADDR start;
+ LONGEST len;
+ enum bptype type;
+{
+ error ("Hardware watchpoints not implemented on this platform.");
+}
+
+int
+hppa_can_use_hw_watchpoint (type, cnt, ot)
+ enum bptype type;
+ int cnt;
+ enum bptype ot;
+{
+ return 0;
+}
+
+int
+hppa_range_profitable_for_hw_watchpoint (pid, start, len)
+ int pid;
+ CORE_ADDR start;
+ LONGEST len;
+{
+ error ("Hardware watchpoints not implemented on this platform.");
+}
+
+char *
+hppa_pid_or_tid_to_str (id)
+ pid_t id;
+{
+ /* In the ptrace world, there are only processes. */
+ return hppa_pid_to_str (id);
+}
+
+/* This function has no meaning in a non-threaded world. Thus, we
+ return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in
+ hppa-tdep.c. */
+
+pid_t
+hppa_switched_threads (pid)
+ pid_t pid;
+{
+ return (pid_t) 0;
+}
+
+void
+hppa_ensure_vforking_parent_remains_stopped (pid)
+ int pid;
+{
+ /* This assumes that the vforked parent is presently stopped, and
+ that the vforked child has just delivered its first exec event.
+ Calling kill() this way will cause the SIGTRAP to be delivered as
+ soon as the parent is resumed, which happens as soon as the
+ vforked child is resumed. See wait_for_inferior for the use of
+ this function. */
+ kill (pid, SIGTRAP);
+}
+
+int
+hppa_resume_execd_vforking_child_to_get_parent_vfork ()
+{
+ return 1; /* Yes, the child must be resumed. */
+}
+
+void
+require_notification_of_events (pid)
+ int pid;
+{
+#if defined(PT_SET_EVENT_MASK)
+ int pt_status;
+ ptrace_event_t ptrace_events;
+
+ /* Instruct the kernel as to the set of events we wish to be
+ informed of. (This support does not exist before HPUX 10.0.
+ We'll assume if PT_SET_EVENT_MASK has not been defined by
+ <sys/ptrace.h>, then we're being built on pre-10.0.)
+ */
+ memset (&ptrace_events, 0, sizeof (ptrace_events));
+
+ /* Note: By default, all signals are visible to us. If we wish
+ the kernel to keep certain signals hidden from us, we do it
+ by calling sigdelset (ptrace_events.pe_signals, signal) for
+ each such signal here, before doing PT_SET_EVENT_MASK.
+ */
+ sigemptyset (&ptrace_events.pe_signals);
+
+ ptrace_events.pe_set_event = 0;
+
+ ptrace_events.pe_set_event |= PTRACE_SIGNAL;
+ ptrace_events.pe_set_event |= PTRACE_EXEC;
+ ptrace_events.pe_set_event |= PTRACE_FORK;
+ ptrace_events.pe_set_event |= PTRACE_VFORK;
+ /* ??rehrauer: Add this one when we're prepared to catch it...
+ ptrace_events.pe_set_event |= PTRACE_EXIT;
+ */
+
+ errno = 0;
+ pt_status = call_ptrace (PT_SET_EVENT_MASK,
+ pid,
+ (PTRACE_ARG3_TYPE) &ptrace_events,
+ sizeof (ptrace_events));
+ if (errno)
+ perror_with_name ("ptrace");
+ if (pt_status < 0)
+ return;
+#endif
+}
+
+void
+require_notification_of_exec_events (pid)
+ int pid;
+{
+#if defined(PT_SET_EVENT_MASK)
+ int pt_status;
+ ptrace_event_t ptrace_events;
+
+ /* Instruct the kernel as to the set of events we wish to be
+ informed of. (This support does not exist before HPUX 10.0.
+ We'll assume if PT_SET_EVENT_MASK has not been defined by
+ <sys/ptrace.h>, then we're being built on pre-10.0.)
+ */
+ memset (&ptrace_events, 0, sizeof (ptrace_events));
+
+ /* Note: By default, all signals are visible to us. If we wish
+ the kernel to keep certain signals hidden from us, we do it
+ by calling sigdelset (ptrace_events.pe_signals, signal) for
+ each such signal here, before doing PT_SET_EVENT_MASK.
+ */
+ sigemptyset (&ptrace_events.pe_signals);
+
+ ptrace_events.pe_set_event = 0;
+
+ ptrace_events.pe_set_event |= PTRACE_EXEC;
+ /* ??rehrauer: Add this one when we're prepared to catch it...
+ ptrace_events.pe_set_event |= PTRACE_EXIT;
+ */
+
+ errno = 0;
+ pt_status = call_ptrace (PT_SET_EVENT_MASK,
+ pid,
+ (PTRACE_ARG3_TYPE) &ptrace_events,
+ sizeof (ptrace_events));
+ if (errno)
+ perror_with_name ("ptrace");
+ if (pt_status < 0)
+ return;
+#endif
+}
+
+/* This function is called by the parent process, with pid being the
+ ID of the child process, after the debugger has forked. */
+
+void
+child_acknowledge_created_inferior (pid)
+ int pid;
+{
+ /* We need a memory home for a constant. */
+ int tc_magic_parent = PT_VERSION;
+ int tc_magic_child = 0;
+
+ /* Wait for the child to tell us that it has forked. */
+ read (startup_semaphore.child_channel[SEM_LISTEN],
+ &tc_magic_child,
+ sizeof(tc_magic_child));
+
+ /* Notify the child that it can exec.
+
+ In the infttrace.c variant of this function, we set the child's
+ event mask after the fork but before the exec. In the ptrace
+ world, it seems we can't set the event mask until after the exec. */
+
+ write (startup_semaphore.parent_channel[SEM_TALK],
+ &tc_magic_parent,
+ sizeof (tc_magic_parent));
+
+ /* We'd better pause a bit before trying to set the event mask,
+ though, to ensure that the exec has happened. We don't want to
+ wait() on the child, because that'll screw up the upper layers
+ of gdb's execution control that expect to see the exec event.
+
+ After an exec, the child is no longer executing gdb code. Hence,
+ we can't have yet another synchronization via the pipes. We'll
+ just sleep for a second, and hope that's enough delay... */
+
+ sleep (1);
+
+ /* Instruct the kernel as to the set of events we wish to be
+ informed of. */
+
+ require_notification_of_exec_events (pid);
+
+ /* Discard our copy of the semaphore. */
+ (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
+ (void) close (startup_semaphore.parent_channel[SEM_TALK]);
+ (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
+ (void) close (startup_semaphore.child_channel[SEM_TALK]);
+}
+
+void
+child_post_startup_inferior (pid)
+ int pid;
+
+{
+ require_notification_of_events (pid);
+}
+
+void
+child_post_attach (pid)
+ int pid;
+{
+ require_notification_of_events (pid);
+}
+
+int
+child_insert_fork_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch forks prior to HPUX 10.0");
+#else
+ /* Enable reporting of fork events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them.
+ */
+ return 0;
+#endif
+}
+
+int
+child_remove_fork_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch forks prior to HPUX 10.0");
+#else
+ /* Disable reporting of fork events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them. */
+ return 0;
+#endif
+}
+
+int
+child_insert_vfork_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch vforks prior to HPUX 10.0");
+#else
+ /* Enable reporting of vfork events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them. */
+ return 0;
+#endif
+}
+
+int
+child_remove_vfork_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch vforks prior to HPUX 10.0");
+#else
+ /* Disable reporting of vfork events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them. */
+ return 0;
+#endif
+}
+
+int
+child_has_forked (pid, childpid)
+ int pid;
+ int * childpid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_GET_PROCESS_STATE)
+ *childpid = 0;
+ return 0;
+#else
+ int pt_status;
+ ptrace_state_t ptrace_state;
+
+ errno = 0;
+ pt_status = call_ptrace (PT_GET_PROCESS_STATE,
+ pid,
+ (PTRACE_ARG3_TYPE) &ptrace_state,
+ sizeof (ptrace_state));
+ if (errno)
+ perror_with_name ("ptrace");
+ if (pt_status < 0)
+ return 0;
+
+ if (ptrace_state.pe_report_event & PTRACE_FORK)
+ {
+ *childpid = ptrace_state.pe_other_pid;
+ return 1;
+ }
+
+ return 0;
+#endif
+}
+
+int
+child_has_vforked (pid, childpid)
+ int pid;
+ int * childpid;
+{
+ /* This request is only available on HPUX 10.0 and later. */
+#if !defined(PT_GET_PROCESS_STATE)
+ *childpid = 0;
+ return 0;
+
+#else
+ int pt_status;
+ ptrace_state_t ptrace_state;
+
+ errno = 0;
+ pt_status = call_ptrace (PT_GET_PROCESS_STATE,
+ pid,
+ (PTRACE_ARG3_TYPE) &ptrace_state,
+ sizeof (ptrace_state));
+ if (errno)
+ perror_with_name ("ptrace");
+ if (pt_status < 0)
+ return 0;
+
+ if (ptrace_state.pe_report_event & PTRACE_VFORK)
+ {
+ *childpid = ptrace_state.pe_other_pid;
+ return 1;
+ }
+
+ return 0;
+#endif
+}
+
+int
+child_can_follow_vfork_prior_to_exec ()
+{
+ /* ptrace doesn't allow this. */
+ return 0;
+}
+
+int
+child_insert_exec_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later.
+ */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch execs prior to HPUX 10.0");
+
+#else
+ /* Enable reporting of exec events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them.
+ */
+ return 0;
+#endif
+}
+
+int
+child_remove_exec_catchpoint (pid)
+ int pid;
+{
+ /* This request is only available on HPUX 10.0 and later.
+ */
+#if !defined(PT_SET_EVENT_MASK)
+ error ("Unable to catch execs prior to HPUX 10.0");
+
+#else
+ /* Disable reporting of exec events from the kernel. */
+ /* ??rehrauer: For the moment, we're always enabling these events,
+ and just ignoring them if there's no catchpoint to catch them.
+ */
+ return 0;
+#endif
+}
+
+int
+child_has_execd (pid, execd_pathname)
+ int pid;
+ char ** execd_pathname;
+{
+
+ /* This request is only available on HPUX 10.0 and later.
+ */
+#if !defined(PT_GET_PROCESS_STATE)
+ *execd_pathname = NULL;
+ return 0;
+
+#else
+ int pt_status;
+ ptrace_state_t ptrace_state;
+
+ errno = 0;
+ pt_status = call_ptrace (PT_GET_PROCESS_STATE,
+ pid,
+ (PTRACE_ARG3_TYPE) &ptrace_state,
+ sizeof (ptrace_state));
+ if (errno)
+ perror_with_name ("ptrace");
+ if (pt_status < 0)
+ return 0;
+
+ if (ptrace_state.pe_report_event & PTRACE_EXEC)
+ {
+ char * exec_file = target_pid_to_exec_file (pid);
+ *execd_pathname = savestring (exec_file, strlen (exec_file));
+ return 1;
+ }
+
+ return 0;
+#endif
+}
+
+int
+child_reported_exec_events_per_exec_call ()
+{
+ return 2; /* ptrace reports the event twice per call. */
+}
+
+int
+child_has_syscall_event (pid, kind, syscall_id)
+ int pid;
+ enum target_waitkind *kind;
+ int *syscall_id;
+{
+ /* This request is only available on HPUX 10.30 and later, via
+ the ttrace interface. */
+
+ *kind = TARGET_WAITKIND_SPURIOUS;
+ *syscall_id = -1;
+ return 0;
+}
+
+char *
+child_pid_to_exec_file (pid)
+ int pid;
+{
+ static char exec_file_buffer[1024];
+ int pt_status;
+ CORE_ADDR top_of_stack;
+ char four_chars[4];
+ int name_index;
+ int i;
+ int saved_inferior_pid;
+ boolean done;
+
+#ifdef PT_GET_PROCESS_PATHNAME
+ /* As of 10.x HP-UX, there's an explicit request to get the pathname. */
+ pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
+ pid,
+ (PTRACE_ARG3_TYPE) exec_file_buffer,
+ sizeof (exec_file_buffer) - 1);
+ if (pt_status == 0)
+ return exec_file_buffer;
+#endif
+
+ /* It appears that this request is broken prior to 10.30.
+ If it fails, try a really, truly amazingly gross hack
+ that DDE uses, of pawing through the process' data
+ segment to find the pathname. */
+
+ top_of_stack = 0x7b03a000;
+ name_index = 0;
+ done = 0;
+
+ /* On the chance that pid != inferior_pid, set inferior_pid
+ to pid, so that (grrrr!) implicit uses of inferior_pid get
+ the right id. */
+
+ saved_inferior_pid = inferior_pid;
+ inferior_pid = pid;
+
+ /* Try to grab a null-terminated string. */
+ while (! done)
+ {
+ if (target_read_memory (top_of_stack, four_chars, 4) != 0)
+ {
+ inferior_pid = saved_inferior_pid;
+ return NULL;
+ }
+ for (i = 0; i < 4; i++)
+ {
+ exec_file_buffer[name_index++] = four_chars[i];
+ done = (four_chars[i] == '\0');
+ if (done)
+ break;
+ }
+ top_of_stack += 4;
+ }
+
+ if (exec_file_buffer[0] == '\0')
+ {
+ inferior_pid = saved_inferior_pid;
+ return NULL;
+ }
+
+ inferior_pid = saved_inferior_pid;
+ return exec_file_buffer;
+}
+
+void
+pre_fork_inferior ()
+{
+ int status;
+
+ status = pipe (startup_semaphore.parent_channel);
+ if (status < 0)
+ {
+ warning ("error getting parent pipe for startup semaphore");
+ return;
+ }
+
+ status = pipe (startup_semaphore.child_channel);
+ if (status < 0)
+ {
+ warning ("error getting child pipe for startup semaphore");
+ return;
+ }
+}
+
+
+/* Check to see if the given thread is alive.
+
+ This is a no-op, as ptrace doesn't support threads, so we just
+ return "TRUE". */
+
+int
+child_thread_alive (pid)
+ int pid;
+{
+ return 1;
+}
+
+#endif /* ! GDB_NATIVE_HPUX_11 */