aboutsummaryrefslogtreecommitdiff
path: root/gdb/avr-tdep.c
diff options
context:
space:
mode:
authorTheodore A. Roth <troth@openavr.org>2002-04-25 20:34:56 +0000
committerTheodore A. Roth <troth@openavr.org>2002-04-25 20:34:56 +0000
commit8818c391f71abec18d5af55caee831caf3d9b073 (patch)
tree0718ddfc608ff96a159a103a736c7bba72e7c05f /gdb/avr-tdep.c
parent79509c2d51c5fae0eab8d1c47d504317c09eb3ba (diff)
downloadgdb-8818c391f71abec18d5af55caee831caf3d9b073.zip
gdb-8818c391f71abec18d5af55caee831caf3d9b073.tar.gz
gdb-8818c391f71abec18d5af55caee831caf3d9b073.tar.bz2
* Makefile.in: Add support for AVR target.
* configure.tgt: Add support for AVR target. * avr-tdep.c: New file * config/avr/avr.mt: New file.
Diffstat (limited to 'gdb/avr-tdep.c')
-rw-r--r--gdb/avr-tdep.c1369
1 files changed, 1369 insertions, 0 deletions
diff --git a/gdb/avr-tdep.c b/gdb/avr-tdep.c
new file mode 100644
index 0000000..32e8f3e
--- /dev/null
+++ b/gdb/avr-tdep.c
@@ -0,0 +1,1369 @@
+/* Target-dependent code for Atmel AVR, for GDB.
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* Contributed by Theodore A. Roth, troth@verinet.com */
+
+/* Portions of this file were taken from the original gdb-4.18 patch developed
+ by Denis Chertykov, denisc@overta.ru */
+
+#include "defs.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "arch-utils.h"
+#include "regcache.h"
+
+/* AVR Background:
+
+ (AVR micros are pure Harvard Architecture processors.)
+
+ The AVR family of microcontrollers have three distinctly different memory
+ spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
+ the most part to store program instructions. The sram is 8 bits wide and is
+ used for the stack and the heap. Some devices lack sram and some can have
+ an additional external sram added on as a peripheral.
+
+ The eeprom is 8 bits wide and is used to store data when the device is
+ powered down. Eeprom is not directly accessible, it can only be accessed
+ via io-registers using a special algorithm. Accessing eeprom via gdb's
+ remote serial protocol ('m' or 'M' packets) looks difficult to do and is
+ not included at this time.
+
+ [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
+ written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
+ work, the remote target must be able to handle eeprom accesses and perform
+ the address translation.]
+
+ All three memory spaces have physical addresses beginning at 0x0. In
+ addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
+ bytes instead of the 16 bit wide words used by the real device for the
+ Program Counter.
+
+ In order for remote targets to work correctly, extra bits must be added to
+ addresses before they are send to the target or received from the target
+ via the remote serial protocol. The extra bits are the MSBs and are used to
+ decode which memory space the address is referring to. */
+
+#undef XMALLOC
+#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
+
+#undef EXTRACT_INSN
+#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
+
+/* Constants: prefixed with AVR_ to avoid name space clashes */
+
+enum
+ {
+ AVR_REG_W = 24,
+ AVR_REG_X = 26,
+ AVR_REG_Y = 28,
+ AVR_FP_REGNUM = 28,
+ AVR_REG_Z = 30,
+
+ AVR_SREG_REGNUM = 32,
+ AVR_SP_REGNUM = 33,
+ AVR_PC_REGNUM = 34,
+
+ AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
+ AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
+
+ AVR_PC_REG_INDEX = 35, /* index into array of registers */
+
+ AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
+
+ /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
+ AVR_MAX_PUSHES = 18,
+
+ /* Number of the last pushed register. r17 for current avr-gcc */
+ AVR_LAST_PUSHED_REGNUM = 17,
+
+ /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
+ bits? Do these have to match the bfd vma values?. It sure would make
+ things easier in the future if they didn't need to match.
+
+ Note: I chose these values so as to be consistent with bfd vma
+ addresses.
+
+ TRoth/2002-04-08: There is already a conflict with very large programs
+ in the mega128. The mega128 has 128K instruction bytes (64K words),
+ thus the Most Significant Bit is 0x10000 which gets masked off my
+ AVR_MEM_MASK.
+
+ The problem manifests itself when trying to set a breakpoint in a
+ function which resides in the upper half of the instruction space and
+ thus requires a 17-bit address.
+
+ For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
+ from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
+ but could be for some remote targets by just adding the correct offset
+ to the address and letting the remote target handle the low-level
+ details of actually accessing the eeprom. */
+
+ AVR_IMEM_START = 0x00000000, /* INSN memory */
+ AVR_SMEM_START = 0x00800000, /* SRAM memory */
+#if 1
+ /* No eeprom mask defined */
+ AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
+#else
+ AVR_EMEM_START = 0x00810000, /* EEPROM memory */
+ AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
+#endif
+ };
+
+/* Any function with a frame looks like this
+ ....... <-SP POINTS HERE
+ LOCALS1 <-FP POINTS HERE
+ LOCALS0
+ SAVED FP
+ SAVED R3
+ SAVED R2
+ RET PC
+ FIRST ARG
+ SECOND ARG */
+
+struct frame_extra_info
+ {
+ CORE_ADDR return_pc;
+ CORE_ADDR args_pointer;
+ int locals_size;
+ int framereg;
+ int framesize;
+ int is_main;
+ };
+
+struct gdbarch_tdep
+ {
+ /* FIXME: TRoth: is there anything to put here? */
+ int foo;
+ };
+
+/* Lookup the name of a register given it's number. */
+
+static char *
+avr_register_name (int regnum)
+{
+ static char *register_names[] =
+ {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+ "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+ "SREG", "SP", "PC"
+ };
+ if (regnum < 0)
+ return NULL;
+ if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
+ return NULL;
+ return register_names[regnum];
+}
+
+/* Index within `registers' of the first byte of the space for
+ register REGNUM. */
+
+static int
+avr_register_byte (int regnum)
+{
+ if (regnum < AVR_PC_REGNUM)
+ return regnum;
+ else
+ return AVR_PC_REG_INDEX;
+}
+
+/* Number of bytes of storage in the actual machine representation for
+ register REGNUM. */
+
+static int
+avr_register_raw_size (int regnum)
+{
+ switch (regnum)
+ {
+ case AVR_PC_REGNUM:
+ return 4;
+ case AVR_SP_REGNUM:
+ case AVR_FP_REGNUM:
+ return 2;
+ default:
+ return 1;
+ }
+}
+
+/* Number of bytes of storage in the program's representation
+ for register N. */
+
+static int
+avr_register_virtual_size (int regnum)
+{
+ return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
+}
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+static struct type *
+avr_register_virtual_type (int regnum)
+{
+ switch (regnum)
+ {
+ case AVR_PC_REGNUM:
+ return builtin_type_unsigned_long;
+ case AVR_SP_REGNUM:
+ return builtin_type_unsigned_short;
+ default:
+ return builtin_type_unsigned_char;
+ }
+}
+
+/* Instruction address checks and convertions. */
+
+static CORE_ADDR
+avr_make_iaddr (CORE_ADDR x)
+{
+ return ((x) | AVR_IMEM_START);
+}
+
+static int
+avr_iaddr_p (CORE_ADDR x)
+{
+ return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
+}
+
+/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
+ devices are already up to 128KBytes of flash space.
+
+ TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
+
+static CORE_ADDR
+avr_convert_iaddr_to_raw (CORE_ADDR x)
+{
+ return ((x) & 0xffffffff);
+}
+
+/* SRAM address checks and convertions. */
+
+static CORE_ADDR
+avr_make_saddr (CORE_ADDR x)
+{
+ return ((x) | AVR_SMEM_START);
+}
+
+static int
+avr_saddr_p (CORE_ADDR x)
+{
+ return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
+}
+
+static CORE_ADDR
+avr_convert_saddr_to_raw (CORE_ADDR x)
+{
+ return ((x) & 0xffffffff);
+}
+
+/* EEPROM address checks and convertions. I don't know if these will ever
+ actually be used, but I've added them just the same. TRoth */
+
+/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
+ programs in the mega128. */
+
+/* static CORE_ADDR */
+/* avr_make_eaddr (CORE_ADDR x) */
+/* { */
+/* return ((x) | AVR_EMEM_START); */
+/* } */
+
+/* static int */
+/* avr_eaddr_p (CORE_ADDR x) */
+/* { */
+/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
+/* } */
+
+/* static CORE_ADDR */
+/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
+/* { */
+/* return ((x) & 0xffffffff); */
+/* } */
+
+/* Convert from address to pointer and vice-versa. */
+
+static void
+avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
+{
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
+ {
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ avr_convert_iaddr_to_raw (addr));
+ }
+ else
+ {
+ /* Strip off any upper segment bits. */
+ store_unsigned_integer (buf, TYPE_LENGTH (type),
+ avr_convert_saddr_to_raw (addr));
+ }
+}
+
+static CORE_ADDR
+avr_pointer_to_address (struct type *type, void *buf)
+{
+ CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
+
+ if ( TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)) )
+ {
+ fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n", addr);
+ fprintf_unfiltered (gdb_stderr, "+++ If you see this, please send me an email <troth@verinet.com>\n");
+ }
+
+ /* Is it a code address? */
+ if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
+ || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
+ || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
+ )
+ return avr_make_iaddr (addr);
+ else
+ return avr_make_saddr (addr);
+}
+
+static CORE_ADDR
+avr_read_pc (ptid_t ptid)
+{
+ ptid_t save_ptid;
+ CORE_ADDR pc;
+ CORE_ADDR retval;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ pc = (int) read_register (AVR_PC_REGNUM);
+ inferior_ptid = save_ptid;
+ retval = avr_make_iaddr (pc);
+ return retval;
+}
+
+static void
+avr_write_pc (CORE_ADDR val, ptid_t ptid)
+{
+ ptid_t save_ptid;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
+ inferior_ptid = save_ptid;
+}
+
+static CORE_ADDR
+avr_read_sp (void)
+{
+ return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
+}
+
+static void
+avr_write_sp (CORE_ADDR val)
+{
+ write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
+}
+
+static CORE_ADDR
+avr_read_fp (void)
+{
+ return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
+}
+
+/* Translate a GDB virtual ADDR/LEN into a format the remote target
+ understands. Returns number of bytes that can be transfered
+ starting at TARG_ADDR. Return ZERO if no bytes can be transfered
+ (segmentation fault).
+
+ TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
+ pointer? */
+
+static void
+avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
+ CORE_ADDR *targ_addr, int *targ_len)
+{
+ long out_addr;
+ long out_len;
+
+ /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
+ point and see if the high bit are set with the masks that we want. */
+
+ *targ_addr = memaddr;
+ *targ_len = nr_bytes;
+}
+
+/* Function pointers obtained from the target are half of what gdb expects so
+ multiply by 2. */
+
+static CORE_ADDR
+avr_convert_from_func_ptr_addr (CORE_ADDR addr)
+{
+ return addr * 2;
+}
+
+/* avr_scan_prologue is also used as the frame_init_saved_regs().
+
+ Put here the code to store, into fi->saved_regs, the addresses of
+ the saved registers of frame described by FRAME_INFO. This
+ includes special registers such as pc and fp saved in special ways
+ in the stack frame. sp is even more special: the address we return
+ for it IS the sp for the next frame. */
+
+/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
+ This function decodes a AVR function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ This information is stored in the "extra_info" field of the frame_info.
+
+ A typical AVR function prologue might look like this:
+ push rXX
+ push r28
+ push r29
+ in r28,__SP_L__
+ in r29,__SP_H__
+ sbiw r28,<LOCALS_SIZE>
+ in __tmp_reg__,__SREG__
+ cli
+ out __SP_L__,r28
+ out __SREG__,__tmp_reg__
+ out __SP_H__,r29
+
+ A `-mcall-prologues' prologue look like this:
+ ldi r26,<LOCALS_SIZE>
+ ldi r27,<LOCALS_SIZE>/265
+ ldi r30,pm_lo8(.L_foo_body)
+ ldi r31,pm_hi8(.L_foo_body)
+ rjmp __prologue_saves__+RRR
+ .L_foo_body: */
+
+static void
+avr_scan_prologue (struct frame_info *fi)
+{
+ CORE_ADDR prologue_start;
+ CORE_ADDR prologue_end;
+ int i;
+ unsigned short insn;
+ int regno;
+ int scan_stage=0;
+ char *name;
+ struct minimal_symbol *msymbol;
+ int prologue_len;
+ unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
+ int vpc = 0;
+
+ fi->extra_info->framereg = AVR_SP_REGNUM;
+
+ if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
+ {
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
+ }
+ else
+ /* We're in the boondocks: allow for */
+ /* 19 pushes, an add, and "mv fp,sp" */
+ prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
+
+ prologue_end = min (prologue_end, fi->pc);
+
+ /* Search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers. */
+
+ fi->extra_info->framesize = 0;
+ prologue_len = prologue_end - prologue_start;
+ read_memory (prologue_start, prologue, prologue_len);
+
+ /* Scanning main()'s prologue
+ ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
+ ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
+ out __SP_H__,r29
+ out __SP_L__,r28 */
+
+ if (name && strcmp ("main", name) == 0 && prologue_len == 8)
+ {
+ CORE_ADDR locals;
+ unsigned char img[] =
+ {
+ 0xde,0xbf, /* out __SP_H__,r29 */
+ 0xcd,0xbf /* out __SP_L__,r28 */
+ };
+
+ fi->extra_info->framereg = AVR_FP_REGNUM;
+ insn = EXTRACT_INSN (&prologue[vpc]);
+ /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
+ if ((insn & 0xf0f0) == 0xe0c0)
+ {
+ locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
+ insn = EXTRACT_INSN (&prologue[vpc+2]);
+ /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
+ if ((insn & 0xf0f0) == 0xe0d0)
+ {
+ locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
+ if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
+ {
+ fi->frame = locals;
+
+ /* TRoth: Does -1 mean we're in main? */
+ fi->extra_info->is_main = 1;
+ return;
+ }
+ }
+ }
+ }
+
+ /* Scanning `-mcall-prologues' prologue
+ FIXME: mega prologue have a 12 bytes long */
+
+ while (prologue_len <= 12) /* I'm use while to avoit many goto's */
+ {
+ int loc_size;
+ int body_addr;
+ unsigned num_pushes;
+
+ insn = EXTRACT_INSN (&prologue[vpc]);
+ /* ldi r26,<LOCALS_SIZE> */
+ if ((insn & 0xf0f0) != 0xe0a0)
+ break;
+ loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
+
+ insn = EXTRACT_INSN (&prologue[vpc + 2]);
+ /* ldi r27,<LOCALS_SIZE> / 256 */
+ if ((insn & 0xf0f0) != 0xe0b0)
+ break;
+ loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
+
+ insn = EXTRACT_INSN (&prologue[vpc + 4]);
+ /* ldi r30,pm_lo8(.L_foo_body) */
+ if ((insn & 0xf0f0) != 0xe0e0)
+ break;
+ body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
+
+ insn = EXTRACT_INSN (&prologue[vpc + 6]);
+ /* ldi r31,pm_hi8(.L_foo_body) */
+ if ((insn & 0xf0f0) != 0xe0f0)
+ break;
+ body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
+
+ if (body_addr != (prologue_start + 10) / 2)
+ break;
+
+ msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
+ if (!msymbol)
+ break;
+
+ /* FIXME: prologue for mega have a JMP instead of RJMP */
+ insn = EXTRACT_INSN (&prologue[vpc + 8]);
+ /* rjmp __prologue_saves__+RRR */
+ if ((insn & 0xf000) != 0xc000)
+ break;
+
+ /* Extract PC relative offset from RJMP */
+ i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
+ /* Convert offset to byte addressable mode */
+ i *= 2;
+ /* Destination address */
+ i += vpc + prologue_start + 10;
+ /* Resovle offset (in words) from __prologue_saves__ symbol.
+ Which is a pushes count in `-mcall-prologues' mode */
+ num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
+
+ if (num_pushes > AVR_MAX_PUSHES)
+ num_pushes = 0;
+
+ if (num_pushes)
+ {
+ int from;
+ fi->saved_regs[AVR_FP_REGNUM+1] = num_pushes;
+ if (num_pushes >= 2)
+ fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
+ i = 0;
+ for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
+ from <= AVR_LAST_PUSHED_REGNUM; ++from)
+ fi->saved_regs[from] = ++i;
+ }
+ fi->extra_info->locals_size = loc_size;
+ fi->extra_info->framesize = loc_size + num_pushes;
+ fi->extra_info->framereg = AVR_FP_REGNUM;
+ return;
+ }
+
+ /* Scan interrupt or signal function */
+
+ if (prologue_len >= 12)
+ {
+ unsigned char img[] =
+ {
+ 0x78,0x94, /* sei */
+ 0x1f,0x92, /* push r1 */
+ 0x0f,0x92, /* push r0 */
+ 0x0f,0xb6, /* in r0,0x3f SREG */
+ 0x0f,0x92, /* push r0 */
+ 0x11,0x24 /* clr r1 */
+ };
+ if (memcmp (prologue, img, sizeof (img)) == 0)
+ {
+ vpc += sizeof (img);
+ fi->saved_regs[0] = 2;
+ fi->saved_regs[1] = 1;
+ fi->extra_info->framesize += 3;
+ }
+ else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
+ {
+ vpc += sizeof (img) - 1;
+ fi->saved_regs[0] = 2;
+ fi->saved_regs[1] = 1;
+ fi->extra_info->framesize += 3;
+ }
+ }
+
+ /* First stage of the prologue scanning.
+ Scan pushes */
+
+ for (; vpc <= prologue_len; vpc += 2)
+ {
+ insn = EXTRACT_INSN (&prologue[vpc]);
+ if ((insn & 0xfe0f) == 0x920f) /* push rXX */
+ {
+ /* Bits 4-9 contain a mask for registers R0-R32. */
+ regno = (insn & 0x1f0) >> 4;
+ ++fi->extra_info->framesize;
+ fi->saved_regs[regno] = fi->extra_info->framesize;
+ scan_stage = 1;
+ }
+ else
+ break;
+ }
+
+ /* Second stage of the prologue scanning.
+ Scan:
+ in r28,__SP_L__
+ in r29,__SP_H__ */
+
+ if (scan_stage == 1 && vpc + 4 <= prologue_len)
+ {
+ unsigned char img[] =
+ {
+ 0xcd,0xb7, /* in r28,__SP_L__ */
+ 0xde,0xb7 /* in r29,__SP_H__ */
+ };
+ unsigned short insn1;
+
+ if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
+ {
+ vpc += 4;
+ fi->extra_info->framereg = AVR_FP_REGNUM;
+ scan_stage = 2;
+ }
+ }
+
+ /* Third stage of the prologue scanning. (Really two stages)
+ Scan for:
+ sbiw r28,XX or subi r28,lo8(XX)
+ sbci r29,hi8(XX)
+ in __tmp_reg__,__SREG__
+ cli
+ out __SP_L__,r28
+ out __SREG__,__tmp_reg__
+ out __SP_H__,r29 */
+
+ if (scan_stage == 2 && vpc + 12 <= prologue_len)
+ {
+ int locals_size = 0;
+ unsigned char img[] =
+ {
+ 0x0f,0xb6, /* in r0,0x3f */
+ 0xf8,0x94, /* cli */
+ 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
+ 0x0f,0xbe, /* out 0x3f,r0 ; SREG*/
+ 0xde,0xbf /* out 0x3e,r29 ; SPH */
+ };
+ unsigned char img_sig[] =
+ {
+ 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
+ 0xde,0xbf /* out 0x3e,r29 ; SPH */
+ };
+ unsigned char img_int[] =
+ {
+ 0xf8,0x94, /* cli */
+ 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
+ 0x78,0x94, /* sei */
+ 0xde,0xbf /* out 0x3e,r29 ; SPH */
+ };
+
+ insn = EXTRACT_INSN (&prologue[vpc]);
+ vpc += 2;
+ if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
+ locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
+ else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
+ {
+ locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
+ insn = EXTRACT_INSN (&prologue[vpc]);
+ vpc += 2;
+ locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
+ }
+ else
+ return;
+ fi->extra_info->locals_size = locals_size;
+ fi->extra_info->framesize += locals_size;
+ }
+}
+
+/* This function actually figures out the frame address for a given pc and
+ sp. This is tricky because we sometimes don't use an explicit
+ frame pointer, and the previous stack pointer isn't necessarily recorded
+ on the stack. The only reliable way to get this info is to
+ examine the prologue. */
+
+static void
+avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+{
+ int reg;
+
+ if (fi->next)
+ fi->pc = FRAME_SAVED_PC (fi->next);
+
+ fi->extra_info = (struct frame_extra_info *)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+ frame_saved_regs_zalloc (fi);
+
+ fi->extra_info->return_pc = 0;
+ fi->extra_info->args_pointer = 0;
+ fi->extra_info->locals_size = 0;
+ fi->extra_info->framereg = 0;
+ fi->extra_info->framesize = 0;
+ fi->extra_info->is_main = 0;
+
+ avr_scan_prologue (fi);
+
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ {
+ /* We need to setup fi->frame here because run_stack_dummy gets it wrong
+ by assuming it's always FP. */
+ fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
+ fi->frame);
+ }
+ else if (!fi->next) /* this is the innermost frame? */
+ fi->frame = read_register (fi->extra_info->framereg);
+ else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
+ /* If we have an next frame, the callee saved it. */
+ {
+ struct frame_info * next_fi = fi->next;
+ if (fi->extra_info->framereg == AVR_SP_REGNUM)
+ fi->frame = next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
+ /* FIXME: I don't analyse va_args functions */
+ else
+ {
+ CORE_ADDR fp = 0;
+ CORE_ADDR fp1 = 0;
+ unsigned int fp_low, fp_high;
+
+ /* Scan all frames */
+ for (; next_fi; next_fi = next_fi->next)
+ {
+ /* look for saved AVR_FP_REGNUM */
+ if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
+ fp = next_fi->saved_regs[AVR_FP_REGNUM];
+ /* look for saved AVR_FP_REGNUM + 1 */
+ if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
+ fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
+ }
+ fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
+ : read_register (AVR_FP_REGNUM)) & 0xff;
+ fp_high = (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1)
+ : read_register (AVR_FP_REGNUM + 1)) & 0xff;
+ fi->frame = fp_low | (fp_high << 8);
+ }
+ }
+
+ /* TRoth: Do we want to do this if we are in main? I don't think we should
+ since return_pc makes no sense when we are in main. */
+
+ if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
+ {
+ CORE_ADDR addr;
+ int i;
+
+ addr = fi->frame + fi->extra_info->framesize + 1;
+
+ /* Return address in stack in different endianness */
+
+ fi->extra_info->return_pc =
+ read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
+ fi->extra_info->return_pc |=
+ read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
+
+ /* This return address in words,
+ must be converted to the bytes address */
+ fi->extra_info->return_pc *= 2;
+
+ /* Resolve a pushed registers addresses */
+ for (i = 0; i < NUM_REGS; i++)
+ {
+ if (fi->saved_regs[i])
+ fi->saved_regs[i] = addr - fi->saved_regs[i];
+ }
+ }
+}
+
+/* Restore the machine to the state it had before the current frame was
+ created. Usually used either by the "RETURN" command, or by
+ call_function_by_hand after the dummy_frame is finished. */
+
+static void
+avr_pop_frame (void)
+{
+ unsigned regnum;
+ CORE_ADDR saddr;
+ struct frame_info *frame = get_current_frame ();
+
+ if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
+ {
+ generic_pop_dummy_frame();
+ }
+ else
+ {
+ /* TRoth: Why only loop over 8 registers? */
+
+ for (regnum = 0; regnum < 8; regnum++)
+ {
+ /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
+ actual value we want, not the address of the value we want. */
+ if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
+ {
+ saddr = avr_make_saddr (frame->saved_regs[regnum]);
+ write_register (regnum, read_memory_unsigned_integer (saddr, 1));
+ }
+ else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
+ write_register (regnum, frame->frame + 2);
+ }
+
+ /* Don't forget the update the PC too! */
+ write_pc (frame->extra_info->return_pc);
+ }
+ flush_cached_frames ();
+}
+
+/* Return the saved PC from this frame. */
+
+static CORE_ADDR
+avr_frame_saved_pc (struct frame_info *frame)
+{
+ if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
+ return generic_read_register_dummy (frame->pc, frame->frame, AVR_PC_REGNUM);
+ else
+ return frame->extra_info->return_pc;
+}
+
+static CORE_ADDR
+avr_saved_pc_after_call (struct frame_info *frame)
+{
+ unsigned char m1, m2;
+ unsigned int sp = read_register (AVR_SP_REGNUM);
+ m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
+ m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
+ return (m2 | (m1 << 8)) * 2;
+}
+
+/* Figure out where in REGBUF the called function has left its return value.
+ Copy that into VALBUF. */
+
+static void
+avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ int wordsize, len;
+
+ wordsize = 2;
+
+ len = TYPE_LENGTH(type);
+
+ switch (len) {
+ case 1: /* (char) */
+ case 2: /* (short), (int) */
+ memcpy (valbuf, regbuf + REGISTER_BYTE(24), 2);
+ break;
+ case 4: /* (long), (float) */
+ memcpy (valbuf, regbuf + REGISTER_BYTE(22), 4);
+ break;
+ case 8: /* (double) (doesn't seem to happen, which is good,
+ because this almost certainly isn't right. */
+ error ("I don't know how a double is returned.");
+ break;
+ }
+}
+
+/* Returns the return address for a dummy. */
+
+static CORE_ADDR
+avr_call_dummy_address (void)
+{
+ return entry_point_address ();
+}
+
+/* Place the appropriate value in the appropriate registers.
+ Primarily used by the RETURN command. */
+
+static void
+avr_store_return_value (struct type *type, char *valbuf)
+{
+ int wordsize, len, regval;
+
+ wordsize = 2;
+
+ len = TYPE_LENGTH(type);
+ switch (len) {
+ case 1: /* char */
+ case 2: /* short, int */
+ regval = extract_address(valbuf, len);
+ write_register (0, regval);
+ break;
+ case 4: /* long, float */
+ regval = extract_address(valbuf, len);
+ write_register (0, regval >> 16);
+ write_register (1, regval & 0xffff);
+ break;
+ case 8: /* presumeably double, but doesn't seem to happen */
+ error ("I don't know how to return a double.");
+ break;
+ }
+}
+
+/* Setup the return address for a dummy frame, as called by
+ call_function_by_hand. Only necessary when you are using an empty
+ CALL_DUMMY. */
+
+static CORE_ADDR
+avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
+{
+ unsigned char buf[2];
+ int wordsize = 2;
+ struct minimal_symbol *msymbol;
+ CORE_ADDR mon_brk;
+
+ fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
+
+ buf[0] = 0;
+ buf[1] = 0;
+ sp -= wordsize;
+ write_memory (sp + 1, buf, 2);
+
+#if 0
+ /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
+ left-over from Denis' original patch which used avr-mon for the target
+ instead of the generic remote target. */
+ if ((strcmp (target_shortname, "avr-mon") == 0)
+ && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
+ {
+ mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
+ store_unsigned_integer (buf, wordsize, mon_brk / 2);
+ sp -= wordsize;
+ write_memory (sp + 1, buf + 1, 1);
+ write_memory (sp + 2, buf, 1);
+ }
+#endif
+ return sp;
+}
+
+static CORE_ADDR
+avr_skip_prologue (CORE_ADDR pc)
+{
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* See what the symbol table says */
+
+ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+
+ if (sal.line != 0 && sal.end < func_end)
+ return sal.end;
+ }
+
+/* Either we didn't find the start of this function (nothing we can do),
+ or there's no line info, or the line after the prologue is after
+ the end of the function (there probably isn't a prologue). */
+
+ return pc;
+}
+
+static CORE_ADDR
+avr_frame_address (struct frame_info *fi)
+{
+ return avr_make_saddr (fi->frame);
+}
+
+/* Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+
+ For us, the frame address is its stack pointer value, so we look up
+ the function prologue to determine the caller's sp value, and return it. */
+
+static CORE_ADDR
+avr_frame_chain (struct frame_info *frame)
+{
+ if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
+ {
+ /* initialize the return_pc now */
+ frame->extra_info->return_pc = generic_read_register_dummy (frame->pc,
+ frame->frame,
+ AVR_PC_REGNUM);
+ return frame->frame;
+ }
+ return (frame->extra_info->is_main ? 0
+ : frame->frame + frame->extra_info->framesize + 2 /* ret addr */);
+}
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function.
+
+ We store structs through a pointer passed in the first Argument
+ register. */
+
+static void
+avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ write_register (0, addr);
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+static CORE_ADDR
+avr_extract_struct_value_address (char *regbuf)
+{
+ return (extract_address ((regbuf) + REGISTER_BYTE (0),
+ REGISTER_RAW_SIZE (0))
+ | AVR_SMEM_START);
+}
+
+/* Setup the function arguments for calling a function in the inferior.
+
+ On the AVR architecture, there are 18 registers (R25 to R8) which are
+ dedicated for passing function arguments. Up to the first 18 arguments
+ (depending on size) may go into these registers. The rest go on the stack.
+
+ Arguments that are larger than WORDSIZE bytes will be split between two or
+ more registers as available, but will NOT be split between a register and
+ the stack.
+
+ An exceptional case exists for struct arguments (and possibly other
+ aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
+ not a multiple of WORDSIZE bytes. In this case the argument is never split
+ between the registers and the stack, but instead is copied in its entirety
+ onto the stack, AND also copied into as many registers as there is room
+ for. In other words, space in registers permitting, two copies of the same
+ argument are passed in. As far as I can tell, only the one on the stack is
+ used, although that may be a function of the level of compiler
+ optimization. I suspect this is a compiler bug. Arguments of these odd
+ sizes are left-justified within the word (as opposed to arguments smaller
+ than WORDSIZE bytes, which are right-justified).
+
+ If the function is to return an aggregate type such as a struct, the caller
+ must allocate space into which the callee will copy the return value. In
+ this case, a pointer to the return value location is passed into the callee
+ in register R0, which displaces one of the other arguments passed in via
+ registers R0 to R2. */
+
+static CORE_ADDR
+avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int stack_alloc, stack_offset;
+ int wordsize;
+ int argreg;
+ int argnum;
+ struct type *type;
+ CORE_ADDR regval;
+ char *val;
+ char valbuf[4];
+ int len;
+
+ wordsize = 1;
+#if 0
+ /* Now make sure there's space on the stack */
+ for (argnum = 0, stack_alloc = 0;
+ argnum < nargs; argnum++)
+ stack_alloc += TYPE_LENGTH(VALUE_TYPE(args[argnum]));
+ sp -= stack_alloc; /* make room on stack for args */
+ /* we may over-allocate a little here, but that won't hurt anything */
+#endif
+ argreg = 25;
+ if (struct_return) /* "struct return" pointer takes up one argreg */
+ {
+ write_register (--argreg, struct_addr);
+ }
+
+ /* Now load as many as possible of the first arguments into registers, and
+ push the rest onto the stack. There are 3N bytes in three registers
+ available. Loop thru args from first to last. */
+
+ for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+ {
+ type = VALUE_TYPE (args[argnum]);
+ len = TYPE_LENGTH (type);
+ val = (char *) VALUE_CONTENTS (args[argnum]);
+
+ /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
+ some *&^%$ things get passed on the stack AND in the registers! */
+ while (len > 0)
+ { /* there's room in registers */
+ len -= wordsize;
+ regval = extract_address (val + len, wordsize);
+ write_register (argreg--, regval);
+ }
+ }
+ return sp;
+}
+
+/* Initialize the gdbarch structure for the AVR's. */
+
+static struct gdbarch *
+avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches){
+ /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
+ be bigger or not. Initial testing seems to show that `call my_func()`
+ works and backtrace from a breakpoint within the call looks correct.
+ Admittedly, I haven't tested with more than a very simple program. */
+ static LONGEST avr_call_dummy_words[] = {0};
+
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+
+ /* Find a candidate among the list of pre-declared architectures. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ /* None found, create a new architecture from the information provided. */
+ tdep = XMALLOC (struct gdbarch_tdep);
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ /* If we ever need to differentiate the device types, do it here. */
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_avr1:
+ case bfd_mach_avr2:
+ case bfd_mach_avr3:
+ case bfd_mach_avr4:
+ case bfd_mach_avr5:
+ break;
+ }
+
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_addr_bit (gdbarch, 32);
+ set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
+
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
+
+ set_gdbarch_read_pc (gdbarch, avr_read_pc);
+ set_gdbarch_write_pc (gdbarch, avr_write_pc);
+ set_gdbarch_read_fp (gdbarch, avr_read_fp);
+ set_gdbarch_read_sp (gdbarch, avr_read_sp);
+ set_gdbarch_write_sp (gdbarch, avr_write_sp);
+
+ set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
+
+ set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
+ set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
+
+ set_gdbarch_register_name (gdbarch, avr_register_name);
+ set_gdbarch_register_size (gdbarch, 1);
+ set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
+ set_gdbarch_register_byte (gdbarch, avr_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
+ set_gdbarch_max_register_raw_size (gdbarch, 4);
+ set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
+ set_gdbarch_max_register_virtual_size (gdbarch, 4);
+ set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
+
+ /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */
+ set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
+
+ set_gdbarch_print_insn (gdbarch, print_insn_avr);
+
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+
+/* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
+
+ set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
+ set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
+ set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+/* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
+ set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
+
+ set_gdbarch_store_return_value (gdbarch, avr_store_return_value);
+
+ set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
+ set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
+ set_gdbarch_extract_struct_value_address (gdbarch, avr_extract_struct_value_address);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
+ set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
+ set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
+/* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_remote_translate_xfer_address (gdbarch, avr_remote_translate_xfer_address);
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
+ set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
+ set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
+ set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
+ set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
+ set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
+ set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+
+ set_gdbarch_convert_from_func_ptr_addr (gdbarch, avr_convert_from_func_ptr_addr);
+
+ return gdbarch;
+}
+
+/* Send a query request to the avr remote target asking for values of the io
+ registers. If args parameter is not NULL, then the user has requested info
+ on a specific io register [This still needs implemented and is ignored for
+ now]. The query string should be one of these forms:
+
+ "Ravr.io_reg" -> reply is "NN" number of io registers
+
+ "Ravr.io_reg:addr,len" where addr is first register and len is number of
+ registers to be read. The reply should be "<NAME>,VV;" for each io register
+ where, <NAME> is a string, and VV is the hex value of the register.
+
+ All io registers are 8-bit. */
+
+static void
+avr_io_reg_read_command (char *args, int from_tty)
+{
+ int bufsiz = 0;
+ char buf[400];
+ char query[400];
+ char *p;
+ unsigned int nreg = 0;
+ unsigned int val;
+ int i, j, k, step;
+
+/* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
+/* args, from_tty); */
+
+ if (! current_target.to_query)
+ {
+ fprintf_unfiltered (gdb_stderr, "ERR: info io_registers NOT supported by current target\n");
+ return;
+ }
+
+ /* Just get the maximum buffer size. */
+ target_query ((int) 'R', 0, 0, &bufsiz);
+ if (bufsiz > sizeof(buf))
+ bufsiz = sizeof(buf);
+
+ /* Find out how many io registers the target has. */
+ strcpy (query, "avr.io_reg");
+ target_query( (int) 'R', query, buf, &bufsiz );
+
+ if (strncmp (buf, "", bufsiz) == 0)
+ {
+ fprintf_unfiltered (gdb_stderr, "info io_registers NOT supported by target\n");
+ return;
+ }
+
+ if ( sscanf (buf, "%x", &nreg) != 1 )
+ {
+ fprintf_unfiltered (gdb_stderr, "Error fetching number of io registers\n");
+ return;
+ }
+
+ reinitialize_more_filter();
+
+ printf_unfiltered ("Target has %u io registers:\n\n", nreg);
+
+ /* only fetch up to 8 registers at a time to keep the buffer small */
+ step = 8;
+
+ for (i=0; i<nreg; i+=step)
+ {
+ j = step - (nreg % step); /* how many registers this round? */
+
+ snprintf (query, sizeof(query)-1, "avr.io_reg:%x,%x", i, j);
+ target_query ((int) 'R', query, buf, &bufsiz);
+
+ p = buf;
+ for (k=i; k<(i+j); k++)
+ {
+ if (sscanf (p, "%[^,],%x;", query, &val) == 2)
+ {
+ printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
+ while ((*p != ';') && (*p != '\0'))
+ p++;
+ p++; /* skip over ';' */
+ if (*p == '\0')
+ break;
+ }
+ }
+ }
+}
+
+void
+_initialize_avr_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
+
+ /* Add a new command to allow the user to query the avr remote target for
+ the values of the io space registers in a saner way than just using
+ `x/NNNb ADDR`. */
+
+ /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
+ io_registers' to signify it is not available on other platforms. */
+
+ add_cmd ("io_registers", class_info, avr_io_reg_read_command,
+ "query remote avr target for io space register values",
+ &infolist);
+}