diff options
author | Jason Molenda <jmolenda@apple.com> | 1999-12-22 21:45:38 +0000 |
---|---|---|
committer | Jason Molenda <jmolenda@apple.com> | 1999-12-22 21:45:38 +0000 |
commit | ed9a39ebf9f55562c7c582155f6721c3e685ce91 (patch) | |
tree | a4d79644b877ba407080f1e1120fdf203a1e50b7 /gdb/arm-linux-nat.c | |
parent | d3a09475522de47cb8f641b3235d58ee10320f64 (diff) | |
download | gdb-ed9a39ebf9f55562c7c582155f6721c3e685ce91.zip gdb-ed9a39ebf9f55562c7c582155f6721c3e685ce91.tar.gz gdb-ed9a39ebf9f55562c7c582155f6721c3e685ce91.tar.bz2 |
import gdb-1999-12-21 snapshot
Diffstat (limited to 'gdb/arm-linux-nat.c')
-rw-r--r-- | gdb/arm-linux-nat.c | 547 |
1 files changed, 547 insertions, 0 deletions
diff --git a/gdb/arm-linux-nat.c b/gdb/arm-linux-nat.c new file mode 100644 index 0000000..f738050 --- /dev/null +++ b/gdb/arm-linux-nat.c @@ -0,0 +1,547 @@ +/* GNU/Linux on ARM native support. + Copyright 1999 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "inferior.h" +#include "gdbcore.h" +#include "gdb_string.h" + +#include <sys/user.h> +#include <sys/ptrace.h> +#include <sys/utsname.h> + +extern int arm_apcs_32; + +#define typeNone 0x00 +#define typeSingle 0x01 +#define typeDouble 0x02 +#define typeExtended 0x03 +#define FPWORDS 28 +#define CPSR_REGNUM 16 + +typedef union tagFPREG + { + unsigned int fSingle; + unsigned int fDouble[2]; + unsigned int fExtended[3]; + } +FPREG; + +typedef struct tagFPA11 + { + FPREG fpreg[8]; /* 8 floating point registers */ + unsigned int fpsr; /* floating point status register */ + unsigned int fpcr; /* floating point control register */ + unsigned char fType[8]; /* type of floating point value held in + floating point registers. */ + int initflag; /* NWFPE initialization flag. */ + } +FPA11; + +/* The following variables are used to determine the version of the + underlying Linux operating system. Examples: + + Linux 2.0.35 Linux 2.2.12 + os_version = 0x00020023 os_version = 0x0002020c + os_major = 2 os_major = 2 + os_minor = 0 os_minor = 2 + os_release = 35 os_release = 12 + + Note: os_version = (os_major << 16) | (os_minor << 8) | os_release + + These are initialized using get_linux_version() from + _initialize_arm_linux_nat(). */ + +static unsigned int os_version, os_major, os_minor, os_release; + +static void +fetch_nw_fpe_single (unsigned int fn, FPA11 * fpa11, unsigned int *pmem) +{ + unsigned int mem[3]; + + mem[0] = fpa11->fpreg[fn].fSingle; + mem[1] = 0; + mem[2] = 0; + supply_register (F0_REGNUM + fn, (char *) &mem[0]); +} + +static void +fetch_nw_fpe_double (unsigned int fn, FPA11 * fpa11, unsigned int *pmem) +{ + unsigned int mem[3]; + + mem[0] = fpa11->fpreg[fn].fDouble[1]; + mem[1] = fpa11->fpreg[fn].fDouble[0]; + mem[2] = 0; + supply_register (F0_REGNUM + fn, (char *) &mem[0]); +} + +static void +fetch_nw_fpe_none (unsigned int fn, FPA11 * fpa11, unsigned int *pmem) +{ + unsigned int mem[3] = + {0, 0, 0}; + + supply_register (F0_REGNUM + fn, (char *) &mem[0]); +} + +static void +fetch_nw_fpe_extended (unsigned int fn, FPA11 * fpa11, unsigned int *pmem) +{ + unsigned int mem[3]; + + mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */ + mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */ + mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */ + supply_register (F0_REGNUM + fn, (char *) &mem[0]); +} + +static void +store_nw_fpe_single (unsigned int fn, FPA11 * fpa11) +{ + unsigned int mem[3]; + + read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); + fpa11->fpreg[fn].fSingle = mem[0]; + fpa11->fType[fn] = typeSingle; +} + +static void +store_nw_fpe_double (unsigned int fn, FPA11 * fpa11) +{ + unsigned int mem[3]; + + read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); + fpa11->fpreg[fn].fDouble[1] = mem[0]; + fpa11->fpreg[fn].fDouble[0] = mem[1]; + fpa11->fType[fn] = typeDouble; +} + +void +store_nw_fpe_extended (unsigned int fn, FPA11 * fpa11) +{ + unsigned int mem[3]; + + read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); + fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */ + fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */ + fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */ + fpa11->fType[fn] = typeDouble; +} + +/* Get the whole floating point state of the process and store the + floating point stack into registers[]. */ + +static void +fetch_fpregs (void) +{ + int ret, regno; + FPA11 fp; + + /* Read the floating point state. */ + ret = ptrace (PT_GETFPREGS, inferior_pid, 0, &fp); + if (ret < 0) + { + warning ("Unable to fetch the floating point state."); + return; + } + + /* Fetch fpsr. */ + supply_register (FPS_REGNUM, (char *) &fp.fpsr); + + /* Fetch the floating point registers. */ + for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++) + { + int fn = regno - F0_REGNUM; + unsigned int *p = (unsigned int *) ®isters[REGISTER_BYTE (regno)]; + + switch (fp.fType[fn]) + { + case typeSingle: + fetch_nw_fpe_single (fn, &fp, p); + break; + + case typeDouble: + fetch_nw_fpe_double (fn, &fp, p); + break; + + case typeExtended: + fetch_nw_fpe_extended (fn, &fp, p); + break; + + default: + fetch_nw_fpe_none (fn, &fp, p); + } + } +} + +/* Save the whole floating point state of the process using + the contents from registers[]. */ + +static void +store_fpregs (void) +{ + int ret, regno; + unsigned int mem[3]; + FPA11 fp; + + /* Store fpsr. */ + if (register_valid[FPS_REGNUM]) + read_register_gen (FPS_REGNUM, (char *) &fp.fpsr); + + /* Store the floating point registers. */ + for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++) + { + if (register_valid[regno]) + { + unsigned int fn = regno - F0_REGNUM; + switch (fp.fType[fn]) + { + case typeSingle: + store_nw_fpe_single (fn, &fp); + break; + + case typeDouble: + store_nw_fpe_double (fn, &fp); + break; + + case typeExtended: + store_nw_fpe_extended (fn, &fp); + break; + } + } + } + + ret = ptrace (PTRACE_SETFPREGS, inferior_pid, 0, &fp); + if (ret < 0) + { + warning ("Unable to store floating point state."); + return; + } +} + +/* Fetch all general registers of the process and store into + registers[]. */ + +static void +fetch_regs (void) +{ + int ret, regno; + struct pt_regs regs; + + ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, ®s); + if (ret < 0) + { + warning ("Unable to fetch general registers."); + return; + } + + for (regno = A1_REGNUM; regno < PC_REGNUM; regno++) + supply_register (regno, (char *) ®s.uregs[regno]); + + if (arm_apcs_32) + supply_register (PS_REGNUM, (char *) ®s.uregs[CPSR_REGNUM]); + else + supply_register (PS_REGNUM, (char *) ®s.uregs[PC_REGNUM]); + + regs.uregs[PC_REGNUM] = ADDR_BITS_REMOVE (regs.uregs[PC_REGNUM]); + supply_register (PC_REGNUM, (char *) ®s.uregs[PC_REGNUM]); +} + +/* Store all general registers of the process from the values in + registers[]. */ + +static void +store_regs (void) +{ + int ret, regno; + struct pt_regs regs; + + ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, ®s); + if (ret < 0) + { + warning ("Unable to fetch general registers."); + return; + } + + for (regno = A1_REGNUM; regno <= PC_REGNUM; regno++) + { + if (register_valid[regno]) + read_register_gen (regno, (char *) ®s.uregs[regno]); + } + + ret = ptrace (PTRACE_SETREGS, inferior_pid, 0, ®s); + + if (ret < 0) + { + warning ("Unable to store general registers."); + return; + } +} + +/* Fetch registers from the child process. Fetch all registers if + regno == -1, otherwise fetch all general registers or all floating + point registers depending upon the value of regno. */ + +void +fetch_inferior_registers (int regno) +{ + if ((regno < F0_REGNUM) || (regno > FPS_REGNUM)) + fetch_regs (); + + if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1)) + fetch_fpregs (); +} + +/* Store registers back into the inferior. Store all registers if + regno == -1, otherwise store all general registers or all floating + point registers depending upon the value of regno. */ + +void +store_inferior_registers (int regno) +{ + if ((regno < F0_REGNUM) || (regno > FPS_REGNUM)) + store_regs (); + + if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1)) + store_fpregs (); +} + +#ifdef GET_LONGJMP_TARGET + +/* Figure out where the longjmp will land. We expect that we have + just entered longjmp and haven't yet altered r0, r1, so the + arguments are still in the registers. (A1_REGNUM) points at the + jmp_buf structure from which we extract the pc (JB_PC) that we will + land at. The pc is copied into ADDR. This routine returns true on + success. */ + +#define LONGJMP_TARGET_SIZE sizeof(int) +#define JB_ELEMENT_SIZE sizeof(int) +#define JB_SL 18 +#define JB_FP 19 +#define JB_SP 20 +#define JB_PC 21 + +int +arm_get_longjmp_target (CORE_ADDR * pc) +{ + CORE_ADDR jb_addr; + char buf[LONGJMP_TARGET_SIZE]; + + jb_addr = read_register (A1_REGNUM); + + if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, + LONGJMP_TARGET_SIZE)) + return 0; + + *pc = extract_address (buf, LONGJMP_TARGET_SIZE); + return 1; +} + +#endif /* GET_LONGJMP_TARGET */ + +/* + Dynamic Linking on ARM Linux + ---------------------------- + + Note: PLT = procedure linkage table + GOT = global offset table + + As much as possible, ELF dynamic linking defers the resolution of + jump/call addresses until the last minute. The technique used is + inspired by the i386 ELF design, and is based on the following + constraints. + + 1) The calling technique should not force a change in the assembly + code produced for apps; it MAY cause changes in the way assembly + code is produced for position independent code (i.e. shared + libraries). + + 2) The technique must be such that all executable areas must not be + modified; and any modified areas must not be executed. + + To do this, there are three steps involved in a typical jump: + + 1) in the code + 2) through the PLT + 3) using a pointer from the GOT + + When the executable or library is first loaded, each GOT entry is + initialized to point to the code which implements dynamic name + resolution and code finding. This is normally a function in the + program interpreter (on ARM Linux this is usually ld-linux.so.2, + but it does not have to be). On the first invocation, the function + is located and the GOT entry is replaced with the real function + address. Subsequent calls go through steps 1, 2 and 3 and end up + calling the real code. + + 1) In the code: + + b function_call + bl function_call + + This is typical ARM code using the 26 bit relative branch or branch + and link instructions. The target of the instruction + (function_call is usually the address of the function to be called. + In position independent code, the target of the instruction is + actually an entry in the PLT when calling functions in a shared + library. Note that this call is identical to a normal function + call, only the target differs. + + 2) In the PLT: + + The PLT is a synthetic area, created by the linker. It exists in + both executables and libraries. It is an array of stubs, one per + imported function call. It looks like this: + + PLT[0]: + str lr, [sp, #-4]! @push the return address (lr) + ldr lr, [pc, #16] @load from 6 words ahead + add lr, pc, lr @form an address for GOT[0] + ldr pc, [lr, #8]! @jump to the contents of that addr + + The return address (lr) is pushed on the stack and used for + calculations. The load on the second line loads the lr with + &GOT[3] - . - 20. The addition on the third leaves: + + lr = (&GOT[3] - . - 20) + (. + 8) + lr = (&GOT[3] - 12) + lr = &GOT[0] + + On the fourth line, the pc and lr are both updated, so that: + + pc = GOT[2] + lr = &GOT[0] + 8 + = &GOT[2] + + NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little + "tight", but allows us to keep all the PLT entries the same size. + + PLT[n+1]: + ldr ip, [pc, #4] @load offset from gotoff + add ip, pc, ip @add the offset to the pc + ldr pc, [ip] @jump to that address + gotoff: .word GOT[n+3] - . + + The load on the first line, gets an offset from the fourth word of + the PLT entry. The add on the second line makes ip = &GOT[n+3], + which contains either a pointer to PLT[0] (the fixup trampoline) or + a pointer to the actual code. + + 3) In the GOT: + + The GOT contains helper pointers for both code (PLT) fixups and + data fixups. The first 3 entries of the GOT are special. The next + M entries (where M is the number of entries in the PLT) belong to + the PLT fixups. The next D (all remaining) entries belong to + various data fixups. The actual size of the GOT is 3 + M + D. + + The GOT is also a synthetic area, created by the linker. It exists + in both executables and libraries. When the GOT is first + initialized , all the GOT entries relating to PLT fixups are + pointing to code back at PLT[0]. + + The special entries in the GOT are: + + GOT[0] = linked list pointer used by the dynamic loader + GOT[1] = pointer to the reloc table for this module + GOT[2] = pointer to the fixup/resolver code + + The first invocation of function call comes through and uses the + fixup/resolver code. On the entry to the fixup/resolver code: + + ip = &GOT[n+3] + lr = &GOT[2] + stack[0] = return address (lr) of the function call + [r0, r1, r2, r3] are still the arguments to the function call + + This is enough information for the fixup/resolver code to work + with. Before the fixup/resolver code returns, it actually calls + the requested function and repairs &GOT[n+3]. */ + +CORE_ADDR +arm_skip_solib_resolver (CORE_ADDR pc) +{ + /* FIXME */ + return 0; +} + +int +arm_linux_register_u_addr (int blockend, int regnum) +{ + return blockend + REGISTER_BYTE (regnum); +} + +int +arm_linux_kernel_u_size (void) +{ + return (sizeof (struct user)); +} + +/* Extract from an array REGBUF containing the (raw) register state + a function return value of type TYPE, and copy that, in virtual format, + into VALBUF. */ + +void +arm_linux_extract_return_value (struct type *type, + char regbuf[REGISTER_BYTES], + char *valbuf) +{ + /* ScottB: This needs to be looked at to handle the different + floating point emulators on ARM Linux. Right now the code + assumes that fetch inferior registers does the right thing for + GDB. I suspect this won't handle NWFPE registers correctly, nor + will the default ARM version (arm_extract_return_value()). */ + + int regnum = (TYPE_CODE_FLT == TYPE_CODE (type)) ? F0_REGNUM : A1_REGNUM; + memcpy (valbuf, ®buf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type)); +} + +static unsigned int +get_linux_version (unsigned int *vmajor, + unsigned int *vminor, + unsigned int *vrelease) +{ + struct utsname info; + char *pmajor, *pminor, *prelease, *tail; + + if (-1 == uname (&info)) + { + warning ("Unable to determine Linux version."); + return -1; + } + + pmajor = strtok (info.release, "."); + pminor = strtok (NULL, "."); + prelease = strtok (NULL, "."); + + *vmajor = (unsigned int) strtoul (pmajor, &tail, 0); + *vminor = (unsigned int) strtoul (pminor, &tail, 0); + *vrelease = (unsigned int) strtoul (prelease, &tail, 0); + + return ((*vmajor << 16) | (*vminor << 8) | *vrelease); +} + +void +_initialize_arm_linux_nat (void) +{ + os_version = get_linux_version (&os_major, &os_minor, &os_release); +} |