aboutsummaryrefslogtreecommitdiff
path: root/gdb/a29k-tdep.c
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2002-01-06 15:02:01 +0000
committerAndrew Cagney <cagney@redhat.com>2002-01-06 15:02:01 +0000
commit9b4ff27668a0c3a983cb8d9056380b400551ea64 (patch)
tree012c997e27485365ff232163a7d0e40a49b84034 /gdb/a29k-tdep.c
parent9fbfe2dc646f029caeb2b69f597bfd4acb2954fa (diff)
downloadgdb-9b4ff27668a0c3a983cb8d9056380b400551ea64.zip
gdb-9b4ff27668a0c3a983cb8d9056380b400551ea64.tar.gz
gdb-9b4ff27668a0c3a983cb8d9056380b400551ea64.tar.bz2
* MAINTAINERS: Mark a29k target as obsolete.
* Makefile.in (a29k-tdep.o, remote-adapt.o, remote-eb.o) (remote-mm.o, remote-udi.o): Obsolete. Remove references in comments. * NEWS: Note that a29k targets are obsolete. * a29k-tdep.c: Mark as obsolete. * configure.tgt: Mark a29k-*-aout*, a29k-*-coff*, a29k-*-elf*, a29k-*-ebmon*, a29k-*-kern*, a29k-*-none*, a29k-*-udi* and a29k-*-vxworks* targets as obsolete. * remote-adapt.c: Obsolete. * remote-eb.c: Obsolete. * remote-mm.c: Obsolete. * remote-udi.c: Obsolete. * config/a29k/a29k-udi.mt: Obsolete. * config/a29k/a29k.mt: Obsolete. * config/a29k/tm-a29k.h: Obsolete. * config/a29k/tm-vx29k.h: Obsolete. * config/a29k/vx29k.mt: Obsolete.
Diffstat (limited to 'gdb/a29k-tdep.c')
-rw-r--r--gdb/a29k-tdep.c2030
1 files changed, 1015 insertions, 1015 deletions
diff --git a/gdb/a29k-tdep.c b/gdb/a29k-tdep.c
index 2a6d341..4fcc0f2 100644
--- a/gdb/a29k-tdep.c
+++ b/gdb/a29k-tdep.c
@@ -1,1015 +1,1015 @@
-/* Target-machine dependent code for the AMD 29000
- Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
- 2001
- Free Software Foundation, Inc.
- Contributed by Cygnus Support. Written by Jim Kingdon.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "gdbcore.h"
-#include "frame.h"
-#include "value.h"
-#include "symtab.h"
-#include "inferior.h"
-#include "gdbcmd.h"
-#include "regcache.h"
-
-/* If all these bits in an instruction word are zero, it is a "tag word"
- which precedes a function entry point and gives stack traceback info.
- This used to be defined as 0xff000000, but that treated 0x00000deb as
- a tag word, while it is really used as a breakpoint. */
-#define TAGWORD_ZERO_MASK 0xff00f800
-
-extern CORE_ADDR text_start; /* FIXME, kludge... */
-
-/* The user-settable top of the register stack in virtual memory. We
- won't attempt to access any stored registers above this address, if set
- nonzero. */
-
-static CORE_ADDR rstack_high_address = UINT_MAX;
-
-
-/* Should call_function allocate stack space for a struct return? */
-/* On the a29k objects over 16 words require the caller to allocate space. */
-int
-a29k_use_struct_convention (int gcc_p, struct type *type)
-{
- return (TYPE_LENGTH (type) > 16 * 4);
-}
-
-
-/* Structure to hold cached info about function prologues. */
-
-struct prologue_info
-{
- CORE_ADDR pc; /* First addr after fn prologue */
- unsigned rsize, msize; /* register stack frame size, mem stack ditto */
- unsigned mfp_used:1; /* memory frame pointer used */
- unsigned rsize_valid:1; /* Validity bits for the above */
- unsigned msize_valid:1;
- unsigned mfp_valid:1;
-};
-
-/* Examine the prologue of a function which starts at PC. Return
- the first addess past the prologue. If MSIZE is non-NULL, then
- set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
- then set *RSIZE to the register stack frame size (not including
- incoming arguments and the return address & frame pointer stored
- with them). If no prologue is found, *RSIZE is set to zero.
- If no prologue is found, or a prologue which doesn't involve
- allocating a memory stack frame, then set *MSIZE to zero.
-
- Note that both msize and rsize are in bytes. This is not consistent
- with the _User's Manual_ with respect to rsize, but it is much more
- convenient.
-
- If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
- frame pointer is being used. */
-
-CORE_ADDR
-examine_prologue (CORE_ADDR pc, unsigned *rsize, unsigned *msize, int *mfp_used)
-{
- long insn;
- CORE_ADDR p = pc;
- struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
- struct prologue_info *mi = 0;
-
- if (msymbol != NULL)
- mi = (struct prologue_info *) msymbol->info;
-
- if (mi != 0)
- {
- int valid = 1;
- if (rsize != NULL)
- {
- *rsize = mi->rsize;
- valid &= mi->rsize_valid;
- }
- if (msize != NULL)
- {
- *msize = mi->msize;
- valid &= mi->msize_valid;
- }
- if (mfp_used != NULL)
- {
- *mfp_used = mi->mfp_used;
- valid &= mi->mfp_valid;
- }
- if (valid)
- return mi->pc;
- }
-
- if (rsize != NULL)
- *rsize = 0;
- if (msize != NULL)
- *msize = 0;
- if (mfp_used != NULL)
- *mfp_used = 0;
-
- /* Prologue must start with subtracting a constant from gr1.
- Normally this is sub gr1,gr1,<rsize * 4>. */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) != 0x25010100)
- {
- /* If the frame is large, instead of a single instruction it
- might be a pair of instructions:
- const <reg>, <rsize * 4>
- sub gr1,gr1,<reg>
- */
- int reg;
- /* Possible value for rsize. */
- unsigned int rsize0;
-
- if ((insn & 0xff000000) != 0x03000000)
- {
- p = pc;
- goto done;
- }
- reg = (insn >> 8) & 0xff;
- rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
- p += 4;
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) != 0x24010100
- || (insn & 0xff) != reg)
- {
- p = pc;
- goto done;
- }
- if (rsize != NULL)
- *rsize = rsize0;
- }
- else
- {
- if (rsize != NULL)
- *rsize = (insn & 0xff);
- }
- p += 4;
-
- /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
- * We don't check the vector number to allow for kernel debugging. The
- * kernel will use a different trap number.
- * If this insn is missing, we just keep going; Metaware R2.3u compiler
- * generates prologue that intermixes initializations and puts the asgeu
- * way down.
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
- {
- p += 4;
- }
-
- /* Next instruction usually sets the frame pointer (lr1) by adding
- <size * 4> from gr1. However, this can (and high C does) be
- deferred until anytime before the first function call. So it is
- OK if we don't see anything which sets lr1.
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant. */
-
- /* Normally this is just add lr1,gr1,<size * 4>. */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) == 0x15810100)
- p += 4;
- else
- {
- /* However, for large frames it can be
- const <reg>, <size *4>
- add lr1,gr1,<reg>
- */
- int reg;
- CORE_ADDR q;
-
- if ((insn & 0xff000000) == 0x03000000)
- {
- reg = (insn >> 8) & 0xff;
- q = p + 4;
- insn = read_memory_integer (q, 4);
- if ((insn & 0xffffff00) == 0x14810100
- && (insn & 0xff) == reg)
- p = q;
- }
- }
-
- /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
- frame pointer is in use. We just check for add lr<anything>,msp,0;
- we don't check this rsize against the first instruction, and
- we don't check that the trace-back tag indicates a memory frame pointer
- is in use.
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant.
-
- The recommended instruction is actually "sll lr<whatever>,msp,0".
- We check for that, too. Originally Jim Kingdon's code seemed
- to be looking for a "sub" instruction here, but the mask was set
- up to lose all the time. */
- insn = read_memory_integer (p, 4);
- if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */
- || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */
- {
- p += 4;
- if (mfp_used != NULL)
- *mfp_used = 1;
- }
-
- /* Next comes a subtraction from msp to allocate a memory frame,
- but only if a memory frame is
- being used. We don't check msize against the trace-back tag.
-
- To allow for alternate register sets (gcc -mkernel-registers) the msp
- register number is a compile time constant.
-
- Normally this is just
- sub msp,msp,<msize>
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xffffff00) ==
- (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
- {
- p += 4;
- if (msize != NULL)
- *msize = insn & 0xff;
- }
- else
- {
- /* For large frames, instead of a single instruction it might
- be
-
- const <reg>, <msize>
- consth <reg>, <msize> ; optional
- sub msp,msp,<reg>
- */
- int reg;
- unsigned msize0;
- CORE_ADDR q = p;
-
- if ((insn & 0xff000000) == 0x03000000)
- {
- reg = (insn >> 8) & 0xff;
- msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
- q += 4;
- insn = read_memory_integer (q, 4);
- /* Check for consth. */
- if ((insn & 0xff000000) == 0x02000000
- && (insn & 0x0000ff00) == reg)
- {
- msize0 |= (insn << 8) & 0xff000000;
- msize0 |= (insn << 16) & 0x00ff0000;
- q += 4;
- insn = read_memory_integer (q, 4);
- }
- /* Check for sub msp,msp,<reg>. */
- if ((insn & 0xffffff00) ==
- (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
- && (insn & 0xff) == reg)
- {
- p = q + 4;
- if (msize != NULL)
- *msize = msize0;
- }
- }
- }
-
- /* Next instruction might be asgeu V_SPILL,gr1,rab.
- * We don't check the vector number to allow for kernel debugging. The
- * kernel will use a different trap number.
- * Metaware R2.3u compiler
- * generates prologue that intermixes initializations and puts the asgeu
- * way down after everything else.
- */
- insn = read_memory_integer (p, 4);
- if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
- {
- p += 4;
- }
-
-done:
- if (msymbol != NULL)
- {
- if (mi == 0)
- {
- /* Add a new cache entry. */
- mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
- msymbol->info = (char *) mi;
- mi->rsize_valid = 0;
- mi->msize_valid = 0;
- mi->mfp_valid = 0;
- }
- /* else, cache entry exists, but info is incomplete. */
- mi->pc = p;
- if (rsize != NULL)
- {
- mi->rsize = *rsize;
- mi->rsize_valid = 1;
- }
- if (msize != NULL)
- {
- mi->msize = *msize;
- mi->msize_valid = 1;
- }
- if (mfp_used != NULL)
- {
- mi->mfp_used = *mfp_used;
- mi->mfp_valid = 1;
- }
- }
- return p;
-}
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code. */
-
-CORE_ADDR
-a29k_skip_prologue (CORE_ADDR pc)
-{
- return examine_prologue (pc, NULL, NULL, NULL);
-}
-
-/*
- * Examine the one or two word tag at the beginning of a function.
- * The tag word is expect to be at 'p', if it is not there, we fail
- * by returning 0. The documentation for the tag word was taken from
- * page 7-15 of the 29050 User's Manual. We are assuming that the
- * m bit is in bit 22 of the tag word, which seems to be the agreed upon
- * convention today (1/15/92).
- * msize is return in bytes.
- */
-
-static int /* 0/1 - failure/success of finding the tag word */
-examine_tag (CORE_ADDR p, int *is_trans, int *argcount, unsigned *msize,
- int *mfp_used)
-{
- unsigned int tag1, tag2;
-
- tag1 = read_memory_integer (p, 4);
- if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
- return 0;
- if (tag1 & (1 << 23)) /* A two word tag */
- {
- tag2 = read_memory_integer (p - 4, 4);
- if (msize)
- *msize = tag2 * 2;
- }
- else
- /* A one word tag */
- {
- if (msize)
- *msize = tag1 & 0x7ff;
- }
- if (is_trans)
- *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
- /* Note that this includes the frame pointer and the return address
- register, so the actual number of registers of arguments is two less.
- argcount can be zero, however, sometimes, for strange assembler
- routines. */
- if (argcount)
- *argcount = (tag1 >> 16) & 0x1f;
- if (mfp_used)
- *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
- return 1;
-}
-
-/* Initialize the frame. In addition to setting "extra" frame info,
- we also set ->frame because we use it in a nonstandard way, and ->pc
- because we need to know it to get the other stuff. See the diagram
- of stacks and the frame cache in tm-a29k.h for more detail. */
-
-static void
-init_frame_info (int innermost_frame, struct frame_info *frame)
-{
- CORE_ADDR p;
- long insn;
- unsigned rsize;
- unsigned msize;
- int mfp_used, trans;
- struct symbol *func;
-
- p = frame->pc;
-
- if (innermost_frame)
- frame->frame = read_register (GR1_REGNUM);
- else
- frame->frame = frame->next->frame + frame->next->rsize;
-
-#if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
- This wont work;
-#else
- if (PC_IN_CALL_DUMMY (p, 0, 0))
-#endif
- {
- frame->rsize = DUMMY_FRAME_RSIZE;
- /* This doesn't matter since we never try to get locals or args
- from a dummy frame. */
- frame->msize = 0;
- /* Dummy frames always use a memory frame pointer. */
- frame->saved_msp =
- read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
- frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
- return;
- }
-
- func = find_pc_function (p);
- if (func != NULL)
- p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
- else
- {
- /* Search backward to find the trace-back tag. However,
- do not trace back beyond the start of the text segment
- (just as a sanity check to avoid going into never-never land). */
-#if 1
- while (p >= text_start
- && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
- p -= 4;
-#else /* 0 */
- char pat[4] =
- {0, 0, 0, 0};
- char mask[4];
- char insn_raw[4];
- store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
- /* Enable this once target_search is enabled and tested. */
- target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
- insn = extract_unsigned_integer (insn_raw, 4);
-#endif /* 0 */
-
- if (p < text_start)
- {
- /* Couldn't find the trace-back tag.
- Something strange is going on. */
- frame->saved_msp = 0;
- frame->rsize = 0;
- frame->msize = 0;
- frame->flags = TRANSPARENT_FRAME;
- return;
- }
- else
- /* Advance to the first word of the function, i.e. the word
- after the trace-back tag. */
- p += 4;
- }
-
- /* We've found the start of the function.
- Try looking for a tag word that indicates whether there is a
- memory frame pointer and what the memory stack allocation is.
- If one doesn't exist, try using a more exhaustive search of
- the prologue. */
-
- if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */
- examine_prologue (p, &rsize, 0, 0);
- else /* No tag try prologue */
- examine_prologue (p, &rsize, &msize, &mfp_used);
-
- frame->rsize = rsize;
- frame->msize = msize;
- frame->flags = 0;
- if (mfp_used)
- frame->flags |= MFP_USED;
- if (trans)
- frame->flags |= TRANSPARENT_FRAME;
- if (innermost_frame)
- {
- frame->saved_msp = read_register (MSP_REGNUM) + msize;
- }
- else
- {
- if (mfp_used)
- frame->saved_msp =
- read_register_stack_integer (frame->frame + rsize - 4, 4);
- else
- frame->saved_msp = frame->next->saved_msp + msize;
- }
-}
-
-void
-init_extra_frame_info (struct frame_info *frame)
-{
- if (frame->next == 0)
- /* Assume innermost frame. May produce strange results for "info frame"
- but there isn't any way to tell the difference. */
- init_frame_info (1, frame);
- else
- {
- /* We're in get_prev_frame.
- Take care of everything in init_frame_pc. */
- ;
- }
-}
-
-void
-init_frame_pc (int fromleaf, struct frame_info *frame)
-{
- frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
- frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
- init_frame_info (fromleaf, frame);
-}
-
-/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
- offsets being relative to the memory stack pointer (high C) or
- saved_msp (gcc). */
-
-CORE_ADDR
-frame_locals_address (struct frame_info *fi)
-{
- if (fi->flags & MFP_USED)
- return fi->saved_msp;
- else
- return fi->saved_msp - fi->msize;
-}
-
-/* Routines for reading the register stack. The caller gets to treat
- the register stack as a uniform stack in memory, from address $gr1
- straight through $rfb and beyond. */
-
-/* Analogous to read_memory except the length is understood to be 4.
- Also, myaddr can be NULL (meaning don't bother to read), and
- if actual_mem_addr is non-NULL, store there the address that it
- was fetched from (or if from a register the offset within
- registers). Set *LVAL to lval_memory or lval_register, depending
- on where it came from. The contents written into MYADDR are in
- target format. */
-void
-read_register_stack (CORE_ADDR memaddr, char *myaddr,
- CORE_ADDR *actual_mem_addr, enum lval_type *lval)
-{
- long rfb = read_register (RFB_REGNUM);
- long rsp = read_register (RSP_REGNUM);
-
- /* If we don't do this 'info register' stops in the middle. */
- if (memaddr >= rstack_high_address)
- {
- /* a bogus value */
- static char val[] =
- {~0, ~0, ~0, ~0};
- /* It's in a local register, but off the end of the stack. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (myaddr != NULL)
- {
- /* Provide bogusness */
- memcpy (myaddr, val, 4);
- }
- supply_register (regnum, val); /* More bogusness */
- if (lval != NULL)
- *lval = lval_register;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = REGISTER_BYTE (regnum);
- }
- /* If it's in the part of the register stack that's in real registers,
- get the value from the registers. If it's anywhere else in memory
- (e.g. in another thread's saved stack), skip this part and get
- it from real live memory. */
- else if (memaddr < rfb && memaddr >= rsp)
- {
- /* It's in a register. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (regnum > LR0_REGNUM + 127)
- error ("Attempt to read register stack out of range.");
- if (myaddr != NULL)
- read_register_gen (regnum, myaddr);
- if (lval != NULL)
- *lval = lval_register;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = REGISTER_BYTE (regnum);
- }
- else
- {
- /* It's in the memory portion of the register stack. */
- if (myaddr != NULL)
- read_memory (memaddr, myaddr, 4);
- if (lval != NULL)
- *lval = lval_memory;
- if (actual_mem_addr != NULL)
- *actual_mem_addr = memaddr;
- }
-}
-
-/* Analogous to read_memory_integer
- except the length is understood to be 4. */
-long
-read_register_stack_integer (CORE_ADDR memaddr, int len)
-{
- char buf[4];
- read_register_stack (memaddr, buf, NULL, NULL);
- return extract_signed_integer (buf, 4);
-}
-
-/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
- at MEMADDR and put the actual address written into in
- *ACTUAL_MEM_ADDR. */
-static void
-write_register_stack (CORE_ADDR memaddr, char *myaddr,
- CORE_ADDR *actual_mem_addr)
-{
- long rfb = read_register (RFB_REGNUM);
- long rsp = read_register (RSP_REGNUM);
- /* If we don't do this 'info register' stops in the middle. */
- if (memaddr >= rstack_high_address)
- {
- /* It's in a register, but off the end of the stack. */
- if (actual_mem_addr != NULL)
- *actual_mem_addr = 0;
- }
- else if (memaddr < rfb)
- {
- /* It's in a register. */
- int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
- if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
- error ("Attempt to read register stack out of range.");
- if (myaddr != NULL)
- write_register (regnum, *(long *) myaddr);
- if (actual_mem_addr != NULL)
- *actual_mem_addr = 0;
- }
- else
- {
- /* It's in the memory portion of the register stack. */
- if (myaddr != NULL)
- write_memory (memaddr, myaddr, 4);
- if (actual_mem_addr != NULL)
- *actual_mem_addr = memaddr;
- }
-}
-
-/* Find register number REGNUM relative to FRAME and put its
- (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
- was optimized out (and thus can't be fetched). If the variable
- was fetched from memory, set *ADDRP to where it was fetched from,
- otherwise it was fetched from a register.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-a29k_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
- struct frame_info *frame, int regnum,
- enum lval_type *lvalp)
-{
- struct frame_info *fi;
- CORE_ADDR addr;
- enum lval_type lval;
-
- if (!target_has_registers)
- error ("No registers.");
-
- /* Probably now redundant with the target_has_registers check. */
- if (frame == 0)
- return;
-
- /* Once something has a register number, it doesn't get optimized out. */
- if (optimized != NULL)
- *optimized = 0;
- if (regnum == RSP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
- }
- if (lvalp != NULL)
- *lvalp = not_lval;
- return;
- }
- else if (regnum == PC_REGNUM && frame->next != NULL)
- {
- if (raw_buffer != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
- }
-
- /* Not sure we have to do this. */
- if (lvalp != NULL)
- *lvalp = not_lval;
-
- return;
- }
- else if (regnum == MSP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- if (frame->next != NULL)
- {
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
- frame->next->saved_msp);
- }
- else
- read_register_gen (MSP_REGNUM, raw_buffer);
- }
- /* The value may have been computed, not fetched. */
- if (lvalp != NULL)
- *lvalp = not_lval;
- return;
- }
- else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
- {
- /* These registers are not saved over procedure calls,
- so just print out the current values. */
- if (raw_buffer != NULL)
- read_register_gen (regnum, raw_buffer);
- if (lvalp != NULL)
- *lvalp = lval_register;
- if (addrp != NULL)
- *addrp = REGISTER_BYTE (regnum);
- return;
- }
-
- addr = frame->frame + (regnum - LR0_REGNUM) * 4;
- if (raw_buffer != NULL)
- read_register_stack (addr, raw_buffer, &addr, &lval);
- if (lvalp != NULL)
- *lvalp = lval;
- if (addrp != NULL)
- *addrp = addr;
-}
-
-
-/* Discard from the stack the innermost frame,
- restoring all saved registers. */
-
-void
-pop_frame (void)
-{
- struct frame_info *frame = get_current_frame ();
- CORE_ADDR rfb = read_register (RFB_REGNUM);
- CORE_ADDR gr1 = frame->frame + frame->rsize;
- CORE_ADDR lr1;
- CORE_ADDR original_lr0;
- int must_fix_lr0 = 0;
- int i;
-
- /* If popping a dummy frame, need to restore registers. */
- if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
- read_register (SP_REGNUM),
- FRAME_FP (frame)))
- {
- int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
- for (i = 0; i < DUMMY_SAVE_SR128; ++i)
- write_register (SR_REGNUM (i + 128), read_register (lrnum++));
- for (i = 0; i < DUMMY_SAVE_SR160; ++i)
- write_register (SR_REGNUM (i + 160), read_register (lrnum++));
- for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
- write_register (RETURN_REGNUM + i, read_register (lrnum++));
- /* Restore the PCs and prepare to restore LR0. */
- write_register (PC_REGNUM, read_register (lrnum++));
- write_register (NPC_REGNUM, read_register (lrnum++));
- write_register (PC2_REGNUM, read_register (lrnum++));
- original_lr0 = read_register (lrnum++);
- must_fix_lr0 = 1;
- }
-
- /* Restore the memory stack pointer. */
- write_register (MSP_REGNUM, frame->saved_msp);
- /* Restore the register stack pointer. */
- write_register (GR1_REGNUM, gr1);
-
- /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
- if (must_fix_lr0)
- write_register (LR0_REGNUM, original_lr0);
-
- /* Check whether we need to fill registers. */
- lr1 = read_register (LR0_REGNUM + 1);
- if (lr1 > rfb)
- {
- /* Fill. */
- int num_bytes = lr1 - rfb;
- int i;
- long word;
-
- write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
- write_register (RFB_REGNUM, lr1);
- for (i = 0; i < num_bytes; i += 4)
- {
- /* Note: word is in host byte order. */
- word = read_memory_integer (rfb + i, 4);
- write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
- }
- }
- flush_cached_frames ();
-}
-
-/* Push an empty stack frame, to record the current PC, etc. */
-
-void
-push_dummy_frame (void)
-{
- long w;
- CORE_ADDR rab, gr1;
- CORE_ADDR msp = read_register (MSP_REGNUM);
- int lrnum, i;
- CORE_ADDR original_lr0;
-
- /* Read original lr0 before changing gr1. This order isn't really needed
- since GDB happens to have a snapshot of all the regs and doesn't toss
- it when gr1 is changed. But it's The Right Thing To Do. */
- original_lr0 = read_register (LR0_REGNUM);
-
- /* Allocate the new frame. */
- gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
- write_register (GR1_REGNUM, gr1);
-
-#ifdef VXWORKS_TARGET
- /* We force re-reading all registers to get the new local registers set
- after gr1 has been modified. This fix is due to the lack of single
- register read/write operation in the RPC interface between VxGDB and
- VxWorks. This really must be changed ! */
-
- vx_read_register (-1);
-
-#endif /* VXWORK_TARGET */
-
- rab = read_register (RAB_REGNUM);
- if (gr1 < rab)
- {
- /* We need to spill registers. */
- int num_bytes = rab - gr1;
- CORE_ADDR rfb = read_register (RFB_REGNUM);
- int i;
- long word;
-
- write_register (RFB_REGNUM, rfb - num_bytes);
- write_register (RAB_REGNUM, gr1);
- for (i = 0; i < num_bytes; i += 4)
- {
- /* Note: word is in target byte order. */
- read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
- write_memory (rfb - num_bytes + i, (char *) &word, 4);
- }
- }
-
- /* There are no arguments in to the dummy frame, so we don't need
- more than rsize plus the return address and lr1. */
- write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
-
- /* Set the memory frame pointer. */
- write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
-
- /* Allocate arg_slop. */
- write_register (MSP_REGNUM, msp - 16 * 4);
-
- /* Save registers. */
- lrnum = LR0_REGNUM + DUMMY_ARG / 4;
- for (i = 0; i < DUMMY_SAVE_SR128; ++i)
- write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
- for (i = 0; i < DUMMY_SAVE_SR160; ++i)
- write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
- for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
- write_register (lrnum++, read_register (RETURN_REGNUM + i));
- /* Save the PCs and LR0. */
- write_register (lrnum++, read_register (PC_REGNUM));
- write_register (lrnum++, read_register (NPC_REGNUM));
- write_register (lrnum++, read_register (PC2_REGNUM));
-
- /* Why are we saving LR0? What would clobber it? (the dummy frame should
- be below it on the register stack, no?). */
- write_register (lrnum++, original_lr0);
-}
-
-
-
-/*
- This routine takes three arguments and makes the cached frames look
- as if these arguments defined a frame on the cache. This allows the
- rest of `info frame' to extract the important arguments without much
- difficulty. Since an individual frame on the 29K is determined by
- three values (FP, PC, and MSP), we really need all three to do a
- good job. */
-
-struct frame_info *
-setup_arbitrary_frame (int argc, CORE_ADDR *argv)
-{
- struct frame_info *frame;
-
- if (argc != 3)
- error ("AMD 29k frame specifications require three arguments: rsp pc msp");
-
- frame = create_new_frame (argv[0], argv[1]);
-
- if (!frame)
- internal_error (__FILE__, __LINE__,
- "create_new_frame returned invalid frame id");
-
- /* Creating a new frame munges the `frame' value from the current
- GR1, so we restore it again here. FIXME, untangle all this
- 29K frame stuff... */
- frame->frame = argv[0];
-
- /* Our MSP is in argv[2]. It'd be intelligent if we could just
- save this value in the FRAME. But the way it's set up (FIXME),
- we must save our caller's MSP. We compute that by adding our
- memory stack frame size to our MSP. */
- frame->saved_msp = argv[2] + frame->msize;
-
- return frame;
-}
-
-int
-gdb_print_insn_a29k (bfd_vma memaddr, disassemble_info *info)
-{
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- return print_insn_big_a29k (memaddr, info);
- else
- return print_insn_little_a29k (memaddr, info);
-}
-
-enum a29k_processor_types processor_type = a29k_unknown;
-
-void
-a29k_get_processor_type (void)
-{
- unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
-
- /* Most of these don't have freeze mode. */
- processor_type = a29k_no_freeze_mode;
-
- switch ((cfg_reg >> 28) & 0xf)
- {
- case 0:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
- break;
- case 1:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
- break;
- case 2:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
- processor_type = a29k_freeze_mode;
- break;
- case 3:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
- break;
- case 4:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
- break;
- case 5:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
- break;
- case 6:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
- break;
- case 7:
- fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
- break;
- default:
- fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
- /* Don't bother to print the revision. */
- return;
- }
- fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
-}
-
-#ifdef GET_LONGJMP_TARGET
-/* Figure out where the longjmp will land. We expect that we have just entered
- longjmp and haven't yet setup the stack frame, so the args are still in the
- output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
- extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
- This routine returns true on success */
-
-int
-get_longjmp_target (CORE_ADDR *pc)
-{
- CORE_ADDR jb_addr;
- char buf[sizeof (CORE_ADDR)];
-
- jb_addr = read_register (LR2_REGNUM);
-
- if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
- sizeof (CORE_ADDR)))
- return 0;
-
- *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
- return 1;
-}
-#endif /* GET_LONGJMP_TARGET */
-
-void
-_initialize_a29k_tdep (void)
-{
- extern CORE_ADDR text_end;
-
- tm_print_insn = gdb_print_insn_a29k;
-
- /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
- add_show_from_set
- (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
- (char *) &rstack_high_address,
- "Set top address in memory of the register stack.\n\
-Attempts to access registers saved above this address will be ignored\n\
-or will produce the value -1.", &setlist),
- &showlist);
-
- /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
- add_show_from_set
- (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
- (char *) &text_end,
- "Set address in memory where small amounts of RAM can be used\n\
-when making function calls into the inferior.", &setlist),
- &showlist);
-}
+/* OBSOLETE /* Target-machine dependent code for the AMD 29000 */
+/* OBSOLETE Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, */
+/* OBSOLETE 2001 */
+/* OBSOLETE Free Software Foundation, Inc. */
+/* OBSOLETE Contributed by Cygnus Support. Written by Jim Kingdon. */
+/* OBSOLETE */
+/* OBSOLETE This file is part of GDB. */
+/* OBSOLETE */
+/* OBSOLETE This program is free software; you can redistribute it and/or modify */
+/* OBSOLETE it under the terms of the GNU General Public License as published by */
+/* OBSOLETE the Free Software Foundation; either version 2 of the License, or */
+/* OBSOLETE (at your option) any later version. */
+/* OBSOLETE */
+/* OBSOLETE This program is distributed in the hope that it will be useful, */
+/* OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of */
+/* OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
+/* OBSOLETE GNU General Public License for more details. */
+/* OBSOLETE */
+/* OBSOLETE You should have received a copy of the GNU General Public License */
+/* OBSOLETE along with this program; if not, write to the Free Software */
+/* OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, */
+/* OBSOLETE Boston, MA 02111-1307, USA. */ */
+/* OBSOLETE */
+/* OBSOLETE #include "defs.h" */
+/* OBSOLETE #include "gdbcore.h" */
+/* OBSOLETE #include "frame.h" */
+/* OBSOLETE #include "value.h" */
+/* OBSOLETE #include "symtab.h" */
+/* OBSOLETE #include "inferior.h" */
+/* OBSOLETE #include "gdbcmd.h" */
+/* OBSOLETE #include "regcache.h" */
+/* OBSOLETE */
+/* OBSOLETE /* If all these bits in an instruction word are zero, it is a "tag word" */
+/* OBSOLETE which precedes a function entry point and gives stack traceback info. */
+/* OBSOLETE This used to be defined as 0xff000000, but that treated 0x00000deb as */
+/* OBSOLETE a tag word, while it is really used as a breakpoint. */ */
+/* OBSOLETE #define TAGWORD_ZERO_MASK 0xff00f800 */
+/* OBSOLETE */
+/* OBSOLETE extern CORE_ADDR text_start; /* FIXME, kludge... */ */
+/* OBSOLETE */
+/* OBSOLETE /* The user-settable top of the register stack in virtual memory. We */
+/* OBSOLETE won't attempt to access any stored registers above this address, if set */
+/* OBSOLETE nonzero. */ */
+/* OBSOLETE */
+/* OBSOLETE static CORE_ADDR rstack_high_address = UINT_MAX; */
+/* OBSOLETE */
+/* OBSOLETE */
+/* OBSOLETE /* Should call_function allocate stack space for a struct return? */ */
+/* OBSOLETE /* On the a29k objects over 16 words require the caller to allocate space. */ */
+/* OBSOLETE int */
+/* OBSOLETE a29k_use_struct_convention (int gcc_p, struct type *type) */
+/* OBSOLETE { */
+/* OBSOLETE return (TYPE_LENGTH (type) > 16 * 4); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE */
+/* OBSOLETE /* Structure to hold cached info about function prologues. */ */
+/* OBSOLETE */
+/* OBSOLETE struct prologue_info */
+/* OBSOLETE { */
+/* OBSOLETE CORE_ADDR pc; /* First addr after fn prologue */ */
+/* OBSOLETE unsigned rsize, msize; /* register stack frame size, mem stack ditto */ */
+/* OBSOLETE unsigned mfp_used:1; /* memory frame pointer used */ */
+/* OBSOLETE unsigned rsize_valid:1; /* Validity bits for the above */ */
+/* OBSOLETE unsigned msize_valid:1; */
+/* OBSOLETE unsigned mfp_valid:1; */
+/* OBSOLETE }; */
+/* OBSOLETE */
+/* OBSOLETE /* Examine the prologue of a function which starts at PC. Return */
+/* OBSOLETE the first addess past the prologue. If MSIZE is non-NULL, then */
+/* OBSOLETE set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, */
+/* OBSOLETE then set *RSIZE to the register stack frame size (not including */
+/* OBSOLETE incoming arguments and the return address & frame pointer stored */
+/* OBSOLETE with them). If no prologue is found, *RSIZE is set to zero. */
+/* OBSOLETE If no prologue is found, or a prologue which doesn't involve */
+/* OBSOLETE allocating a memory stack frame, then set *MSIZE to zero. */
+/* OBSOLETE */
+/* OBSOLETE Note that both msize and rsize are in bytes. This is not consistent */
+/* OBSOLETE with the _User's Manual_ with respect to rsize, but it is much more */
+/* OBSOLETE convenient. */
+/* OBSOLETE */
+/* OBSOLETE If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory */
+/* OBSOLETE frame pointer is being used. */ */
+/* OBSOLETE */
+/* OBSOLETE CORE_ADDR */
+/* OBSOLETE examine_prologue (CORE_ADDR pc, unsigned *rsize, unsigned *msize, int *mfp_used) */
+/* OBSOLETE { */
+/* OBSOLETE long insn; */
+/* OBSOLETE CORE_ADDR p = pc; */
+/* OBSOLETE struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); */
+/* OBSOLETE struct prologue_info *mi = 0; */
+/* OBSOLETE */
+/* OBSOLETE if (msymbol != NULL) */
+/* OBSOLETE mi = (struct prologue_info *) msymbol->info; */
+/* OBSOLETE */
+/* OBSOLETE if (mi != 0) */
+/* OBSOLETE { */
+/* OBSOLETE int valid = 1; */
+/* OBSOLETE if (rsize != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE *rsize = mi->rsize; */
+/* OBSOLETE valid &= mi->rsize_valid; */
+/* OBSOLETE } */
+/* OBSOLETE if (msize != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE *msize = mi->msize; */
+/* OBSOLETE valid &= mi->msize_valid; */
+/* OBSOLETE } */
+/* OBSOLETE if (mfp_used != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE *mfp_used = mi->mfp_used; */
+/* OBSOLETE valid &= mi->mfp_valid; */
+/* OBSOLETE } */
+/* OBSOLETE if (valid) */
+/* OBSOLETE return mi->pc; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE if (rsize != NULL) */
+/* OBSOLETE *rsize = 0; */
+/* OBSOLETE if (msize != NULL) */
+/* OBSOLETE *msize = 0; */
+/* OBSOLETE if (mfp_used != NULL) */
+/* OBSOLETE *mfp_used = 0; */
+/* OBSOLETE */
+/* OBSOLETE /* Prologue must start with subtracting a constant from gr1. */
+/* OBSOLETE Normally this is sub gr1,gr1,<rsize * 4>. */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xffffff00) != 0x25010100) */
+/* OBSOLETE { */
+/* OBSOLETE /* If the frame is large, instead of a single instruction it */
+/* OBSOLETE might be a pair of instructions: */
+/* OBSOLETE const <reg>, <rsize * 4> */
+/* OBSOLETE sub gr1,gr1,<reg> */
+/* OBSOLETE */ */
+/* OBSOLETE int reg; */
+/* OBSOLETE /* Possible value for rsize. */ */
+/* OBSOLETE unsigned int rsize0; */
+/* OBSOLETE */
+/* OBSOLETE if ((insn & 0xff000000) != 0x03000000) */
+/* OBSOLETE { */
+/* OBSOLETE p = pc; */
+/* OBSOLETE goto done; */
+/* OBSOLETE } */
+/* OBSOLETE reg = (insn >> 8) & 0xff; */
+/* OBSOLETE rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); */
+/* OBSOLETE p += 4; */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xffffff00) != 0x24010100 */
+/* OBSOLETE || (insn & 0xff) != reg) */
+/* OBSOLETE { */
+/* OBSOLETE p = pc; */
+/* OBSOLETE goto done; */
+/* OBSOLETE } */
+/* OBSOLETE if (rsize != NULL) */
+/* OBSOLETE *rsize = rsize0; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE if (rsize != NULL) */
+/* OBSOLETE *rsize = (insn & 0xff); */
+/* OBSOLETE } */
+/* OBSOLETE p += 4; */
+/* OBSOLETE */
+/* OBSOLETE /* Next instruction ought to be asgeu V_SPILL,gr1,rab. */
+/* OBSOLETE * We don't check the vector number to allow for kernel debugging. The */
+/* OBSOLETE * kernel will use a different trap number. */
+/* OBSOLETE * If this insn is missing, we just keep going; Metaware R2.3u compiler */
+/* OBSOLETE * generates prologue that intermixes initializations and puts the asgeu */
+/* OBSOLETE * way down. */
+/* OBSOLETE */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM)) */
+/* OBSOLETE { */
+/* OBSOLETE p += 4; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Next instruction usually sets the frame pointer (lr1) by adding */
+/* OBSOLETE <size * 4> from gr1. However, this can (and high C does) be */
+/* OBSOLETE deferred until anytime before the first function call. So it is */
+/* OBSOLETE OK if we don't see anything which sets lr1. */
+/* OBSOLETE To allow for alternate register sets (gcc -mkernel-registers) the msp */
+/* OBSOLETE register number is a compile time constant. */ */
+/* OBSOLETE */
+/* OBSOLETE /* Normally this is just add lr1,gr1,<size * 4>. */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xffffff00) == 0x15810100) */
+/* OBSOLETE p += 4; */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* However, for large frames it can be */
+/* OBSOLETE const <reg>, <size *4> */
+/* OBSOLETE add lr1,gr1,<reg> */
+/* OBSOLETE */ */
+/* OBSOLETE int reg; */
+/* OBSOLETE CORE_ADDR q; */
+/* OBSOLETE */
+/* OBSOLETE if ((insn & 0xff000000) == 0x03000000) */
+/* OBSOLETE { */
+/* OBSOLETE reg = (insn >> 8) & 0xff; */
+/* OBSOLETE q = p + 4; */
+/* OBSOLETE insn = read_memory_integer (q, 4); */
+/* OBSOLETE if ((insn & 0xffffff00) == 0x14810100 */
+/* OBSOLETE && (insn & 0xff) == reg) */
+/* OBSOLETE p = q; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory */
+/* OBSOLETE frame pointer is in use. We just check for add lr<anything>,msp,0; */
+/* OBSOLETE we don't check this rsize against the first instruction, and */
+/* OBSOLETE we don't check that the trace-back tag indicates a memory frame pointer */
+/* OBSOLETE is in use. */
+/* OBSOLETE To allow for alternate register sets (gcc -mkernel-registers) the msp */
+/* OBSOLETE register number is a compile time constant. */
+/* OBSOLETE */
+/* OBSOLETE The recommended instruction is actually "sll lr<whatever>,msp,0". */
+/* OBSOLETE We check for that, too. Originally Jim Kingdon's code seemed */
+/* OBSOLETE to be looking for a "sub" instruction here, but the mask was set */
+/* OBSOLETE up to lose all the time. */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */ */
+/* OBSOLETE || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */ */
+/* OBSOLETE { */
+/* OBSOLETE p += 4; */
+/* OBSOLETE if (mfp_used != NULL) */
+/* OBSOLETE *mfp_used = 1; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Next comes a subtraction from msp to allocate a memory frame, */
+/* OBSOLETE but only if a memory frame is */
+/* OBSOLETE being used. We don't check msize against the trace-back tag. */
+/* OBSOLETE */
+/* OBSOLETE To allow for alternate register sets (gcc -mkernel-registers) the msp */
+/* OBSOLETE register number is a compile time constant. */
+/* OBSOLETE */
+/* OBSOLETE Normally this is just */
+/* OBSOLETE sub msp,msp,<msize> */
+/* OBSOLETE */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xffffff00) == */
+/* OBSOLETE (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))) */
+/* OBSOLETE { */
+/* OBSOLETE p += 4; */
+/* OBSOLETE if (msize != NULL) */
+/* OBSOLETE *msize = insn & 0xff; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* For large frames, instead of a single instruction it might */
+/* OBSOLETE be */
+/* OBSOLETE */
+/* OBSOLETE const <reg>, <msize> */
+/* OBSOLETE consth <reg>, <msize> ; optional */
+/* OBSOLETE sub msp,msp,<reg> */
+/* OBSOLETE */ */
+/* OBSOLETE int reg; */
+/* OBSOLETE unsigned msize0; */
+/* OBSOLETE CORE_ADDR q = p; */
+/* OBSOLETE */
+/* OBSOLETE if ((insn & 0xff000000) == 0x03000000) */
+/* OBSOLETE { */
+/* OBSOLETE reg = (insn >> 8) & 0xff; */
+/* OBSOLETE msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); */
+/* OBSOLETE q += 4; */
+/* OBSOLETE insn = read_memory_integer (q, 4); */
+/* OBSOLETE /* Check for consth. */ */
+/* OBSOLETE if ((insn & 0xff000000) == 0x02000000 */
+/* OBSOLETE && (insn & 0x0000ff00) == reg) */
+/* OBSOLETE { */
+/* OBSOLETE msize0 |= (insn << 8) & 0xff000000; */
+/* OBSOLETE msize0 |= (insn << 16) & 0x00ff0000; */
+/* OBSOLETE q += 4; */
+/* OBSOLETE insn = read_memory_integer (q, 4); */
+/* OBSOLETE } */
+/* OBSOLETE /* Check for sub msp,msp,<reg>. */ */
+/* OBSOLETE if ((insn & 0xffffff00) == */
+/* OBSOLETE (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)) */
+/* OBSOLETE && (insn & 0xff) == reg) */
+/* OBSOLETE { */
+/* OBSOLETE p = q + 4; */
+/* OBSOLETE if (msize != NULL) */
+/* OBSOLETE *msize = msize0; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Next instruction might be asgeu V_SPILL,gr1,rab. */
+/* OBSOLETE * We don't check the vector number to allow for kernel debugging. The */
+/* OBSOLETE * kernel will use a different trap number. */
+/* OBSOLETE * Metaware R2.3u compiler */
+/* OBSOLETE * generates prologue that intermixes initializations and puts the asgeu */
+/* OBSOLETE * way down after everything else. */
+/* OBSOLETE */ */
+/* OBSOLETE insn = read_memory_integer (p, 4); */
+/* OBSOLETE if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM)) */
+/* OBSOLETE { */
+/* OBSOLETE p += 4; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE done: */
+/* OBSOLETE if (msymbol != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE if (mi == 0) */
+/* OBSOLETE { */
+/* OBSOLETE /* Add a new cache entry. */ */
+/* OBSOLETE mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info)); */
+/* OBSOLETE msymbol->info = (char *) mi; */
+/* OBSOLETE mi->rsize_valid = 0; */
+/* OBSOLETE mi->msize_valid = 0; */
+/* OBSOLETE mi->mfp_valid = 0; */
+/* OBSOLETE } */
+/* OBSOLETE /* else, cache entry exists, but info is incomplete. */ */
+/* OBSOLETE mi->pc = p; */
+/* OBSOLETE if (rsize != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE mi->rsize = *rsize; */
+/* OBSOLETE mi->rsize_valid = 1; */
+/* OBSOLETE } */
+/* OBSOLETE if (msize != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE mi->msize = *msize; */
+/* OBSOLETE mi->msize_valid = 1; */
+/* OBSOLETE } */
+/* OBSOLETE if (mfp_used != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE mi->mfp_used = *mfp_used; */
+/* OBSOLETE mi->mfp_valid = 1; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE return p; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Advance PC across any function entry prologue instructions */
+/* OBSOLETE to reach some "real" code. */ */
+/* OBSOLETE */
+/* OBSOLETE CORE_ADDR */
+/* OBSOLETE a29k_skip_prologue (CORE_ADDR pc) */
+/* OBSOLETE { */
+/* OBSOLETE return examine_prologue (pc, NULL, NULL, NULL); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* */
+/* OBSOLETE * Examine the one or two word tag at the beginning of a function. */
+/* OBSOLETE * The tag word is expect to be at 'p', if it is not there, we fail */
+/* OBSOLETE * by returning 0. The documentation for the tag word was taken from */
+/* OBSOLETE * page 7-15 of the 29050 User's Manual. We are assuming that the */
+/* OBSOLETE * m bit is in bit 22 of the tag word, which seems to be the agreed upon */
+/* OBSOLETE * convention today (1/15/92). */
+/* OBSOLETE * msize is return in bytes. */
+/* OBSOLETE */ */
+/* OBSOLETE */
+/* OBSOLETE static int /* 0/1 - failure/success of finding the tag word */ */
+/* OBSOLETE examine_tag (CORE_ADDR p, int *is_trans, int *argcount, unsigned *msize, */
+/* OBSOLETE int *mfp_used) */
+/* OBSOLETE { */
+/* OBSOLETE unsigned int tag1, tag2; */
+/* OBSOLETE */
+/* OBSOLETE tag1 = read_memory_integer (p, 4); */
+/* OBSOLETE if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */ */
+/* OBSOLETE return 0; */
+/* OBSOLETE if (tag1 & (1 << 23)) /* A two word tag */ */
+/* OBSOLETE { */
+/* OBSOLETE tag2 = read_memory_integer (p - 4, 4); */
+/* OBSOLETE if (msize) */
+/* OBSOLETE *msize = tag2 * 2; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE /* A one word tag */ */
+/* OBSOLETE { */
+/* OBSOLETE if (msize) */
+/* OBSOLETE *msize = tag1 & 0x7ff; */
+/* OBSOLETE } */
+/* OBSOLETE if (is_trans) */
+/* OBSOLETE *is_trans = ((tag1 & (1 << 21)) ? 1 : 0); */
+/* OBSOLETE /* Note that this includes the frame pointer and the return address */
+/* OBSOLETE register, so the actual number of registers of arguments is two less. */
+/* OBSOLETE argcount can be zero, however, sometimes, for strange assembler */
+/* OBSOLETE routines. */ */
+/* OBSOLETE if (argcount) */
+/* OBSOLETE *argcount = (tag1 >> 16) & 0x1f; */
+/* OBSOLETE if (mfp_used) */
+/* OBSOLETE *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0); */
+/* OBSOLETE return 1; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Initialize the frame. In addition to setting "extra" frame info, */
+/* OBSOLETE we also set ->frame because we use it in a nonstandard way, and ->pc */
+/* OBSOLETE because we need to know it to get the other stuff. See the diagram */
+/* OBSOLETE of stacks and the frame cache in tm-a29k.h for more detail. */ */
+/* OBSOLETE */
+/* OBSOLETE static void */
+/* OBSOLETE init_frame_info (int innermost_frame, struct frame_info *frame) */
+/* OBSOLETE { */
+/* OBSOLETE CORE_ADDR p; */
+/* OBSOLETE long insn; */
+/* OBSOLETE unsigned rsize; */
+/* OBSOLETE unsigned msize; */
+/* OBSOLETE int mfp_used, trans; */
+/* OBSOLETE struct symbol *func; */
+/* OBSOLETE */
+/* OBSOLETE p = frame->pc; */
+/* OBSOLETE */
+/* OBSOLETE if (innermost_frame) */
+/* OBSOLETE frame->frame = read_register (GR1_REGNUM); */
+/* OBSOLETE else */
+/* OBSOLETE frame->frame = frame->next->frame + frame->next->rsize; */
+/* OBSOLETE */
+/* OBSOLETE #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */ */
+/* OBSOLETE This wont work; */
+/* OBSOLETE #else */
+/* OBSOLETE if (PC_IN_CALL_DUMMY (p, 0, 0)) */
+/* OBSOLETE #endif */
+/* OBSOLETE { */
+/* OBSOLETE frame->rsize = DUMMY_FRAME_RSIZE; */
+/* OBSOLETE /* This doesn't matter since we never try to get locals or args */
+/* OBSOLETE from a dummy frame. */ */
+/* OBSOLETE frame->msize = 0; */
+/* OBSOLETE /* Dummy frames always use a memory frame pointer. */ */
+/* OBSOLETE frame->saved_msp = */
+/* OBSOLETE read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4); */
+/* OBSOLETE frame->flags |= (TRANSPARENT_FRAME | MFP_USED); */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE func = find_pc_function (p); */
+/* OBSOLETE if (func != NULL) */
+/* OBSOLETE p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* Search backward to find the trace-back tag. However, */
+/* OBSOLETE do not trace back beyond the start of the text segment */
+/* OBSOLETE (just as a sanity check to avoid going into never-never land). */ */
+/* OBSOLETE #if 1 */
+/* OBSOLETE while (p >= text_start */
+/* OBSOLETE && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0) */
+/* OBSOLETE p -= 4; */
+/* OBSOLETE #else /* 0 */ */
+/* OBSOLETE char pat[4] = */
+/* OBSOLETE {0, 0, 0, 0}; */
+/* OBSOLETE char mask[4]; */
+/* OBSOLETE char insn_raw[4]; */
+/* OBSOLETE store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK); */
+/* OBSOLETE /* Enable this once target_search is enabled and tested. */ */
+/* OBSOLETE target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw); */
+/* OBSOLETE insn = extract_unsigned_integer (insn_raw, 4); */
+/* OBSOLETE #endif /* 0 */ */
+/* OBSOLETE */
+/* OBSOLETE if (p < text_start) */
+/* OBSOLETE { */
+/* OBSOLETE /* Couldn't find the trace-back tag. */
+/* OBSOLETE Something strange is going on. */ */
+/* OBSOLETE frame->saved_msp = 0; */
+/* OBSOLETE frame->rsize = 0; */
+/* OBSOLETE frame->msize = 0; */
+/* OBSOLETE frame->flags = TRANSPARENT_FRAME; */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE /* Advance to the first word of the function, i.e. the word */
+/* OBSOLETE after the trace-back tag. */ */
+/* OBSOLETE p += 4; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* We've found the start of the function. */
+/* OBSOLETE Try looking for a tag word that indicates whether there is a */
+/* OBSOLETE memory frame pointer and what the memory stack allocation is. */
+/* OBSOLETE If one doesn't exist, try using a more exhaustive search of */
+/* OBSOLETE the prologue. */ */
+/* OBSOLETE */
+/* OBSOLETE if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */ */
+/* OBSOLETE examine_prologue (p, &rsize, 0, 0); */
+/* OBSOLETE else /* No tag try prologue */ */
+/* OBSOLETE examine_prologue (p, &rsize, &msize, &mfp_used); */
+/* OBSOLETE */
+/* OBSOLETE frame->rsize = rsize; */
+/* OBSOLETE frame->msize = msize; */
+/* OBSOLETE frame->flags = 0; */
+/* OBSOLETE if (mfp_used) */
+/* OBSOLETE frame->flags |= MFP_USED; */
+/* OBSOLETE if (trans) */
+/* OBSOLETE frame->flags |= TRANSPARENT_FRAME; */
+/* OBSOLETE if (innermost_frame) */
+/* OBSOLETE { */
+/* OBSOLETE frame->saved_msp = read_register (MSP_REGNUM) + msize; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE if (mfp_used) */
+/* OBSOLETE frame->saved_msp = */
+/* OBSOLETE read_register_stack_integer (frame->frame + rsize - 4, 4); */
+/* OBSOLETE else */
+/* OBSOLETE frame->saved_msp = frame->next->saved_msp + msize; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE init_extra_frame_info (struct frame_info *frame) */
+/* OBSOLETE { */
+/* OBSOLETE if (frame->next == 0) */
+/* OBSOLETE /* Assume innermost frame. May produce strange results for "info frame" */
+/* OBSOLETE but there isn't any way to tell the difference. */ */
+/* OBSOLETE init_frame_info (1, frame); */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* We're in get_prev_frame. */
+/* OBSOLETE Take care of everything in init_frame_pc. */ */
+/* OBSOLETE ; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE init_frame_pc (int fromleaf, struct frame_info *frame) */
+/* OBSOLETE { */
+/* OBSOLETE frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) : */
+/* OBSOLETE frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ()); */
+/* OBSOLETE init_frame_info (fromleaf, frame); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their */
+/* OBSOLETE offsets being relative to the memory stack pointer (high C) or */
+/* OBSOLETE saved_msp (gcc). */ */
+/* OBSOLETE */
+/* OBSOLETE CORE_ADDR */
+/* OBSOLETE frame_locals_address (struct frame_info *fi) */
+/* OBSOLETE { */
+/* OBSOLETE if (fi->flags & MFP_USED) */
+/* OBSOLETE return fi->saved_msp; */
+/* OBSOLETE else */
+/* OBSOLETE return fi->saved_msp - fi->msize; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Routines for reading the register stack. The caller gets to treat */
+/* OBSOLETE the register stack as a uniform stack in memory, from address $gr1 */
+/* OBSOLETE straight through $rfb and beyond. */ */
+/* OBSOLETE */
+/* OBSOLETE /* Analogous to read_memory except the length is understood to be 4. */
+/* OBSOLETE Also, myaddr can be NULL (meaning don't bother to read), and */
+/* OBSOLETE if actual_mem_addr is non-NULL, store there the address that it */
+/* OBSOLETE was fetched from (or if from a register the offset within */
+/* OBSOLETE registers). Set *LVAL to lval_memory or lval_register, depending */
+/* OBSOLETE on where it came from. The contents written into MYADDR are in */
+/* OBSOLETE target format. */ */
+/* OBSOLETE void */
+/* OBSOLETE read_register_stack (CORE_ADDR memaddr, char *myaddr, */
+/* OBSOLETE CORE_ADDR *actual_mem_addr, enum lval_type *lval) */
+/* OBSOLETE { */
+/* OBSOLETE long rfb = read_register (RFB_REGNUM); */
+/* OBSOLETE long rsp = read_register (RSP_REGNUM); */
+/* OBSOLETE */
+/* OBSOLETE /* If we don't do this 'info register' stops in the middle. */ */
+/* OBSOLETE if (memaddr >= rstack_high_address) */
+/* OBSOLETE { */
+/* OBSOLETE /* a bogus value */ */
+/* OBSOLETE static char val[] = */
+/* OBSOLETE {~0, ~0, ~0, ~0}; */
+/* OBSOLETE /* It's in a local register, but off the end of the stack. */ */
+/* OBSOLETE int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; */
+/* OBSOLETE if (myaddr != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE /* Provide bogusness */ */
+/* OBSOLETE memcpy (myaddr, val, 4); */
+/* OBSOLETE } */
+/* OBSOLETE supply_register (regnum, val); /* More bogusness */ */
+/* OBSOLETE if (lval != NULL) */
+/* OBSOLETE *lval = lval_register; */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = REGISTER_BYTE (regnum); */
+/* OBSOLETE } */
+/* OBSOLETE /* If it's in the part of the register stack that's in real registers, */
+/* OBSOLETE get the value from the registers. If it's anywhere else in memory */
+/* OBSOLETE (e.g. in another thread's saved stack), skip this part and get */
+/* OBSOLETE it from real live memory. */ */
+/* OBSOLETE else if (memaddr < rfb && memaddr >= rsp) */
+/* OBSOLETE { */
+/* OBSOLETE /* It's in a register. */ */
+/* OBSOLETE int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; */
+/* OBSOLETE if (regnum > LR0_REGNUM + 127) */
+/* OBSOLETE error ("Attempt to read register stack out of range."); */
+/* OBSOLETE if (myaddr != NULL) */
+/* OBSOLETE read_register_gen (regnum, myaddr); */
+/* OBSOLETE if (lval != NULL) */
+/* OBSOLETE *lval = lval_register; */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = REGISTER_BYTE (regnum); */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* It's in the memory portion of the register stack. */ */
+/* OBSOLETE if (myaddr != NULL) */
+/* OBSOLETE read_memory (memaddr, myaddr, 4); */
+/* OBSOLETE if (lval != NULL) */
+/* OBSOLETE *lval = lval_memory; */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = memaddr; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Analogous to read_memory_integer */
+/* OBSOLETE except the length is understood to be 4. */ */
+/* OBSOLETE long */
+/* OBSOLETE read_register_stack_integer (CORE_ADDR memaddr, int len) */
+/* OBSOLETE { */
+/* OBSOLETE char buf[4]; */
+/* OBSOLETE read_register_stack (memaddr, buf, NULL, NULL); */
+/* OBSOLETE return extract_signed_integer (buf, 4); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Copy 4 bytes from GDB memory at MYADDR into inferior memory */
+/* OBSOLETE at MEMADDR and put the actual address written into in */
+/* OBSOLETE *ACTUAL_MEM_ADDR. */ */
+/* OBSOLETE static void */
+/* OBSOLETE write_register_stack (CORE_ADDR memaddr, char *myaddr, */
+/* OBSOLETE CORE_ADDR *actual_mem_addr) */
+/* OBSOLETE { */
+/* OBSOLETE long rfb = read_register (RFB_REGNUM); */
+/* OBSOLETE long rsp = read_register (RSP_REGNUM); */
+/* OBSOLETE /* If we don't do this 'info register' stops in the middle. */ */
+/* OBSOLETE if (memaddr >= rstack_high_address) */
+/* OBSOLETE { */
+/* OBSOLETE /* It's in a register, but off the end of the stack. */ */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = 0; */
+/* OBSOLETE } */
+/* OBSOLETE else if (memaddr < rfb) */
+/* OBSOLETE { */
+/* OBSOLETE /* It's in a register. */ */
+/* OBSOLETE int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; */
+/* OBSOLETE if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) */
+/* OBSOLETE error ("Attempt to read register stack out of range."); */
+/* OBSOLETE if (myaddr != NULL) */
+/* OBSOLETE write_register (regnum, *(long *) myaddr); */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = 0; */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE { */
+/* OBSOLETE /* It's in the memory portion of the register stack. */ */
+/* OBSOLETE if (myaddr != NULL) */
+/* OBSOLETE write_memory (memaddr, myaddr, 4); */
+/* OBSOLETE if (actual_mem_addr != NULL) */
+/* OBSOLETE *actual_mem_addr = memaddr; */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Find register number REGNUM relative to FRAME and put its */
+/* OBSOLETE (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable */
+/* OBSOLETE was optimized out (and thus can't be fetched). If the variable */
+/* OBSOLETE was fetched from memory, set *ADDRP to where it was fetched from, */
+/* OBSOLETE otherwise it was fetched from a register. */
+/* OBSOLETE */
+/* OBSOLETE The argument RAW_BUFFER must point to aligned memory. */ */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE a29k_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, */
+/* OBSOLETE struct frame_info *frame, int regnum, */
+/* OBSOLETE enum lval_type *lvalp) */
+/* OBSOLETE { */
+/* OBSOLETE struct frame_info *fi; */
+/* OBSOLETE CORE_ADDR addr; */
+/* OBSOLETE enum lval_type lval; */
+/* OBSOLETE */
+/* OBSOLETE if (!target_has_registers) */
+/* OBSOLETE error ("No registers."); */
+/* OBSOLETE */
+/* OBSOLETE /* Probably now redundant with the target_has_registers check. */ */
+/* OBSOLETE if (frame == 0) */
+/* OBSOLETE return; */
+/* OBSOLETE */
+/* OBSOLETE /* Once something has a register number, it doesn't get optimized out. */ */
+/* OBSOLETE if (optimized != NULL) */
+/* OBSOLETE *optimized = 0; */
+/* OBSOLETE if (regnum == RSP_REGNUM) */
+/* OBSOLETE { */
+/* OBSOLETE if (raw_buffer != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame); */
+/* OBSOLETE } */
+/* OBSOLETE if (lvalp != NULL) */
+/* OBSOLETE *lvalp = not_lval; */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE else if (regnum == PC_REGNUM && frame->next != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE if (raw_buffer != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Not sure we have to do this. */ */
+/* OBSOLETE if (lvalp != NULL) */
+/* OBSOLETE *lvalp = not_lval; */
+/* OBSOLETE */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE else if (regnum == MSP_REGNUM) */
+/* OBSOLETE { */
+/* OBSOLETE if (raw_buffer != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE if (frame->next != NULL) */
+/* OBSOLETE { */
+/* OBSOLETE store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), */
+/* OBSOLETE frame->next->saved_msp); */
+/* OBSOLETE } */
+/* OBSOLETE else */
+/* OBSOLETE read_register_gen (MSP_REGNUM, raw_buffer); */
+/* OBSOLETE } */
+/* OBSOLETE /* The value may have been computed, not fetched. */ */
+/* OBSOLETE if (lvalp != NULL) */
+/* OBSOLETE *lvalp = not_lval; */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) */
+/* OBSOLETE { */
+/* OBSOLETE /* These registers are not saved over procedure calls, */
+/* OBSOLETE so just print out the current values. */ */
+/* OBSOLETE if (raw_buffer != NULL) */
+/* OBSOLETE read_register_gen (regnum, raw_buffer); */
+/* OBSOLETE if (lvalp != NULL) */
+/* OBSOLETE *lvalp = lval_register; */
+/* OBSOLETE if (addrp != NULL) */
+/* OBSOLETE *addrp = REGISTER_BYTE (regnum); */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE addr = frame->frame + (regnum - LR0_REGNUM) * 4; */
+/* OBSOLETE if (raw_buffer != NULL) */
+/* OBSOLETE read_register_stack (addr, raw_buffer, &addr, &lval); */
+/* OBSOLETE if (lvalp != NULL) */
+/* OBSOLETE *lvalp = lval; */
+/* OBSOLETE if (addrp != NULL) */
+/* OBSOLETE *addrp = addr; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE */
+/* OBSOLETE /* Discard from the stack the innermost frame, */
+/* OBSOLETE restoring all saved registers. */ */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE pop_frame (void) */
+/* OBSOLETE { */
+/* OBSOLETE struct frame_info *frame = get_current_frame (); */
+/* OBSOLETE CORE_ADDR rfb = read_register (RFB_REGNUM); */
+/* OBSOLETE CORE_ADDR gr1 = frame->frame + frame->rsize; */
+/* OBSOLETE CORE_ADDR lr1; */
+/* OBSOLETE CORE_ADDR original_lr0; */
+/* OBSOLETE int must_fix_lr0 = 0; */
+/* OBSOLETE int i; */
+/* OBSOLETE */
+/* OBSOLETE /* If popping a dummy frame, need to restore registers. */ */
+/* OBSOLETE if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), */
+/* OBSOLETE read_register (SP_REGNUM), */
+/* OBSOLETE FRAME_FP (frame))) */
+/* OBSOLETE { */
+/* OBSOLETE int lrnum = LR0_REGNUM + DUMMY_ARG / 4; */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_SR128; ++i) */
+/* OBSOLETE write_register (SR_REGNUM (i + 128), read_register (lrnum++)); */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_SR160; ++i) */
+/* OBSOLETE write_register (SR_REGNUM (i + 160), read_register (lrnum++)); */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_GREGS; ++i) */
+/* OBSOLETE write_register (RETURN_REGNUM + i, read_register (lrnum++)); */
+/* OBSOLETE /* Restore the PCs and prepare to restore LR0. */ */
+/* OBSOLETE write_register (PC_REGNUM, read_register (lrnum++)); */
+/* OBSOLETE write_register (NPC_REGNUM, read_register (lrnum++)); */
+/* OBSOLETE write_register (PC2_REGNUM, read_register (lrnum++)); */
+/* OBSOLETE original_lr0 = read_register (lrnum++); */
+/* OBSOLETE must_fix_lr0 = 1; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Restore the memory stack pointer. */ */
+/* OBSOLETE write_register (MSP_REGNUM, frame->saved_msp); */
+/* OBSOLETE /* Restore the register stack pointer. */ */
+/* OBSOLETE write_register (GR1_REGNUM, gr1); */
+/* OBSOLETE */
+/* OBSOLETE /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */ */
+/* OBSOLETE if (must_fix_lr0) */
+/* OBSOLETE write_register (LR0_REGNUM, original_lr0); */
+/* OBSOLETE */
+/* OBSOLETE /* Check whether we need to fill registers. */ */
+/* OBSOLETE lr1 = read_register (LR0_REGNUM + 1); */
+/* OBSOLETE if (lr1 > rfb) */
+/* OBSOLETE { */
+/* OBSOLETE /* Fill. */ */
+/* OBSOLETE int num_bytes = lr1 - rfb; */
+/* OBSOLETE int i; */
+/* OBSOLETE long word; */
+/* OBSOLETE */
+/* OBSOLETE write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); */
+/* OBSOLETE write_register (RFB_REGNUM, lr1); */
+/* OBSOLETE for (i = 0; i < num_bytes; i += 4) */
+/* OBSOLETE { */
+/* OBSOLETE /* Note: word is in host byte order. */ */
+/* OBSOLETE word = read_memory_integer (rfb + i, 4); */
+/* OBSOLETE write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE flush_cached_frames (); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* Push an empty stack frame, to record the current PC, etc. */ */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE push_dummy_frame (void) */
+/* OBSOLETE { */
+/* OBSOLETE long w; */
+/* OBSOLETE CORE_ADDR rab, gr1; */
+/* OBSOLETE CORE_ADDR msp = read_register (MSP_REGNUM); */
+/* OBSOLETE int lrnum, i; */
+/* OBSOLETE CORE_ADDR original_lr0; */
+/* OBSOLETE */
+/* OBSOLETE /* Read original lr0 before changing gr1. This order isn't really needed */
+/* OBSOLETE since GDB happens to have a snapshot of all the regs and doesn't toss */
+/* OBSOLETE it when gr1 is changed. But it's The Right Thing To Do. */ */
+/* OBSOLETE original_lr0 = read_register (LR0_REGNUM); */
+/* OBSOLETE */
+/* OBSOLETE /* Allocate the new frame. */ */
+/* OBSOLETE gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; */
+/* OBSOLETE write_register (GR1_REGNUM, gr1); */
+/* OBSOLETE */
+/* OBSOLETE #ifdef VXWORKS_TARGET */
+/* OBSOLETE /* We force re-reading all registers to get the new local registers set */
+/* OBSOLETE after gr1 has been modified. This fix is due to the lack of single */
+/* OBSOLETE register read/write operation in the RPC interface between VxGDB and */
+/* OBSOLETE VxWorks. This really must be changed ! */ */
+/* OBSOLETE */
+/* OBSOLETE vx_read_register (-1); */
+/* OBSOLETE */
+/* OBSOLETE #endif /* VXWORK_TARGET */ */
+/* OBSOLETE */
+/* OBSOLETE rab = read_register (RAB_REGNUM); */
+/* OBSOLETE if (gr1 < rab) */
+/* OBSOLETE { */
+/* OBSOLETE /* We need to spill registers. */ */
+/* OBSOLETE int num_bytes = rab - gr1; */
+/* OBSOLETE CORE_ADDR rfb = read_register (RFB_REGNUM); */
+/* OBSOLETE int i; */
+/* OBSOLETE long word; */
+/* OBSOLETE */
+/* OBSOLETE write_register (RFB_REGNUM, rfb - num_bytes); */
+/* OBSOLETE write_register (RAB_REGNUM, gr1); */
+/* OBSOLETE for (i = 0; i < num_bytes; i += 4) */
+/* OBSOLETE { */
+/* OBSOLETE /* Note: word is in target byte order. */ */
+/* OBSOLETE read_register_gen (LR0_REGNUM + i / 4, (char *) &word); */
+/* OBSOLETE write_memory (rfb - num_bytes + i, (char *) &word, 4); */
+/* OBSOLETE } */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE /* There are no arguments in to the dummy frame, so we don't need */
+/* OBSOLETE more than rsize plus the return address and lr1. */ */
+/* OBSOLETE write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); */
+/* OBSOLETE */
+/* OBSOLETE /* Set the memory frame pointer. */ */
+/* OBSOLETE write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); */
+/* OBSOLETE */
+/* OBSOLETE /* Allocate arg_slop. */ */
+/* OBSOLETE write_register (MSP_REGNUM, msp - 16 * 4); */
+/* OBSOLETE */
+/* OBSOLETE /* Save registers. */ */
+/* OBSOLETE lrnum = LR0_REGNUM + DUMMY_ARG / 4; */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_SR128; ++i) */
+/* OBSOLETE write_register (lrnum++, read_register (SR_REGNUM (i + 128))); */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_SR160; ++i) */
+/* OBSOLETE write_register (lrnum++, read_register (SR_REGNUM (i + 160))); */
+/* OBSOLETE for (i = 0; i < DUMMY_SAVE_GREGS; ++i) */
+/* OBSOLETE write_register (lrnum++, read_register (RETURN_REGNUM + i)); */
+/* OBSOLETE /* Save the PCs and LR0. */ */
+/* OBSOLETE write_register (lrnum++, read_register (PC_REGNUM)); */
+/* OBSOLETE write_register (lrnum++, read_register (NPC_REGNUM)); */
+/* OBSOLETE write_register (lrnum++, read_register (PC2_REGNUM)); */
+/* OBSOLETE */
+/* OBSOLETE /* Why are we saving LR0? What would clobber it? (the dummy frame should */
+/* OBSOLETE be below it on the register stack, no?). */ */
+/* OBSOLETE write_register (lrnum++, original_lr0); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE */
+/* OBSOLETE */
+/* OBSOLETE /* */
+/* OBSOLETE This routine takes three arguments and makes the cached frames look */
+/* OBSOLETE as if these arguments defined a frame on the cache. This allows the */
+/* OBSOLETE rest of `info frame' to extract the important arguments without much */
+/* OBSOLETE difficulty. Since an individual frame on the 29K is determined by */
+/* OBSOLETE three values (FP, PC, and MSP), we really need all three to do a */
+/* OBSOLETE good job. */ */
+/* OBSOLETE */
+/* OBSOLETE struct frame_info * */
+/* OBSOLETE setup_arbitrary_frame (int argc, CORE_ADDR *argv) */
+/* OBSOLETE { */
+/* OBSOLETE struct frame_info *frame; */
+/* OBSOLETE */
+/* OBSOLETE if (argc != 3) */
+/* OBSOLETE error ("AMD 29k frame specifications require three arguments: rsp pc msp"); */
+/* OBSOLETE */
+/* OBSOLETE frame = create_new_frame (argv[0], argv[1]); */
+/* OBSOLETE */
+/* OBSOLETE if (!frame) */
+/* OBSOLETE internal_error (__FILE__, __LINE__, */
+/* OBSOLETE "create_new_frame returned invalid frame id"); */
+/* OBSOLETE */
+/* OBSOLETE /* Creating a new frame munges the `frame' value from the current */
+/* OBSOLETE GR1, so we restore it again here. FIXME, untangle all this */
+/* OBSOLETE 29K frame stuff... */ */
+/* OBSOLETE frame->frame = argv[0]; */
+/* OBSOLETE */
+/* OBSOLETE /* Our MSP is in argv[2]. It'd be intelligent if we could just */
+/* OBSOLETE save this value in the FRAME. But the way it's set up (FIXME), */
+/* OBSOLETE we must save our caller's MSP. We compute that by adding our */
+/* OBSOLETE memory stack frame size to our MSP. */ */
+/* OBSOLETE frame->saved_msp = argv[2] + frame->msize; */
+/* OBSOLETE */
+/* OBSOLETE return frame; */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE int */
+/* OBSOLETE gdb_print_insn_a29k (bfd_vma memaddr, disassemble_info *info) */
+/* OBSOLETE { */
+/* OBSOLETE if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) */
+/* OBSOLETE return print_insn_big_a29k (memaddr, info); */
+/* OBSOLETE else */
+/* OBSOLETE return print_insn_little_a29k (memaddr, info); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE enum a29k_processor_types processor_type = a29k_unknown; */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE a29k_get_processor_type (void) */
+/* OBSOLETE { */
+/* OBSOLETE unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM); */
+/* OBSOLETE */
+/* OBSOLETE /* Most of these don't have freeze mode. */ */
+/* OBSOLETE processor_type = a29k_no_freeze_mode; */
+/* OBSOLETE */
+/* OBSOLETE switch ((cfg_reg >> 28) & 0xf) */
+/* OBSOLETE { */
+/* OBSOLETE case 0: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29000"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 1: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29005"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 2: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29050"); */
+/* OBSOLETE processor_type = a29k_freeze_mode; */
+/* OBSOLETE break; */
+/* OBSOLETE case 3: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29035"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 4: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29030"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 5: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 6: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*"); */
+/* OBSOLETE break; */
+/* OBSOLETE case 7: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an Am29040"); */
+/* OBSOLETE break; */
+/* OBSOLETE default: */
+/* OBSOLETE fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n"); */
+/* OBSOLETE /* Don't bother to print the revision. */ */
+/* OBSOLETE return; */
+/* OBSOLETE } */
+/* OBSOLETE fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f)); */
+/* OBSOLETE } */
+/* OBSOLETE */
+/* OBSOLETE #ifdef GET_LONGJMP_TARGET */
+/* OBSOLETE /* Figure out where the longjmp will land. We expect that we have just entered */
+/* OBSOLETE longjmp and haven't yet setup the stack frame, so the args are still in the */
+/* OBSOLETE output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we */
+/* OBSOLETE extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. */
+/* OBSOLETE This routine returns true on success */ */
+/* OBSOLETE */
+/* OBSOLETE int */
+/* OBSOLETE get_longjmp_target (CORE_ADDR *pc) */
+/* OBSOLETE { */
+/* OBSOLETE CORE_ADDR jb_addr; */
+/* OBSOLETE char buf[sizeof (CORE_ADDR)]; */
+/* OBSOLETE */
+/* OBSOLETE jb_addr = read_register (LR2_REGNUM); */
+/* OBSOLETE */
+/* OBSOLETE if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf, */
+/* OBSOLETE sizeof (CORE_ADDR))) */
+/* OBSOLETE return 0; */
+/* OBSOLETE */
+/* OBSOLETE *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR)); */
+/* OBSOLETE return 1; */
+/* OBSOLETE } */
+/* OBSOLETE #endif /* GET_LONGJMP_TARGET */ */
+/* OBSOLETE */
+/* OBSOLETE void */
+/* OBSOLETE _initialize_a29k_tdep (void) */
+/* OBSOLETE { */
+/* OBSOLETE extern CORE_ADDR text_end; */
+/* OBSOLETE */
+/* OBSOLETE tm_print_insn = gdb_print_insn_a29k; */
+/* OBSOLETE */
+/* OBSOLETE /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ */
+/* OBSOLETE add_show_from_set */
+/* OBSOLETE (add_set_cmd ("rstack_high_address", class_support, var_uinteger, */
+/* OBSOLETE (char *) &rstack_high_address, */
+/* OBSOLETE "Set top address in memory of the register stack.\n\ */
+/* OBSOLETE Attempts to access registers saved above this address will be ignored\n\ */
+/* OBSOLETE or will produce the value -1.", &setlist), */
+/* OBSOLETE &showlist); */
+/* OBSOLETE */
+/* OBSOLETE /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ */
+/* OBSOLETE add_show_from_set */
+/* OBSOLETE (add_set_cmd ("call_scratch_address", class_support, var_uinteger, */
+/* OBSOLETE (char *) &text_end, */
+/* OBSOLETE "Set address in memory where small amounts of RAM can be used\n\ */
+/* OBSOLETE when making function calls into the inferior.", &setlist), */
+/* OBSOLETE &showlist); */
+/* OBSOLETE } */