aboutsummaryrefslogtreecommitdiff
path: root/gdb/findvar.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/findvar.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadgdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.zip
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.bz2
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/findvar.c')
-rw-r--r--gdb/findvar.c1630
1 files changed, 1630 insertions, 0 deletions
diff --git a/gdb/findvar.c b/gdb/findvar.c
new file mode 100644
index 0000000..5bfecc2
--- /dev/null
+++ b/gdb/findvar.c
@@ -0,0 +1,1630 @@
+/* Find a variable's value in memory, for GDB, the GNU debugger.
+ Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
+ Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "frame.h"
+#include "value.h"
+#include "gdbcore.h"
+#include "inferior.h"
+#include "target.h"
+#include "gdb_string.h"
+#include "floatformat.h"
+#include "symfile.h" /* for overlay functions */
+
+/* This is used to indicate that we don't know the format of the floating point
+ number. Typically, this is useful for native ports, where the actual format
+ is irrelevant, since no conversions will be taking place. */
+
+const struct floatformat floatformat_unknown;
+
+/* Registers we shouldn't try to store. */
+#if !defined (CANNOT_STORE_REGISTER)
+#define CANNOT_STORE_REGISTER(regno) 0
+#endif
+
+static void write_register_gen PARAMS ((int, char *));
+
+/* Basic byte-swapping routines. GDB has needed these for a long time...
+ All extract a target-format integer at ADDR which is LEN bytes long. */
+
+#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
+ /* 8 bit characters are a pretty safe assumption these days, so we
+ assume it throughout all these swapping routines. If we had to deal with
+ 9 bit characters, we would need to make len be in bits and would have
+ to re-write these routines... */
+ you lose
+#endif
+
+LONGEST
+extract_signed_integer (addr, len)
+ PTR addr;
+ int len;
+{
+ LONGEST retval;
+ unsigned char *p;
+ unsigned char *startaddr = (unsigned char *)addr;
+ unsigned char *endaddr = startaddr + len;
+
+ if (len > (int) sizeof (LONGEST))
+ error ("\
+That operation is not available on integers of more than %d bytes.",
+ sizeof (LONGEST));
+
+ /* Start at the most significant end of the integer, and work towards
+ the least significant. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ p = startaddr;
+ /* Do the sign extension once at the start. */
+ retval = ((LONGEST)*p ^ 0x80) - 0x80;
+ for (++p; p < endaddr; ++p)
+ retval = (retval << 8) | *p;
+ }
+ else
+ {
+ p = endaddr - 1;
+ /* Do the sign extension once at the start. */
+ retval = ((LONGEST)*p ^ 0x80) - 0x80;
+ for (--p; p >= startaddr; --p)
+ retval = (retval << 8) | *p;
+ }
+ return retval;
+}
+
+ULONGEST
+extract_unsigned_integer (addr, len)
+ PTR addr;
+ int len;
+{
+ ULONGEST retval;
+ unsigned char *p;
+ unsigned char *startaddr = (unsigned char *)addr;
+ unsigned char *endaddr = startaddr + len;
+
+ if (len > (int) sizeof (ULONGEST))
+ error ("\
+That operation is not available on integers of more than %d bytes.",
+ sizeof (ULONGEST));
+
+ /* Start at the most significant end of the integer, and work towards
+ the least significant. */
+ retval = 0;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = startaddr; p < endaddr; ++p)
+ retval = (retval << 8) | *p;
+ }
+ else
+ {
+ for (p = endaddr - 1; p >= startaddr; --p)
+ retval = (retval << 8) | *p;
+ }
+ return retval;
+}
+
+/* Sometimes a long long unsigned integer can be extracted as a
+ LONGEST value. This is done so that we can print these values
+ better. If this integer can be converted to a LONGEST, this
+ function returns 1 and sets *PVAL. Otherwise it returns 0. */
+
+int
+extract_long_unsigned_integer (addr, orig_len, pval)
+ PTR addr;
+ int orig_len;
+ LONGEST *pval;
+{
+ char *p, *first_addr;
+ int len;
+
+ len = orig_len;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = (char *) addr;
+ len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
+ p++)
+ {
+ if (*p == 0)
+ len--;
+ else
+ break;
+ }
+ first_addr = p;
+ }
+ else
+ {
+ first_addr = (char *) addr;
+ for (p = (char *) addr + orig_len - 1;
+ len > (int) sizeof (LONGEST) && p >= (char *) addr;
+ p--)
+ {
+ if (*p == 0)
+ len--;
+ else
+ break;
+ }
+ }
+
+ if (len <= (int) sizeof (LONGEST))
+ {
+ *pval = (LONGEST) extract_unsigned_integer (first_addr,
+ sizeof (LONGEST));
+ return 1;
+ }
+
+ return 0;
+}
+
+CORE_ADDR
+extract_address (addr, len)
+ PTR addr;
+ int len;
+{
+ /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
+ whether we want this to be true eventually. */
+ return (CORE_ADDR)extract_unsigned_integer (addr, len);
+}
+
+void
+store_signed_integer (addr, len, val)
+ PTR addr;
+ int len;
+ LONGEST val;
+{
+ unsigned char *p;
+ unsigned char *startaddr = (unsigned char *)addr;
+ unsigned char *endaddr = startaddr + len;
+
+ /* Start at the least significant end of the integer, and work towards
+ the most significant. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = endaddr - 1; p >= startaddr; --p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+ else
+ {
+ for (p = startaddr; p < endaddr; ++p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+}
+
+void
+store_unsigned_integer (addr, len, val)
+ PTR addr;
+ int len;
+ ULONGEST val;
+{
+ unsigned char *p;
+ unsigned char *startaddr = (unsigned char *)addr;
+ unsigned char *endaddr = startaddr + len;
+
+ /* Start at the least significant end of the integer, and work towards
+ the most significant. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ for (p = endaddr - 1; p >= startaddr; --p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+ else
+ {
+ for (p = startaddr; p < endaddr; ++p)
+ {
+ *p = val & 0xff;
+ val >>= 8;
+ }
+ }
+}
+
+/* Store the literal address "val" into
+ gdb-local memory pointed to by "addr"
+ for "len" bytes. */
+void
+store_address (addr, len, val)
+ PTR addr;
+ int len;
+ LONGEST val;
+{
+ if( TARGET_BYTE_ORDER == BIG_ENDIAN
+ && len != sizeof( LONGEST )) {
+ /* On big-endian machines (e.g., HPPA 2.0, narrow mode)
+ * just letting this fall through to the call below will
+ * lead to the wrong bits being stored.
+ *
+ * Only the simplest case is fixed here, the others just
+ * get the old behavior.
+ */
+ if( (len == sizeof( CORE_ADDR ))
+ && (sizeof( LONGEST ) == 2 * sizeof( CORE_ADDR ))) {
+ /* Watch out! The high bits are garbage! */
+ CORE_ADDR coerce[2];
+ *(LONGEST*)&coerce = val;
+
+ store_unsigned_integer (addr, len, coerce[1] ); /* BIG_ENDIAN code! */
+ return;
+ }
+ }
+ store_unsigned_integer (addr, len, val);
+}
+
+/* Swap LEN bytes at BUFFER between target and host byte-order. */
+#define SWAP_FLOATING(buffer,len) \
+ do \
+ { \
+ if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
+ { \
+ char tmp; \
+ char *p = (char *)(buffer); \
+ char *q = ((char *)(buffer)) + len - 1; \
+ for (; p < q; p++, q--) \
+ { \
+ tmp = *q; \
+ *q = *p; \
+ *p = tmp; \
+ } \
+ } \
+ } \
+ while (0)
+
+/* Extract a floating-point number from a target-order byte-stream at ADDR.
+ Returns the value as type DOUBLEST.
+
+ If the host and target formats agree, we just copy the raw data into the
+ appropriate type of variable and return, letting the host increase precision
+ as necessary. Otherwise, we call the conversion routine and let it do the
+ dirty work. */
+
+DOUBLEST
+extract_floating (addr, len)
+ PTR addr;
+ int len;
+{
+ DOUBLEST dretval;
+
+ if (len == sizeof (float))
+ {
+ if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+ {
+ float retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
+ }
+ else if (len == sizeof (double))
+ {
+ if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+ {
+ double retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
+ }
+ else if (len == sizeof (DOUBLEST))
+ {
+ if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+ {
+ DOUBLEST retval;
+
+ memcpy (&retval, addr, sizeof (retval));
+ return retval;
+ }
+ else
+ floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
+ }
+ else
+ {
+ error ("Can't deal with a floating point number of %d bytes.", len);
+ }
+
+ return dretval;
+}
+
+void
+store_floating (addr, len, val)
+ PTR addr;
+ int len;
+ DOUBLEST val;
+{
+ if (len == sizeof (float))
+ {
+ if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+ {
+ float floatval = val;
+
+ memcpy (addr, &floatval, sizeof (floatval));
+ }
+ else
+ floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
+ }
+ else if (len == sizeof (double))
+ {
+ if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+ {
+ double doubleval = val;
+
+ memcpy (addr, &doubleval, sizeof (doubleval));
+ }
+ else
+ floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
+ }
+ else if (len == sizeof (DOUBLEST))
+ {
+ if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+ memcpy (addr, &val, sizeof (val));
+ else
+ floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
+ }
+ else
+ {
+ error ("Can't deal with a floating point number of %d bytes.", len);
+ }
+}
+
+#if !defined (GET_SAVED_REGISTER)
+
+/* Return the address in which frame FRAME's value of register REGNUM
+ has been saved in memory. Or return zero if it has not been saved.
+ If REGNUM specifies the SP, the value we return is actually
+ the SP value, not an address where it was saved. */
+
+CORE_ADDR
+find_saved_register (frame, regnum)
+ struct frame_info *frame;
+ int regnum;
+{
+ register struct frame_info *frame1 = NULL;
+ register CORE_ADDR addr = 0;
+
+ if (frame == NULL) /* No regs saved if want current frame */
+ return 0;
+
+#ifdef HAVE_REGISTER_WINDOWS
+ /* We assume that a register in a register window will only be saved
+ in one place (since the name changes and/or disappears as you go
+ towards inner frames), so we only call get_frame_saved_regs on
+ the current frame. This is directly in contradiction to the
+ usage below, which assumes that registers used in a frame must be
+ saved in a lower (more interior) frame. This change is a result
+ of working on a register window machine; get_frame_saved_regs
+ always returns the registers saved within a frame, within the
+ context (register namespace) of that frame. */
+
+ /* However, note that we don't want this to return anything if
+ nothing is saved (if there's a frame inside of this one). Also,
+ callers to this routine asking for the stack pointer want the
+ stack pointer saved for *this* frame; this is returned from the
+ next frame. */
+
+ if (REGISTER_IN_WINDOW_P(regnum))
+ {
+ frame1 = get_next_frame (frame);
+ if (!frame1) return 0; /* Registers of this frame are active. */
+
+ /* Get the SP from the next frame in; it will be this
+ current frame. */
+ if (regnum != SP_REGNUM)
+ frame1 = frame;
+
+ FRAME_INIT_SAVED_REGS (frame1);
+ return frame1->saved_regs[regnum]; /* ... which might be zero */
+ }
+#endif /* HAVE_REGISTER_WINDOWS */
+
+ /* Note that this next routine assumes that registers used in
+ frame x will be saved only in the frame that x calls and
+ frames interior to it. This is not true on the sparc, but the
+ above macro takes care of it, so we should be all right. */
+ while (1)
+ {
+ QUIT;
+ frame1 = get_prev_frame (frame1);
+ if (frame1 == 0 || frame1 == frame)
+ break;
+ FRAME_INIT_SAVED_REGS (frame1);
+ if (frame1->saved_regs[regnum])
+ addr = frame1->saved_regs[regnum];
+ }
+
+ return addr;
+}
+
+/* Find register number REGNUM relative to FRAME and put its (raw,
+ target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
+ variable was optimized out (and thus can't be fetched). Set *LVAL
+ to lval_memory, lval_register, or not_lval, depending on whether
+ the value was fetched from memory, from a register, or in a strange
+ and non-modifiable way (e.g. a frame pointer which was calculated
+ rather than fetched). Set *ADDRP to the address, either in memory
+ on as a REGISTER_BYTE offset into the registers array.
+
+ Note that this implementation never sets *LVAL to not_lval. But
+ it can be replaced by defining GET_SAVED_REGISTER and supplying
+ your own.
+
+ The argument RAW_BUFFER must point to aligned memory. */
+
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+ char *raw_buffer;
+ int *optimized;
+ CORE_ADDR *addrp;
+ struct frame_info *frame;
+ int regnum;
+ enum lval_type *lval;
+{
+ CORE_ADDR addr;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ /* Normal systems don't optimize out things with register numbers. */
+ if (optimized != NULL)
+ *optimized = 0;
+ addr = find_saved_register (frame, regnum);
+ if (addr != 0)
+ {
+ if (lval != NULL)
+ *lval = lval_memory;
+ if (regnum == SP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST)addr);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+ if (raw_buffer != NULL)
+ read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
+ }
+ else
+ {
+ if (lval != NULL)
+ *lval = lval_register;
+ addr = REGISTER_BYTE (regnum);
+ if (raw_buffer != NULL)
+ read_register_gen (regnum, raw_buffer);
+ }
+ if (addrp != NULL)
+ *addrp = addr;
+}
+#endif /* GET_SAVED_REGISTER. */
+
+/* Copy the bytes of register REGNUM, relative to the input stack frame,
+ into our memory at MYADDR, in target byte order.
+ The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+ Returns 1 if could not be read, 0 if could. */
+
+int
+read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
+ int regnum;
+ char *myaddr;
+ struct frame_info *frame;
+{
+ int optim;
+ if (regnum == FP_REGNUM && frame)
+ {
+ /* Put it back in target format. */
+ store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM),
+ (LONGEST)FRAME_FP(frame));
+
+ return 0;
+ }
+
+ get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
+ regnum, (enum lval_type *)NULL);
+
+ if (register_valid [regnum] < 0)
+ return 1; /* register value not available */
+
+ return optim;
+}
+
+/* Copy the bytes of register REGNUM, relative to the current stack frame,
+ into our memory at MYADDR, in target byte order.
+ The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+ Returns 1 if could not be read, 0 if could. */
+
+int
+read_relative_register_raw_bytes (regnum, myaddr)
+ int regnum;
+ char *myaddr;
+{
+ return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
+ selected_frame);
+}
+
+/* Return a `value' with the contents of register REGNUM
+ in its virtual format, with the type specified by
+ REGISTER_VIRTUAL_TYPE.
+
+ NOTE: returns NULL if register value is not available.
+ Caller will check return value or die! */
+
+value_ptr
+value_of_register (regnum)
+ int regnum;
+{
+ CORE_ADDR addr;
+ int optim;
+ register value_ptr reg_val;
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+ enum lval_type lval;
+
+ get_saved_register (raw_buffer, &optim, &addr,
+ selected_frame, regnum, &lval);
+
+ if (register_valid[regnum] < 0)
+ return NULL; /* register value not available */
+
+ reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
+
+ /* Convert raw data to virtual format if necessary. */
+
+#ifdef REGISTER_CONVERTIBLE
+ if (REGISTER_CONVERTIBLE (regnum))
+ {
+ REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
+ raw_buffer, VALUE_CONTENTS_RAW (reg_val));
+ }
+ else
+#endif
+ if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
+ memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
+ REGISTER_RAW_SIZE (regnum));
+ else
+ fatal ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
+ REGISTER_NAME (regnum), regnum,
+ REGISTER_RAW_SIZE (regnum), REGISTER_VIRTUAL_SIZE (regnum));
+ VALUE_LVAL (reg_val) = lval;
+ VALUE_ADDRESS (reg_val) = addr;
+ VALUE_REGNO (reg_val) = regnum;
+ VALUE_OPTIMIZED_OUT (reg_val) = optim;
+ return reg_val;
+}
+
+/* Low level examining and depositing of registers.
+
+ The caller is responsible for making
+ sure that the inferior is stopped before calling the fetching routines,
+ or it will get garbage. (a change from GDB version 3, in which
+ the caller got the value from the last stop). */
+
+/* Contents of the registers in target byte order.
+ We allocate some extra slop since we do a lot of memcpy's around
+ `registers', and failing-soft is better than failing hard. */
+
+char registers[REGISTER_BYTES + /* SLOP */ 256];
+
+/* Nonzero if that register has been fetched,
+ -1 if register value not available. */
+SIGNED char register_valid[NUM_REGS];
+
+/* The thread/process associated with the current set of registers. For now,
+ -1 is special, and means `no current process'. */
+int registers_pid = -1;
+
+/* Indicate that registers may have changed, so invalidate the cache. */
+
+void
+registers_changed ()
+{
+ int i;
+ int numregs = ARCH_NUM_REGS;
+
+ registers_pid = -1;
+
+ /* Force cleanup of any alloca areas if using C alloca instead of
+ a builtin alloca. This particular call is used to clean up
+ areas allocated by low level target code which may build up
+ during lengthy interactions between gdb and the target before
+ gdb gives control to the user (ie watchpoints). */
+ alloca (0);
+
+ for (i = 0; i < numregs; i++)
+ register_valid[i] = 0;
+
+ if (registers_changed_hook)
+ registers_changed_hook ();
+}
+
+/* Indicate that all registers have been fetched, so mark them all valid. */
+void
+registers_fetched ()
+{
+ int i;
+ int numregs = ARCH_NUM_REGS;
+ for (i = 0; i < numregs; i++)
+ register_valid[i] = 1;
+}
+
+/* read_register_bytes and write_register_bytes are generally a *BAD* idea.
+ They are inefficient because they need to check for partial updates, which
+ can only be done by scanning through all of the registers and seeing if the
+ bytes that are being read/written fall inside of an invalid register. [The
+ main reason this is necessary is that register sizes can vary, so a simple
+ index won't suffice.] It is far better to call read_register_gen if you
+ want to get at the raw register contents, as it only takes a regno as an
+ argument, and therefore can't do a partial register update. It would also
+ be good to have a write_register_gen for similar reasons.
+
+ Prior to the recent fixes to check for partial updates, both read and
+ write_register_bytes always checked to see if any registers were stale, and
+ then called target_fetch_registers (-1) to update the whole set. This
+ caused really slowed things down for remote targets. */
+
+/* Copy INLEN bytes of consecutive data from registers
+ starting with the INREGBYTE'th byte of register data
+ into memory at MYADDR. */
+
+void
+read_register_bytes (inregbyte, myaddr, inlen)
+ int inregbyte;
+ char *myaddr;
+ int inlen;
+{
+ int inregend = inregbyte + inlen;
+ int regno;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ /* See if we are trying to read bytes from out-of-date registers. If so,
+ update just those registers. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+ int startin, endin;
+
+ if (register_valid[regno])
+ continue;
+
+ if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
+ continue;
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ startin = regstart >= inregbyte && regstart < inregend;
+ endin = regend > inregbyte && regend <= inregend;
+
+ if (!startin && !endin)
+ continue;
+
+ /* We've found an invalid register where at least one byte will be read.
+ Update it from the target. */
+
+ target_fetch_registers (regno);
+
+ if (!register_valid[regno])
+ error ("read_register_bytes: Couldn't update register %d.", regno);
+ }
+
+ if (myaddr != NULL)
+ memcpy (myaddr, &registers[inregbyte], inlen);
+}
+
+/* Read register REGNO into memory at MYADDR, which must be large enough
+ for REGISTER_RAW_BYTES (REGNO). Target byte-order.
+ If the register is known to be the size of a CORE_ADDR or smaller,
+ read_register can be used instead. */
+void
+read_register_gen (regno, myaddr)
+ int regno;
+ char *myaddr;
+{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ if (!register_valid[regno])
+ target_fetch_registers (regno);
+ memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE (regno));
+}
+
+/* Write register REGNO at MYADDR to the target. MYADDR points at
+ REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
+
+static void
+write_register_gen (regno, myaddr)
+ int regno;
+ char *myaddr;
+{
+ int size;
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to change
+ the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ size = REGISTER_RAW_SIZE(regno);
+
+ /* If we have a valid copy of the register, and new value == old value,
+ then don't bother doing the actual store. */
+
+ if (register_valid [regno]
+ && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
+ return;
+
+ target_prepare_to_store ();
+
+ memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
+
+ register_valid [regno] = 1;
+
+ target_store_registers (regno);
+}
+
+/* Copy INLEN bytes of consecutive data from memory at MYADDR
+ into registers starting with the MYREGSTART'th byte of register data. */
+
+void
+write_register_bytes (myregstart, myaddr, inlen)
+ int myregstart;
+ char *myaddr;
+ int inlen;
+{
+ int myregend = myregstart + inlen;
+ int regno;
+
+ target_prepare_to_store ();
+
+ /* Scan through the registers updating any that are covered by the range
+ myregstart<=>myregend using write_register_gen, which does nice things
+ like handling threads, and avoiding updates when the new and old contents
+ are the same. */
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ int regstart, regend;
+ int startin, endin;
+ char regbuf[MAX_REGISTER_RAW_SIZE];
+
+ regstart = REGISTER_BYTE (regno);
+ regend = regstart + REGISTER_RAW_SIZE (regno);
+
+ startin = regstart >= myregstart && regstart < myregend;
+ endin = regend > myregstart && regend <= myregend;
+
+ if (!startin && !endin)
+ continue; /* Register is completely out of range */
+
+ if (startin && endin) /* register is completely in range */
+ {
+ write_register_gen (regno, myaddr + (regstart - myregstart));
+ continue;
+ }
+
+ /* We may be doing a partial update of an invalid register. Update it
+ from the target before scribbling on it. */
+ read_register_gen (regno, regbuf);
+
+ if (startin)
+ memcpy (registers + regstart,
+ myaddr + regstart - myregstart,
+ myregend - regstart);
+ else /* endin */
+ memcpy (registers + myregstart,
+ myaddr,
+ regend - myregstart);
+ target_store_registers (regno);
+ }
+}
+
+/* Return the raw contents of register REGNO, regarding it as an integer. */
+/* This probably should be returning LONGEST rather than CORE_ADDR. */
+
+CORE_ADDR
+read_register (regno)
+ int regno;
+{
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ if (!register_valid[regno])
+ target_fetch_registers (regno);
+
+ return (CORE_ADDR)extract_address (&registers[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE(regno));
+}
+
+CORE_ADDR
+read_register_pid (regno, pid)
+ int regno, pid;
+{
+ int save_pid;
+ CORE_ADDR retval;
+
+ if (pid == inferior_pid)
+ return read_register (regno);
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ retval = read_register (regno);
+
+ inferior_pid = save_pid;
+
+ return retval;
+}
+
+/* Store VALUE, into the raw contents of register number REGNO.
+ This should probably write a LONGEST rather than a CORE_ADDR */
+
+void
+write_register (regno, val)
+ int regno;
+ LONGEST val;
+{
+ PTR buf;
+ int size;
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to change
+ the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regno))
+ return;
+
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+
+ size = REGISTER_RAW_SIZE(regno);
+ buf = alloca (size);
+ store_signed_integer (buf, size, (LONGEST)val);
+
+ /* If we have a valid copy of the register, and new value == old value,
+ then don't bother doing the actual store. */
+
+ if (register_valid [regno]
+ && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
+ return;
+
+ target_prepare_to_store ();
+
+ memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
+
+ register_valid [regno] = 1;
+
+ target_store_registers (regno);
+}
+
+void
+write_register_pid (regno, val, pid)
+ int regno;
+ CORE_ADDR val;
+ int pid;
+{
+ int save_pid;
+
+ if (pid == inferior_pid)
+ {
+ write_register (regno, val);
+ return;
+ }
+
+ save_pid = inferior_pid;
+
+ inferior_pid = pid;
+
+ write_register (regno, val);
+
+ inferior_pid = save_pid;
+}
+
+/* Record that register REGNO contains VAL.
+ This is used when the value is obtained from the inferior or core dump,
+ so there is no need to store the value there.
+
+ If VAL is a NULL pointer, then it's probably an unsupported register. We
+ just set it's value to all zeros. We might want to record this fact, and
+ report it to the users of read_register and friends.
+*/
+
+void
+supply_register (regno, val)
+ int regno;
+ char *val;
+{
+#if 1
+ if (registers_pid != inferior_pid)
+ {
+ registers_changed ();
+ registers_pid = inferior_pid;
+ }
+#endif
+
+ register_valid[regno] = 1;
+ if (val)
+ memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
+ else
+ memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
+
+ /* On some architectures, e.g. HPPA, there are a few stray bits in some
+ registers, that the rest of the code would like to ignore. */
+#ifdef CLEAN_UP_REGISTER_VALUE
+ CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
+#endif
+}
+
+
+/* This routine is getting awfully cluttered with #if's. It's probably
+ time to turn this into READ_PC and define it in the tm.h file.
+ Ditto for write_pc. */
+
+CORE_ADDR
+read_pc_pid (pid)
+ int pid;
+{
+ int saved_inferior_pid;
+ CORE_ADDR pc_val;
+
+ /* In case pid != inferior_pid. */
+ saved_inferior_pid = inferior_pid;
+ inferior_pid = pid;
+
+#ifdef TARGET_READ_PC
+ pc_val = TARGET_READ_PC (pid);
+#else
+ pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
+#endif
+
+ inferior_pid = saved_inferior_pid;
+ return pc_val;
+}
+
+CORE_ADDR
+read_pc ()
+{
+ return read_pc_pid (inferior_pid);
+}
+
+void
+write_pc_pid (pc, pid)
+ CORE_ADDR pc;
+ int pid;
+{
+ int saved_inferior_pid;
+
+ /* In case pid != inferior_pid. */
+ saved_inferior_pid = inferior_pid;
+ inferior_pid = pid;
+
+#ifdef TARGET_WRITE_PC
+ TARGET_WRITE_PC (pc, pid);
+#else
+ write_register_pid (PC_REGNUM, pc, pid);
+#ifdef NPC_REGNUM
+ write_register_pid (NPC_REGNUM, pc + 4, pid);
+#ifdef NNPC_REGNUM
+ write_register_pid (NNPC_REGNUM, pc + 8, pid);
+#endif
+#endif
+#endif
+
+ inferior_pid = saved_inferior_pid;
+}
+
+void
+write_pc (pc)
+ CORE_ADDR pc;
+{
+ write_pc_pid (pc, inferior_pid);
+}
+
+/* Cope with strage ways of getting to the stack and frame pointers */
+
+CORE_ADDR
+read_sp ()
+{
+#ifdef TARGET_READ_SP
+ return TARGET_READ_SP ();
+#else
+ return read_register (SP_REGNUM);
+#endif
+}
+
+void
+write_sp (val)
+ CORE_ADDR val;
+{
+#ifdef TARGET_WRITE_SP
+ TARGET_WRITE_SP (val);
+#else
+ write_register (SP_REGNUM, val);
+#endif
+}
+
+CORE_ADDR
+read_fp ()
+{
+#ifdef TARGET_READ_FP
+ return TARGET_READ_FP ();
+#else
+ return read_register (FP_REGNUM);
+#endif
+}
+
+void
+write_fp (val)
+ CORE_ADDR val;
+{
+#ifdef TARGET_WRITE_FP
+ TARGET_WRITE_FP (val);
+#else
+ write_register (FP_REGNUM, val);
+#endif
+}
+
+/* Will calling read_var_value or locate_var_value on SYM end
+ up caring what frame it is being evaluated relative to? SYM must
+ be non-NULL. */
+int
+symbol_read_needs_frame (sym)
+ struct symbol *sym;
+{
+ switch (SYMBOL_CLASS (sym))
+ {
+ /* All cases listed explicitly so that gcc -Wall will detect it if
+ we failed to consider one. */
+ case LOC_REGISTER:
+ case LOC_ARG:
+ case LOC_REF_ARG:
+ case LOC_REGPARM:
+ case LOC_REGPARM_ADDR:
+ case LOC_LOCAL:
+ case LOC_LOCAL_ARG:
+ case LOC_BASEREG:
+ case LOC_BASEREG_ARG:
+ case LOC_THREAD_LOCAL_STATIC:
+ return 1;
+
+ case LOC_UNDEF:
+ case LOC_CONST:
+ case LOC_STATIC:
+ case LOC_INDIRECT:
+ case LOC_TYPEDEF:
+
+ case LOC_LABEL:
+ /* Getting the address of a label can be done independently of the block,
+ even if some *uses* of that address wouldn't work so well without
+ the right frame. */
+
+ case LOC_BLOCK:
+ case LOC_CONST_BYTES:
+ case LOC_UNRESOLVED:
+ case LOC_OPTIMIZED_OUT:
+ return 0;
+ }
+ return 1;
+}
+
+/* Given a struct symbol for a variable,
+ and a stack frame id, read the value of the variable
+ and return a (pointer to a) struct value containing the value.
+ If the variable cannot be found, return a zero pointer.
+ If FRAME is NULL, use the selected_frame. */
+
+value_ptr
+read_var_value (var, frame)
+ register struct symbol *var;
+ struct frame_info *frame;
+{
+ register value_ptr v;
+ struct type *type = SYMBOL_TYPE (var);
+ CORE_ADDR addr;
+ register int len;
+
+ v = allocate_value (type);
+ VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
+ VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
+
+ len = TYPE_LENGTH (type);
+
+ if (frame == NULL) frame = selected_frame;
+
+ switch (SYMBOL_CLASS (var))
+ {
+ case LOC_CONST:
+ /* Put the constant back in target format. */
+ store_signed_integer (VALUE_CONTENTS_RAW (v), len,
+ (LONGEST) SYMBOL_VALUE (var));
+ VALUE_LVAL (v) = not_lval;
+ return v;
+
+ case LOC_LABEL:
+ /* Put the constant back in target format. */
+ if (overlay_debugging)
+ store_address (VALUE_CONTENTS_RAW (v), len,
+ (LONGEST)symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+ SYMBOL_BFD_SECTION (var)));
+ else
+ store_address (VALUE_CONTENTS_RAW (v), len,
+ (LONGEST)SYMBOL_VALUE_ADDRESS (var));
+ VALUE_LVAL (v) = not_lval;
+ return v;
+
+ case LOC_CONST_BYTES:
+ {
+ char *bytes_addr;
+ bytes_addr = SYMBOL_VALUE_BYTES (var);
+ memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
+ VALUE_LVAL (v) = not_lval;
+ return v;
+ }
+
+ case LOC_STATIC:
+ if (overlay_debugging)
+ addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+ SYMBOL_BFD_SECTION (var));
+ else
+ addr = SYMBOL_VALUE_ADDRESS (var);
+ break;
+
+ case LOC_INDIRECT:
+ /* The import slot does not have a real address in it from the
+ dynamic loader (dld.sl on HP-UX), if the target hasn't begun
+ execution yet, so check for that. */
+ if (!target_has_execution)
+ error ("\
+Attempt to access variable defined in different shared object or load module when\n\
+addresses have not been bound by the dynamic loader. Try again when executable is running.");
+
+ addr = SYMBOL_VALUE_ADDRESS (var);
+ addr = read_memory_unsigned_integer
+ (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
+ break;
+
+ case LOC_ARG:
+ if (frame == NULL)
+ return 0;
+ addr = FRAME_ARGS_ADDRESS (frame);
+ if (!addr)
+ return 0;
+ addr += SYMBOL_VALUE (var);
+ break;
+
+ case LOC_REF_ARG:
+ if (frame == NULL)
+ return 0;
+ addr = FRAME_ARGS_ADDRESS (frame);
+ if (!addr)
+ return 0;
+ addr += SYMBOL_VALUE (var);
+ addr = read_memory_unsigned_integer
+ (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
+ break;
+
+ case LOC_LOCAL:
+ case LOC_LOCAL_ARG:
+ if (frame == NULL)
+ return 0;
+ addr = FRAME_LOCALS_ADDRESS (frame);
+ addr += SYMBOL_VALUE (var);
+ break;
+
+ case LOC_BASEREG:
+ case LOC_BASEREG_ARG:
+ {
+ char buf[MAX_REGISTER_RAW_SIZE];
+ get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
+ NULL);
+ addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
+ addr += SYMBOL_VALUE (var);
+ break;
+ }
+
+ case LOC_THREAD_LOCAL_STATIC:
+ {
+ char buf[MAX_REGISTER_RAW_SIZE];
+
+ get_saved_register(buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
+ NULL);
+ addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
+ addr += SYMBOL_VALUE (var );
+ break;
+ }
+
+ case LOC_TYPEDEF:
+ error ("Cannot look up value of a typedef");
+ break;
+
+ case LOC_BLOCK:
+ if (overlay_debugging)
+ VALUE_ADDRESS (v) = symbol_overlayed_address
+ (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
+ else
+ VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
+ return v;
+
+ case LOC_REGISTER:
+ case LOC_REGPARM:
+ case LOC_REGPARM_ADDR:
+ {
+ struct block *b;
+ int regno = SYMBOL_VALUE (var);
+ value_ptr regval;
+
+ if (frame == NULL)
+ return 0;
+ b = get_frame_block (frame);
+
+ if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
+ {
+ regval = value_from_register (lookup_pointer_type (type),
+ regno,
+ frame);
+
+ if (regval == NULL)
+ error ("Value of register variable not available.");
+
+ addr = value_as_pointer (regval);
+ VALUE_LVAL (v) = lval_memory;
+ }
+ else
+ {
+ regval = value_from_register (type, regno, frame);
+
+ if (regval == NULL)
+ error ("Value of register variable not available.");
+ return regval;
+ }
+ }
+ break;
+
+ case LOC_UNRESOLVED:
+ {
+ struct minimal_symbol *msym;
+
+ msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
+ if (msym == NULL)
+ return 0;
+ if (overlay_debugging)
+ addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
+ SYMBOL_BFD_SECTION (msym));
+ else
+ addr = SYMBOL_VALUE_ADDRESS (msym);
+ }
+ break;
+
+ case LOC_OPTIMIZED_OUT:
+ VALUE_LVAL (v) = not_lval;
+ VALUE_OPTIMIZED_OUT (v) = 1;
+ return v;
+
+ default:
+ error ("Cannot look up value of a botched symbol.");
+ break;
+ }
+
+ VALUE_ADDRESS (v) = addr;
+ VALUE_LAZY (v) = 1;
+ return v;
+}
+
+/* Return a value of type TYPE, stored in register REGNUM, in frame
+ FRAME.
+
+ NOTE: returns NULL if register value is not available.
+ Caller will check return value or die! */
+
+value_ptr
+value_from_register (type, regnum, frame)
+ struct type *type;
+ int regnum;
+ struct frame_info *frame;
+{
+ char raw_buffer [MAX_REGISTER_RAW_SIZE];
+ CORE_ADDR addr;
+ int optim;
+ value_ptr v = allocate_value (type);
+ char *value_bytes = 0;
+ int value_bytes_copied = 0;
+ int num_storage_locs;
+ enum lval_type lval;
+ int len;
+
+ CHECK_TYPEDEF (type);
+ len = TYPE_LENGTH (type);
+
+ VALUE_REGNO (v) = regnum;
+
+ num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
+ ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
+ 1);
+
+ if (num_storage_locs > 1
+#ifdef GDB_TARGET_IS_H8500
+ || TYPE_CODE (type) == TYPE_CODE_PTR
+#endif
+ )
+ {
+ /* Value spread across multiple storage locations. */
+
+ int local_regnum;
+ int mem_stor = 0, reg_stor = 0;
+ int mem_tracking = 1;
+ CORE_ADDR last_addr = 0;
+ CORE_ADDR first_addr = 0;
+
+ value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
+
+ /* Copy all of the data out, whereever it may be. */
+
+#ifdef GDB_TARGET_IS_H8500
+/* This piece of hideosity is required because the H8500 treats registers
+ differently depending upon whether they are used as pointers or not. As a
+ pointer, a register needs to have a page register tacked onto the front.
+ An alternate way to do this would be to have gcc output different register
+ numbers for the pointer & non-pointer form of the register. But, it
+ doesn't, so we're stuck with this. */
+
+ if (TYPE_CODE (type) == TYPE_CODE_PTR
+ && len > 2)
+ {
+ int page_regnum;
+
+ switch (regnum)
+ {
+ case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
+ page_regnum = SEG_D_REGNUM;
+ break;
+ case R4_REGNUM: case R5_REGNUM:
+ page_regnum = SEG_E_REGNUM;
+ break;
+ case R6_REGNUM: case R7_REGNUM:
+ page_regnum = SEG_T_REGNUM;
+ break;
+ }
+
+ value_bytes[0] = 0;
+ get_saved_register (value_bytes + 1,
+ &optim,
+ &addr,
+ frame,
+ page_regnum,
+ &lval);
+
+ if (register_valid[page_regnum] == -1)
+ return NULL; /* register value not available */
+
+ if (lval == lval_register)
+ reg_stor++;
+ else
+ mem_stor++;
+ first_addr = addr;
+ last_addr = addr;
+
+ get_saved_register (value_bytes + 2,
+ &optim,
+ &addr,
+ frame,
+ regnum,
+ &lval);
+
+ if (register_valid[regnum] == -1)
+ return NULL; /* register value not available */
+
+ if (lval == lval_register)
+ reg_stor++;
+ else
+ {
+ mem_stor++;
+ mem_tracking = mem_tracking && (addr == last_addr);
+ }
+ last_addr = addr;
+ }
+ else
+#endif /* GDB_TARGET_IS_H8500 */
+ for (local_regnum = regnum;
+ value_bytes_copied < len;
+ (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
+ ++local_regnum))
+ {
+ get_saved_register (value_bytes + value_bytes_copied,
+ &optim,
+ &addr,
+ frame,
+ local_regnum,
+ &lval);
+
+ if (register_valid[local_regnum] == -1)
+ return NULL; /* register value not available */
+
+ if (regnum == local_regnum)
+ first_addr = addr;
+ if (lval == lval_register)
+ reg_stor++;
+ else
+ {
+ mem_stor++;
+
+ mem_tracking =
+ (mem_tracking
+ && (regnum == local_regnum
+ || addr == last_addr));
+ }
+ last_addr = addr;
+ }
+
+ if ((reg_stor && mem_stor)
+ || (mem_stor && !mem_tracking))
+ /* Mixed storage; all of the hassle we just went through was
+ for some good purpose. */
+ {
+ VALUE_LVAL (v) = lval_reg_frame_relative;
+ VALUE_FRAME (v) = FRAME_FP (frame);
+ VALUE_FRAME_REGNUM (v) = regnum;
+ }
+ else if (mem_stor)
+ {
+ VALUE_LVAL (v) = lval_memory;
+ VALUE_ADDRESS (v) = first_addr;
+ }
+ else if (reg_stor)
+ {
+ VALUE_LVAL (v) = lval_register;
+ VALUE_ADDRESS (v) = first_addr;
+ }
+ else
+ fatal ("value_from_register: Value not stored anywhere!");
+
+ VALUE_OPTIMIZED_OUT (v) = optim;
+
+ /* Any structure stored in more than one register will always be
+ an integral number of registers. Otherwise, you'd need to do
+ some fiddling with the last register copied here for little
+ endian machines. */
+
+ /* Copy into the contents section of the value. */
+ memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
+
+ /* Finally do any conversion necessary when extracting this
+ type from more than one register. */
+#ifdef REGISTER_CONVERT_TO_TYPE
+ REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
+#endif
+ return v;
+ }
+
+ /* Data is completely contained within a single register. Locate the
+ register's contents in a real register or in core;
+ read the data in raw format. */
+
+ get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
+
+ if (register_valid[regnum] == -1)
+ return NULL; /* register value not available */
+
+ VALUE_OPTIMIZED_OUT (v) = optim;
+ VALUE_LVAL (v) = lval;
+ VALUE_ADDRESS (v) = addr;
+
+ /* Convert raw data to virtual format if necessary. */
+
+#ifdef REGISTER_CONVERTIBLE
+ if (REGISTER_CONVERTIBLE (regnum))
+ {
+ REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
+ raw_buffer, VALUE_CONTENTS_RAW (v));
+ }
+ else
+#endif
+ {
+ /* Raw and virtual formats are the same for this register. */
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
+ {
+ /* Big-endian, and we want less than full size. */
+ VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
+ }
+
+ memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
+ }
+
+ return v;
+}
+
+/* Given a struct symbol for a variable or function,
+ and a stack frame id,
+ return a (pointer to a) struct value containing the properly typed
+ address. */
+
+value_ptr
+locate_var_value (var, frame)
+ register struct symbol *var;
+ struct frame_info *frame;
+{
+ CORE_ADDR addr = 0;
+ struct type *type = SYMBOL_TYPE (var);
+ value_ptr lazy_value;
+
+ /* Evaluate it first; if the result is a memory address, we're fine.
+ Lazy evaluation pays off here. */
+
+ lazy_value = read_var_value (var, frame);
+ if (lazy_value == 0)
+ error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
+
+ if (VALUE_LAZY (lazy_value)
+ || TYPE_CODE (type) == TYPE_CODE_FUNC)
+ {
+ value_ptr val;
+
+ addr = VALUE_ADDRESS (lazy_value);
+ val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
+ VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
+ return val;
+ }
+
+ /* Not a memory address; check what the problem was. */
+ switch (VALUE_LVAL (lazy_value))
+ {
+ case lval_register:
+ case lval_reg_frame_relative:
+ error ("Address requested for identifier \"%s\" which is in a register.",
+ SYMBOL_SOURCE_NAME (var));
+ break;
+
+ default:
+ error ("Can't take address of \"%s\" which isn't an lvalue.",
+ SYMBOL_SOURCE_NAME (var));
+ break;
+ }
+ return 0; /* For lint -- never reached */
+}