diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:34:07 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:34:07 +0000 |
commit | 071ea11e85eb9d529cc5eb3d35f6247466a21b99 (patch) | |
tree | 5deda65b8d7b04d1f4cbc534c3206d328e1267ec /gdb/dwarfread.c | |
parent | 1730ec6b1848f0f32154277f788fb29f88d8475b (diff) | |
download | gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.zip gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.gz gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.bz2 |
Initial creation of sourceware repository
Diffstat (limited to 'gdb/dwarfread.c')
-rw-r--r-- | gdb/dwarfread.c | 3915 |
1 files changed, 0 insertions, 3915 deletions
diff --git a/gdb/dwarfread.c b/gdb/dwarfread.c deleted file mode 100644 index 9de0312..0000000 --- a/gdb/dwarfread.c +++ /dev/null @@ -1,3915 +0,0 @@ -/* DWARF debugging format support for GDB. - Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998 - Free Software Foundation, Inc. - Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, - mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. - -This file is part of GDB. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -/* - -FIXME: Do we need to generate dependencies in partial symtabs? -(Perhaps we don't need to). - -FIXME: Resolve minor differences between what information we put in the -partial symbol table and what dbxread puts in. For example, we don't yet -put enum constants there. And dbxread seems to invent a lot of typedefs -we never see. Use the new printpsym command to see the partial symbol table -contents. - -FIXME: Figure out a better way to tell gdb about the name of the function -contain the user's entry point (I.E. main()) - -FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for -other things to work on, if you get bored. :-) - -*/ - -#include "defs.h" -#include "symtab.h" -#include "gdbtypes.h" -#include "symfile.h" -#include "objfiles.h" -#include "elf/dwarf.h" -#include "buildsym.h" -#include "demangle.h" -#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ -#include "language.h" -#include "complaints.h" - -#include <fcntl.h> -#include "gdb_string.h" - -/* Some macros to provide DIE info for complaints. */ - -#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) -#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" - -/* Complaints that can be issued during DWARF debug info reading. */ - -struct complaint no_bfd_get_N = -{ - "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 -}; - -struct complaint malformed_die = -{ - "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 -}; - -struct complaint bad_die_ref = -{ - "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 -}; - -struct complaint unknown_attribute_form = -{ - "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 -}; - -struct complaint unknown_attribute_length = -{ - "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 -}; - -struct complaint unexpected_fund_type = -{ - "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 -}; - -struct complaint unknown_type_modifier = -{ - "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 -}; - -struct complaint volatile_ignored = -{ - "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 -}; - -struct complaint const_ignored = -{ - "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 -}; - -struct complaint botched_modified_type = -{ - "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 -}; - -struct complaint op_deref2 = -{ - "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 -}; - -struct complaint op_deref4 = -{ - "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 -}; - -struct complaint basereg_not_handled = -{ - "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 -}; - -struct complaint dup_user_type_allocation = -{ - "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 -}; - -struct complaint dup_user_type_definition = -{ - "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 -}; - -struct complaint missing_tag = -{ - "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 -}; - -struct complaint bad_array_element_type = -{ - "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 -}; - -struct complaint subscript_data_items = -{ - "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 -}; - -struct complaint unhandled_array_subscript_format = -{ - "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 -}; - -struct complaint unknown_array_subscript_format = -{ - "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 -}; - -struct complaint not_row_major = -{ - "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 -}; - -struct complaint missing_at_name = -{ - "DIE @ 0x%x, AT_name tag missing", 0, 0 -}; - -typedef unsigned int DIE_REF; /* Reference to a DIE */ - -#ifndef GCC_PRODUCER -#define GCC_PRODUCER "GNU C " -#endif - -#ifndef GPLUS_PRODUCER -#define GPLUS_PRODUCER "GNU C++ " -#endif - -#ifndef LCC_PRODUCER -#define LCC_PRODUCER "NCR C/C++" -#endif - -#ifndef CHILL_PRODUCER -#define CHILL_PRODUCER "GNU Chill " -#endif - -/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ -#ifndef DWARF_REG_TO_REGNUM -#define DWARF_REG_TO_REGNUM(num) (num) -#endif - -/* Flags to target_to_host() that tell whether or not the data object is - expected to be signed. Used, for example, when fetching a signed - integer in the target environment which is used as a signed integer - in the host environment, and the two environments have different sized - ints. In this case, *somebody* has to sign extend the smaller sized - int. */ - -#define GET_UNSIGNED 0 /* No sign extension required */ -#define GET_SIGNED 1 /* Sign extension required */ - -/* Defines for things which are specified in the document "DWARF Debugging - Information Format" published by UNIX International, Programming Languages - SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ - -#define SIZEOF_DIE_LENGTH 4 -#define SIZEOF_DIE_TAG 2 -#define SIZEOF_ATTRIBUTE 2 -#define SIZEOF_FORMAT_SPECIFIER 1 -#define SIZEOF_FMT_FT 2 -#define SIZEOF_LINETBL_LENGTH 4 -#define SIZEOF_LINETBL_LINENO 4 -#define SIZEOF_LINETBL_STMT 2 -#define SIZEOF_LINETBL_DELTA 4 -#define SIZEOF_LOC_ATOM_CODE 1 - -#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ - -/* Macros that return the sizes of various types of data in the target - environment. - - FIXME: Currently these are just compile time constants (as they are in - other parts of gdb as well). They need to be able to get the right size - either from the bfd or possibly from the DWARF info. It would be nice if - the DWARF producer inserted DIES that describe the fundamental types in - the target environment into the DWARF info, similar to the way dbx stabs - producers produce information about their fundamental types. */ - -#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) -#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) - -/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a - FORM_BLOCK2, and this is the value emitted by the AT&T compiler. - However, the Issue 2 DWARF specification from AT&T defines it as - a FORM_BLOCK4, as does the latest specification from UI/PLSIG. - For backwards compatibility with the AT&T compiler produced executables - we define AT_short_element_list for this variant. */ - -#define AT_short_element_list (0x00f0|FORM_BLOCK2) - -/* External variables referenced. */ - -extern int info_verbose; /* From main.c; nonzero => verbose */ -extern char *warning_pre_print; /* From utils.c */ - -/* The DWARF debugging information consists of two major pieces, - one is a block of DWARF Information Entries (DIE's) and the other - is a line number table. The "struct dieinfo" structure contains - the information for a single DIE, the one currently being processed. - - In order to make it easier to randomly access the attribute fields - of the current DIE, which are specifically unordered within the DIE, - each DIE is scanned and an instance of the "struct dieinfo" - structure is initialized. - - Initialization is done in two levels. The first, done by basicdieinfo(), - just initializes those fields that are vital to deciding whether or not - to use this DIE, how to skip past it, etc. The second, done by the - function completedieinfo(), fills in the rest of the information. - - Attributes which have block forms are not interpreted at the time - the DIE is scanned, instead we just save pointers to the start - of their value fields. - - Some fields have a flag <name>_p that is set when the value of the - field is valid (I.E. we found a matching attribute in the DIE). Since - we may want to test for the presence of some attributes in the DIE, - such as AT_low_pc, without restricting the values of the field, - we need someway to note that we found such an attribute. - - */ - -typedef char BLOCK; - -struct dieinfo { - char * die; /* Pointer to the raw DIE data */ - unsigned long die_length; /* Length of the raw DIE data */ - DIE_REF die_ref; /* Offset of this DIE */ - unsigned short die_tag; /* Tag for this DIE */ - unsigned long at_padding; - unsigned long at_sibling; - BLOCK * at_location; - char * at_name; - unsigned short at_fund_type; - BLOCK * at_mod_fund_type; - unsigned long at_user_def_type; - BLOCK * at_mod_u_d_type; - unsigned short at_ordering; - BLOCK * at_subscr_data; - unsigned long at_byte_size; - unsigned short at_bit_offset; - unsigned long at_bit_size; - BLOCK * at_element_list; - unsigned long at_stmt_list; - CORE_ADDR at_low_pc; - CORE_ADDR at_high_pc; - unsigned long at_language; - unsigned long at_member; - unsigned long at_discr; - BLOCK * at_discr_value; - BLOCK * at_string_length; - char * at_comp_dir; - char * at_producer; - unsigned long at_start_scope; - unsigned long at_stride_size; - unsigned long at_src_info; - char * at_prototyped; - unsigned int has_at_low_pc:1; - unsigned int has_at_stmt_list:1; - unsigned int has_at_byte_size:1; - unsigned int short_element_list:1; - - /* Kludge to identify register variables */ - - unsigned int isreg; - - /* Kludge to identify optimized out variables */ - - unsigned int optimized_out; - - /* Kludge to identify basereg references. - Nonzero if we have an offset relative to a basereg. */ - - unsigned int offreg; - - /* Kludge to identify which base register is it relative to. */ - - unsigned int basereg; -}; - -static int diecount; /* Approximate count of dies for compilation unit */ -static struct dieinfo *curdie; /* For warnings and such */ - -static char *dbbase; /* Base pointer to dwarf info */ -static int dbsize; /* Size of dwarf info in bytes */ -static int dbroff; /* Relative offset from start of .debug section */ -static char *lnbase; /* Base pointer to line section */ - -/* This value is added to each symbol value. FIXME: Generalize to - the section_offsets structure used by dbxread (once this is done, - pass the appropriate section number to end_symtab). */ -static CORE_ADDR baseaddr; /* Add to each symbol value */ - -/* The section offsets used in the current psymtab or symtab. FIXME, - only used to pass one value (baseaddr) at the moment. */ -static struct section_offsets *base_section_offsets; - -/* We put a pointer to this structure in the read_symtab_private field - of the psymtab. */ - -struct dwfinfo { - /* Always the absolute file offset to the start of the ".debug" - section for the file containing the DIE's being accessed. */ - file_ptr dbfoff; - /* Relative offset from the start of the ".debug" section to the - first DIE to be accessed. When building the partial symbol - table, this value will be zero since we are accessing the - entire ".debug" section. When expanding a partial symbol - table entry, this value will be the offset to the first - DIE for the compilation unit containing the symbol that - triggers the expansion. */ - int dbroff; - /* The size of the chunk of DIE's being examined, in bytes. */ - int dblength; - /* The absolute file offset to the line table fragment. Ignored - when building partial symbol tables, but used when expanding - them, and contains the absolute file offset to the fragment - of the ".line" section containing the line numbers for the - current compilation unit. */ - file_ptr lnfoff; -}; - -#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) -#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) -#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) -#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) - -/* The generic symbol table building routines have separate lists for - file scope symbols and all all other scopes (local scopes). So - we need to select the right one to pass to add_symbol_to_list(). - We do it by keeping a pointer to the correct list in list_in_scope. - - FIXME: The original dwarf code just treated the file scope as the first - local scope, and all other local scopes as nested local scopes, and worked - fine. Check to see if we really need to distinguish these in buildsym.c */ - -struct pending **list_in_scope = &file_symbols; - -/* DIES which have user defined types or modified user defined types refer to - other DIES for the type information. Thus we need to associate the offset - of a DIE for a user defined type with a pointer to the type information. - - Originally this was done using a simple but expensive algorithm, with an - array of unsorted structures, each containing an offset/type-pointer pair. - This array was scanned linearly each time a lookup was done. The result - was that gdb was spending over half it's startup time munging through this - array of pointers looking for a structure that had the right offset member. - - The second attempt used the same array of structures, but the array was - sorted using qsort each time a new offset/type was recorded, and a binary - search was used to find the type pointer for a given DIE offset. This was - even slower, due to the overhead of sorting the array each time a new - offset/type pair was entered. - - The third attempt uses a fixed size array of type pointers, indexed by a - value derived from the DIE offset. Since the minimum DIE size is 4 bytes, - we can divide any DIE offset by 4 to obtain a unique index into this fixed - size array. Since each element is a 4 byte pointer, it takes exactly as - much memory to hold this array as to hold the DWARF info for a given - compilation unit. But it gets freed as soon as we are done with it. - This has worked well in practice, as a reasonable tradeoff between memory - consumption and speed, without having to resort to much more complicated - algorithms. */ - -static struct type **utypes; /* Pointer to array of user type pointers */ -static int numutypes; /* Max number of user type pointers */ - -/* Maintain an array of referenced fundamental types for the current - compilation unit being read. For DWARF version 1, we have to construct - the fundamental types on the fly, since no information about the - fundamental types is supplied. Each such fundamental type is created by - calling a language dependent routine to create the type, and then a - pointer to that type is then placed in the array at the index specified - by it's FT_<TYPENAME> value. The array has a fixed size set by the - FT_NUM_MEMBERS compile time constant, which is the number of predefined - fundamental types gdb knows how to construct. */ - -static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ - -/* Record the language for the compilation unit which is currently being - processed. We know it once we have seen the TAG_compile_unit DIE, - and we need it while processing the DIE's for that compilation unit. - It is eventually saved in the symtab structure, but we don't finalize - the symtab struct until we have processed all the DIE's for the - compilation unit. We also need to get and save a pointer to the - language struct for this language, so we can call the language - dependent routines for doing things such as creating fundamental - types. */ - -static enum language cu_language; -static const struct language_defn *cu_language_defn; - -/* Forward declarations of static functions so we don't have to worry - about ordering within this file. */ - -static void -free_utypes PARAMS ((PTR)); - -static int -attribute_size PARAMS ((unsigned int)); - -static CORE_ADDR -target_to_host PARAMS ((char *, int, int, struct objfile *)); - -static void -add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *)); - -static void -handle_producer PARAMS ((char *)); - -static void -read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); - -static void -read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); - -static void -read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *, - struct objfile *)); - -static void -scan_partial_symbols PARAMS ((char *, char *, struct objfile *)); - -static void -scan_compilation_units PARAMS ((char *, char *, file_ptr, - file_ptr, struct objfile *)); - -static void -add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *)); - -static void -basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *)); - -static void -completedieinfo PARAMS ((struct dieinfo *, struct objfile *)); - -static void -dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *)); - -static void -psymtab_to_symtab_1 PARAMS ((struct partial_symtab *)); - -static void -read_ofile_symtab PARAMS ((struct partial_symtab *)); - -static void -process_dies PARAMS ((char *, char *, struct objfile *)); - -static void -read_structure_scope PARAMS ((struct dieinfo *, char *, char *, - struct objfile *)); - -static struct type * -decode_array_element_type PARAMS ((char *)); - -static struct type * -decode_subscript_data_item PARAMS ((char *, char *)); - -static void -dwarf_read_array_type PARAMS ((struct dieinfo *)); - -static void -read_tag_pointer_type PARAMS ((struct dieinfo *dip)); - -static void -read_tag_string_type PARAMS ((struct dieinfo *dip)); - -static void -read_subroutine_type PARAMS ((struct dieinfo *, char *, char *)); - -static void -read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); - -static struct type * -struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); - -static struct type * -enum_type PARAMS ((struct dieinfo *, struct objfile *)); - -static void -decode_line_numbers PARAMS ((char *)); - -static struct type * -decode_die_type PARAMS ((struct dieinfo *)); - -static struct type * -decode_mod_fund_type PARAMS ((char *)); - -static struct type * -decode_mod_u_d_type PARAMS ((char *)); - -static struct type * -decode_modified_type PARAMS ((char *, unsigned int, int)); - -static struct type * -decode_fund_type PARAMS ((unsigned int)); - -static char * -create_name PARAMS ((char *, struct obstack *)); - -static struct type * -lookup_utype PARAMS ((DIE_REF)); - -static struct type * -alloc_utype PARAMS ((DIE_REF, struct type *)); - -static struct symbol * -new_symbol PARAMS ((struct dieinfo *, struct objfile *)); - -static void -synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *, - struct type *)); - -static int -locval PARAMS ((struct dieinfo *)); - -static void -set_cu_language PARAMS ((struct dieinfo *)); - -static struct type * -dwarf_fundamental_type PARAMS ((struct objfile *, int)); - - -/* - -LOCAL FUNCTION - - dwarf_fundamental_type -- lookup or create a fundamental type - -SYNOPSIS - - struct type * - dwarf_fundamental_type (struct objfile *objfile, int typeid) - -DESCRIPTION - - DWARF version 1 doesn't supply any fundamental type information, - so gdb has to construct such types. It has a fixed number of - fundamental types that it knows how to construct, which is the - union of all types that it knows how to construct for all languages - that it knows about. These are enumerated in gdbtypes.h. - - As an example, assume we find a DIE that references a DWARF - fundamental type of FT_integer. We first look in the ftypes - array to see if we already have such a type, indexed by the - gdb internal value of FT_INTEGER. If so, we simply return a - pointer to that type. If not, then we ask an appropriate - language dependent routine to create a type FT_INTEGER, using - defaults reasonable for the current target machine, and install - that type in ftypes for future reference. - -RETURNS - - Pointer to a fundamental type. - -*/ - -static struct type * -dwarf_fundamental_type (objfile, typeid) - struct objfile *objfile; - int typeid; -{ - if (typeid < 0 || typeid >= FT_NUM_MEMBERS) - { - error ("internal error - invalid fundamental type id %d", typeid); - } - - /* Look for this particular type in the fundamental type vector. If one is - not found, create and install one appropriate for the current language - and the current target machine. */ - - if (ftypes[typeid] == NULL) - { - ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid); - } - - return (ftypes[typeid]); -} - -/* - -LOCAL FUNCTION - - set_cu_language -- set local copy of language for compilation unit - -SYNOPSIS - - void - set_cu_language (struct dieinfo *dip) - -DESCRIPTION - - Decode the language attribute for a compilation unit DIE and - remember what the language was. We use this at various times - when processing DIE's for a given compilation unit. - -RETURNS - - No return value. - - */ - -static void -set_cu_language (dip) - struct dieinfo *dip; -{ - switch (dip -> at_language) - { - case LANG_C89: - case LANG_C: - cu_language = language_c; - break; - case LANG_C_PLUS_PLUS: - cu_language = language_cplus; - break; - case LANG_CHILL: - cu_language = language_chill; - break; - case LANG_MODULA2: - cu_language = language_m2; - break; - case LANG_FORTRAN77: - case LANG_FORTRAN90: - cu_language = language_fortran; - break; - case LANG_ADA83: - case LANG_COBOL74: - case LANG_COBOL85: - case LANG_PASCAL83: - /* We don't know anything special about these yet. */ - cu_language = language_unknown; - break; - default: - /* If no at_language, try to deduce one from the filename */ - cu_language = deduce_language_from_filename (dip -> at_name); - break; - } - cu_language_defn = language_def (cu_language); -} - -/* - -GLOBAL FUNCTION - - dwarf_build_psymtabs -- build partial symtabs from DWARF debug info - -SYNOPSIS - - void dwarf_build_psymtabs (struct objfile *objfile, - struct section_offsets *section_offsets, - int mainline, file_ptr dbfoff, unsigned int dbfsize, - file_ptr lnoffset, unsigned int lnsize) - -DESCRIPTION - - This function is called upon to build partial symtabs from files - containing DIE's (Dwarf Information Entries) and DWARF line numbers. - - It is passed a bfd* containing the DIES - and line number information, the corresponding filename for that - file, a base address for relocating the symbols, a flag indicating - whether or not this debugging information is from a "main symbol - table" rather than a shared library or dynamically linked file, - and file offset/size pairs for the DIE information and line number - information. - -RETURNS - - No return value. - - */ - -void -dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize, - lnoffset, lnsize) - struct objfile *objfile; - struct section_offsets *section_offsets; - int mainline; - file_ptr dbfoff; - unsigned int dbfsize; - file_ptr lnoffset; - unsigned int lnsize; -{ - bfd *abfd = objfile->obfd; - struct cleanup *back_to; - - current_objfile = objfile; - dbsize = dbfsize; - dbbase = xmalloc (dbsize); - dbroff = 0; - if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || - (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) - { - free (dbbase); - error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); - } - back_to = make_cleanup (free, dbbase); - - /* If we are reinitializing, or if we have never loaded syms yet, init. - Since we have no idea how many DIES we are looking at, we just guess - some arbitrary value. */ - - if (mainline || objfile -> global_psymbols.size == 0 || - objfile -> static_psymbols.size == 0) - { - init_psymbol_list (objfile, 1024); - } - - /* Save the relocation factor where everybody can see it. */ - - base_section_offsets = section_offsets; - baseaddr = ANOFFSET (section_offsets, 0); - - /* Follow the compilation unit sibling chain, building a partial symbol - table entry for each one. Save enough information about each compilation - unit to locate the full DWARF information later. */ - - scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); - - do_cleanups (back_to); - current_objfile = NULL; -} - -/* - -LOCAL FUNCTION - - read_lexical_block_scope -- process all dies in a lexical block - -SYNOPSIS - - static void read_lexical_block_scope (struct dieinfo *dip, - char *thisdie, char *enddie) - -DESCRIPTION - - Process all the DIES contained within a lexical block scope. - Start a new scope, process the dies, and then close the scope. - - */ - -static void -read_lexical_block_scope (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - register struct context_stack *new; - - push_context (0, dip -> at_low_pc); - process_dies (thisdie + dip -> die_length, enddie, objfile); - new = pop_context (); - if (local_symbols != NULL) - { - finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr, - dip -> at_high_pc, objfile); - } - local_symbols = new -> locals; -} - -/* - -LOCAL FUNCTION - - lookup_utype -- look up a user defined type from die reference - -SYNOPSIS - - static type *lookup_utype (DIE_REF die_ref) - -DESCRIPTION - - Given a DIE reference, lookup the user defined type associated with - that DIE, if it has been registered already. If not registered, then - return NULL. Alloc_utype() can be called to register an empty - type for this reference, which will be filled in later when the - actual referenced DIE is processed. - */ - -static struct type * -lookup_utype (die_ref) - DIE_REF die_ref; -{ - struct type *type = NULL; - int utypeidx; - - utypeidx = (die_ref - dbroff) / 4; - if ((utypeidx < 0) || (utypeidx >= numutypes)) - { - complain (&bad_die_ref, DIE_ID, DIE_NAME); - } - else - { - type = *(utypes + utypeidx); - } - return (type); -} - - -/* - -LOCAL FUNCTION - - alloc_utype -- add a user defined type for die reference - -SYNOPSIS - - static type *alloc_utype (DIE_REF die_ref, struct type *utypep) - -DESCRIPTION - - Given a die reference DIE_REF, and a possible pointer to a user - defined type UTYPEP, register that this reference has a user - defined type and either use the specified type in UTYPEP or - make a new empty type that will be filled in later. - - We should only be called after calling lookup_utype() to verify that - there is not currently a type registered for DIE_REF. - */ - -static struct type * -alloc_utype (die_ref, utypep) - DIE_REF die_ref; - struct type *utypep; -{ - struct type **typep; - int utypeidx; - - utypeidx = (die_ref - dbroff) / 4; - typep = utypes + utypeidx; - if ((utypeidx < 0) || (utypeidx >= numutypes)) - { - utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - complain (&bad_die_ref, DIE_ID, DIE_NAME); - } - else if (*typep != NULL) - { - utypep = *typep; - complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); - } - else - { - if (utypep == NULL) - { - utypep = alloc_type (current_objfile); - } - *typep = utypep; - } - return (utypep); -} - -/* - -LOCAL FUNCTION - - free_utypes -- free the utypes array and reset pointer & count - -SYNOPSIS - - static void free_utypes (PTR dummy) - -DESCRIPTION - - Called via do_cleanups to free the utypes array, reset the pointer to NULL, - and set numutypes back to zero. This ensures that the utypes does not get - referenced after being freed. - */ - -static void -free_utypes (dummy) - PTR dummy; -{ - free (utypes); - utypes = NULL; - numutypes = 0; -} - - -/* - -LOCAL FUNCTION - - decode_die_type -- return a type for a specified die - -SYNOPSIS - - static struct type *decode_die_type (struct dieinfo *dip) - -DESCRIPTION - - Given a pointer to a die information structure DIP, decode the - type of the die and return a pointer to the decoded type. All - dies without specific types default to type int. - */ - -static struct type * -decode_die_type (dip) - struct dieinfo *dip; -{ - struct type *type = NULL; - - if (dip -> at_fund_type != 0) - { - type = decode_fund_type (dip -> at_fund_type); - } - else if (dip -> at_mod_fund_type != NULL) - { - type = decode_mod_fund_type (dip -> at_mod_fund_type); - } - else if (dip -> at_user_def_type) - { - if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) - { - type = alloc_utype (dip -> at_user_def_type, NULL); - } - } - else if (dip -> at_mod_u_d_type) - { - type = decode_mod_u_d_type (dip -> at_mod_u_d_type); - } - else - { - type = dwarf_fundamental_type (current_objfile, FT_VOID); - } - return (type); -} - -/* - -LOCAL FUNCTION - - struct_type -- compute and return the type for a struct or union - -SYNOPSIS - - static struct type *struct_type (struct dieinfo *dip, char *thisdie, - char *enddie, struct objfile *objfile) - -DESCRIPTION - - Given pointer to a die information structure for a die which - defines a union or structure (and MUST define one or the other), - and pointers to the raw die data that define the range of dies which - define the members, compute and return the user defined type for the - structure or union. - */ - -static struct type * -struct_type (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - struct type *type; - struct nextfield { - struct nextfield *next; - struct field field; - }; - struct nextfield *list = NULL; - struct nextfield *new; - int nfields = 0; - int n; - struct dieinfo mbr; - char *nextdie; - int anonymous_size; - - if ((type = lookup_utype (dip -> die_ref)) == NULL) - { - /* No forward references created an empty type, so install one now */ - type = alloc_utype (dip -> die_ref, NULL); - } - INIT_CPLUS_SPECIFIC(type); - switch (dip -> die_tag) - { - case TAG_class_type: - TYPE_CODE (type) = TYPE_CODE_CLASS; - break; - case TAG_structure_type: - TYPE_CODE (type) = TYPE_CODE_STRUCT; - break; - case TAG_union_type: - TYPE_CODE (type) = TYPE_CODE_UNION; - break; - default: - /* Should never happen */ - TYPE_CODE (type) = TYPE_CODE_UNDEF; - complain (&missing_tag, DIE_ID, DIE_NAME); - break; - } - /* Some compilers try to be helpful by inventing "fake" names for - anonymous enums, structures, and unions, like "~0fake" or ".0fake". - Thanks, but no thanks... */ - if (dip -> at_name != NULL - && *dip -> at_name != '~' - && *dip -> at_name != '.') - { - TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, - "", "", dip -> at_name); - } - /* Use whatever size is known. Zero is a valid size. We might however - wish to check has_at_byte_size to make sure that some byte size was - given explicitly, but DWARF doesn't specify that explicit sizes of - zero have to present, so complaining about missing sizes should - probably not be the default. */ - TYPE_LENGTH (type) = dip -> at_byte_size; - thisdie += dip -> die_length; - while (thisdie < enddie) - { - basicdieinfo (&mbr, thisdie, objfile); - completedieinfo (&mbr, objfile); - if (mbr.die_length <= SIZEOF_DIE_LENGTH) - { - break; - } - else if (mbr.at_sibling != 0) - { - nextdie = dbbase + mbr.at_sibling - dbroff; - } - else - { - nextdie = thisdie + mbr.die_length; - } - switch (mbr.die_tag) - { - case TAG_member: - /* Get space to record the next field's data. */ - new = (struct nextfield *) alloca (sizeof (struct nextfield)); - new -> next = list; - list = new; - /* Save the data. */ - list -> field.name = - obsavestring (mbr.at_name, strlen (mbr.at_name), - &objfile -> type_obstack); - FIELD_TYPE (list->field) = decode_die_type (&mbr); - FIELD_BITPOS (list->field) = 8 * locval (&mbr); - /* Handle bit fields. */ - FIELD_BITSIZE (list->field) = mbr.at_bit_size; - if (BITS_BIG_ENDIAN) - { - /* For big endian bits, the at_bit_offset gives the - additional bit offset from the MSB of the containing - anonymous object to the MSB of the field. We don't - have to do anything special since we don't need to - know the size of the anonymous object. */ - FIELD_BITPOS (list->field) += mbr.at_bit_offset; - } - else - { - /* For little endian bits, we need to have a non-zero - at_bit_size, so that we know we are in fact dealing - with a bitfield. Compute the bit offset to the MSB - of the anonymous object, subtract off the number of - bits from the MSB of the field to the MSB of the - object, and then subtract off the number of bits of - the field itself. The result is the bit offset of - the LSB of the field. */ - if (mbr.at_bit_size > 0) - { - if (mbr.has_at_byte_size) - { - /* The size of the anonymous object containing - the bit field is explicit, so use the - indicated size (in bytes). */ - anonymous_size = mbr.at_byte_size; - } - else - { - /* The size of the anonymous object containing - the bit field matches the size of an object - of the bit field's type. DWARF allows - at_byte_size to be left out in such cases, as - a debug information size optimization. */ - anonymous_size = TYPE_LENGTH (list -> field.type); - } - FIELD_BITPOS (list->field) += - anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; - } - } - nfields++; - break; - default: - process_dies (thisdie, nextdie, objfile); - break; - } - thisdie = nextdie; - } - /* Now create the vector of fields, and record how big it is. We may - not even have any fields, if this DIE was generated due to a reference - to an anonymous structure or union. In this case, TYPE_FLAG_STUB is - set, which clues gdb in to the fact that it needs to search elsewhere - for the full structure definition. */ - if (nfields == 0) - { - TYPE_FLAGS (type) |= TYPE_FLAG_STUB; - } - else - { - TYPE_NFIELDS (type) = nfields; - TYPE_FIELDS (type) = (struct field *) - TYPE_ALLOC (type, sizeof (struct field) * nfields); - /* Copy the saved-up fields into the field vector. */ - for (n = nfields; list; list = list -> next) - { - TYPE_FIELD (type, --n) = list -> field; - } - } - return (type); -} - -/* - -LOCAL FUNCTION - - read_structure_scope -- process all dies within struct or union - -SYNOPSIS - - static void read_structure_scope (struct dieinfo *dip, - char *thisdie, char *enddie, struct objfile *objfile) - -DESCRIPTION - - Called when we find the DIE that starts a structure or union - scope (definition) to process all dies that define the members - of the structure or union. DIP is a pointer to the die info - struct for the DIE that names the structure or union. - -NOTES - - Note that we need to call struct_type regardless of whether or not - the DIE has an at_name attribute, since it might be an anonymous - structure or union. This gets the type entered into our set of - user defined types. - - However, if the structure is incomplete (an opaque struct/union) - then suppress creating a symbol table entry for it since gdb only - wants to find the one with the complete definition. Note that if - it is complete, we just call new_symbol, which does it's own - checking about whether the struct/union is anonymous or not (and - suppresses creating a symbol table entry itself). - - */ - -static void -read_structure_scope (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - struct type *type; - struct symbol *sym; - - type = struct_type (dip, thisdie, enddie, objfile); - if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) - { - sym = new_symbol (dip, objfile); - if (sym != NULL) - { - SYMBOL_TYPE (sym) = type; - if (cu_language == language_cplus) - { - synthesize_typedef (dip, objfile, type); - } - } - } -} - -/* - -LOCAL FUNCTION - - decode_array_element_type -- decode type of the array elements - -SYNOPSIS - - static struct type *decode_array_element_type (char *scan, char *end) - -DESCRIPTION - - As the last step in decoding the array subscript information for an - array DIE, we need to decode the type of the array elements. We are - passed a pointer to this last part of the subscript information and - must return the appropriate type. If the type attribute is not - recognized, just warn about the problem and return type int. - */ - -static struct type * -decode_array_element_type (scan) - char *scan; -{ - struct type *typep; - DIE_REF die_ref; - unsigned short attribute; - unsigned short fundtype; - int nbytes; - - attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, - current_objfile); - scan += SIZEOF_ATTRIBUTE; - if ((nbytes = attribute_size (attribute)) == -1) - { - complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); - typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - } - else - { - switch (attribute) - { - case AT_fund_type: - fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, - current_objfile); - typep = decode_fund_type (fundtype); - break; - case AT_mod_fund_type: - typep = decode_mod_fund_type (scan); - break; - case AT_user_def_type: - die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, - current_objfile); - if ((typep = lookup_utype (die_ref)) == NULL) - { - typep = alloc_utype (die_ref, NULL); - } - break; - case AT_mod_u_d_type: - typep = decode_mod_u_d_type (scan); - break; - default: - complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); - typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - break; - } - } - return (typep); -} - -/* - -LOCAL FUNCTION - - decode_subscript_data_item -- decode array subscript item - -SYNOPSIS - - static struct type * - decode_subscript_data_item (char *scan, char *end) - -DESCRIPTION - - The array subscripts and the data type of the elements of an - array are described by a list of data items, stored as a block - of contiguous bytes. There is a data item describing each array - dimension, and a final data item describing the element type. - The data items are ordered the same as their appearance in the - source (I.E. leftmost dimension first, next to leftmost second, - etc). - - The data items describing each array dimension consist of four - parts: (1) a format specifier, (2) type type of the subscript - index, (3) a description of the low bound of the array dimension, - and (4) a description of the high bound of the array dimension. - - The last data item is the description of the type of each of - the array elements. - - We are passed a pointer to the start of the block of bytes - containing the remaining data items, and a pointer to the first - byte past the data. This function recursively decodes the - remaining data items and returns a type. - - If we somehow fail to decode some data, we complain about it - and return a type "array of int". - -BUGS - FIXME: This code only implements the forms currently used - by the AT&T and GNU C compilers. - - The end pointer is supplied for error checking, maybe we should - use it for that... - */ - -static struct type * -decode_subscript_data_item (scan, end) - char *scan; - char *end; -{ - struct type *typep = NULL; /* Array type we are building */ - struct type *nexttype; /* Type of each element (may be array) */ - struct type *indextype; /* Type of this index */ - struct type *rangetype; - unsigned int format; - unsigned short fundtype; - unsigned long lowbound; - unsigned long highbound; - int nbytes; - - format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, - current_objfile); - scan += SIZEOF_FORMAT_SPECIFIER; - switch (format) - { - case FMT_ET: - typep = decode_array_element_type (scan); - break; - case FMT_FT_C_C: - fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, - current_objfile); - indextype = decode_fund_type (fundtype); - scan += SIZEOF_FMT_FT; - nbytes = TARGET_FT_LONG_SIZE (current_objfile); - lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); - scan += nbytes; - highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); - scan += nbytes; - nexttype = decode_subscript_data_item (scan, end); - if (nexttype == NULL) - { - /* Munged subscript data or other problem, fake it. */ - complain (&subscript_data_items, DIE_ID, DIE_NAME); - nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); - } - rangetype = create_range_type ((struct type *) NULL, indextype, - lowbound, highbound); - typep = create_array_type ((struct type *) NULL, nexttype, rangetype); - break; - case FMT_FT_C_X: - case FMT_FT_X_C: - case FMT_FT_X_X: - case FMT_UT_C_C: - case FMT_UT_C_X: - case FMT_UT_X_C: - case FMT_UT_X_X: - complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); - nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); - rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); - typep = create_array_type ((struct type *) NULL, nexttype, rangetype); - break; - default: - complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); - nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); - rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); - typep = create_array_type ((struct type *) NULL, nexttype, rangetype); - break; - } - return (typep); -} - -/* - -LOCAL FUNCTION - - dwarf_read_array_type -- read TAG_array_type DIE - -SYNOPSIS - - static void dwarf_read_array_type (struct dieinfo *dip) - -DESCRIPTION - - Extract all information from a TAG_array_type DIE and add to - the user defined type vector. - */ - -static void -dwarf_read_array_type (dip) - struct dieinfo *dip; -{ - struct type *type; - struct type *utype; - char *sub; - char *subend; - unsigned short blocksz; - int nbytes; - - if (dip -> at_ordering != ORD_row_major) - { - /* FIXME: Can gdb even handle column major arrays? */ - complain (¬_row_major, DIE_ID, DIE_NAME); - } - if ((sub = dip -> at_subscr_data) != NULL) - { - nbytes = attribute_size (AT_subscr_data); - blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); - subend = sub + nbytes + blocksz; - sub += nbytes; - type = decode_subscript_data_item (sub, subend); - if ((utype = lookup_utype (dip -> die_ref)) == NULL) - { - /* Install user defined type that has not been referenced yet. */ - alloc_utype (dip -> die_ref, type); - } - else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) - { - /* Ick! A forward ref has already generated a blank type in our - slot, and this type probably already has things pointing to it - (which is what caused it to be created in the first place). - If it's just a place holder we can plop our fully defined type - on top of it. We can't recover the space allocated for our - new type since it might be on an obstack, but we could reuse - it if we kept a list of them, but it might not be worth it - (FIXME). */ - *utype = *type; - } - else - { - /* Double ick! Not only is a type already in our slot, but - someone has decorated it. Complain and leave it alone. */ - complain (&dup_user_type_definition, DIE_ID, DIE_NAME); - } - } -} - -/* - -LOCAL FUNCTION - - read_tag_pointer_type -- read TAG_pointer_type DIE - -SYNOPSIS - - static void read_tag_pointer_type (struct dieinfo *dip) - -DESCRIPTION - - Extract all information from a TAG_pointer_type DIE and add to - the user defined type vector. - */ - -static void -read_tag_pointer_type (dip) - struct dieinfo *dip; -{ - struct type *type; - struct type *utype; - - type = decode_die_type (dip); - if ((utype = lookup_utype (dip -> die_ref)) == NULL) - { - utype = lookup_pointer_type (type); - alloc_utype (dip -> die_ref, utype); - } - else - { - TYPE_TARGET_TYPE (utype) = type; - TYPE_POINTER_TYPE (type) = utype; - - /* We assume the machine has only one representation for pointers! */ - /* FIXME: Possably a poor assumption */ - TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ; - TYPE_CODE (utype) = TYPE_CODE_PTR; - } -} - -/* - -LOCAL FUNCTION - - read_tag_string_type -- read TAG_string_type DIE - -SYNOPSIS - - static void read_tag_string_type (struct dieinfo *dip) - -DESCRIPTION - - Extract all information from a TAG_string_type DIE and add to - the user defined type vector. It isn't really a user defined - type, but it behaves like one, with other DIE's using an - AT_user_def_type attribute to reference it. - */ - -static void -read_tag_string_type (dip) - struct dieinfo *dip; -{ - struct type *utype; - struct type *indextype; - struct type *rangetype; - unsigned long lowbound = 0; - unsigned long highbound; - - if (dip -> has_at_byte_size) - { - /* A fixed bounds string */ - highbound = dip -> at_byte_size - 1; - } - else - { - /* A varying length string. Stub for now. (FIXME) */ - highbound = 1; - } - indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); - rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, - highbound); - - utype = lookup_utype (dip -> die_ref); - if (utype == NULL) - { - /* No type defined, go ahead and create a blank one to use. */ - utype = alloc_utype (dip -> die_ref, (struct type *) NULL); - } - else - { - /* Already a type in our slot due to a forward reference. Make sure it - is a blank one. If not, complain and leave it alone. */ - if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) - { - complain (&dup_user_type_definition, DIE_ID, DIE_NAME); - return; - } - } - - /* Create the string type using the blank type we either found or created. */ - utype = create_string_type (utype, rangetype); -} - -/* - -LOCAL FUNCTION - - read_subroutine_type -- process TAG_subroutine_type dies - -SYNOPSIS - - static void read_subroutine_type (struct dieinfo *dip, char thisdie, - char *enddie) - -DESCRIPTION - - Handle DIES due to C code like: - - struct foo { - int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) - int b; - }; - -NOTES - - The parameter DIES are currently ignored. See if gdb has a way to - include this info in it's type system, and decode them if so. Is - this what the type structure's "arg_types" field is for? (FIXME) - */ - -static void -read_subroutine_type (dip, thisdie, enddie) - struct dieinfo *dip; - char *thisdie; - char *enddie; -{ - struct type *type; /* Type that this function returns */ - struct type *ftype; /* Function that returns above type */ - - /* Decode the type that this subroutine returns */ - - type = decode_die_type (dip); - - /* Check to see if we already have a partially constructed user - defined type for this DIE, from a forward reference. */ - - if ((ftype = lookup_utype (dip -> die_ref)) == NULL) - { - /* This is the first reference to one of these types. Make - a new one and place it in the user defined types. */ - ftype = lookup_function_type (type); - alloc_utype (dip -> die_ref, ftype); - } - else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) - { - /* We have an existing partially constructed type, so bash it - into the correct type. */ - TYPE_TARGET_TYPE (ftype) = type; - TYPE_LENGTH (ftype) = 1; - TYPE_CODE (ftype) = TYPE_CODE_FUNC; - } - else - { - complain (&dup_user_type_definition, DIE_ID, DIE_NAME); - } -} - -/* - -LOCAL FUNCTION - - read_enumeration -- process dies which define an enumeration - -SYNOPSIS - - static void read_enumeration (struct dieinfo *dip, char *thisdie, - char *enddie, struct objfile *objfile) - -DESCRIPTION - - Given a pointer to a die which begins an enumeration, process all - the dies that define the members of the enumeration. - -NOTES - - Note that we need to call enum_type regardless of whether or not we - have a symbol, since we might have an enum without a tag name (thus - no symbol for the tagname). - */ - -static void -read_enumeration (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - struct type *type; - struct symbol *sym; - - type = enum_type (dip, objfile); - sym = new_symbol (dip, objfile); - if (sym != NULL) - { - SYMBOL_TYPE (sym) = type; - if (cu_language == language_cplus) - { - synthesize_typedef (dip, objfile, type); - } - } -} - -/* - -LOCAL FUNCTION - - enum_type -- decode and return a type for an enumeration - -SYNOPSIS - - static type *enum_type (struct dieinfo *dip, struct objfile *objfile) - -DESCRIPTION - - Given a pointer to a die information structure for the die which - starts an enumeration, process all the dies that define the members - of the enumeration and return a type pointer for the enumeration. - - At the same time, for each member of the enumeration, create a - symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, - and give it the type of the enumeration itself. - -NOTES - - Note that the DWARF specification explicitly mandates that enum - constants occur in reverse order from the source program order, - for "consistency" and because this ordering is easier for many - compilers to generate. (Draft 6, sec 3.8.5, Enumeration type - Entries). Because gdb wants to see the enum members in program - source order, we have to ensure that the order gets reversed while - we are processing them. - */ - -static struct type * -enum_type (dip, objfile) - struct dieinfo *dip; - struct objfile *objfile; -{ - struct type *type; - struct nextfield { - struct nextfield *next; - struct field field; - }; - struct nextfield *list = NULL; - struct nextfield *new; - int nfields = 0; - int n; - char *scan; - char *listend; - unsigned short blocksz; - struct symbol *sym; - int nbytes; - int unsigned_enum = 1; - - if ((type = lookup_utype (dip -> die_ref)) == NULL) - { - /* No forward references created an empty type, so install one now */ - type = alloc_utype (dip -> die_ref, NULL); - } - TYPE_CODE (type) = TYPE_CODE_ENUM; - /* Some compilers try to be helpful by inventing "fake" names for - anonymous enums, structures, and unions, like "~0fake" or ".0fake". - Thanks, but no thanks... */ - if (dip -> at_name != NULL - && *dip -> at_name != '~' - && *dip -> at_name != '.') - { - TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, - "", "", dip -> at_name); - } - if (dip -> at_byte_size != 0) - { - TYPE_LENGTH (type) = dip -> at_byte_size; - } - if ((scan = dip -> at_element_list) != NULL) - { - if (dip -> short_element_list) - { - nbytes = attribute_size (AT_short_element_list); - } - else - { - nbytes = attribute_size (AT_element_list); - } - blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); - listend = scan + nbytes + blocksz; - scan += nbytes; - while (scan < listend) - { - new = (struct nextfield *) alloca (sizeof (struct nextfield)); - new -> next = list; - list = new; - FIELD_TYPE (list->field) = NULL; - FIELD_BITSIZE (list->field) = 0; - FIELD_BITPOS (list->field) = - target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, - objfile); - scan += TARGET_FT_LONG_SIZE (objfile); - list -> field.name = obsavestring (scan, strlen (scan), - &objfile -> type_obstack); - scan += strlen (scan) + 1; - nfields++; - /* Handcraft a new symbol for this enum member. */ - sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, - sizeof (struct symbol)); - memset (sym, 0, sizeof (struct symbol)); - SYMBOL_NAME (sym) = create_name (list -> field.name, - &objfile->symbol_obstack); - SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); - SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; - SYMBOL_CLASS (sym) = LOC_CONST; - SYMBOL_TYPE (sym) = type; - SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); - if (SYMBOL_VALUE (sym) < 0) - unsigned_enum = 0; - add_symbol_to_list (sym, list_in_scope); - } - /* Now create the vector of fields, and record how big it is. This is - where we reverse the order, by pulling the members off the list in - reverse order from how they were inserted. If we have no fields - (this is apparently possible in C++) then skip building a field - vector. */ - if (nfields > 0) - { - if (unsigned_enum) - TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; - TYPE_NFIELDS (type) = nfields; - TYPE_FIELDS (type) = (struct field *) - obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); - /* Copy the saved-up fields into the field vector. */ - for (n = 0; (n < nfields) && (list != NULL); list = list -> next) - { - TYPE_FIELD (type, n++) = list -> field; - } - } - } - return (type); -} - -/* - -LOCAL FUNCTION - - read_func_scope -- process all dies within a function scope - -DESCRIPTION - - Process all dies within a given function scope. We are passed - a die information structure pointer DIP for the die which - starts the function scope, and pointers into the raw die data - that define the dies within the function scope. - - For now, we ignore lexical block scopes within the function. - The problem is that AT&T cc does not define a DWARF lexical - block scope for the function itself, while gcc defines a - lexical block scope for the function. We need to think about - how to handle this difference, or if it is even a problem. - (FIXME) - */ - -static void -read_func_scope (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - register struct context_stack *new; - - /* AT_name is absent if the function is described with an - AT_abstract_origin tag. - Ignore the function description for now to avoid GDB core dumps. - FIXME: Add code to handle AT_abstract_origin tags properly. */ - if (dip -> at_name == NULL) - { - complain (&missing_at_name, DIE_ID); - return; - } - - if (objfile -> ei.entry_point >= dip -> at_low_pc && - objfile -> ei.entry_point < dip -> at_high_pc) - { - objfile -> ei.entry_func_lowpc = dip -> at_low_pc; - objfile -> ei.entry_func_highpc = dip -> at_high_pc; - } - if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */ - { - objfile -> ei.main_func_lowpc = dip -> at_low_pc; - objfile -> ei.main_func_highpc = dip -> at_high_pc; - } - new = push_context (0, dip -> at_low_pc); - new -> name = new_symbol (dip, objfile); - list_in_scope = &local_symbols; - process_dies (thisdie + dip -> die_length, enddie, objfile); - new = pop_context (); - /* Make a block for the local symbols within. */ - finish_block (new -> name, &local_symbols, new -> old_blocks, - new -> start_addr, dip -> at_high_pc, objfile); - list_in_scope = &file_symbols; -} - - -/* - -LOCAL FUNCTION - - handle_producer -- process the AT_producer attribute - -DESCRIPTION - - Perform any operations that depend on finding a particular - AT_producer attribute. - - */ - -static void -handle_producer (producer) - char *producer; -{ - - /* If this compilation unit was compiled with g++ or gcc, then set the - processing_gcc_compilation flag. */ - - if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) - { - char version = producer[strlen (GCC_PRODUCER)]; - processing_gcc_compilation = (version == '2' ? 2 : 1); - } - else - { - processing_gcc_compilation = - STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) - || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); - } - - /* Select a demangling style if we can identify the producer and if - the current style is auto. We leave the current style alone if it - is not auto. We also leave the demangling style alone if we find a - gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ - - if (AUTO_DEMANGLING) - { - if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) - { - set_demangling_style (GNU_DEMANGLING_STYLE_STRING); - } - else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) - { - set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); - } - } -} - - -/* - -LOCAL FUNCTION - - read_file_scope -- process all dies within a file scope - -DESCRIPTION - - Process all dies within a given file scope. We are passed a - pointer to the die information structure for the die which - starts the file scope, and pointers into the raw die data which - mark the range of dies within the file scope. - - When the partial symbol table is built, the file offset for the line - number table for each compilation unit is saved in the partial symbol - table entry for that compilation unit. As the symbols for each - compilation unit are read, the line number table is read into memory - and the variable lnbase is set to point to it. Thus all we have to - do is use lnbase to access the line number table for the current - compilation unit. - */ - -static void -read_file_scope (dip, thisdie, enddie, objfile) - struct dieinfo *dip; - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - struct cleanup *back_to; - struct symtab *symtab; - - if (objfile -> ei.entry_point >= dip -> at_low_pc && - objfile -> ei.entry_point < dip -> at_high_pc) - { - objfile -> ei.entry_file_lowpc = dip -> at_low_pc; - objfile -> ei.entry_file_highpc = dip -> at_high_pc; - } - set_cu_language (dip); - if (dip -> at_producer != NULL) - { - handle_producer (dip -> at_producer); - } - numutypes = (enddie - thisdie) / 4; - utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); - back_to = make_cleanup (free_utypes, NULL); - memset (utypes, 0, numutypes * sizeof (struct type *)); - memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); - start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc); - record_debugformat ("DWARF 1"); - decode_line_numbers (lnbase); - process_dies (thisdie + dip -> die_length, enddie, objfile); - - symtab = end_symtab (dip -> at_high_pc, objfile, 0); - if (symtab != NULL) - { - symtab -> language = cu_language; - } - do_cleanups (back_to); -} - -/* - -LOCAL FUNCTION - - process_dies -- process a range of DWARF Information Entries - -SYNOPSIS - - static void process_dies (char *thisdie, char *enddie, - struct objfile *objfile) - -DESCRIPTION - - Process all DIE's in a specified range. May be (and almost - certainly will be) called recursively. - */ - -static void -process_dies (thisdie, enddie, objfile) - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - char *nextdie; - struct dieinfo di; - - while (thisdie < enddie) - { - basicdieinfo (&di, thisdie, objfile); - if (di.die_length < SIZEOF_DIE_LENGTH) - { - break; - } - else if (di.die_tag == TAG_padding) - { - nextdie = thisdie + di.die_length; - } - else - { - completedieinfo (&di, objfile); - if (di.at_sibling != 0) - { - nextdie = dbbase + di.at_sibling - dbroff; - } - else - { - nextdie = thisdie + di.die_length; - } -#ifdef SMASH_TEXT_ADDRESS - /* I think that these are always text, not data, addresses. */ - SMASH_TEXT_ADDRESS (di.at_low_pc); - SMASH_TEXT_ADDRESS (di.at_high_pc); -#endif - switch (di.die_tag) - { - case TAG_compile_unit: - /* Skip Tag_compile_unit if we are already inside a compilation - unit, we are unable to handle nested compilation units - properly (FIXME). */ - if (current_subfile == NULL) - read_file_scope (&di, thisdie, nextdie, objfile); - else - nextdie = thisdie + di.die_length; - break; - case TAG_global_subroutine: - case TAG_subroutine: - if (di.has_at_low_pc) - { - read_func_scope (&di, thisdie, nextdie, objfile); - } - break; - case TAG_lexical_block: - read_lexical_block_scope (&di, thisdie, nextdie, objfile); - break; - case TAG_class_type: - case TAG_structure_type: - case TAG_union_type: - read_structure_scope (&di, thisdie, nextdie, objfile); - break; - case TAG_enumeration_type: - read_enumeration (&di, thisdie, nextdie, objfile); - break; - case TAG_subroutine_type: - read_subroutine_type (&di, thisdie, nextdie); - break; - case TAG_array_type: - dwarf_read_array_type (&di); - break; - case TAG_pointer_type: - read_tag_pointer_type (&di); - break; - case TAG_string_type: - read_tag_string_type (&di); - break; - default: - new_symbol (&di, objfile); - break; - } - } - thisdie = nextdie; - } -} - -/* - -LOCAL FUNCTION - - decode_line_numbers -- decode a line number table fragment - -SYNOPSIS - - static void decode_line_numbers (char *tblscan, char *tblend, - long length, long base, long line, long pc) - -DESCRIPTION - - Translate the DWARF line number information to gdb form. - - The ".line" section contains one or more line number tables, one for - each ".line" section from the objects that were linked. - - The AT_stmt_list attribute for each TAG_source_file entry in the - ".debug" section contains the offset into the ".line" section for the - start of the table for that file. - - The table itself has the following structure: - - <table length><base address><source statement entry> - 4 bytes 4 bytes 10 bytes - - The table length is the total size of the table, including the 4 bytes - for the length information. - - The base address is the address of the first instruction generated - for the source file. - - Each source statement entry has the following structure: - - <line number><statement position><address delta> - 4 bytes 2 bytes 4 bytes - - The line number is relative to the start of the file, starting with - line 1. - - The statement position either -1 (0xFFFF) or the number of characters - from the beginning of the line to the beginning of the statement. - - The address delta is the difference between the base address and - the address of the first instruction for the statement. - - Note that we must copy the bytes from the packed table to our local - variables before attempting to use them, to avoid alignment problems - on some machines, particularly RISC processors. - -BUGS - - Does gdb expect the line numbers to be sorted? They are now by - chance/luck, but are not required to be. (FIXME) - - The line with number 0 is unused, gdb apparently can discover the - span of the last line some other way. How? (FIXME) - */ - -static void -decode_line_numbers (linetable) - char *linetable; -{ - char *tblscan; - char *tblend; - unsigned long length; - unsigned long base; - unsigned long line; - unsigned long pc; - - if (linetable != NULL) - { - tblscan = tblend = linetable; - length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, - current_objfile); - tblscan += SIZEOF_LINETBL_LENGTH; - tblend += length; - base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), - GET_UNSIGNED, current_objfile); - tblscan += TARGET_FT_POINTER_SIZE (objfile); - base += baseaddr; - while (tblscan < tblend) - { - line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, - current_objfile); - tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; - pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, - current_objfile); - tblscan += SIZEOF_LINETBL_DELTA; - pc += base; - if (line != 0) - { - record_line (current_subfile, line, pc); - } - } - } -} - -/* - -LOCAL FUNCTION - - locval -- compute the value of a location attribute - -SYNOPSIS - - static int locval (struct dieinfo *dip) - -DESCRIPTION - - Given pointer to a string of bytes that define a location, compute - the location and return the value. - A location description containing no atoms indicates that the - object is optimized out. The optimized_out flag is set for those, - the return value is meaningless. - - When computing values involving the current value of the frame pointer, - the value zero is used, which results in a value relative to the frame - pointer, rather than the absolute value. This is what GDB wants - anyway. - - When the result is a register number, the isreg flag is set, otherwise - it is cleared. This is a kludge until we figure out a better - way to handle the problem. Gdb's design does not mesh well with the - DWARF notion of a location computing interpreter, which is a shame - because the flexibility goes unused. - -NOTES - - Note that stack[0] is unused except as a default error return. - Note that stack overflow is not yet handled. - */ - -static int -locval (dip) - struct dieinfo *dip; -{ - unsigned short nbytes; - unsigned short locsize; - auto long stack[64]; - int stacki; - char *loc; - char *end; - int loc_atom_code; - int loc_value_size; - - loc = dip -> at_location; - nbytes = attribute_size (AT_location); - locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); - loc += nbytes; - end = loc + locsize; - stacki = 0; - stack[stacki] = 0; - dip -> isreg = 0; - dip -> offreg = 0; - dip -> optimized_out = 1; - loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); - while (loc < end) - { - dip -> optimized_out = 0; - loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, - current_objfile); - loc += SIZEOF_LOC_ATOM_CODE; - switch (loc_atom_code) - { - case 0: - /* error */ - loc = end; - break; - case OP_REG: - /* push register (number) */ - stack[++stacki] - = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, - GET_UNSIGNED, - current_objfile)); - loc += loc_value_size; - dip -> isreg = 1; - break; - case OP_BASEREG: - /* push value of register (number) */ - /* Actually, we compute the value as if register has 0, so the - value ends up being the offset from that register. */ - dip -> offreg = 1; - dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, - current_objfile); - loc += loc_value_size; - stack[++stacki] = 0; - break; - case OP_ADDR: - /* push address (relocated address) */ - stack[++stacki] = target_to_host (loc, loc_value_size, - GET_UNSIGNED, current_objfile); - loc += loc_value_size; - break; - case OP_CONST: - /* push constant (number) FIXME: signed or unsigned! */ - stack[++stacki] = target_to_host (loc, loc_value_size, - GET_SIGNED, current_objfile); - loc += loc_value_size; - break; - case OP_DEREF2: - /* pop, deref and push 2 bytes (as a long) */ - complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); - break; - case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ - complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); - break; - case OP_ADD: /* pop top 2 items, add, push result */ - stack[stacki - 1] += stack[stacki]; - stacki--; - break; - } - } - return (stack[stacki]); -} - -/* - -LOCAL FUNCTION - - read_ofile_symtab -- build a full symtab entry from chunk of DIE's - -SYNOPSIS - - static void read_ofile_symtab (struct partial_symtab *pst) - -DESCRIPTION - - When expanding a partial symbol table entry to a full symbol table - entry, this is the function that gets called to read in the symbols - for the compilation unit. A pointer to the newly constructed symtab, - which is now the new first one on the objfile's symtab list, is - stashed in the partial symbol table entry. - */ - -static void -read_ofile_symtab (pst) - struct partial_symtab *pst; -{ - struct cleanup *back_to; - unsigned long lnsize; - file_ptr foffset; - bfd *abfd; - char lnsizedata[SIZEOF_LINETBL_LENGTH]; - - abfd = pst -> objfile -> obfd; - current_objfile = pst -> objfile; - - /* Allocate a buffer for the entire chunk of DIE's for this compilation - unit, seek to the location in the file, and read in all the DIE's. */ - - diecount = 0; - dbsize = DBLENGTH (pst); - dbbase = xmalloc (dbsize); - dbroff = DBROFF(pst); - foffset = DBFOFF(pst) + dbroff; - base_section_offsets = pst->section_offsets; - baseaddr = ANOFFSET (pst->section_offsets, 0); - if (bfd_seek (abfd, foffset, SEEK_SET) || - (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) - { - free (dbbase); - error ("can't read DWARF data"); - } - back_to = make_cleanup (free, dbbase); - - /* If there is a line number table associated with this compilation unit - then read the size of this fragment in bytes, from the fragment itself. - Allocate a buffer for the fragment and read it in for future - processing. */ - - lnbase = NULL; - if (LNFOFF (pst)) - { - if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || - (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != - sizeof (lnsizedata))) - { - error ("can't read DWARF line number table size"); - } - lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, - GET_UNSIGNED, pst -> objfile); - lnbase = xmalloc (lnsize); - if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || - (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) - { - free (lnbase); - error ("can't read DWARF line numbers"); - } - make_cleanup (free, lnbase); - } - - process_dies (dbbase, dbbase + dbsize, pst -> objfile); - do_cleanups (back_to); - current_objfile = NULL; - pst -> symtab = pst -> objfile -> symtabs; -} - -/* - -LOCAL FUNCTION - - psymtab_to_symtab_1 -- do grunt work for building a full symtab entry - -SYNOPSIS - - static void psymtab_to_symtab_1 (struct partial_symtab *pst) - -DESCRIPTION - - Called once for each partial symbol table entry that needs to be - expanded into a full symbol table entry. - -*/ - -static void -psymtab_to_symtab_1 (pst) - struct partial_symtab *pst; -{ - int i; - struct cleanup *old_chain; - - if (pst != NULL) - { - if (pst->readin) - { - warning ("psymtab for %s already read in. Shouldn't happen.", - pst -> filename); - } - else - { - /* Read in all partial symtabs on which this one is dependent */ - for (i = 0; i < pst -> number_of_dependencies; i++) - { - if (!pst -> dependencies[i] -> readin) - { - /* Inform about additional files that need to be read in. */ - if (info_verbose) - { - fputs_filtered (" ", gdb_stdout); - wrap_here (""); - fputs_filtered ("and ", gdb_stdout); - wrap_here (""); - printf_filtered ("%s...", - pst -> dependencies[i] -> filename); - wrap_here (""); - gdb_flush (gdb_stdout); /* Flush output */ - } - psymtab_to_symtab_1 (pst -> dependencies[i]); - } - } - if (DBLENGTH (pst)) /* Otherwise it's a dummy */ - { - buildsym_init (); - old_chain = make_cleanup ((make_cleanup_func) - really_free_pendings, 0); - read_ofile_symtab (pst); - if (info_verbose) - { - printf_filtered ("%d DIE's, sorting...", diecount); - wrap_here (""); - gdb_flush (gdb_stdout); - } - sort_symtab_syms (pst -> symtab); - do_cleanups (old_chain); - } - pst -> readin = 1; - } - } -} - -/* - -LOCAL FUNCTION - - dwarf_psymtab_to_symtab -- build a full symtab entry from partial one - -SYNOPSIS - - static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) - -DESCRIPTION - - This is the DWARF support entry point for building a full symbol - table entry from a partial symbol table entry. We are passed a - pointer to the partial symbol table entry that needs to be expanded. - -*/ - -static void -dwarf_psymtab_to_symtab (pst) - struct partial_symtab *pst; -{ - - if (pst != NULL) - { - if (pst -> readin) - { - warning ("psymtab for %s already read in. Shouldn't happen.", - pst -> filename); - } - else - { - if (DBLENGTH (pst) || pst -> number_of_dependencies) - { - /* Print the message now, before starting serious work, to avoid - disconcerting pauses. */ - if (info_verbose) - { - printf_filtered ("Reading in symbols for %s...", - pst -> filename); - gdb_flush (gdb_stdout); - } - - psymtab_to_symtab_1 (pst); - -#if 0 /* FIXME: Check to see what dbxread is doing here and see if - we need to do an equivalent or is this something peculiar to - stabs/a.out format. - Match with global symbols. This only needs to be done once, - after all of the symtabs and dependencies have been read in. - */ - scan_file_globals (pst -> objfile); -#endif - - /* Finish up the verbose info message. */ - if (info_verbose) - { - printf_filtered ("done.\n"); - gdb_flush (gdb_stdout); - } - } - } - } -} - -/* - -LOCAL FUNCTION - - add_enum_psymbol -- add enumeration members to partial symbol table - -DESCRIPTION - - Given pointer to a DIE that is known to be for an enumeration, - extract the symbolic names of the enumeration members and add - partial symbols for them. -*/ - -static void -add_enum_psymbol (dip, objfile) - struct dieinfo *dip; - struct objfile *objfile; -{ - char *scan; - char *listend; - unsigned short blocksz; - int nbytes; - - if ((scan = dip -> at_element_list) != NULL) - { - if (dip -> short_element_list) - { - nbytes = attribute_size (AT_short_element_list); - } - else - { - nbytes = attribute_size (AT_element_list); - } - blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); - scan += nbytes; - listend = scan + blocksz; - while (scan < listend) - { - scan += TARGET_FT_LONG_SIZE (objfile); - add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, - &objfile -> static_psymbols, 0, 0, cu_language, - objfile); - scan += strlen (scan) + 1; - } - } -} - -/* - -LOCAL FUNCTION - - add_partial_symbol -- add symbol to partial symbol table - -DESCRIPTION - - Given a DIE, if it is one of the types that we want to - add to a partial symbol table, finish filling in the die info - and then add a partial symbol table entry for it. - -NOTES - - The caller must ensure that the DIE has a valid name attribute. -*/ - -static void -add_partial_symbol (dip, objfile) - struct dieinfo *dip; - struct objfile *objfile; -{ - switch (dip -> die_tag) - { - case TAG_global_subroutine: - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_BLOCK, - &objfile -> global_psymbols, - 0, dip -> at_low_pc, cu_language, objfile); - break; - case TAG_global_variable: - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_STATIC, - &objfile -> global_psymbols, - 0, 0, cu_language, objfile); - break; - case TAG_subroutine: - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_BLOCK, - &objfile -> static_psymbols, - 0, dip -> at_low_pc, cu_language, objfile); - break; - case TAG_local_variable: - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_STATIC, - &objfile -> static_psymbols, - 0, 0, cu_language, objfile); - break; - case TAG_typedef: - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_TYPEDEF, - &objfile -> static_psymbols, - 0, 0, cu_language, objfile); - break; - case TAG_class_type: - case TAG_structure_type: - case TAG_union_type: - case TAG_enumeration_type: - /* Do not add opaque aggregate definitions to the psymtab. */ - if (!dip -> has_at_byte_size) - break; - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - STRUCT_NAMESPACE, LOC_TYPEDEF, - &objfile -> static_psymbols, - 0, 0, cu_language, objfile); - if (cu_language == language_cplus) - { - /* For C++, these implicitly act as typedefs as well. */ - add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), - VAR_NAMESPACE, LOC_TYPEDEF, - &objfile -> static_psymbols, - 0, 0, cu_language, objfile); - } - break; - } -} - -/* - -LOCAL FUNCTION - - scan_partial_symbols -- scan DIE's within a single compilation unit - -DESCRIPTION - - Process the DIE's within a single compilation unit, looking for - interesting DIE's that contribute to the partial symbol table entry - for this compilation unit. - -NOTES - - There are some DIE's that may appear both at file scope and within - the scope of a function. We are only interested in the ones at file - scope, and the only way to tell them apart is to keep track of the - scope. For example, consider the test case: - - static int i; - main () { int j; } - - for which the relevant DWARF segment has the structure: - - 0x51: - 0x23 global subrtn sibling 0x9b - name main - fund_type FT_integer - low_pc 0x800004cc - high_pc 0x800004d4 - - 0x74: - 0x23 local var sibling 0x97 - name j - fund_type FT_integer - location OP_BASEREG 0xe - OP_CONST 0xfffffffc - OP_ADD - 0x97: - 0x4 - - 0x9b: - 0x1d local var sibling 0xb8 - name i - fund_type FT_integer - location OP_ADDR 0x800025dc - - 0xb8: - 0x4 - - We want to include the symbol 'i' in the partial symbol table, but - not the symbol 'j'. In essence, we want to skip all the dies within - the scope of a TAG_global_subroutine DIE. - - Don't attempt to add anonymous structures or unions since they have - no name. Anonymous enumerations however are processed, because we - want to extract their member names (the check for a tag name is - done later). - - Also, for variables and subroutines, check that this is the place - where the actual definition occurs, rather than just a reference - to an external. - */ - -static void -scan_partial_symbols (thisdie, enddie, objfile) - char *thisdie; - char *enddie; - struct objfile *objfile; -{ - char *nextdie; - char *temp; - struct dieinfo di; - - while (thisdie < enddie) - { - basicdieinfo (&di, thisdie, objfile); - if (di.die_length < SIZEOF_DIE_LENGTH) - { - break; - } - else - { - nextdie = thisdie + di.die_length; - /* To avoid getting complete die information for every die, we - only do it (below) for the cases we are interested in. */ - switch (di.die_tag) - { - case TAG_global_subroutine: - case TAG_subroutine: - completedieinfo (&di, objfile); - if (di.at_name && (di.has_at_low_pc || di.at_location)) - { - add_partial_symbol (&di, objfile); - /* If there is a sibling attribute, adjust the nextdie - pointer to skip the entire scope of the subroutine. - Apply some sanity checking to make sure we don't - overrun or underrun the range of remaining DIE's */ - if (di.at_sibling != 0) - { - temp = dbbase + di.at_sibling - dbroff; - if ((temp < thisdie) || (temp >= enddie)) - { - complain (&bad_die_ref, DIE_ID, DIE_NAME, - di.at_sibling); - } - else - { - nextdie = temp; - } - } - } - break; - case TAG_global_variable: - case TAG_local_variable: - completedieinfo (&di, objfile); - if (di.at_name && (di.has_at_low_pc || di.at_location)) - { - add_partial_symbol (&di, objfile); - } - break; - case TAG_typedef: - case TAG_class_type: - case TAG_structure_type: - case TAG_union_type: - completedieinfo (&di, objfile); - if (di.at_name) - { - add_partial_symbol (&di, objfile); - } - break; - case TAG_enumeration_type: - completedieinfo (&di, objfile); - if (di.at_name) - { - add_partial_symbol (&di, objfile); - } - add_enum_psymbol (&di, objfile); - break; - } - } - thisdie = nextdie; - } -} - -/* - -LOCAL FUNCTION - - scan_compilation_units -- build a psymtab entry for each compilation - -DESCRIPTION - - This is the top level dwarf parsing routine for building partial - symbol tables. - - It scans from the beginning of the DWARF table looking for the first - TAG_compile_unit DIE, and then follows the sibling chain to locate - each additional TAG_compile_unit DIE. - - For each TAG_compile_unit DIE it creates a partial symtab structure, - calls a subordinate routine to collect all the compilation unit's - global DIE's, file scope DIEs, typedef DIEs, etc, and then links the - new partial symtab structure into the partial symbol table. It also - records the appropriate information in the partial symbol table entry - to allow the chunk of DIE's and line number table for this compilation - unit to be located and re-read later, to generate a complete symbol - table entry for the compilation unit. - - Thus it effectively partitions up a chunk of DIE's for multiple - compilation units into smaller DIE chunks and line number tables, - and associates them with a partial symbol table entry. - -NOTES - - If any compilation unit has no line number table associated with - it for some reason (a missing at_stmt_list attribute, rather than - just one with a value of zero, which is valid) then we ensure that - the recorded file offset is zero so that the routine which later - reads line number table fragments knows that there is no fragment - to read. - -RETURNS - - Returns no value. - - */ - -static void -scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile) - char *thisdie; - char *enddie; - file_ptr dbfoff; - file_ptr lnoffset; - struct objfile *objfile; -{ - char *nextdie; - struct dieinfo di; - struct partial_symtab *pst; - int culength; - int curoff; - file_ptr curlnoffset; - - while (thisdie < enddie) - { - basicdieinfo (&di, thisdie, objfile); - if (di.die_length < SIZEOF_DIE_LENGTH) - { - break; - } - else if (di.die_tag != TAG_compile_unit) - { - nextdie = thisdie + di.die_length; - } - else - { - completedieinfo (&di, objfile); - set_cu_language (&di); - if (di.at_sibling != 0) - { - nextdie = dbbase + di.at_sibling - dbroff; - } - else - { - nextdie = thisdie + di.die_length; - } - curoff = thisdie - dbbase; - culength = nextdie - thisdie; - curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; - - /* First allocate a new partial symbol table structure */ - - pst = start_psymtab_common (objfile, base_section_offsets, - di.at_name, di.at_low_pc, - objfile -> global_psymbols.next, - objfile -> static_psymbols.next); - - pst -> texthigh = di.at_high_pc; - pst -> read_symtab_private = (char *) - obstack_alloc (&objfile -> psymbol_obstack, - sizeof (struct dwfinfo)); - DBFOFF (pst) = dbfoff; - DBROFF (pst) = curoff; - DBLENGTH (pst) = culength; - LNFOFF (pst) = curlnoffset; - pst -> read_symtab = dwarf_psymtab_to_symtab; - - /* Now look for partial symbols */ - - scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); - - pst -> n_global_syms = objfile -> global_psymbols.next - - (objfile -> global_psymbols.list + pst -> globals_offset); - pst -> n_static_syms = objfile -> static_psymbols.next - - (objfile -> static_psymbols.list + pst -> statics_offset); - sort_pst_symbols (pst); - /* If there is already a psymtab or symtab for a file of this name, - remove it. (If there is a symtab, more drastic things also - happen.) This happens in VxWorks. */ - free_named_symtabs (pst -> filename); - } - thisdie = nextdie; - } -} - -/* - -LOCAL FUNCTION - - new_symbol -- make a symbol table entry for a new symbol - -SYNOPSIS - - static struct symbol *new_symbol (struct dieinfo *dip, - struct objfile *objfile) - -DESCRIPTION - - Given a pointer to a DWARF information entry, figure out if we need - to make a symbol table entry for it, and if so, create a new entry - and return a pointer to it. - */ - -static struct symbol * -new_symbol (dip, objfile) - struct dieinfo *dip; - struct objfile *objfile; -{ - struct symbol *sym = NULL; - - if (dip -> at_name != NULL) - { - sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, - sizeof (struct symbol)); - OBJSTAT (objfile, n_syms++); - memset (sym, 0, sizeof (struct symbol)); - SYMBOL_NAME (sym) = create_name (dip -> at_name, - &objfile->symbol_obstack); - /* default assumptions */ - SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; - SYMBOL_CLASS (sym) = LOC_STATIC; - SYMBOL_TYPE (sym) = decode_die_type (dip); - - /* If this symbol is from a C++ compilation, then attempt to cache the - demangled form for future reference. This is a typical time versus - space tradeoff, that was decided in favor of time because it sped up - C++ symbol lookups by a factor of about 20. */ - - SYMBOL_LANGUAGE (sym) = cu_language; - SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack); - switch (dip -> die_tag) - { - case TAG_label: - SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; - SYMBOL_CLASS (sym) = LOC_LABEL; - break; - case TAG_global_subroutine: - case TAG_subroutine: - SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; - SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); - if (dip -> at_prototyped) - TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; - SYMBOL_CLASS (sym) = LOC_BLOCK; - if (dip -> die_tag == TAG_global_subroutine) - { - add_symbol_to_list (sym, &global_symbols); - } - else - { - add_symbol_to_list (sym, list_in_scope); - } - break; - case TAG_global_variable: - if (dip -> at_location != NULL) - { - SYMBOL_VALUE_ADDRESS (sym) = locval (dip); - add_symbol_to_list (sym, &global_symbols); - SYMBOL_CLASS (sym) = LOC_STATIC; - SYMBOL_VALUE (sym) += baseaddr; - } - break; - case TAG_local_variable: - if (dip -> at_location != NULL) - { - int loc = locval (dip); - if (dip -> optimized_out) - { - SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; - } - else if (dip -> isreg) - { - SYMBOL_CLASS (sym) = LOC_REGISTER; - } - else if (dip -> offreg) - { - SYMBOL_CLASS (sym) = LOC_BASEREG; - SYMBOL_BASEREG (sym) = dip -> basereg; - } - else - { - SYMBOL_CLASS (sym) = LOC_STATIC; - SYMBOL_VALUE (sym) += baseaddr; - } - if (SYMBOL_CLASS (sym) == LOC_STATIC) - { - /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, - which may store to a bigger location than SYMBOL_VALUE. */ - SYMBOL_VALUE_ADDRESS (sym) = loc; - } - else - { - SYMBOL_VALUE (sym) = loc; - } - add_symbol_to_list (sym, list_in_scope); - } - break; - case TAG_formal_parameter: - if (dip -> at_location != NULL) - { - SYMBOL_VALUE (sym) = locval (dip); - } - add_symbol_to_list (sym, list_in_scope); - if (dip -> isreg) - { - SYMBOL_CLASS (sym) = LOC_REGPARM; - } - else if (dip -> offreg) - { - SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; - SYMBOL_BASEREG (sym) = dip -> basereg; - } - else - { - SYMBOL_CLASS (sym) = LOC_ARG; - } - break; - case TAG_unspecified_parameters: - /* From varargs functions; gdb doesn't seem to have any interest in - this information, so just ignore it for now. (FIXME?) */ - break; - case TAG_class_type: - case TAG_structure_type: - case TAG_union_type: - case TAG_enumeration_type: - SYMBOL_CLASS (sym) = LOC_TYPEDEF; - SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; - add_symbol_to_list (sym, list_in_scope); - break; - case TAG_typedef: - SYMBOL_CLASS (sym) = LOC_TYPEDEF; - SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; - add_symbol_to_list (sym, list_in_scope); - break; - default: - /* Not a tag we recognize. Hopefully we aren't processing trash - data, but since we must specifically ignore things we don't - recognize, there is nothing else we should do at this point. */ - break; - } - } - return (sym); -} - -/* - -LOCAL FUNCTION - - synthesize_typedef -- make a symbol table entry for a "fake" typedef - -SYNOPSIS - - static void synthesize_typedef (struct dieinfo *dip, - struct objfile *objfile, - struct type *type); - -DESCRIPTION - - Given a pointer to a DWARF information entry, synthesize a typedef - for the name in the DIE, using the specified type. - - This is used for C++ class, structs, unions, and enumerations to - set up the tag name as a type. - - */ - -static void -synthesize_typedef (dip, objfile, type) - struct dieinfo *dip; - struct objfile *objfile; - struct type *type; -{ - struct symbol *sym = NULL; - - if (dip -> at_name != NULL) - { - sym = (struct symbol *) - obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol)); - OBJSTAT (objfile, n_syms++); - memset (sym, 0, sizeof (struct symbol)); - SYMBOL_NAME (sym) = create_name (dip -> at_name, - &objfile->symbol_obstack); - SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); - SYMBOL_TYPE (sym) = type; - SYMBOL_CLASS (sym) = LOC_TYPEDEF; - SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; - add_symbol_to_list (sym, list_in_scope); - } -} - -/* - -LOCAL FUNCTION - - decode_mod_fund_type -- decode a modified fundamental type - -SYNOPSIS - - static struct type *decode_mod_fund_type (char *typedata) - -DESCRIPTION - - Decode a block of data containing a modified fundamental - type specification. TYPEDATA is a pointer to the block, - which starts with a length containing the size of the rest - of the block. At the end of the block is a fundmental type - code value that gives the fundamental type. Everything - in between are type modifiers. - - We simply compute the number of modifiers and call the general - function decode_modified_type to do the actual work. -*/ - -static struct type * -decode_mod_fund_type (typedata) - char *typedata; -{ - struct type *typep = NULL; - unsigned short modcount; - int nbytes; - - /* Get the total size of the block, exclusive of the size itself */ - - nbytes = attribute_size (AT_mod_fund_type); - modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); - typedata += nbytes; - - /* Deduct the size of the fundamental type bytes at the end of the block. */ - - modcount -= attribute_size (AT_fund_type); - - /* Now do the actual decoding */ - - typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); - return (typep); -} - -/* - -LOCAL FUNCTION - - decode_mod_u_d_type -- decode a modified user defined type - -SYNOPSIS - - static struct type *decode_mod_u_d_type (char *typedata) - -DESCRIPTION - - Decode a block of data containing a modified user defined - type specification. TYPEDATA is a pointer to the block, - which consists of a two byte length, containing the size - of the rest of the block. At the end of the block is a - four byte value that gives a reference to a user defined type. - Everything in between are type modifiers. - - We simply compute the number of modifiers and call the general - function decode_modified_type to do the actual work. -*/ - -static struct type * -decode_mod_u_d_type (typedata) - char *typedata; -{ - struct type *typep = NULL; - unsigned short modcount; - int nbytes; - - /* Get the total size of the block, exclusive of the size itself */ - - nbytes = attribute_size (AT_mod_u_d_type); - modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); - typedata += nbytes; - - /* Deduct the size of the reference type bytes at the end of the block. */ - - modcount -= attribute_size (AT_user_def_type); - - /* Now do the actual decoding */ - - typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); - return (typep); -} - -/* - -LOCAL FUNCTION - - decode_modified_type -- decode modified user or fundamental type - -SYNOPSIS - - static struct type *decode_modified_type (char *modifiers, - unsigned short modcount, int mtype) - -DESCRIPTION - - Decode a modified type, either a modified fundamental type or - a modified user defined type. MODIFIERS is a pointer to the - block of bytes that define MODCOUNT modifiers. Immediately - following the last modifier is a short containing the fundamental - type or a long containing the reference to the user defined - type. Which one is determined by MTYPE, which is either - AT_mod_fund_type or AT_mod_u_d_type to indicate what modified - type we are generating. - - We call ourself recursively to generate each modified type,` - until MODCOUNT reaches zero, at which point we have consumed - all the modifiers and generate either the fundamental type or - user defined type. When the recursion unwinds, each modifier - is applied in turn to generate the full modified type. - -NOTES - - If we find a modifier that we don't recognize, and it is not one - of those reserved for application specific use, then we issue a - warning and simply ignore the modifier. - -BUGS - - We currently ignore MOD_const and MOD_volatile. (FIXME) - - */ - -static struct type * -decode_modified_type (modifiers, modcount, mtype) - char *modifiers; - unsigned int modcount; - int mtype; -{ - struct type *typep = NULL; - unsigned short fundtype; - DIE_REF die_ref; - char modifier; - int nbytes; - - if (modcount == 0) - { - switch (mtype) - { - case AT_mod_fund_type: - nbytes = attribute_size (AT_fund_type); - fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, - current_objfile); - typep = decode_fund_type (fundtype); - break; - case AT_mod_u_d_type: - nbytes = attribute_size (AT_user_def_type); - die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, - current_objfile); - if ((typep = lookup_utype (die_ref)) == NULL) - { - typep = alloc_utype (die_ref, NULL); - } - break; - default: - complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); - typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - break; - } - } - else - { - modifier = *modifiers++; - typep = decode_modified_type (modifiers, --modcount, mtype); - switch (modifier) - { - case MOD_pointer_to: - typep = lookup_pointer_type (typep); - break; - case MOD_reference_to: - typep = lookup_reference_type (typep); - break; - case MOD_const: - complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ - break; - case MOD_volatile: - complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ - break; - default: - if (!(MOD_lo_user <= (unsigned char) modifier - && (unsigned char) modifier <= MOD_hi_user)) - { - complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); - } - break; - } - } - return (typep); -} - -/* - -LOCAL FUNCTION - - decode_fund_type -- translate basic DWARF type to gdb base type - -DESCRIPTION - - Given an integer that is one of the fundamental DWARF types, - translate it to one of the basic internal gdb types and return - a pointer to the appropriate gdb type (a "struct type *"). - -NOTES - - For robustness, if we are asked to translate a fundamental - type that we are unprepared to deal with, we return int so - callers can always depend upon a valid type being returned, - and so gdb may at least do something reasonable by default. - If the type is not in the range of those types defined as - application specific types, we also issue a warning. -*/ - -static struct type * -decode_fund_type (fundtype) - unsigned int fundtype; -{ - struct type *typep = NULL; - - switch (fundtype) - { - - case FT_void: - typep = dwarf_fundamental_type (current_objfile, FT_VOID); - break; - - case FT_boolean: /* Was FT_set in AT&T version */ - typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); - break; - - case FT_pointer: /* (void *) */ - typep = dwarf_fundamental_type (current_objfile, FT_VOID); - typep = lookup_pointer_type (typep); - break; - - case FT_char: - typep = dwarf_fundamental_type (current_objfile, FT_CHAR); - break; - - case FT_signed_char: - typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); - break; - - case FT_unsigned_char: - typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); - break; - - case FT_short: - typep = dwarf_fundamental_type (current_objfile, FT_SHORT); - break; - - case FT_signed_short: - typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); - break; - - case FT_unsigned_short: - typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); - break; - - case FT_integer: - typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - break; - - case FT_signed_integer: - typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); - break; - - case FT_unsigned_integer: - typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); - break; - - case FT_long: - typep = dwarf_fundamental_type (current_objfile, FT_LONG); - break; - - case FT_signed_long: - typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); - break; - - case FT_unsigned_long: - typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); - break; - - case FT_long_long: - typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); - break; - - case FT_signed_long_long: - typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); - break; - - case FT_unsigned_long_long: - typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); - break; - - case FT_float: - typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); - break; - - case FT_dbl_prec_float: - typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); - break; - - case FT_ext_prec_float: - typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); - break; - - case FT_complex: - typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); - break; - - case FT_dbl_prec_complex: - typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); - break; - - case FT_ext_prec_complex: - typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); - break; - - } - - if (typep == NULL) - { - typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); - if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) - { - complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); - } - } - - return (typep); -} - -/* - -LOCAL FUNCTION - - create_name -- allocate a fresh copy of a string on an obstack - -DESCRIPTION - - Given a pointer to a string and a pointer to an obstack, allocates - a fresh copy of the string on the specified obstack. - -*/ - -static char * -create_name (name, obstackp) - char *name; - struct obstack *obstackp; -{ - int length; - char *newname; - - length = strlen (name) + 1; - newname = (char *) obstack_alloc (obstackp, length); - strcpy (newname, name); - return (newname); -} - -/* - -LOCAL FUNCTION - - basicdieinfo -- extract the minimal die info from raw die data - -SYNOPSIS - - void basicdieinfo (char *diep, struct dieinfo *dip, - struct objfile *objfile) - -DESCRIPTION - - Given a pointer to raw DIE data, and a pointer to an instance of a - die info structure, this function extracts the basic information - from the DIE data required to continue processing this DIE, along - with some bookkeeping information about the DIE. - - The information we absolutely must have includes the DIE tag, - and the DIE length. If we need the sibling reference, then we - will have to call completedieinfo() to process all the remaining - DIE information. - - Note that since there is no guarantee that the data is properly - aligned in memory for the type of access required (indirection - through anything other than a char pointer), and there is no - guarantee that it is in the same byte order as the gdb host, - we call a function which deals with both alignment and byte - swapping issues. Possibly inefficient, but quite portable. - - We also take care of some other basic things at this point, such - as ensuring that the instance of the die info structure starts - out completely zero'd and that curdie is initialized for use - in error reporting if we have a problem with the current die. - -NOTES - - All DIE's must have at least a valid length, thus the minimum - DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the - DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they - are forced to be TAG_padding DIES. - - Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying - that if a padding DIE is used for alignment and the amount needed is - less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big - enough to align to the next alignment boundry. - - We do some basic sanity checking here, such as verifying that the - length of the die would not cause it to overrun the recorded end of - the buffer holding the DIE info. If we find a DIE that is either - too small or too large, we force it's length to zero which should - cause the caller to take appropriate action. - */ - -static void -basicdieinfo (dip, diep, objfile) - struct dieinfo *dip; - char *diep; - struct objfile *objfile; -{ - curdie = dip; - memset (dip, 0, sizeof (struct dieinfo)); - dip -> die = diep; - dip -> die_ref = dbroff + (diep - dbbase); - dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, - objfile); - if ((dip -> die_length < SIZEOF_DIE_LENGTH) || - ((diep + dip -> die_length) > (dbbase + dbsize))) - { - complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length); - dip -> die_length = 0; - } - else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) - { - dip -> die_tag = TAG_padding; - } - else - { - diep += SIZEOF_DIE_LENGTH; - dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, - objfile); - } -} - -/* - -LOCAL FUNCTION - - completedieinfo -- finish reading the information for a given DIE - -SYNOPSIS - - void completedieinfo (struct dieinfo *dip, struct objfile *objfile) - -DESCRIPTION - - Given a pointer to an already partially initialized die info structure, - scan the raw DIE data and finish filling in the die info structure - from the various attributes found. - - Note that since there is no guarantee that the data is properly - aligned in memory for the type of access required (indirection - through anything other than a char pointer), and there is no - guarantee that it is in the same byte order as the gdb host, - we call a function which deals with both alignment and byte - swapping issues. Possibly inefficient, but quite portable. - -NOTES - - Each time we are called, we increment the diecount variable, which - keeps an approximate count of the number of dies processed for - each compilation unit. This information is presented to the user - if the info_verbose flag is set. - - */ - -static void -completedieinfo (dip, objfile) - struct dieinfo *dip; - struct objfile *objfile; -{ - char *diep; /* Current pointer into raw DIE data */ - char *end; /* Terminate DIE scan here */ - unsigned short attr; /* Current attribute being scanned */ - unsigned short form; /* Form of the attribute */ - int nbytes; /* Size of next field to read */ - - diecount++; - diep = dip -> die; - end = diep + dip -> die_length; - diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; - while (diep < end) - { - attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); - diep += SIZEOF_ATTRIBUTE; - if ((nbytes = attribute_size (attr)) == -1) - { - complain (&unknown_attribute_length, DIE_ID, DIE_NAME); - diep = end; - continue; - } - switch (attr) - { - case AT_fund_type: - dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_ordering: - dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_bit_offset: - dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_sibling: - dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_stmt_list: - dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - dip -> has_at_stmt_list = 1; - break; - case AT_low_pc: - dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - dip -> at_low_pc += baseaddr; - dip -> has_at_low_pc = 1; - break; - case AT_high_pc: - dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - dip -> at_high_pc += baseaddr; - break; - case AT_language: - dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_user_def_type: - dip -> at_user_def_type = target_to_host (diep, nbytes, - GET_UNSIGNED, objfile); - break; - case AT_byte_size: - dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - dip -> has_at_byte_size = 1; - break; - case AT_bit_size: - dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_member: - dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_discr: - dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_location: - dip -> at_location = diep; - break; - case AT_mod_fund_type: - dip -> at_mod_fund_type = diep; - break; - case AT_subscr_data: - dip -> at_subscr_data = diep; - break; - case AT_mod_u_d_type: - dip -> at_mod_u_d_type = diep; - break; - case AT_element_list: - dip -> at_element_list = diep; - dip -> short_element_list = 0; - break; - case AT_short_element_list: - dip -> at_element_list = diep; - dip -> short_element_list = 1; - break; - case AT_discr_value: - dip -> at_discr_value = diep; - break; - case AT_string_length: - dip -> at_string_length = diep; - break; - case AT_name: - dip -> at_name = diep; - break; - case AT_comp_dir: - /* For now, ignore any "hostname:" portion, since gdb doesn't - know how to deal with it. (FIXME). */ - dip -> at_comp_dir = strrchr (diep, ':'); - if (dip -> at_comp_dir != NULL) - { - dip -> at_comp_dir++; - } - else - { - dip -> at_comp_dir = diep; - } - break; - case AT_producer: - dip -> at_producer = diep; - break; - case AT_start_scope: - dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_stride_size: - dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_src_info: - dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, - objfile); - break; - case AT_prototyped: - dip -> at_prototyped = diep; - break; - default: - /* Found an attribute that we are unprepared to handle. However - it is specifically one of the design goals of DWARF that - consumers should ignore unknown attributes. As long as the - form is one that we recognize (so we know how to skip it), - we can just ignore the unknown attribute. */ - break; - } - form = FORM_FROM_ATTR (attr); - switch (form) - { - case FORM_DATA2: - diep += 2; - break; - case FORM_DATA4: - case FORM_REF: - diep += 4; - break; - case FORM_DATA8: - diep += 8; - break; - case FORM_ADDR: - diep += TARGET_FT_POINTER_SIZE (objfile); - break; - case FORM_BLOCK2: - diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); - break; - case FORM_BLOCK4: - diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); - break; - case FORM_STRING: - diep += strlen (diep) + 1; - break; - default: - complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); - diep = end; - break; - } - } -} - -/* - -LOCAL FUNCTION - - target_to_host -- swap in target data to host - -SYNOPSIS - - target_to_host (char *from, int nbytes, int signextend, - struct objfile *objfile) - -DESCRIPTION - - Given pointer to data in target format in FROM, a byte count for - the size of the data in NBYTES, a flag indicating whether or not - the data is signed in SIGNEXTEND, and a pointer to the current - objfile in OBJFILE, convert the data to host format and return - the converted value. - -NOTES - - FIXME: If we read data that is known to be signed, and expect to - use it as signed data, then we need to explicitly sign extend the - result until the bfd library is able to do this for us. - - FIXME: Would a 32 bit target ever need an 8 byte result? - - */ - -static CORE_ADDR -target_to_host (from, nbytes, signextend, objfile) - char *from; - int nbytes; - int signextend; /* FIXME: Unused */ - struct objfile *objfile; -{ - CORE_ADDR rtnval; - - switch (nbytes) - { - case 8: - rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from); - break; - case 4: - rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from); - break; - case 2: - rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from); - break; - case 1: - rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from); - break; - default: - complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); - rtnval = 0; - break; - } - return (rtnval); -} - -/* - -LOCAL FUNCTION - - attribute_size -- compute size of data for a DWARF attribute - -SYNOPSIS - - static int attribute_size (unsigned int attr) - -DESCRIPTION - - Given a DWARF attribute in ATTR, compute the size of the first - piece of data associated with this attribute and return that - size. - - Returns -1 for unrecognized attributes. - - */ - -static int -attribute_size (attr) - unsigned int attr; -{ - int nbytes; /* Size of next data for this attribute */ - unsigned short form; /* Form of the attribute */ - - form = FORM_FROM_ATTR (attr); - switch (form) - { - case FORM_STRING: /* A variable length field is next */ - nbytes = 0; - break; - case FORM_DATA2: /* Next 2 byte field is the data itself */ - case FORM_BLOCK2: /* Next 2 byte field is a block length */ - nbytes = 2; - break; - case FORM_DATA4: /* Next 4 byte field is the data itself */ - case FORM_BLOCK4: /* Next 4 byte field is a block length */ - case FORM_REF: /* Next 4 byte field is a DIE offset */ - nbytes = 4; - break; - case FORM_DATA8: /* Next 8 byte field is the data itself */ - nbytes = 8; - break; - case FORM_ADDR: /* Next field size is target sizeof(void *) */ - nbytes = TARGET_FT_POINTER_SIZE (objfile); - break; - default: - complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); - nbytes = -1; - break; - } - return (nbytes); -} |