aboutsummaryrefslogtreecommitdiff
path: root/gdb/config/sparc/tm-sparc.h
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
commit071ea11e85eb9d529cc5eb3d35f6247466a21b99 (patch)
tree5deda65b8d7b04d1f4cbc534c3206d328e1267ec /gdb/config/sparc/tm-sparc.h
parent1730ec6b1848f0f32154277f788fb29f88d8475b (diff)
downloadgdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.zip
gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.gz
gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.bz2
Initial creation of sourceware repository
Diffstat (limited to 'gdb/config/sparc/tm-sparc.h')
-rw-r--r--gdb/config/sparc/tm-sparc.h584
1 files changed, 0 insertions, 584 deletions
diff --git a/gdb/config/sparc/tm-sparc.h b/gdb/config/sparc/tm-sparc.h
deleted file mode 100644
index ecbe9e2..0000000
--- a/gdb/config/sparc/tm-sparc.h
+++ /dev/null
@@ -1,584 +0,0 @@
-/* Target machine sub-parameters for SPARC, for GDB, the GNU debugger.
- This is included by other tm-*.h files to define SPARC cpu-related info.
- Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
- Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@mcc.com)
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#ifdef __STDC__
-struct frame_info;
-struct type;
-struct value;
-#endif
-
-#define TARGET_BYTE_ORDER BIG_ENDIAN
-
-/* Floating point is IEEE compatible. */
-#define IEEE_FLOAT
-
-/* If an argument is declared "register", Sun cc will keep it in a register,
- never saving it onto the stack. So we better not believe the "p" symbol
- descriptor stab. */
-
-#define USE_REGISTER_NOT_ARG
-
-/* When passing a structure to a function, Sun cc passes the address
- not the structure itself. It (under SunOS4) creates two symbols,
- which we need to combine to a LOC_REGPARM. Gcc version two (as of
- 1.92) behaves like sun cc. REG_STRUCT_HAS_ADDR is smart enough to
- distinguish between Sun cc, gcc version 1 and gcc version 2. */
-
-#define REG_STRUCT_HAS_ADDR(gcc_p,type) (gcc_p != 1)
-
-/* Sun /bin/cc gets this right as of SunOS 4.1.x. We need to define
- BELIEVE_PCC_PROMOTION to get this right now that the code which
- detects gcc2_compiled. is broken. This loses for SunOS 4.0.x and
- earlier. */
-
-#define BELIEVE_PCC_PROMOTION 1
-
-/* For acc, there's no need to correct LBRAC entries by guessing how
- they should work. In fact, this is harmful because the LBRAC
- entries now all appear at the end of the function, not intermixed
- with the SLINE entries. n_opt_found detects acc for Solaris binaries;
- function_stab_type detects acc for SunOS4 binaries.
-
- For binary from SunOS4 /bin/cc, need to correct LBRAC's.
-
- For gcc, like acc, don't correct. */
-
-#define SUN_FIXED_LBRAC_BUG \
- (n_opt_found \
- || function_stab_type == N_STSYM \
- || function_stab_type == N_GSYM \
- || processing_gcc_compilation)
-
-/* Do variables in the debug stabs occur after the N_LBRAC or before it?
- acc: after, gcc: before, SunOS4 /bin/cc: before. */
-
-#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) \
- (!(gcc_p) \
- && (n_opt_found \
- || function_stab_type == N_STSYM \
- || function_stab_type == N_GSYM))
-
-/* Offset from address of function to start of its code.
- Zero on most machines. */
-
-#define FUNCTION_START_OFFSET 0
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances
- the PC past some of the prologue, but stops as soon as it
- knows that the function has a frame. Its result is equal
- to its input PC if the function is frameless, unequal otherwise. */
-
-#define SKIP_PROLOGUE(pc) \
- { pc = skip_prologue (pc, 0); }
-#define SKIP_PROLOGUE_FRAMELESS_P(pc) \
- { pc = skip_prologue (pc, 1); }
-extern CORE_ADDR skip_prologue PARAMS ((CORE_ADDR, int));
-
-/* Immediately after a function call, return the saved pc.
- Can't go through the frames for this because on some machines
- the new frame is not set up until the new function executes
- some instructions. */
-
-/* On the Sun 4 under SunOS, the compile will leave a fake insn which
- encodes the structure size being returned. If we detect such
- a fake insn, step past it. */
-
-#define PC_ADJUST(pc) sparc_pc_adjust(pc)
-extern CORE_ADDR sparc_pc_adjust PARAMS ((CORE_ADDR));
-
-#define SAVED_PC_AFTER_CALL(frame) PC_ADJUST (read_register (RP_REGNUM))
-
-/* Stack grows downward. */
-
-#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
-
-/* Stack must be aligned on 64-bit boundaries when synthesizing
- function calls. */
-
-#define STACK_ALIGN(ADDR) (((ADDR) + 7) & -8)
-
-/* Sequence of bytes for breakpoint instruction (ta 1). */
-
-#define BREAKPOINT {0x91, 0xd0, 0x20, 0x01}
-
-/* Amount PC must be decremented by after a breakpoint.
- This is often the number of bytes in BREAKPOINT
- but not always. */
-
-#define DECR_PC_AFTER_BREAK 0
-
-/* Say how long (ordinary) registers are. This is a piece of bogosity
- used in push_word and a few other places; REGISTER_RAW_SIZE is the
- real way to know how big a register is. */
-
-#define REGISTER_SIZE 4
-
-/* Number of machine registers */
-
-#define NUM_REGS 72
-
-/* Initializer for an array of names of registers.
- There should be NUM_REGS strings in this initializer. */
-
-#define REGISTER_NAMES \
-{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
- "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
- "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
- "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
- \
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
- \
- "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" }
-
-/* Register numbers of various important registers.
- Note that some of these values are "real" register numbers,
- and correspond to the general registers of the machine,
- and some are "phony" register numbers which are too large
- to be actual register numbers as far as the user is concerned
- but do serve to get the desired values when passed to read_register. */
-
-#define G0_REGNUM 0 /* %g0 */
-#define G1_REGNUM 1 /* %g1 */
-#define O0_REGNUM 8 /* %o0 */
-#define SP_REGNUM 14 /* Contains address of top of stack, \
- which is also the bottom of the frame. */
-#define RP_REGNUM 15 /* Contains return address value, *before* \
- any windows get switched. */
-#define O7_REGNUM 15 /* Last local reg not saved on stack frame */
-#define L0_REGNUM 16 /* First local reg that's saved on stack frame
- rather than in machine registers */
-#define I0_REGNUM 24 /* %i0 */
-#define FP_REGNUM 30 /* Contains address of executing stack frame */
-#define I7_REGNUM 31 /* Last local reg saved on stack frame */
-#define FP0_REGNUM 32 /* Floating point register 0 */
-#define Y_REGNUM 64 /* Temp register for multiplication, etc. */
-#define PS_REGNUM 65 /* Contains processor status */
-#define PS_FLAG_CARRY 0x100000 /* Carry bit in PS */
-#define WIM_REGNUM 66 /* Window Invalid Mask (not really supported) */
-#define TBR_REGNUM 67 /* Trap Base Register (not really supported) */
-#define PC_REGNUM 68 /* Contains program counter */
-#define NPC_REGNUM 69 /* Contains next PC */
-#define FPS_REGNUM 70 /* Floating point status register */
-#define CPS_REGNUM 71 /* Coprocessor status register */
-
-/* Total amount of space needed to store our copies of the machine's
- register state, the array `registers'. On the sparc, `registers'
- contains the ins and locals, even though they are saved on the
- stack rather than with the other registers, and this causes hair
- and confusion in places like pop_frame. It might be
- better to remove the ins and locals from `registers', make sure
- that get_saved_register can get them from the stack (even in the
- innermost frame), and make this the way to access them. For the
- frame pointer we would do that via TARGET_READ_FP. On the other hand,
- that is likely to be confusing or worse for flat frames. */
-
-#define REGISTER_BYTES (32*4+32*4+8*4)
-
-/* Index within `registers' of the first byte of the space for
- register N. */
-/* ?? */
-#define REGISTER_BYTE(N) ((N)*4)
-
-/* We need to override GET_SAVED_REGISTER so that we can deal with the way
- outs change into ins in different frames. HAVE_REGISTER_WINDOWS can't
- deal with this case and also handle flat frames at the same time. */
-
-#define GET_SAVED_REGISTER 1
-
-/* Number of bytes of storage in the actual machine representation
- for register N. */
-
-/* On the SPARC, all regs are 4 bytes. */
-
-#define REGISTER_RAW_SIZE(N) (4)
-
-/* Number of bytes of storage in the program's representation
- for register N. */
-
-/* On the SPARC, all regs are 4 bytes. */
-
-#define REGISTER_VIRTUAL_SIZE(N) (4)
-
-/* Largest value REGISTER_RAW_SIZE can have. */
-
-#define MAX_REGISTER_RAW_SIZE 8
-
-/* Largest value REGISTER_VIRTUAL_SIZE can have. */
-
-#define MAX_REGISTER_VIRTUAL_SIZE 8
-
-/* Return the GDB type object for the "standard" data type
- of data in register N. */
-
-#define REGISTER_VIRTUAL_TYPE(N) \
- ((N) < 32 ? builtin_type_int : (N) < 64 ? builtin_type_float : \
- builtin_type_int)
-
-/* Writing to %g0 is a noop (not an error or exception or anything like
- that, however). */
-
-#define CANNOT_STORE_REGISTER(regno) ((regno) == G0_REGNUM)
-
-/* Store the address of the place in which to copy the structure the
- subroutine will return. This is called from call_function_by_hand.
- The ultimate mystery is, tho, what is the value "16"? */
-
-#define STORE_STRUCT_RETURN(ADDR, SP) \
- { char val[4]; \
- store_unsigned_integer (val, 4, (ADDR)); \
- write_memory ((SP)+(16*4), val, 4); }
-
-/* Extract from an array REGBUF containing the (raw) register state
- a function return value of type TYPE, and copy that, in virtual format,
- into VALBUF. */
-
-#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
- sparc_extract_return_value(TYPE, REGBUF, VALBUF)
-extern void
-sparc_extract_return_value PARAMS ((struct type *, char [], char *));
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format. */
-#define STORE_RETURN_VALUE(TYPE,VALBUF) \
- sparc_store_return_value(TYPE, VALBUF)
-extern void sparc_store_return_value PARAMS ((struct type *, char *));
-
-/* Extract from an array REGBUF containing the (raw) register state
- the address in which a function should return its structure value,
- as a CORE_ADDR (or an expression that can be used as one). */
-
-#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
- (sparc_extract_struct_value_address (REGBUF))
-
-extern CORE_ADDR
-sparc_extract_struct_value_address PARAMS ((char [REGISTER_BYTES]));
-
-
-/* Describe the pointer in each stack frame to the previous stack frame
- (its caller). */
-
-/* FRAME_CHAIN takes a frame's nominal address
- and produces the frame's chain-pointer. */
-
-/* In the case of the Sun 4, the frame-chain's nominal address
- is held in the frame pointer register.
-
- On the Sun4, the frame (in %fp) is %sp for the previous frame.
- From the previous frame's %sp, we can find the previous frame's
- %fp: it is in the save area just above the previous frame's %sp.
-
- If we are setting up an arbitrary frame, we'll need to know where
- it ends. Hence the following. This part of the frame cache
- structure should be checked before it is assumed that this frame's
- bottom is in the stack pointer.
-
- If there isn't a frame below this one, the bottom of this frame is
- in the stack pointer.
-
- If there is a frame below this one, and the frame pointers are
- identical, it's a leaf frame and the bottoms are the same also.
-
- Otherwise the bottom of this frame is the top of the next frame.
-
- The bottom field is misnamed, since it might imply that memory from
- bottom to frame contains this frame. That need not be true if
- stack frames are allocated in different segments (e.g. some on a
- stack, some on a heap in the data segment).
-
- GCC 2.6 and later can generate ``flat register window'' code that
- makes frames by explicitly saving those registers that need to be
- saved. %i7 is used as the frame pointer, and the frame is laid out so
- that flat and non-flat calls can be intermixed freely within a
- program. Unfortunately for GDB, this means it must detect and record
- the flatness of frames.
-
- Since the prologue in a flat frame also tells us where fp and pc
- have been stashed (the frame is of variable size, so their location
- is not fixed), it's convenient to record them in the frame info. */
-
-#define EXTRA_FRAME_INFO \
- CORE_ADDR bottom; \
- int in_prologue; \
- int flat; \
- /* Following fields only relevant for flat frames. */ \
- CORE_ADDR pc_addr; \
- CORE_ADDR fp_addr; \
- /* Add this to ->frame to get the value of the stack pointer at the */ \
- /* time of the register saves. */ \
- int sp_offset;
-
-#define FRAME_INIT_SAVED_REGS(fp) /*no-op*/
-
-#define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
- sparc_init_extra_frame_info (fromleaf, fci)
-extern void sparc_init_extra_frame_info PARAMS((int, struct frame_info *));
-
-#define PRINT_EXTRA_FRAME_INFO(fi) \
- { \
- if ((fi) && (fi)->flat) \
- printf_filtered (" flat, pc saved at 0x%x, fp saved at 0x%x\n", \
- (fi)->pc_addr, (fi)->fp_addr); \
- }
-
-#define FRAME_CHAIN(thisframe) (sparc_frame_chain (thisframe))
-extern CORE_ADDR sparc_frame_chain PARAMS ((struct frame_info *));
-
-/* INIT_EXTRA_FRAME_INFO needs the PC to detect flat frames. */
-
-#define INIT_FRAME_PC(fromleaf, prev) /* nothing */
-#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
- (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
- (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
-
-/* Define other aspects of the stack frame. */
-
-/* A macro that tells us whether the function invocation represented
- by FI does not have a frame on the stack associated with it. If it
- does not, FRAMELESS is set to 1, else 0. */
-#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
- (FRAMELESS) = frameless_look_for_prologue(FI)
-
-/* The location of I0 w.r.t SP. This is actually dependent on how the system's
- window overflow/underflow routines are written. Most vendors save the L regs
- followed by the I regs (at the higher address). Some vendors get it wrong.
- */
-
-#define FRAME_SAVED_L0 0
-#define FRAME_SAVED_I0 (8 * REGISTER_RAW_SIZE (L0_REGNUM))
-
-/* Where is the PC for a specific frame */
-
-#define FRAME_SAVED_PC(FRAME) sparc_frame_saved_pc (FRAME)
-extern CORE_ADDR sparc_frame_saved_pc PARAMS ((struct frame_info *));
-
-/* If the argument is on the stack, it will be here. */
-#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
-
-#define FRAME_STRUCT_ARGS_ADDRESS(fi) ((fi)->frame)
-
-#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
-
-/* Set VAL to the number of args passed to frame described by FI.
- Can set VAL to -1, meaning no way to tell. */
-
-/* We can't tell how many args there are
- now that the C compiler delays popping them. */
-#define FRAME_NUM_ARGS(val,fi) (val = -1)
-
-/* Return number of bytes at start of arglist that are not really args. */
-
-#define FRAME_ARGS_SKIP 68
-
-/* Things needed for making the inferior call functions. */
-/*
- * First of all, let me give my opinion of what the DUMMY_FRAME
- * actually looks like.
- *
- * | |
- * | |
- * + - - - - - - - - - - - - - - - - +<-- fp (level 0)
- * | |
- * | |
- * | |
- * | |
- * | Frame of innermost program |
- * | function |
- * | |
- * | |
- * | |
- * | |
- * | |
- * |---------------------------------|<-- sp (level 0), fp (c)
- * | |
- * DUMMY | fp0-31 |
- * | |
- * | ------ |<-- fp - 0x80
- * FRAME | g0-7 |<-- fp - 0xa0
- * | i0-7 |<-- fp - 0xc0
- * | other |<-- fp - 0xe0
- * | ? |
- * | ? |
- * |---------------------------------|<-- sp' = fp - 0x140
- * | |
- * xcution start | |
- * sp' + 0x94 -->| CALL_DUMMY (x code) |
- * | |
- * | |
- * |---------------------------------|<-- sp'' = fp - 0x200
- * | align sp to 8 byte boundary |
- * | ==> args to fn <== |
- * Room for | |
- * i & l's + agg | CALL_DUMMY_STACK_ADJUST = 0x0x44|
- * |---------------------------------|<-- final sp (variable)
- * | |
- * | Where function called will |
- * | build frame. |
- * | |
- * | |
- *
- * I understand everything in this picture except what the space
- * between fp - 0xe0 and fp - 0x140 is used for. Oh, and I don't
- * understand why there's a large chunk of CALL_DUMMY that never gets
- * executed (its function is superceeded by PUSH_DUMMY_FRAME; they
- * are designed to do the same thing).
- *
- * PUSH_DUMMY_FRAME saves the registers above sp' and pushes the
- * register file stack down one.
- *
- * call_function then writes CALL_DUMMY, pushes the args onto the
- * stack, and adjusts the stack pointer.
- *
- * run_stack_dummy then starts execution (in the middle of
- * CALL_DUMMY, as directed by call_function).
- */
-
-/* Push an empty stack frame, to record the current PC, etc. */
-
-#define PUSH_DUMMY_FRAME sparc_push_dummy_frame ()
-#define POP_FRAME sparc_pop_frame ()
-
-void sparc_push_dummy_frame PARAMS ((void)), sparc_pop_frame PARAMS ((void));
-
-#ifndef CALL_DUMMY
-/* This sequence of words is the instructions
-
- 0: bc 10 00 01 mov %g1, %fp
- 4: 9d e3 80 00 save %sp, %g0, %sp
- 8: bc 10 00 02 mov %g2, %fp
- c: be 10 00 03 mov %g3, %i7
- 10: da 03 a0 58 ld [ %sp + 0x58 ], %o5
- 14: d8 03 a0 54 ld [ %sp + 0x54 ], %o4
- 18: d6 03 a0 50 ld [ %sp + 0x50 ], %o3
- 1c: d4 03 a0 4c ld [ %sp + 0x4c ], %o2
- 20: d2 03 a0 48 ld [ %sp + 0x48 ], %o1
- 24: 40 00 00 00 call <fun>
- 28: d0 03 a0 44 ld [ %sp + 0x44 ], %o0
- 2c: 01 00 00 00 nop
- 30: 91 d0 20 01 ta 1
- 34: 01 00 00 00 nop
-
- NOTES:
- * the first four instructions are necessary only on the simulator.
- * this is a multiple of 8 (not only 4) bytes.
- * the `call' insn is a relative, not an absolute call.
- * the `nop' at the end is needed to keep the trap from
- clobbering things (if NPC pointed to garbage instead).
-*/
-
-#define CALL_DUMMY { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003, \
- 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c, \
- 0xd203a048, 0x40000000, 0xd003a044, 0x01000000, \
- 0x91d02001, 0x01000000 }
-
-
-/* Size of the call dummy in bytes. */
-
-#define CALL_DUMMY_LENGTH 0x38
-
-/* Offset within call dummy of first instruction to execute. */
-
-#define CALL_DUMMY_START_OFFSET 0
-
-/* Offset within CALL_DUMMY of the 'call' instruction. */
-
-#define CALL_DUMMY_CALL_OFFSET (CALL_DUMMY_START_OFFSET + 0x24)
-
-/* Offset within CALL_DUMMY of the 'ta 1' instruction. */
-
-#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + 0x30)
-
-#define CALL_DUMMY_STACK_ADJUST 68
-
-#endif
-/* Insert the specified number of args and function address
- into a call sequence of the above form stored at DUMMYNAME. */
-
-#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
- sparc_fix_call_dummy (dummyname, pc, fun, type, gcc_p)
-void sparc_fix_call_dummy PARAMS ((char *dummy, CORE_ADDR pc, CORE_ADDR fun,
- struct type *value_type, int using_gcc));
-
-/* The Sparc returns long doubles on the stack. */
-
-#define RETURN_VALUE_ON_STACK(TYPE) \
- (TYPE_CODE(TYPE) == TYPE_CODE_FLT \
- && TYPE_LENGTH(TYPE) > 8)
-
-/* Sparc has no reliable single step ptrace call */
-
-#define SOFTWARE_SINGLE_STEP_P 1
-extern void sparc_software_single_step PARAMS ((unsigned int, int));
-#define SOFTWARE_SINGLE_STEP(sig,bp_p) sparc_software_single_step (sig,bp_p)
-
-/* We need more arguments in a frame specification for the
- "frame" or "info frame" command. */
-
-#define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
-extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
-
-/* To print every pair of float registers as a double, we use this hook.
- We also print the condition code registers in a readable format
- (FIXME: can expand this to all control regs). */
-
-#undef PRINT_REGISTER_HOOK
-#define PRINT_REGISTER_HOOK(regno) \
- sparc_print_register_hook (regno)
-extern void sparc_print_register_hook PARAMS ((int regno));
-
-
-/* Optimization for storing registers to the inferior. The hook
- DO_DEFERRED_STORES
- actually executes any deferred stores. It is called any time
- we are going to proceed the child, or read its registers.
- The hook CLEAR_DEFERRED_STORES is called when we want to throw
- away the inferior process, e.g. when it dies or we kill it.
- FIXME, this does not handle remote debugging cleanly. */
-
-extern int deferred_stores;
-#define DO_DEFERRED_STORES \
- if (deferred_stores) \
- target_store_registers (-2);
-#define CLEAR_DEFERRED_STORES \
- deferred_stores = 0;
-
-/* If the current gcc for for this target does not produce correct debugging
- information for float parameters, both prototyped and unprototyped, then
- define this macro. This forces gdb to always assume that floats are
- passed as doubles and then converted in the callee. */
-
-#define COERCE_FLOAT_TO_DOUBLE 1
-
-/* Select the sparc disassembler */
-
-#define TM_PRINT_INSN_MACH bfd_mach_sparc
-
-/* Arguments smaller than an int must promoted to ints when synthesizing
- function calls. */
-
-#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
- sp = sparc_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
-extern CORE_ADDR
-sparc_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));