aboutsummaryrefslogtreecommitdiff
path: root/gdb/h8300-tdep.c
diff options
context:
space:
mode:
authorCorinna Vinschen <corinna@vinschen.de>2002-09-16 15:03:17 +0000
committerCorinna Vinschen <corinna@vinschen.de>2002-09-16 15:03:17 +0000
commit928e48af4f1074d16dcbb8b8f8d4a6800813ca02 (patch)
tree44e6c18ecefc5ce1059150df0448f901a348e2ce /gdb/h8300-tdep.c
parent4d1310b4a5c5a9a63b8bcf46dfe5ec34c933b340 (diff)
downloadgdb-928e48af4f1074d16dcbb8b8f8d4a6800813ca02.zip
gdb-928e48af4f1074d16dcbb8b8f8d4a6800813ca02.tar.gz
gdb-928e48af4f1074d16dcbb8b8f8d4a6800813ca02.tar.bz2
* h8300-tdep.c: Multiarch. Drop `set machine' command in favor of
`set architecture'. Unify naming convention of functions. (h8300_skip_prologue): Improve prologue analysis. (h8300_push_arguments): Rewritten to more closely match GCC's bizarre argument-passing behavior, along with the comment describing said behavior. * remote-hms.c (hms_regnames): Don't use NUM_REGS in definition. * config/h8300/tm-h8300.h: Multiarch. Just keep stuff needed by sim, remote-e7000.c, remote-hms.c and remote.c
Diffstat (limited to 'gdb/h8300-tdep.c')
-rw-r--r--gdb/h8300-tdep.c1046
1 files changed, 663 insertions, 383 deletions
diff --git a/gdb/h8300-tdep.c b/gdb/h8300-tdep.c
index f992d4b..cd62799 100644
--- a/gdb/h8300-tdep.c
+++ b/gdb/h8300-tdep.c
@@ -26,20 +26,50 @@
*/
#include "defs.h"
-#include "frame.h"
-#include "symtab.h"
-#include "dis-asm.h"
-#include "gdbcmd.h"
-#include "gdbtypes.h"
-#include "gdbcore.h"
-#include "gdb_string.h"
#include "value.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "arch-utils.h"
#include "regcache.h"
+#include "gdbcore.h"
+#include "objfiles.h"
+#include "gdbcmd.h"
-extern int h8300hmode, h8300smode;
+/* Extra info which is saved in each frame_info. */
+struct frame_extra_info
+{
+ CORE_ADDR from_pc;
+ CORE_ADDR args_pointer;
+ CORE_ADDR locals_pointer;
+};
-#undef NUM_REGS
-#define NUM_REGS (h8300smode?12:11)
+#define E_NUM_REGS (h8300smode ? 14 : 13)
+
+enum
+{
+ h8300_reg_size = 2,
+ h8300h_reg_size = 4,
+ h8300_max_reg_size = 4,
+};
+#define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
+
+enum gdb_regnum
+{
+ E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
+ E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
+ E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
+ E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
+ E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
+ E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
+ E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
+ E_SP_REGNUM,
+ E_CCR_REGNUM,
+ E_PC_REGNUM,
+ E_CYCLES_REGNUM,
+ E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
+ E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
+ E_INSTS_REGNUM
+};
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
@@ -53,24 +83,95 @@ extern int h8300hmode, h8300smode;
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_R5SP(x) (x==0x1957)
-/* The register names change depending on whether the h8300h processor
- type is selected. */
+/* If the instruction at PC is an argument register spill, return its
+ length. Otherwise, return zero.
-static char *original_register_names[] = REGISTER_NAMES;
+ An argument register spill is an instruction that moves an argument
+ from the register in which it was passed to the stack slot in which
+ it really lives. It is a byte, word, or longword move from an
+ argument register to a negative offset from the frame pointer. */
-static char *h8300h_register_names[] = {
- "er0", "er1", "er2", "er3", "er4", "er5", "er6",
- "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
-};
+static int
+h8300_is_argument_spill (CORE_ADDR pc)
+{
+ int w = read_memory_unsigned_integer (pc, 2);
+
+ if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
+ && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
+
+ /* ... and d:16 is negative. */
+ if (w2 < 0)
+ return 4;
+ }
+ else if (w == 0x7860)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
-char **h8300_register_names = original_register_names;
+ if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 4, 4);
-/* Local function declarations. */
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 8;
+ }
+ }
+ else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
+ && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
-static CORE_ADDR examine_prologue ();
-static void set_machine_hook (char *filename);
+ /* ... and d:16 is negative. */
+ if (w2 < 0)
+ return 4;
+ }
+ else if (w == 0x78e0)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
-CORE_ADDR
+ if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 4, 4);
+
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 8;
+ }
+ }
+ else if (w == 0x0100)
+ {
+ int w2 = read_memory_integer (pc + 2, 2);
+
+ if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
+ && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
+ {
+ int w3 = read_memory_integer (pc + 4, 2);
+
+ /* ... and d:16 is negative. */
+ if (w3 < 0)
+ return 6;
+ }
+ else if (w2 == 0x78e0)
+ {
+ int w3 = read_memory_integer (pc + 4, 2);
+
+ if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
+ {
+ LONGEST disp = read_memory_integer (pc + 6, 4);
+
+ /* ... and d:24 is negative. */
+ if (disp < 0 && disp > 0xffffff)
+ return 10;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static CORE_ADDR
h8300_skip_prologue (CORE_ADDR start_pc)
{
short int w;
@@ -137,10 +238,21 @@ h8300_skip_prologue (CORE_ADDR start_pc)
if (IS_SUBL_SP (w))
start_pc += 6 + adjust;
+ /* Check for spilling an argument register to the stack frame.
+ This could also be an initializing store from non-prologue code,
+ but I don't think there's any harm in skipping that. */
+ for (;;)
+ {
+ int spill_size = h8300_is_argument_spill (start_pc);
+ if (spill_size == 0)
+ break;
+ start_pc += spill_size;
+ }
+
return start_pc;
}
-int
+static int
gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
{
if (h8300smode)
@@ -151,82 +263,13 @@ gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
return print_insn_h8300 (memaddr, info);
}
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
-
-CORE_ADDR
-h8300_frame_chain (struct frame_info *thisframe)
-{
- if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
- { /* initialize the from_pc now */
- thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
- thisframe->frame,
- PC_REGNUM);
- return thisframe->frame;
- }
- h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- return thisframe->fsr->regs[SP_REGNUM];
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_obstack, since it is
- fairly expensive. */
-
-void
-h8300_frame_find_saved_regs (struct frame_info *fi,
- struct frame_saved_regs *fsr)
-{
- register struct frame_saved_regs *cache_fsr;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- frame_obstack_alloc (sizeof (struct frame_saved_regs));
- memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
-
- fi->fsr = cache_fsr;
-
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- { /* no more to do. */
- if (fsr)
- *fsr = *fi->fsr;
- return;
- }
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
-}
-
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction. */
-CORE_ADDR
-NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD * pword1)
+static CORE_ADDR
+NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
{
char buf[2];
if (addr < lim + 8)
@@ -248,18 +291,29 @@ NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD * pword1)
`fi' is a struct frame_info pointer; we fill in various fields in it
to reflect the offsets of the arg pointer and the locals pointer. */
+/* Any function with a frame looks like this
+ SECOND ARG
+ FIRST ARG
+ RET PC
+ SAVED R2
+ SAVED R3
+ SAVED FP <-FP POINTS HERE
+ LOCALS0
+ LOCALS1 <-SP POINTS HERE
+ */
+
static CORE_ADDR
-examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
- CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
- struct frame_info *fi)
+h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
+ CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
+ struct frame_info *fi)
{
register CORE_ADDR next_ip;
int r;
int have_fp = 0;
- INSN_WORD insn_word;
+ unsigned short insn_word;
/* Number of things pushed onto stack, starts at 2/4, 'cause the
PC is already there */
- unsigned int reg_save_depth = h8300hmode ? 4 : 2;
+ unsigned int reg_save_depth = BINWORD;
unsigned int auto_depth = 0; /* Number of bytes of autos */
@@ -270,11 +324,11 @@ examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
memset (in_frame, 1, 11);
for (r = 0; r < 8; r++)
{
- fsr->regs[r] = 0;
+ fsr[r] = 0;
}
if (after_prolog_fp == 0)
{
- after_prolog_fp = read_register (SP_REGNUM);
+ after_prolog_fp = read_register (E_SP_REGNUM);
}
/* If the PC isn't valid, quit now. */
@@ -290,7 +344,7 @@ examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
}
/* Skip over any fp push instructions */
- fsr->regs[6] = after_prolog_fp;
+ fsr[E_FP_REGNUM] = after_prolog_fp;
while (next_ip && IS_PUSH_FP (insn_word))
{
ip = next_ip + adjust;
@@ -360,7 +414,7 @@ examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- fsr->regs[r] = after_prolog_fp + auto_depth;
+ fsr[r] = after_prolog_fp + auto_depth;
auto_depth += 2 + adjust;
continue;
}
@@ -377,7 +431,7 @@ examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
for (i = start; i <= start + count; i++)
{
- fsr->regs[i] = after_prolog_fp + auto_depth;
+ fsr[i] = after_prolog_fp + auto_depth;
auto_depth += 4;
}
}
@@ -385,37 +439,67 @@ examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
}
/* The args are always reffed based from the stack pointer */
- fi->args_pointer = after_prolog_fp;
+ fi->extra_info->args_pointer = after_prolog_fp;
/* Locals are always reffed based from the fp */
- fi->locals_pointer = after_prolog_fp;
+ fi->extra_info->locals_pointer = after_prolog_fp;
/* The PC is at a known place */
- fi->from_pc =
+ fi->extra_info->from_pc =
read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
/* Rememeber any others too */
- in_frame[PC_REGNUM] = 0;
+ in_frame[E_PC_REGNUM] = 0;
if (have_fp)
/* We keep the old FP in the SP spot */
- fsr->regs[SP_REGNUM] =
- read_memory_unsigned_integer (fsr->regs[6], BINWORD);
+ fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
else
- fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
+ fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
return (ip);
}
-void
-h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+static void
+h8300_frame_init_saved_regs (struct frame_info *fi)
{
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
- fi->from_pc = 0;
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- { /* anything special to do? */
- return;
+ CORE_ADDR func_addr, func_end;
+
+ if (!fi->saved_regs)
+ {
+ frame_saved_regs_zalloc (fi);
+
+ /* Find the beginning of this function, so we can analyze its
+ prologue. */
+ if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
+ {
+ struct symtab_and_line sal = find_pc_line (func_addr, 0);
+ CORE_ADDR limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
+ /* This will fill in fields in fi. */
+ h8300_examine_prologue (func_addr, limit, fi->frame, fi->saved_regs, fi);
+ }
+ /* Else we're out of luck (can't debug completely stripped code).
+ FIXME. */
+ }
+}
+
+/* Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+
+ For us, the frame address is its stack pointer value, so we look up
+ the function prologue to determine the caller's sp value, and return it. */
+
+static CORE_ADDR
+h8300_frame_chain (struct frame_info *thisframe)
+{
+ if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
+ { /* initialize the from_pc now */
+ thisframe->extra_info->from_pc = generic_read_register_dummy (
+ thisframe->pc,
+ thisframe->frame,
+ E_PC_REGNUM);
+ return thisframe->frame;
}
+ return thisframe->saved_regs[E_SP_REGNUM];
}
/* Return the saved PC from this frame.
@@ -423,168 +507,212 @@ h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
If the frame has a memory copy of SRP_REGNUM, use that. If not,
just use the register SRP_REGNUM itself. */
-CORE_ADDR
+static CORE_ADDR
h8300_frame_saved_pc (struct frame_info *frame)
{
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
+ return generic_read_register_dummy (frame->pc, frame->frame, E_PC_REGNUM);
else
- return frame->from_pc;
+ return frame->extra_info->from_pc;
}
-CORE_ADDR
+static void
+h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+{
+ if (!fi->extra_info)
+ {
+ fi->extra_info = (struct frame_extra_info *)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+ fi->extra_info->from_pc = 0;
+ fi->extra_info->args_pointer = 0; /* Unknown */
+ fi->extra_info->locals_pointer = 0; /* Unknown */
+
+ if (!fi->pc)
+ {
+ if (fi->next)
+ fi->pc = h8300_frame_saved_pc (fi->next);
+ }
+ h8300_frame_init_saved_regs (fi);
+ }
+}
+
+static CORE_ADDR
h8300_frame_locals_address (struct frame_info *fi)
{
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return (CORE_ADDR) 0; /* Not sure what else to do... */
- if (!fi->locals_pointer)
- {
- struct frame_saved_regs ignore;
-
- get_frame_saved_regs (fi, &ignore);
-
- }
- return fi->locals_pointer;
+ return fi->extra_info->locals_pointer;
}
/* Return the address of the argument block for the frame
described by FI. Returns 0 if the address is unknown. */
-CORE_ADDR
+static CORE_ADDR
h8300_frame_args_address (struct frame_info *fi)
{
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return (CORE_ADDR) 0; /* Not sure what else to do... */
- if (!fi->args_pointer)
- {
- struct frame_saved_regs ignore;
-
- get_frame_saved_regs (fi, &ignore);
-
- }
-
- return fi->args_pointer;
+ return fi->extra_info->args_pointer;
}
+/* Round N up or down to the nearest multiple of UNIT.
+ Evaluate N only once, UNIT several times.
+ UNIT must be a power of two. */
+#define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
+#define round_down(n, unit) ((n) & -(unit))
+
/* Function: push_arguments
Setup the function arguments for calling a function in the inferior.
+ In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
+ on the H8/300H.
+
+ There are actually two ABI's here: -mquickcall (the default) and
+ -mno-quickcall. With -mno-quickcall, all arguments are passed on
+ the stack after the return address, word-aligned. With
+ -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
+ GCC doesn't indicate in the object file which ABI was used to
+ compile it, GDB only supports the default --- -mquickcall.
+
+ Here are the rules for -mquickcall, in detail:
+
+ Each argument, whether scalar or aggregate, is padded to occupy a
+ whole number of words. Arguments smaller than a word are padded at
+ the most significant end; those larger than a word are padded at
+ the least significant end.
+
+ The initial arguments are passed in r0 -- r2. Earlier arguments go in
+ lower-numbered registers. Multi-word arguments are passed in
+ consecutive registers, with the most significant end in the
+ lower-numbered register.
+
+ If an argument doesn't fit entirely in the remaining registers, it
+ is passed entirely on the stack. Stack arguments begin just after
+ the return address. Once an argument has overflowed onto the stack
+ this way, all subsequent arguments are passed on the stack.
+
+ The above rule has odd consequences. For example, on the h8/300s,
+ if a function takes two longs and an int as arguments:
+ - the first long will be passed in r0/r1,
+ - the second long will be passed entirely on the stack, since it
+ doesn't fit in r2,
+ - and the int will be passed on the stack, even though it could fit
+ in r2.
+
+ A weird exception: if an argument is larger than a word, but not a
+ whole number of words in length (before padding), it is passed on
+ the stack following the rules for stack arguments above, even if
+ there are sufficient registers available to hold it. Stranger
+ still, the argument registers are still `used up' --- even though
+ there's nothing in them.
+
+ So, for example, on the h8/300s, if a function expects a three-byte
+ structure and an int, the structure will go on the stack, and the
+ int will go in r2, not r0.
+
+ If the function returns an aggregate type (struct, union, or class)
+ by value, the caller must allocate space to hold the return value,
+ and pass the callee a pointer to this space as an invisible first
+ argument, in R0.
+
+ For varargs functions, the last fixed argument and all the variable
+ arguments are always passed on the stack. This means that calls to
+ varargs functions don't work properly unless there is a prototype
+ in scope.
+
+ Basically, this ABI is not good, for the following reasons:
+ - You can't call vararg functions properly unless a prototype is in scope.
+ - Structure passing is inconsistent, to no purpose I can see.
+ - It often wastes argument registers, of which there are only three
+ to begin with. */
- On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
- which are dedicated for passing function arguments. Up to the first
- three arguments (depending on size) may go into these registers.
- The rest go on the stack.
-
- Arguments that are smaller than WORDSIZE bytes will still take up a
- whole register or a whole WORDSIZE word on the stack, and will be
- right-justified in the register or the stack word. This includes
- chars and small aggregate types. Note that WORDSIZE depends on the
- cpu type.
-
- Arguments that are larger than WORDSIZE bytes will be split between
- two or more registers as available, but will NOT be split between a
- register and the stack.
-
- An exceptional case exists for struct arguments (and possibly other
- aggregates such as arrays) -- if the size is larger than WORDSIZE
- bytes but not a multiple of WORDSIZE bytes. In this case the
- argument is never split between the registers and the stack, but
- instead is copied in its entirety onto the stack, AND also copied
- into as many registers as there is room for. In other words, space
- in registers permitting, two copies of the same argument are passed
- in. As far as I can tell, only the one on the stack is used,
- although that may be a function of the level of compiler
- optimization. I suspect this is a compiler bug. Arguments of
- these odd sizes are left-justified within the word (as opposed to
- arguments smaller than WORDSIZE bytes, which are right-justified).
-
- If the function is to return an aggregate type such as a struct,
- the caller must allocate space into which the callee will copy the
- return value. In this case, a pointer to the return value location
- is passed into the callee in register R0, which displaces one of
- the other arguments passed in via registers R0 to R2. */
-
-CORE_ADDR
+static CORE_ADDR
h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- unsigned char struct_return, CORE_ADDR struct_addr)
+ int struct_return, CORE_ADDR struct_addr)
{
int stack_align, stack_alloc, stack_offset;
- int wordsize;
- int argreg;
- int argnum;
- struct type *type;
- CORE_ADDR regval;
- char *val;
- char valbuf[4];
- int len;
-
- if (h8300hmode || h8300smode)
+ int wordsize = BINWORD;
+ int reg;
+ int argument;
+
+ /* First, make sure the stack is properly aligned. */
+ sp = round_down (sp, wordsize);
+
+ /* Now make sure there's space on the stack for the arguments. We
+ may over-allocate a little here, but that won't hurt anything. */
+ stack_alloc = 0;
+ for (argument = 0; argument < nargs; argument++)
+ stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
+ wordsize);
+ sp -= stack_alloc;
+
+ /* Now load as many arguments as possible into registers, and push
+ the rest onto the stack. */
+ reg = E_ARG0_REGNUM;
+ stack_offset = 0;
+
+ /* If we're returning a structure by value, then we must pass a
+ pointer to the buffer for the return value as an invisible first
+ argument. */
+ if (struct_return)
+ write_register (reg++, struct_addr);
+
+ for (argument = 0; argument < nargs; argument++)
{
- stack_align = 3;
- wordsize = 4;
- }
- else
- {
- stack_align = 1;
- wordsize = 2;
- }
-
- /* first force sp to a n-byte alignment */
- sp = sp & ~stack_align;
-
- /* Now make sure there's space on the stack */
- for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
- stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
- & ~stack_align);
- sp -= stack_alloc; /* make room on stack for args */
- /* we may over-allocate a little here, but that won't hurt anything */
-
- argreg = ARG0_REGNUM;
- if (struct_return) /* "struct return" pointer takes up one argreg */
- {
- write_register (argreg++, struct_addr);
- }
-
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. There are 3N bytes
- in three registers available. Loop thru args from first to last. */
-
- for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
- {
- type = VALUE_TYPE (args[argnum]);
- len = TYPE_LENGTH (type);
- memset (valbuf, 0, sizeof (valbuf));
- if (len < wordsize)
- {
- /* the purpose of this is to right-justify the value within the word */
- memcpy (valbuf + (wordsize - len),
- (char *) VALUE_CONTENTS (args[argnum]), len);
- val = valbuf;
- }
+ struct type *type = VALUE_TYPE (args[argument]);
+ int len = TYPE_LENGTH (type);
+ char *contents = (char *) VALUE_CONTENTS (args[argument]);
+
+ /* Pad the argument appropriately. */
+ int padded_len = round_up (len, wordsize);
+ char *padded = alloca (padded_len);
+
+ memset (padded, 0, padded_len);
+ memcpy (len < wordsize ? padded + padded_len - len : padded,
+ contents, len);
+
+ /* Could the argument fit in the remaining registers? */
+ if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
+ {
+ /* Are we going to pass it on the stack anyway, for no good
+ reason? */
+ if (len > wordsize && len % wordsize)
+ {
+ /* I feel so unclean. */
+ write_memory (sp + stack_offset, padded, padded_len);
+ stack_offset += padded_len;
+
+ /* That's right --- even though we passed the argument
+ on the stack, we consume the registers anyway! Love
+ me, love my dog. */
+ reg += padded_len / wordsize;
+ }
+ else
+ {
+ /* Heavens to Betsy --- it's really going in registers!
+ It would be nice if we could use write_register_bytes
+ here, but on the h8/300s, there are gaps between
+ the registers in the register file. */
+ int offset;
+
+ for (offset = 0; offset < padded_len; offset += wordsize)
+ {
+ ULONGEST word = extract_address (padded + offset, wordsize);
+ write_register (reg++, word);
+ }
+ }
+ }
else
- val = (char *) VALUE_CONTENTS (args[argnum]);
-
- if (len >
- (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM)
- || (len > wordsize && (len & stack_align) != 0))
- { /* passed on the stack */
- write_memory (sp + stack_offset, val,
- len < wordsize ? wordsize : len);
- stack_offset += (len + stack_align) & ~stack_align;
- }
- /* NOTE WELL!!!!! This is not an "else if" clause!!!
- That's because some *&^%$ things get passed on the stack
- AND in the registers! */
- if (len <=
- (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
- while (len > 0)
- { /* there's room in registers */
- regval = extract_address (val, wordsize);
- write_register (argreg, regval);
- len -= wordsize;
- val += wordsize;
- argreg++;
- }
+ {
+ /* It doesn't fit in registers! Onto the stack it goes. */
+ write_memory (sp + stack_offset, padded, padded_len);
+ stack_offset += padded_len;
+
+ /* Once one argument has spilled onto the stack, all
+ subsequent arguments go on the stack. */
+ reg = E_ARGLAST_REGNUM + 1;
+ }
}
+
return sp;
}
@@ -594,16 +722,11 @@ h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
empty CALL_DUMMY, ie. the target will not actually be executing
a JSR/BSR instruction. */
-CORE_ADDR
+static CORE_ADDR
h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
unsigned char buf[4];
- int wordsize;
-
- if (h8300hmode || h8300smode)
- wordsize = 4;
- else
- wordsize = 2;
+ int wordsize = BINWORD;
sp -= wordsize;
store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
@@ -616,11 +739,10 @@ h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
was created. Usually used either by the "RETURN" command, or by
call_function_by_hand after the dummy_frame is finished. */
-void
+static void
h8300_pop_frame (void)
{
- unsigned regnum;
- struct frame_saved_regs fsr;
+ unsigned regno;
struct frame_info *frame = get_current_frame ();
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
@@ -629,21 +751,20 @@ h8300_pop_frame (void)
}
else
{
- get_frame_saved_regs (frame, &fsr);
-
- for (regnum = 0; regnum < 8; regnum++)
+ for (regno = 0; regno < 8; regno++)
{
- /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
+ /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
actual value we want, not the address of the value we want. */
- if (fsr.regs[regnum] && regnum != SP_REGNUM)
- write_register (regnum,
- read_memory_integer (fsr.regs[regnum], BINWORD));
- else if (fsr.regs[regnum] && regnum == SP_REGNUM)
- write_register (regnum, frame->frame + 2 * BINWORD);
+ if (frame->saved_regs[regno] && regno != E_SP_REGNUM)
+ write_register (regno,
+ read_memory_integer (frame->saved_regs[regno],
+ BINWORD));
+ else if (frame->saved_regs[regno] && regno == E_SP_REGNUM)
+ write_register (regno, frame->frame + 2 * BINWORD);
}
- /* Don't forget the update the PC too! */
- write_pc (frame->from_pc);
+ /* Don't forget to update the PC too! */
+ write_register (E_PC_REGNUM, frame->extra_info->from_pc);
}
flush_cached_frames ();
}
@@ -652,17 +773,11 @@ h8300_pop_frame (void)
Figure out where in REGBUF the called function has left its return value.
Copy that into VALBUF. Be sure to account for CPU type. */
-void
+static void
h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
- int wordsize, len;
-
- if (h8300smode || h8300hmode)
- wordsize = 4;
- else
- wordsize = 2;
-
- len = TYPE_LENGTH (type);
+ int wordsize = BINWORD;
+ int len = TYPE_LENGTH (type);
switch (len)
{
@@ -671,7 +786,7 @@ h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
break;
case 4: /* (long), (float) */
- if (h8300smode || h8300hmode)
+ if (wordsize == 4)
{
memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
}
@@ -692,17 +807,13 @@ h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
Place the appropriate value in the appropriate registers.
Primarily used by the RETURN command. */
-void
+static void
h8300_store_return_value (struct type *type, char *valbuf)
{
- int wordsize, len, regval;
-
- if (h8300hmode || h8300smode)
- wordsize = 4;
- else
- wordsize = 2;
+ int regval;
+ int wordsize = BINWORD;
+ int len = TYPE_LENGTH (type);
- len = TYPE_LENGTH (type);
switch (len)
{
case 1: /* char */
@@ -712,7 +823,7 @@ h8300_store_return_value (struct type *type, char *valbuf)
break;
case 4: /* long, float */
regval = extract_address (valbuf, len);
- if (h8300smode || h8300hmode)
+ if (wordsize == 4)
{
write_register (0, regval);
}
@@ -728,112 +839,62 @@ h8300_store_return_value (struct type *type, char *valbuf)
}
}
-struct cmd_list_element *setmemorylist;
+static struct cmd_list_element *setmachinelist;
-static void
-set_register_names (void)
+static const char *
+h8300_register_name (int regno)
{
- if (h8300hmode != 0)
- h8300_register_names = h8300h_register_names;
+ /* The register names change depending on whether the h8300h processor
+ type is selected. */
+ static char *h8300_register_names[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6",
+ "sp", "ccr","pc","cycles", "tick", "inst", ""
+ };
+ static char *h8300s_register_names[] = {
+ "er0", "er1", "er2", "er3", "er4", "er5", "er6",
+ "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
+ };
+ char **register_names =
+ h8300smode ? h8300s_register_names : h8300_register_names;
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_name: illegal register number %d", regno);
else
- h8300_register_names = original_register_names;
-}
-
-static void
-h8300_command (char *args, int from_tty)
-{
- extern int h8300hmode;
- h8300hmode = 0;
- h8300smode = 0;
- set_register_names ();
+ return register_names[regno];
}
static void
-h8300h_command (char *args, int from_tty)
+h8300_print_register (int regno)
{
- extern int h8300hmode;
- h8300hmode = 1;
- h8300smode = 0;
- set_register_names ();
-}
-
-static void
-h8300s_command (char *args, int from_tty)
-{
- extern int h8300smode;
- extern int h8300hmode;
- h8300smode = 1;
- h8300hmode = 1;
- set_register_names ();
-}
-
-static void
-set_machine (char *args, int from_tty)
-{
- printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
- printf_unfiltered ("or h8300s");
- help_list (setmemorylist, "set memory ", -1, gdb_stdout);
-}
+ long val = read_register (regno);
+ const char *name = h8300_register_name (regno);
-/* set_machine_hook is called as the exec file is being opened, but
- before the symbol file is opened. This allows us to set the
- h8300hmode flag based on the machine type specified in the exec
- file. This in turn will cause subsequently defined pointer types
- to be 16 or 32 bits as appropriate for the machine. */
+ if (!name || !*name)
+ return;
-static void
-set_machine_hook (char *filename)
-{
- if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
- {
- h8300smode = 1;
- h8300hmode = 1;
- }
- else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
+ printf_filtered ("%-14s ", name);
+ if (h8300hmode)
{
- h8300smode = 0;
- h8300hmode = 1;
+ if (val)
+ printf_filtered ("0x%08lx %-8ld", val, val);
+ else
+ printf_filtered ("0x%-8lx %-8ld", val, val);
}
else
{
- h8300smode = 0;
- h8300hmode = 0;
+ if (val)
+ printf_filtered ("0x%04lx %-4ld", val, val);
+ else
+ printf_filtered ("0x%-4lx %-4ld", val, val);
}
- set_register_names ();
-}
-
-void
-_initialize_h8300m (void)
-{
- add_prefix_cmd ("machine", no_class, set_machine,
- "set the machine type",
- &setmemorylist, "set machine ", 0, &setlist);
-
- add_cmd ("h8300", class_support, h8300_command,
- "Set machine to be H8/300.", &setmemorylist);
-
- add_cmd ("h8300h", class_support, h8300h_command,
- "Set machine to be H8/300H.", &setmemorylist);
-
- add_cmd ("h8300s", class_support, h8300s_command,
- "Set machine to be H8/300S.", &setmemorylist);
-
- /* Add a hook to set the machine type when we're loading a file. */
-
- specify_exec_file_hook (set_machine_hook);
-}
-
-void
-h8300_print_register_hook (int regno)
-{
- if (regno == CCR_REGNUM)
+ if (regno == E_CCR_REGNUM)
{
/* CCR register */
int C, Z, N, V;
- unsigned char b[REGISTER_SIZE];
+ unsigned char b[h8300h_reg_size];
unsigned char l;
frame_register_read (selected_frame, regno, b);
- l = b[REGISTER_VIRTUAL_SIZE (CCR_REGNUM) - 1];
+ l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
printf_unfiltered ("\t");
printf_unfiltered ("I-%d ", (l & 0x80) != 0);
printf_unfiltered ("UI-%d ", (l & 0x40) != 0);
@@ -868,24 +929,243 @@ h8300_print_register_hook (int regno)
if ((Z | (N ^ V)) == 1)
printf_unfiltered ("<= ");
}
-
- if (regno == EXR_REGNUM && h8300smode)
+ else if (regno == E_EXR_REGNUM && h8300smode)
{
/* EXR register */
- unsigned char b[REGISTER_SIZE];
+ unsigned char b[h8300h_reg_size];
unsigned char l;
frame_register_read (selected_frame, regno, b);
- l = b[REGISTER_VIRTUAL_SIZE (EXR_REGNUM) - 1];
+ l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
printf_unfiltered ("\t");
printf_unfiltered ("T-%d - - - ", (l & 0x80) != 0);
printf_unfiltered ("I2-%d ", (l & 4) != 0);
printf_unfiltered ("I1-%d ", (l & 2) != 0);
printf_unfiltered ("I0-%d", (l & 1) != 0);
}
+ printf_filtered ("\n");
+}
+
+static void
+h8300_do_registers_info (int regno, int cpregs)
+{
+ if (regno < 0)
+ for (regno = 0; regno < E_NUM_REGS; ++regno)
+ h8300_print_register (regno);
+ else
+ h8300_print_register (regno);
+}
+
+static CORE_ADDR
+h8300_saved_pc_after_call (struct frame_info *ignore)
+{
+ return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
+}
+
+static int
+h8300_register_byte (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_byte: illegal register number %d", regno);
+ else
+ return regno * BINWORD;
+}
+
+static int
+h8300_register_raw_size (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_raw_size: illegal register number %d",
+ regno);
+ else
+ return BINWORD;
+}
+
+static struct type *
+h8300_register_virtual_type (int regno)
+{
+ if (regno < 0 || regno >= E_NUM_REGS)
+ internal_error (__FILE__, __LINE__,
+ "h8300_register_virtual_type: illegal register number %d",
+ regno);
+ else
+ return h8300hmode ?
+ builtin_type_unsigned_long : builtin_type_unsigned_short;
+}
+
+static void
+h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ write_register (0, addr);
+}
+
+static int
+h8300_use_struct_convention (int gcc_p, struct type *type)
+{
+ return 1;
+}
+
+static CORE_ADDR
+h8300_extract_struct_value_address (char *regbuf)
+{
+ return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
+ h8300_register_raw_size (E_ARG0_REGNUM));
+}
+
+const static unsigned char *
+h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
+ static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
+
+ *lenptr = sizeof (breakpoint);
+ return breakpoint;
+}
+
+static void
+h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, const char *args)
+{
+ fprintf_filtered (file, "\
+No floating-point info available for this processor.\n");
+}
+
+static struct gdbarch *
+h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ static LONGEST call_dummy_words[1] = { 0 };
+ struct gdbarch_tdep *tdep = NULL;
+ struct gdbarch *gdbarch;
+
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+#if 0
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+#endif
+
+ if (info.bfd_arch_info->arch != bfd_arch_h8300)
+ return NULL;
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_h8300:
+ h8300smode = 0;
+ h8300hmode = 0;
+ break;
+ case bfd_mach_h8300h:
+ h8300smode = 0;
+ h8300hmode = 1;
+ break;
+ case bfd_mach_h8300s:
+ h8300smode = 1;
+ h8300hmode = 1;
+ break;
+ }
+
+ gdbarch = gdbarch_alloc (&info, 0);
+
+ /*
+ * Basic register fields and methods.
+ */
+
+ set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
+ set_gdbarch_num_pseudo_regs (gdbarch, 0);
+ set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
+ set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
+ set_gdbarch_register_name (gdbarch, h8300_register_name);
+ set_gdbarch_register_size (gdbarch, BINWORD);
+ set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
+ set_gdbarch_register_byte (gdbarch, h8300_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
+ set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size);
+ set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
+ set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size);
+ set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
+ set_gdbarch_do_registers_info (gdbarch, h8300_do_registers_info);
+ set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
+
+ /*
+ * Frame Info
+ */
+ set_gdbarch_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
+ set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
+ set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
+ set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
+ set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
+ set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
+ set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
+ set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
+ set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
+ set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);
+
+ /*
+ * Miscelany
+ */
+ /* Stack grows up. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ /* PC stops zero byte after a trap instruction
+ (which means: exactly on trap instruction). */
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+ /* This value is almost never non-zero... */
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ /* This value is almost never non-zero... */
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ /* OK to default this value to 'unknown'. */
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ frameless_look_for_prologue);
+
+ /* W/o prototype, coerce float args to double. */
+ //set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double);
+
+ /*
+ * Call Dummies
+ *
+ * These values and methods are used when gdb calls a target function. */
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+ set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
+ set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
+ set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
+ set_gdbarch_pop_frame (gdbarch, h8300_pop_frame);
+ set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
+ set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
+ set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ /* set_gdbarch_call_dummy_stack_adjust */
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+ set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
+
+ set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
+
+ //set_gdbarch_stack_align (gdbarch, SOME_stack_align);
+ set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
+ set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+ return gdbarch;
}
void
_initialize_h8300_tdep (void)
{
tm_print_insn = gdb_print_insn_h8300;
+ register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
}