aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-vax.c
diff options
context:
space:
mode:
authorIan Lance Taylor <ian@airs.com>1992-12-30 21:39:51 +0000
committerIan Lance Taylor <ian@airs.com>1992-12-30 21:39:51 +0000
commit9a75dc1f76e4cb4130059dd9395dc4afe6b9cb8a (patch)
tree7825ac952c33c3800cda82cbe4f1a11795117745 /gas/config/tc-vax.c
parent7b4eaa0ee6c0e12d295ec9b4416f65c3867e7385 (diff)
downloadgdb-9a75dc1f76e4cb4130059dd9395dc4afe6b9cb8a.zip
gdb-9a75dc1f76e4cb4130059dd9395dc4afe6b9cb8a.tar.gz
gdb-9a75dc1f76e4cb4130059dd9395dc4afe6b9cb8a.tar.bz2
A bunch of changes to COFF support. See the ChangeLog.
Diffstat (limited to 'gas/config/tc-vax.c')
-rw-r--r--gas/config/tc-vax.c498
1 files changed, 250 insertions, 248 deletions
diff --git a/gas/config/tc-vax.c b/gas/config/tc-vax.c
index 498b32d..3d76647 100644
--- a/gas/config/tc-vax.c
+++ b/gas/config/tc-vax.c
@@ -23,7 +23,6 @@
#include "as.h"
-#include "read.h"
#include "vax-inst.h"
#include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
@@ -388,20 +387,20 @@ md_assemble (instruction_string)
as_fatal ("vax_assemble\"%s\" in=\"%s\"", p, instruction_string);
}
/*
- * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
- * then goofed=1. Notice that we don't make any frags yet.
- * Should goofed be 1, then this instruction will wedge in any pass,
- * and we can safely flush it, without causing interpass symbol phase
- * errors. That is, without changing label values in different passes.
- */
+ * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
+ * then goofed=1. Notice that we don't make any frags yet.
+ * Should goofed be 1, then this instruction will wedge in any pass,
+ * and we can safely flush it, without causing interpass symbol phase
+ * errors. That is, without changing label values in different passes.
+ */
if (goofed = (*v.vit_error))
{
as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
}
/*
- * We need to use expression() and friends, which require us to diddle
- * input_line_pointer. So we save it and restore it later.
- */
+ * We need to use expression() and friends, which require us to diddle
+ * input_line_pointer. So we save it and restore it later.
+ */
save_input_line_pointer = input_line_pointer;
for (operandP = v.vit_operand,
expP = exp_of_operand,
@@ -418,7 +417,8 @@ md_assemble (instruction_string)
goofed = 1;
}
else
- { /* statement has no syntax goofs: lets sniff the expression */
+ {
+ /* statement has no syntax goofs: lets sniff the expression */
int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
input_line_pointer = operandP->vop_expr_begin;
@@ -431,10 +431,11 @@ md_assemble (instruction_string)
/* for BSD4.2 compatibility, missing expression is absolute 0 */
to_seg = expP->X_seg = SEG_ABSOLUTE;
expP->X_add_number = 0;
- /* for SEG_ABSOLUTE, we shouldnt need to set X_subtract_symbol, X_add_symbol to any
- particular value. But, we will program defensively. Since this situation occurs rarely
- so it costs us little to do, and stops Dean worrying about the origin of random bits in
- expressionS's. */
+ /* For SEG_ABSOLUTE, we shouldn't need to set X_subtract_symbol,
+ X_add_symbol to any particular value. But, we will program
+ defensively. Since this situation occurs rarely so it costs
+ us little to do, and stops Dean worrying about the origin of
+ random bits in expressionS's. */
expP->X_add_symbol = NULL;
expP->X_subtract_symbol = NULL;
case SEG_TEXT:
@@ -447,18 +448,18 @@ md_assemble (instruction_string)
case SEG_DIFFERENCE:
case SEG_PASS1:
/*
- * Major bug. We can't handle the case of a
- * SEG_DIFFERENCE expression in a VIT_OPCODE_SYNTHETIC
- * variable-length instruction.
- * We don't have a frag type that is smart enough to
- * relax a SEG_DIFFERENCE, and so we just force all
- * SEG_DIFFERENCEs to behave like SEG_PASS1s.
- * Clearly, if there is a demand we can invent a new or
- * modified frag type and then coding up a frag for this
- * case will be easy. SEG_DIFFERENCE was invented for the
- * .words after a CASE opcode, and was never intended for
- * instruction operands.
- */
+ * Major bug. We can't handle the case of a
+ * SEG_DIFFERENCE expression in a VIT_OPCODE_SYNTHETIC
+ * variable-length instruction.
+ * We don't have a frag type that is smart enough to
+ * relax a SEG_DIFFERENCE, and so we just force all
+ * SEG_DIFFERENCEs to behave like SEG_PASS1s.
+ * Clearly, if there is a demand we can invent a new or
+ * modified frag type and then coding up a frag for this
+ * case will be easy. SEG_DIFFERENCE was invented for the
+ * .words after a CASE opcode, and was never intended for
+ * instruction operands.
+ */
need_pass_2 = 1;
as_warn ("Can't relocate expression");
break;
@@ -1828,10 +1829,10 @@ vip (vitP, instring)
c = *p;
*p = '\0';
/*
- * Here with instring pointing to what better be an op-name, and p
- * pointing to character just past that.
- * We trust instring points to an op-name, with no whitespace.
- */
+ * Here with instring pointing to what better be an op-name, and p
+ * pointing to character just past that.
+ * We trust instring points to an op-name, with no whitespace.
+ */
vwP = (struct vot_wot *) hash_find (op_hash, instring);
*p = c; /* Restore char after op-code. */
if (vwP == 0)
@@ -1843,18 +1844,18 @@ vip (vitP, instring)
else
{
/*
- * We found a match! So lets pick up as many operands as the
- * instruction wants, and even gripe if there are too many.
- * We expect comma to seperate each operand.
- * We let instring track the text, while p tracks a part of the
- * struct vot.
- */
+ * We found a match! So lets pick up as many operands as the
+ * instruction wants, and even gripe if there are too many.
+ * We expect comma to seperate each operand.
+ * We let instring track the text, while p tracks a part of the
+ * struct vot.
+ */
/*
- * The lines below know about 2-byte opcodes starting FD,FE or FF.
- * They also understand synthetic opcodes. Note:
- * we return 32 bits of opcode, including bucky bits, BUT
- * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
- */
+ * The lines below know about 2-byte opcodes starting FD,FE or FF.
+ * They also understand synthetic opcodes. Note:
+ * we return 32 bits of opcode, including bucky bits, BUT
+ * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
+ */
oc = vwP->vot_code; /* The op-code. */
vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
md_number_to_chars (vitP->vit_opcode, oc, 4);
@@ -1867,9 +1868,9 @@ vip (vitP, instring)
)
{
/*
- * Here to parse one operand. Leave instring pointing just
- * past any one ',' that marks the end of this operand.
- */
+ * Here to parse one operand. Leave instring pointing just
+ * past any one ',' that marks the end of this operand.
+ */
if (!p[1])
bug = "p"; /* ODD(!!) number of bytes in vot_how?? */
else if (*instring)
@@ -1877,9 +1878,9 @@ vip (vitP, instring)
for (q = instring; (c = *q) && c != ','; q++)
;
/*
- * Q points to ',' or '\0' that ends argument. C is that
- * character.
- */
+ * Q points to ',' or '\0' that ends argument. C is that
+ * character.
+ */
*q = 0;
operandp->vop_width = p[1];
operandp->vop_nbytes = vax_operand_width_size[p[1]];
@@ -2355,12 +2356,13 @@ vip_op_defaults (immediate, indirect, displen) /* can be called any time */
char * /* (code here) bug message, "" = OK */
/* our code bug, NOT bad assembly language */
vip_op (optext, vopP)
- char *optext; /* user's input string e.g.: */
- /* "@B^foo@bar(AP)[FP]:" */
- struct vop *vopP; /* In: vop_access, vop_width. */
- /* Out: _ndx, _reg, _mode, _short, _warn, */
- /* _error _expr_begin, _expr_end, _nbytes. */
- /* vop_nbytes : number of bytes in a datum. */
+ /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
+ char *optext;
+ /* Input fields: vop_access, vop_width.
+ Output fields: _ndx, _reg, _mode, _short, _warn,
+ _error _expr_begin, _expr_end, _nbytes.
+ vop_nbytes : number of bytes in a datum. */
+ struct vop *vopP;
{
char *p; /* track operand text forward */
char *q; /* track operand text backward */
@@ -2467,9 +2469,9 @@ vip_op (optext, vopP)
else
{
/*
- * Confusers like "[]" will eventually lose with a bad register
- * name error. So again we don't need to check for early '\0'.
- */
+ * Confusers like "[]" will eventually lose with a bad register
+ * name error. So again we don't need to check for early '\0'.
+ */
if (q[3] == ']')
ndx = vax_reg_parse (q[1], q[2], 0);
else if (q[4] == ']')
@@ -2522,9 +2524,9 @@ vip_op (optext, vopP)
else
{
/*
- * Confusers like "()" will eventually lose with a bad register
- * name error. So again we don't need to check for early '\0'.
- */
+ * Confusers like "()" will eventually lose with a bad register
+ * name error. So again we don't need to check for early '\0'.
+ */
if (q[3] == ')')
reg = vax_reg_parse (q[1], q[2], 0);
else if (q[4] == ')')
@@ -2532,11 +2534,11 @@ vip_op (optext, vopP)
else
reg = -1;
/*
- * Since we saw a ')' we will demand a register name in the ')'.
- * This is nasty: why can't our hypothetical assembler permit
- * parenthesised expressions? BECAUSE I AM LAZY! That is why.
- * Abuse luser if we didn't spy a register name.
- */
+ * Since we saw a ')' we will demand a register name in the ')'.
+ * This is nasty: why can't our hypothetical assembler permit
+ * parenthesised expressions? BECAUSE I AM LAZY! That is why.
+ * Abuse luser if we didn't spy a register name.
+ */
if (reg < 0)
{
/* JF allow parenthasized expressions. I hope this works */
@@ -2548,31 +2550,31 @@ vip_op (optext, vopP)
else
q--; /* point just before '(' of "(...)" */
/*
- * If err == "..." then we lost. Run away.
- * Otherwise if reg >= 0 then we saw (Rn).
- */
+ * If err == "..." then we lost. Run away.
+ * Otherwise if reg >= 0 then we saw (Rn).
+ */
}
/*
- * If err == "..." then we lost.
- * Otherwise paren==1 and reg = register in "()".
- */
+ * If err == "..." then we lost.
+ * Otherwise paren==1 and reg = register in "()".
+ */
}
else
paren = 0;
/*
- * If err == "..." then we lost.
- * Otherwise, q points just before "(Rn)", if any.
- * If there was a "(...)" then paren==1, and reg is the register.
- */
+ * If err == "..." then we lost.
+ * Otherwise, q points just before "(Rn)", if any.
+ * If there was a "(...)" then paren==1, and reg is the register.
+ */
/*
- * We should only seek '-' of "-(...)" if:
- * we saw "(...)" paren == 1
- * we have no errors so far ! *err
- * we did not see '+' of "(...)+" sign < 1
- * We don't check len. We want a specific error message later if
- * user tries "x^...-(Rn)". This is a feature not a bug.
- */
+ * We should only seek '-' of "-(...)" if:
+ * we saw "(...)" paren == 1
+ * we have no errors so far ! *err
+ * we did not see '+' of "(...)+" sign < 1
+ * We don't check len. We want a specific error message later if
+ * user tries "x^...-(Rn)". This is a feature not a bug.
+ */
if (!*err)
{
if (paren && sign < 1)/* !sign is adequate test */
@@ -2584,14 +2586,14 @@ vip_op (optext, vopP)
}
}
/*
- * We have back-tracked over most
- * of the crud at the end of an operand.
- * Unless err, we know: sign, paren. If paren, we know reg.
- * The last case is of an expression "Rn".
- * This is worth hunting for if !err, !paren.
- * We wouldn't be here if err.
- * We remember to save q, in case we didn't want "Rn" anyway.
- */
+ * We have back-tracked over most
+ * of the crud at the end of an operand.
+ * Unless err, we know: sign, paren. If paren, we know reg.
+ * The last case is of an expression "Rn".
+ * This is worth hunting for if !err, !paren.
+ * We wouldn't be here if err.
+ * We remember to save q, in case we didn't want "Rn" anyway.
+ */
if (!paren)
{
if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
@@ -2603,8 +2605,8 @@ vip_op (optext, vopP)
else
reg = -1; /* always comes here if no register at all */
/*
- * Here with a definitive reg value.
- */
+ * Here with a definitive reg value.
+ */
if (reg >= 0)
{
oldq = q;
@@ -2614,41 +2616,41 @@ vip_op (optext, vopP)
}
}
/*
- * have reg. -1:absent; else 0:15
- */
+ * have reg. -1:absent; else 0:15
+ */
/*
- * We have: err, at, len, hash, ndx, sign, paren, reg.
- * Also, any remaining expression is from *p through *q inclusive.
- * Should there be no expression, q==p-1. So expression length = q-p+1.
- * This completes the first part: parsing the operand text.
- */
+ * We have: err, at, len, hash, ndx, sign, paren, reg.
+ * Also, any remaining expression is from *p through *q inclusive.
+ * Should there be no expression, q==p-1. So expression length = q-p+1.
+ * This completes the first part: parsing the operand text.
+ */
/*
- * We now want to boil the data down, checking consistency on the way.
- * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
- * We will deliver a 4-bit reg, and a 4-bit mode.
- */
+ * We now want to boil the data down, checking consistency on the way.
+ * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
+ * We will deliver a 4-bit reg, and a 4-bit mode.
+ */
/*
- * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
- *
- * in: at ?
- * len ?
- * hash ?
- * p:q ?
- * sign ?
- * paren ?
- * reg ?
- * ndx ?
- *
- * out: mode 0
- * reg -1
- * len ' '
- * p:q whatever was input
- * ndx -1
- * err " " or error message, and other outputs trashed
- */
+ * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
+ *
+ * in: at ?
+ * len ?
+ * hash ?
+ * p:q ?
+ * sign ?
+ * paren ?
+ * reg ?
+ * ndx ?
+ *
+ * out: mode 0
+ * reg -1
+ * len ' '
+ * p:q whatever was input
+ * ndx -1
+ * err " " or error message, and other outputs trashed
+ */
/* branch operands have restricted forms */
if (!*err && access == 'b')
{
@@ -2661,24 +2663,24 @@ vip_op (optext, vopP)
/* Since nobody seems to use it: comment this 'feature'(?) out for now. */
#ifdef NEVER
/*
- * Case of stand-alone operand. e.g. ".long foo"
- *
- * in: at ?
- * len ?
- * hash ?
- * p:q ?
- * sign ?
- * paren ?
- * reg ?
- * ndx ?
- *
- * out: mode 0
- * reg -1
- * len ' '
- * p:q whatever was input
- * ndx -1
- * err " " or error message, and other outputs trashed
- */
+ * Case of stand-alone operand. e.g. ".long foo"
+ *
+ * in: at ?
+ * len ?
+ * hash ?
+ * p:q ?
+ * sign ?
+ * paren ?
+ * reg ?
+ * ndx ?
+ *
+ * out: mode 0
+ * reg -1
+ * len ' '
+ * p:q whatever was input
+ * ndx -1
+ * err " " or error message, and other outputs trashed
+ */
if (!*err)
{
if (access == ' ')
@@ -2730,23 +2732,23 @@ vip_op (optext, vopP)
#endif /*#Ifdef NEVER*/
/*
- * Case of S^#.
- *
- * in: at 0
- * len 's' definition
- * hash 1 demand
- * p:q demand not empty
- * sign 0 by paren==0
- * paren 0 by "()" scan logic because "S^" seen
- * reg -1 or nn by mistake
- * ndx -1
- *
- * out: mode 0
- * reg -1
- * len 's'
- * exp
- * ndx -1
- */
+ * Case of S^#.
+ *
+ * in: at 0
+ * len 's' definition
+ * hash 1 demand
+ * p:q demand not empty
+ * sign 0 by paren==0
+ * paren 0 by "()" scan logic because "S^" seen
+ * reg -1 or nn by mistake
+ * ndx -1
+ *
+ * out: mode 0
+ * reg -1
+ * len 's'
+ * exp
+ * ndx -1
+ */
if (!*err && len == 's')
{
if (!hash || paren || at || ndx >= 0)
@@ -2779,23 +2781,23 @@ vip_op (optext, vopP)
}
/*
- * Case of -(Rn), which is weird case.
- *
- * in: at 0
- * len '
- * hash 0
- * p:q q<p
- * sign -1 by definition
- * paren 1 by definition
- * reg present by definition
- * ndx optional
- *
- * out: mode 7
- * reg present
- * len ' '
- * exp "" enforce empty expression
- * ndx optional warn if same as reg
- */
+ * Case of -(Rn), which is weird case.
+ *
+ * in: at 0
+ * len '
+ * hash 0
+ * p:q q<p
+ * sign -1 by definition
+ * paren 1 by definition
+ * reg present by definition
+ * ndx optional
+ *
+ * out: mode 7
+ * reg present
+ * len ' '
+ * exp "" enforce empty expression
+ * ndx optional warn if same as reg
+ */
if (!*err && sign < 0)
{
if (len != ' ' || hash || at || p <= q)
@@ -2812,10 +2814,10 @@ vip_op (optext, vopP)
}
/*
- * We convert "(Rn)" to "@Rn" for our convenience.
- * (I hope this is convenient: has someone got a better way to parse this?)
- * A side-effect of this is that "@Rn" is a valid operand.
- */
+ * We convert "(Rn)" to "@Rn" for our convenience.
+ * (I hope this is convenient: has someone got a better way to parse this?)
+ * A side-effect of this is that "@Rn" is a valid operand.
+ */
if (paren && !sign && !hash && !at && len == ' ' && p > q)
{
at = 1;
@@ -2823,23 +2825,23 @@ vip_op (optext, vopP)
}
/*
- * Case of (Rn)+, which is slightly different.
- *
- * in: at
- * len ' '
- * hash 0
- * p:q q<p
- * sign +1 by definition
- * paren 1 by definition
- * reg present by definition
- * ndx optional
- *
- * out: mode 8+@
- * reg present
- * len ' '
- * exp "" enforce empty expression
- * ndx optional warn if same as reg
- */
+ * Case of (Rn)+, which is slightly different.
+ *
+ * in: at
+ * len ' '
+ * hash 0
+ * p:q q<p
+ * sign +1 by definition
+ * paren 1 by definition
+ * reg present by definition
+ * ndx optional
+ *
+ * out: mode 8+@
+ * reg present
+ * len ' '
+ * exp "" enforce empty expression
+ * ndx optional warn if same as reg
+ */
if (!*err && sign > 0)
{
if (len != ' ' || hash || p <= q)
@@ -2856,23 +2858,23 @@ vip_op (optext, vopP)
}
/*
- * Case of #, without S^.
- *
- * in: at
- * len ' ' or 'i'
- * hash 1 by definition
- * p:q
- * sign 0
- * paren 0
- * reg absent
- * ndx optional
- *
- * out: mode 8+@
- * reg PC
- * len ' ' or 'i'
- * exp
- * ndx optional
- */
+ * Case of #, without S^.
+ *
+ * in: at
+ * len ' ' or 'i'
+ * hash 1 by definition
+ * p:q
+ * sign 0
+ * paren 0
+ * reg absent
+ * ndx optional
+ *
+ * out: mode 8+@
+ * reg PC
+ * len ' ' or 'i'
+ * exp
+ * ndx optional
+ */
if (!*err && hash)
{
if (len != 'i' && len != ' ')
@@ -2884,10 +2886,10 @@ vip_op (optext, vopP)
if (reg >= 0)
{
/*
- * SHIT! we saw #Rnn! Put the Rnn back into the expression.
- * By using oldq, we don't need to know how long Rnn was.
- * KLUDGE!
- */
+ * SHIT! we saw #Rnn! Put the Rnn back into the expression.
+ * By using oldq, we don't need to know how long Rnn was.
+ * KLUDGE!
+ */
q = oldq;
reg = -1; /* no register any more */
}
@@ -2904,29 +2906,29 @@ vip_op (optext, vopP)
}
}
/*
- * If !*err, then sign == 0
- * hash == 0
- */
+ * If !*err, then sign == 0
+ * hash == 0
+ */
/*
- * Case of Rn. We seperate this one because it has a few special
- * errors the remaining modes lack.
- *
- * in: at optional
- * len ' '
- * hash 0 by program logic
- * p:q empty
- * sign 0 by program logic
- * paren 0 by definition
- * reg present by definition
- * ndx optional
- *
- * out: mode 5+@
- * reg present
- * len ' ' enforce no length
- * exp "" enforce empty expression
- * ndx optional warn if same as reg
- */
+ * Case of Rn. We seperate this one because it has a few special
+ * errors the remaining modes lack.
+ *
+ * in: at optional
+ * len ' '
+ * hash 0 by program logic
+ * p:q empty
+ * sign 0 by program logic
+ * paren 0 by definition
+ * reg present by definition
+ * ndx optional
+ *
+ * out: mode 5+@
+ * reg present
+ * len ' ' enforce no length
+ * exp "" enforce empty expression
+ * ndx optional warn if same as reg
+ */
if (!*err && !paren && reg >= 0)
{
if (len != ' ')
@@ -2943,12 +2945,12 @@ vip_op (optext, vopP)
else
{
/*
- * Idea here is to detect from length of datum
- * and from register number if we will touch PC.
- * Warn if we do.
- * vop_nbytes is number of bytes in operand.
- * Compute highest byte affected, compare to PC0.
- */
+ * Idea here is to detect from length of datum
+ * and from register number if we will touch PC.
+ * Warn if we do.
+ * vop_nbytes is number of bytes in operand.
+ * Compute highest byte affected, compare to PC0.
+ */
if ((vopP->vop_nbytes + reg * 4) > 60)
wrn = "PC part of operand unpredictable";
err = " "; /* win */
@@ -2996,12 +2998,12 @@ vip_op (optext, vopP)
}
/*
- * here with completely specified mode
- * len
- * reg
- * expression p,q
- * ndx
- */
+ * here with completely specified mode
+ * len
+ * reg
+ * expression p,q
+ * ndx
+ */
if (*err == ' ')
err = ""; /* " " is no longer an error */
d='n1290' href='#n1290'>1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.

   Copyright (C) 1988-2012 Free Software Foundation, Inc.

   Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "block.h"
#include "reggroups.h"
#include "opcode/mips.h"
#include "elf/mips.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "sim-regno.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "infcall.h"
#include "floatformat.h"
#include "remote.h"
#include "target-descriptions.h"
#include "dwarf2-frame.h"
#include "user-regs.h"
#include "valprint.h"
#include "ax.h"

static const struct objfile_data *mips_pdr_data;

static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);

/* A useful bit in the CP0 status register (MIPS_PS_REGNUM).  */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip.  */
#define ST0_FR (1 << 26)

/* The sizes of floating point registers.  */

enum
{
  MIPS_FPU_SINGLE_REGSIZE = 4,
  MIPS_FPU_DOUBLE_REGSIZE = 8
};

enum
{
  MIPS32_REGSIZE = 4,
  MIPS64_REGSIZE = 8
};

static const char *mips_abi_string;

static const char *const mips_abi_strings[] = {
  "auto",
  "n32",
  "o32",
  "n64",
  "o64",
  "eabi32",
  "eabi64",
  NULL
};

/* The standard register names, and all the valid aliases for them.  */
struct register_alias
{
  const char *name;
  int regnum;
};

/* Aliases for o32 and most other ABIs.  */
const struct register_alias mips_o32_aliases[] = {
  { "ta0", 12 },
  { "ta1", 13 },
  { "ta2", 14 },
  { "ta3", 15 }
};

/* Aliases for n32 and n64.  */
const struct register_alias mips_n32_n64_aliases[] = {
  { "ta0", 8 },
  { "ta1", 9 },
  { "ta2", 10 },
  { "ta3", 11 }
};

/* Aliases for ABI-independent registers.  */
const struct register_alias mips_register_aliases[] = {
  /* The architecture manuals specify these ABI-independent names for
     the GPRs.  */
#define R(n) { "r" #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R

  /* k0 and k1 are sometimes called these instead (for "kernel
     temp").  */
  { "kt0", 26 },
  { "kt1", 27 },

  /* This is the traditional GDB name for the CP0 status register.  */
  { "sr", MIPS_PS_REGNUM },

  /* This is the traditional GDB name for the CP0 BadVAddr register.  */
  { "bad", MIPS_EMBED_BADVADDR_REGNUM },

  /* This is the traditional GDB name for the FCSR.  */
  { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
};

const struct register_alias mips_numeric_register_aliases[] = {
#define R(n) { #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R
};

#ifndef MIPS_DEFAULT_FPU_TYPE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#endif
static int mips_fpu_type_auto = 1;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;

static int mips_debug = 0;

/* Properties (for struct target_desc) describing the g/G packet
   layout.  */
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
#define PROPERTY_GP64 "internal: transfers-64bit-registers"

struct target_desc *mips_tdesc_gp32;
struct target_desc *mips_tdesc_gp64;

const struct mips_regnum *
mips_regnum (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->regnum;
}

static int
mips_fpa0_regnum (struct gdbarch *gdbarch)
{
  return mips_regnum (gdbarch)->fp0 + 12;
}

#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
		     == MIPS_ABI_EABI32 \
		   || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)

#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
  (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)

#define MIPS_LAST_ARG_REGNUM(gdbarch) \
  (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)

#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)

/* MIPS16 function addresses are odd (bit 0 is set).  Here are some
   functions to test, set, or clear bit 0 of addresses.  */

static CORE_ADDR
is_mips16_addr (CORE_ADDR addr)
{
  return ((addr) & 1);
}

static CORE_ADDR
unmake_mips16_addr (CORE_ADDR addr)
{
  return ((addr) & ~(CORE_ADDR) 1);
}

static CORE_ADDR
make_mips16_addr (CORE_ADDR addr)
{
  return ((addr) | (CORE_ADDR) 1);
}

/* Return the MIPS ABI associated with GDBARCH.  */
enum mips_abi
mips_abi (struct gdbarch *gdbarch)
{
  return gdbarch_tdep (gdbarch)->mips_abi;
}

int
mips_isa_regsize (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* If we know how big the registers are, use that size.  */
  if (tdep->register_size_valid_p)
    return tdep->register_size;

  /* Fall back to the previous behavior.  */
  return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
	  / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
}

/* Return the currently configured (or set) saved register size.  */

unsigned int
mips_abi_regsize (struct gdbarch *gdbarch)
{
  switch (mips_abi (gdbarch))
    {
    case MIPS_ABI_EABI32:
    case MIPS_ABI_O32:
      return 4;
    case MIPS_ABI_N32:
    case MIPS_ABI_N64:
    case MIPS_ABI_O64:
    case MIPS_ABI_EABI64:
      return 8;
    case MIPS_ABI_UNKNOWN:
    case MIPS_ABI_LAST:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
}

/* Functions for setting and testing a bit in a minimal symbol that
   marks it as 16-bit function.  The MSB of the minimal symbol's
   "info" field is used for this purpose.

   gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
   i.e. refers to a 16-bit function, and sets a "special" bit in a
   minimal symbol to mark it as a 16-bit function

   MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol  */

static void
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
{
  if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
    {
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
    }
}

static int
msymbol_is_special (struct minimal_symbol *msym)
{
  return MSYMBOL_TARGET_FLAG_1 (msym);
}

/* XFER a value from the big/little/left end of the register.
   Depending on the size of the value it might occupy the entire
   register or just part of it.  Make an allowance for this, aligning
   things accordingly.  */

static void
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
		    int reg_num, int length,
		    enum bfd_endian endian, gdb_byte *in,
		    const gdb_byte *out, int buf_offset)
{
  int reg_offset = 0;

  gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
  /* Need to transfer the left or right part of the register, based on
     the targets byte order.  */
  switch (endian)
    {
    case BFD_ENDIAN_BIG:
      reg_offset = register_size (gdbarch, reg_num) - length;
      break;
    case BFD_ENDIAN_LITTLE:
      reg_offset = 0;
      break;
    case BFD_ENDIAN_UNKNOWN:	/* Indicates no alignment.  */
      reg_offset = 0;
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  if (mips_debug)
    fprintf_unfiltered (gdb_stderr,
			"xfer $%d, reg offset %d, buf offset %d, length %d, ",
			reg_num, reg_offset, buf_offset, length);
  if (mips_debug && out != NULL)
    {
      int i;
      fprintf_unfiltered (gdb_stdlog, "out ");
      for (i = 0; i < length; i++)
	fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
    }
  if (in != NULL)
    regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
			       in + buf_offset);
  if (out != NULL)
    regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
				out + buf_offset);
  if (mips_debug && in != NULL)
    {
      int i;
      fprintf_unfiltered (gdb_stdlog, "in ");
      for (i = 0; i < length; i++)
	fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
    }
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog, "\n");
}

/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
   compatiblity mode.  A return value of 1 means that we have
   physical 64-bit registers, but should treat them as 32-bit registers.  */

static int
mips2_fp_compat (struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
     meaningful.  */
  if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
    return 0;

#if 0
  /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
     in all the places we deal with FP registers.  PR gdb/413.  */
  /* Otherwise check the FR bit in the status register - it controls
     the FP compatiblity mode.  If it is clear we are in compatibility
     mode.  */
  if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
    return 1;
#endif

  return 0;
}

#define VM_MIN_ADDRESS (CORE_ADDR)0x400000

static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);

static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);

/* The list of available "set mips " and "show mips " commands.  */

static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;

/* Integer registers 0 thru 31 are handled explicitly by
   mips_register_name().  Processor specific registers 32 and above
   are listed in the following tables.  */

enum
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };

/* Generic MIPS.  */

static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir", "" /*"fp" */ , "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
};

/* Names of IDT R3041 registers.  */

static const char *mips_r3041_reg_names[] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir", "", /*"fp" */ "",
  "", "", "bus", "ccfg", "", "", "", "",
  "", "", "port", "cmp", "", "", "epc", "prid",
};

/* Names of tx39 registers.  */

static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "config", "cache", "debug", "depc", "epc", ""
};

/* Names of IRIX registers.  */
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
};


/* Return the name of the register corresponding to REGNO.  */
static const char *
mips_register_name (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* GPR names for all ABIs other than n32/n64.  */
  static char *mips_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
  };

  /* GPR names for n32 and n64 ABIs.  */
  static char *mips_n32_n64_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
  };

  enum mips_abi abi = mips_abi (gdbarch);

  /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers, 
     but then don't make the raw register names visible.  This (upper)
     range of user visible register numbers are the pseudo-registers.

     This approach was adopted accommodate the following scenario:
     It is possible to debug a 64-bit device using a 32-bit
     programming model.  In such instances, the raw registers are
     configured to be 64-bits wide, while the pseudo registers are
     configured to be 32-bits wide.  The registers that the user
     sees - the pseudo registers - match the users expectations
     given the programming model being used.  */
  int rawnum = regno % gdbarch_num_regs (gdbarch);
  if (regno < gdbarch_num_regs (gdbarch))
    return "";

  /* The MIPS integer registers are always mapped from 0 to 31.  The
     names of the registers (which reflects the conventions regarding
     register use) vary depending on the ABI.  */
  if (0 <= rawnum && rawnum < 32)
    {
      if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
	return mips_n32_n64_gpr_names[rawnum];
      else
	return mips_gpr_names[rawnum];
    }
  else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, rawnum);
  else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
    {
      gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
      return tdep->mips_processor_reg_names[rawnum - 32];
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("mips_register_name: bad register number %d"), rawnum);
}

/* Return the groups that a MIPS register can be categorised into.  */

static int
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *reggroup)
{
  int vector_p;
  int float_p;
  int raw_p;
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  if (reggroup == all_reggroup)
    return pseudo;
  vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
  float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
  /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
     (gdbarch), as not all architectures are multi-arch.  */
  raw_p = rawnum < gdbarch_num_regs (gdbarch);
  if (gdbarch_register_name (gdbarch, regnum) == NULL
      || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
    return 0;
  if (reggroup == float_reggroup)
    return float_p && pseudo;
  if (reggroup == vector_reggroup)
    return vector_p && pseudo;
  if (reggroup == general_reggroup)
    return (!vector_p && !float_p) && pseudo;
  /* Save the pseudo registers.  Need to make certain that any code
     extracting register values from a saved register cache also uses
     pseudo registers.  */
  if (reggroup == save_reggroup)
    return raw_p && pseudo;
  /* Restore the same pseudo register.  */
  if (reggroup == restore_reggroup)
    return raw_p && pseudo;
  return 0;
}

/* Return the groups that a MIPS register can be categorised into.
   This version is only used if we have a target description which
   describes real registers (and their groups).  */

static int
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				struct reggroup *reggroup)
{
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  int ret;

  /* Only save, restore, and display the pseudo registers.  Need to
     make certain that any code extracting register values from a
     saved register cache also uses pseudo registers.

     Note: saving and restoring the pseudo registers is slightly
     strange; if we have 64 bits, we should save and restore all
     64 bits.  But this is hard and has little benefit.  */
  if (!pseudo)
    return 0;

  ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
  if (ret != -1)
    return ret;

  return mips_register_reggroup_p (gdbarch, regnum, reggroup);
}

/* Map the symbol table registers which live in the range [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
   registers.  Take care of alignment and size problems.  */

static enum register_status
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int cookednum, gdb_byte *buf)
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
	      && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    return regcache_raw_read (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
	   register_size (gdbarch, cookednum))
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
      else
	{
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
	  LONGEST regval;
	  enum register_status status;

	  status = regcache_raw_read_signed (regcache, rawnum, &regval);
	  if (status == REG_VALID)
	    store_signed_integer (buf, 4, byte_order, regval);
	  return status;
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
}

static void
mips_pseudo_register_write (struct gdbarch *gdbarch,
			    struct regcache *regcache, int cookednum,
			    const gdb_byte *buf)
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
	      && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    regcache_raw_write (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
	   register_size (gdbarch, cookednum))
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
      else
	{
	  /* Sign extend the shortened version of the register prior
	     to placing it in the raw register.  This is required for
	     some mips64 parts in order to avoid unpredictable behavior.  */
	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
	  LONGEST regval = extract_signed_integer (buf, 4, byte_order);
	  regcache_raw_write_signed (regcache, rawnum, regval);
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
}

static int
mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				 struct agent_expr *ax, int reg)
{
  int rawnum = reg % gdbarch_num_regs (gdbarch);
  gdb_assert (reg >= gdbarch_num_regs (gdbarch)
	      && reg < 2 * gdbarch_num_regs (gdbarch));

  ax_reg_mask (ax, rawnum);

  return 0;
}

static int
mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
				    struct agent_expr *ax, int reg)
{
  int rawnum = reg % gdbarch_num_regs (gdbarch);
  gdb_assert (reg >= gdbarch_num_regs (gdbarch)
	      && reg < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
    {
      ax_reg (ax, rawnum);

      if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
        {
	  if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
	      || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
	    {
	      ax_const_l (ax, 32);
	      ax_simple (ax, aop_lsh);
	    }
	  ax_const_l (ax, 32);
	  ax_simple (ax, aop_rsh_signed);
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));

  return 0;
}

/* Table to translate MIPS16 register field to actual register number.  */
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };

/* Heuristic_proc_start may hunt through the text section for a long
   time across a 2400 baud serial line.  Allows the user to limit this
   search.  */

static unsigned int heuristic_fence_post = 0;

/* Number of bytes of storage in the actual machine representation for
   register N.  NOTE: This defines the pseudo register type so need to
   rebuild the architecture vector.  */

static int mips64_transfers_32bit_regs_p = 0;

static void
set_mips64_transfers_32bit_regs (char *args, int from_tty,
				 struct cmd_list_element *c)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    {
      mips64_transfers_32bit_regs_p = 0;
      error (_("32-bit compatibility mode not supported"));
    }
}

/* Convert to/from a register and the corresponding memory value.  */

/* This predicate tests for the case of an 8 byte floating point
   value that is being transferred to or from a pair of floating point
   registers each of which are (or are considered to be) only 4 bytes
   wide.  */
static int
mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
				    struct type *type)
{
  return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
	  && register_size (gdbarch, regnum) == 4
	  && (regnum % gdbarch_num_regs (gdbarch))
		>= mips_regnum (gdbarch)->fp0
	  && (regnum % gdbarch_num_regs (gdbarch))
		< mips_regnum (gdbarch)->fp0 + 32
	  && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
}

/* This predicate tests for the case of a value of less than 8
   bytes in width that is being transfered to or from an 8 byte
   general purpose register.  */
static int
mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
				    struct type *type)
{
  int num_regs = gdbarch_num_regs (gdbarch);

  return (register_size (gdbarch, regnum) == 8
          && regnum % num_regs > 0 && regnum % num_regs < 32
          && TYPE_LENGTH (type) < 8);
}

static int
mips_convert_register_p (struct gdbarch *gdbarch,
			 int regnum, struct type *type)
{
  return mips_convert_register_float_case_p (gdbarch, regnum, type)
      || mips_convert_register_gpreg_case_p (gdbarch, regnum, type);
}

static int
mips_register_to_value (struct frame_info *frame, int regnum,
			struct type *type, gdb_byte *to,
			int *optimizedp, int *unavailablep)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);

  if (mips_convert_register_float_case_p (gdbarch, regnum, type))
    {
      get_frame_register (frame, regnum + 0, to + 4);
      get_frame_register (frame, regnum + 1, to + 0);

      if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
				     optimizedp, unavailablep))
	return 0;

      if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
				     optimizedp, unavailablep))
	return 0;
      *optimizedp = *unavailablep = 0;
      return 1;
    }
  else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
    {
      int len = TYPE_LENGTH (type);
      CORE_ADDR offset;

      offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
      if (!get_frame_register_bytes (frame, regnum, offset, len, to,
				     optimizedp, unavailablep))
	return 0;

      *optimizedp = *unavailablep = 0;
      return 1;
    }
  else
    {
      internal_error (__FILE__, __LINE__,
                      _("mips_register_to_value: unrecognized case"));
    }
}

static void
mips_value_to_register (struct frame_info *frame, int regnum,
			struct type *type, const gdb_byte *from)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);

  if (mips_convert_register_float_case_p (gdbarch, regnum, type))
    {
      put_frame_register (frame, regnum + 0, from + 4);
      put_frame_register (frame, regnum + 1, from + 0);
    }
  else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
    {
      gdb_byte fill[8];
      int len = TYPE_LENGTH (type);
      
      /* Sign extend values, irrespective of type, that are stored to 
         a 64-bit general purpose register.  (32-bit unsigned values
	 are stored as signed quantities within a 64-bit register.
	 When performing an operation, in compiled code, that combines
	 a 32-bit unsigned value with a signed 64-bit value, a type
	 conversion is first performed that zeroes out the high 32 bits.)  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	{
	  if (from[0] & 0x80)
	    store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
	  else
	    store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
	  put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
	  put_frame_register_bytes (frame, regnum, 8 - len, len, from);
	}
      else
	{
	  if (from[len-1] & 0x80)
	    store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
	  else
	    store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
	  put_frame_register_bytes (frame, regnum, 0, len, from);
	  put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
	}
    }
  else
    {
      internal_error (__FILE__, __LINE__,
                      _("mips_value_to_register: unrecognized case"));
    }
}

/* Return the GDB type object for the "standard" data type of data in
   register REG.  */

static struct type *
mips_register_type (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
  if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
      && (regnum % gdbarch_num_regs (gdbarch))
	 < mips_regnum (gdbarch)->fp0 + 32)
    {
      /* The floating-point registers raw, or cooked, always match
         mips_isa_regsize(), and also map 1:1, byte for byte.  */
      if (mips_isa_regsize (gdbarch) == 4)
	return builtin_type (gdbarch)->builtin_float;
      else
	return builtin_type (gdbarch)->builtin_double;
    }
  else if (regnum < gdbarch_num_regs (gdbarch))
    {
      /* The raw or ISA registers.  These are all sized according to
	 the ISA regsize.  */
      if (mips_isa_regsize (gdbarch) == 4)
	return builtin_type (gdbarch)->builtin_int32;
      else
	return builtin_type (gdbarch)->builtin_int64;
    }
  else
    {
      /* The cooked or ABI registers.  These are sized according to
	 the ABI (with a few complications).  */
      if (regnum >= (gdbarch_num_regs (gdbarch)
		     + mips_regnum (gdbarch)->fp_control_status)
	  && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
	/* The pseudo/cooked view of the embedded registers is always
	   32-bit.  The raw view is handled below.  */
	return builtin_type (gdbarch)->builtin_int32;
      else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
	/* The target, while possibly using a 64-bit register buffer,
	   is only transfering 32-bits of each integer register.
	   Reflect this in the cooked/pseudo (ABI) register value.  */
	return builtin_type (gdbarch)->builtin_int32;
      else if (mips_abi_regsize (gdbarch) == 4)
	/* The ABI is restricted to 32-bit registers (the ISA could be
	   32- or 64-bit).  */
	return builtin_type (gdbarch)->builtin_int32;
      else
	/* 64-bit ABI.  */
	return builtin_type (gdbarch)->builtin_int64;
    }
}

/* Return the GDB type for the pseudo register REGNUM, which is the
   ABI-level view.  This function is only called if there is a target
   description which includes registers, so we know precisely the
   types of hardware registers.  */

static struct type *
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  const int num_regs = gdbarch_num_regs (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int rawnum = regnum % num_regs;
  struct type *rawtype;

  gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);

  /* Absent registers are still absent.  */
  rawtype = gdbarch_register_type (gdbarch, rawnum);
  if (TYPE_LENGTH (rawtype) == 0)
    return rawtype;

  if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
    /* Present the floating point registers however the hardware did;
       do not try to convert between FPU layouts.  */
    return rawtype;

  if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
    {
      /* The pseudo/cooked view of embedded registers is always
	 32-bit, even if the target transfers 64-bit values for them.
	 New targets relying on XML descriptions should only transfer
	 the necessary 32 bits, but older versions of GDB expected 64,
	 so allow the target to provide 64 bits without interfering
	 with the displayed type.  */
      return builtin_type (gdbarch)->builtin_int32;
    }

  /* Use pointer types for registers if we can.  For n32 we can not,
     since we do not have a 64-bit pointer type.  */
  if (mips_abi_regsize (gdbarch)
      == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
    {
      if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
	return builtin_type (gdbarch)->builtin_data_ptr;
      else if (rawnum == MIPS_EMBED_PC_REGNUM)
	return builtin_type (gdbarch)->builtin_func_ptr;
    }

  if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
      && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_int32;

  /* For all other registers, pass through the hardware type.  */
  return rawtype;
}

/* Should the upper word of 64-bit addresses be zeroed?  */
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;

static int
mips_mask_address_p (struct gdbarch_tdep *tdep)
{
  switch (mask_address_var)
    {
    case AUTO_BOOLEAN_TRUE:
      return 1;
    case AUTO_BOOLEAN_FALSE:
      return 0;
      break;
    case AUTO_BOOLEAN_AUTO:
      return tdep->default_mask_address_p;
    default:
      internal_error (__FILE__, __LINE__,
		      _("mips_mask_address_p: bad switch"));
      return -1;
    }
}

static void
show_mask_address (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);

  deprecated_show_value_hack (file, from_tty, c, value);
  switch (mask_address_var)
    {
    case AUTO_BOOLEAN_TRUE:
      printf_filtered ("The 32 bit mips address mask is enabled\n");
      break;
    case AUTO_BOOLEAN_FALSE:
      printf_filtered ("The 32 bit mips address mask is disabled\n");
      break;
    case AUTO_BOOLEAN_AUTO:
      printf_filtered
	("The 32 bit address mask is set automatically.  Currently %s\n",
	 mips_mask_address_p (tdep) ? "enabled" : "disabled");
      break;
    default:
      internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
      break;
    }
}

/* Tell if the program counter value in MEMADDR is in a MIPS16 function.  */

int
mips_pc_is_mips16 (CORE_ADDR memaddr)
{
  struct minimal_symbol *sym;

  /* A flag indicating that this is a MIPS16 function is stored by
     elfread.c in the high bit of the info field.  Use this to decide
     if the function is MIPS16 or normal MIPS.  Otherwise if bit 0 of
     the address is set, assume this is a MIPS16 address.  */
  sym = lookup_minimal_symbol_by_pc (memaddr);
  if (sym)
    return msymbol_is_special (sym);
  else
    return is_mips16_addr (memaddr);
}

/* MIPS believes that the PC has a sign extended value.  Perhaps the
   all registers should be sign extended for simplicity?  */

static CORE_ADDR
mips_read_pc (struct regcache *regcache)
{
  ULONGEST pc;
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  regcache_cooked_read_signed (regcache, regnum, &pc);
  if (is_mips16_addr (pc))
    pc = unmake_mips16_addr (pc);
  return pc;
}

static CORE_ADDR
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;

  pc = frame_unwind_register_signed
	 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
  if (is_mips16_addr (pc))
    pc = unmake_mips16_addr (pc);
  return pc;
}

static CORE_ADDR
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_signed
	   (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
}

/* Assuming THIS_FRAME is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */

static struct frame_id
mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build
	   (get_frame_register_signed (this_frame,
				       gdbarch_num_regs (gdbarch)
				       + MIPS_SP_REGNUM),
	    get_frame_pc (this_frame));
}

static void
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  if (mips_pc_is_mips16 (pc))
    regcache_cooked_write_unsigned (regcache, regnum, make_mips16_addr (pc));
  else
    regcache_cooked_write_unsigned (regcache, regnum, pc);
}

/* Fetch and return instruction from the specified location.  If the PC
   is odd, assume it's a MIPS16 instruction; otherwise MIPS32.  */

static ULONGEST
mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[MIPS_INSN32_SIZE];
  int instlen;
  int status;

  if (mips_pc_is_mips16 (addr))
    {
      instlen = MIPS_INSN16_SIZE;
      addr = unmake_mips16_addr (addr);
    }
  else
    instlen = MIPS_INSN32_SIZE;
  status = target_read_memory (addr, buf, instlen);
  if (status)
    memory_error (status, addr);
  return extract_unsigned_integer (buf, instlen, byte_order);
}

/* These are the fields of 32 bit mips instructions.  */
#define mips32_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_immediate(x) (x & 0xffff)

#define jtype_op(x) (x >> 26)
#define jtype_target(x) (x & 0x03ffffff)

#define rtype_op(x) (x >> 26)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)

static LONGEST
mips32_relative_offset (ULONGEST inst)
{
  return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
}

/* Determine where to set a single step breakpoint while considering
   branch prediction.  */
static CORE_ADDR
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned long inst;
  int op;
  inst = mips_fetch_instruction (gdbarch, pc);
  if ((inst & 0xe0000000) != 0)		/* Not a special, jump or branch
					   instruction.  */
    {
      if (itype_op (inst) >> 2 == 5)
	/* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
	{
	  op = (itype_op (inst) & 0x03);
	  switch (op)
	    {
	    case 0:		/* BEQL */
	      goto equal_branch;
	    case 1:		/* BNEL */
	      goto neq_branch;
	    case 2:		/* BLEZL */
	      goto less_branch;
	    case 3:		/* BGTZL */
	      goto greater_branch;
	    default:
	      pc += 4;
	    }
	}
      else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
	/* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
	{
	  int tf = itype_rt (inst) & 0x01;
	  int cnum = itype_rt (inst) >> 2;
	  int fcrcs =
	    get_frame_register_signed (frame,
				       mips_regnum (get_frame_arch (frame))->
						fp_control_status);
	  int cond = ((fcrcs >> 24) & 0xfe) | ((fcrcs >> 23) & 0x01);

	  if (((cond >> cnum) & 0x01) == tf)
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	}
      else
	pc += 4;		/* Not a branch, next instruction is easy.  */
    }
  else
    {				/* This gets way messy.  */

      /* Further subdivide into SPECIAL, REGIMM and other.  */
      switch (op = itype_op (inst) & 0x07)	/* Extract bits 28,27,26.  */
	{
	case 0:		/* SPECIAL */
	  op = rtype_funct (inst);
	  switch (op)
	    {
	    case 8:		/* JR */
	    case 9:		/* JALR */
	      /* Set PC to that address.  */
	      pc = get_frame_register_signed (frame, rtype_rs (inst));
	      break;
	    case 12:            /* SYSCALL */
	      {
		struct gdbarch_tdep *tdep;

		tdep = gdbarch_tdep (get_frame_arch (frame));
		if (tdep->syscall_next_pc != NULL)
		  pc = tdep->syscall_next_pc (frame);
		else
		  pc += 4;
	      }
	      break;
	    default:
	      pc += 4;
	    }

	  break;		/* end SPECIAL */
	case 1:			/* REGIMM */
	  {
	    op = itype_rt (inst);	/* branch condition */
	    switch (op)
	      {
	      case 0:		/* BLTZ */
	      case 2:		/* BLTZL */
	      case 16:		/* BLTZAL */
	      case 18:		/* BLTZALL */
	      less_branch:
		if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
		  pc += mips32_relative_offset (inst) + 4;
		else
		  pc += 8;	/* after the delay slot */
		break;
	      case 1:		/* BGEZ */
	      case 3:		/* BGEZL */
	      case 17:		/* BGEZAL */
	      case 19:		/* BGEZALL */
		if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
		  pc += mips32_relative_offset (inst) + 4;
		else
		  pc += 8;	/* after the delay slot */
		break;
		/* All of the other instructions in the REGIMM category */
	      default:
		pc += 4;
	      }
	  }
	  break;		/* end REGIMM */
	case 2:		/* J */
	case 3:		/* JAL */
	  {
	    unsigned long reg;
	    reg = jtype_target (inst) << 2;
	    /* Upper four bits get never changed...  */
	    pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
	  }
	  break;
	  /* FIXME case JALX : */
	  {
	    unsigned long reg;
	    reg = jtype_target (inst) << 2;
	    pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1;  /* yes, +1 */
	    /* Add 1 to indicate 16 bit mode - Invert ISA mode */
	  }
	  break;		/* The new PC will be alternate mode */
	case 4:		/* BEQ, BEQL */
	equal_branch:
	  if (get_frame_register_signed (frame, itype_rs (inst)) ==
	      get_frame_register_signed (frame, itype_rt (inst)))
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 5:		/* BNE, BNEL */
	neq_branch:
	  if (get_frame_register_signed (frame, itype_rs (inst)) !=
	      get_frame_register_signed (frame, itype_rt (inst)))
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 6:		/* BLEZ, BLEZL */
	  if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	case 7:
	default:
	greater_branch:	/* BGTZ, BGTZL */
	  if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
	    pc += mips32_relative_offset (inst) + 4;
	  else
	    pc += 8;
	  break;
	}			/* switch */
    }				/* else */
  return pc;
}				/* mips32_next_pc */

/* Decoding the next place to set a breakpoint is irregular for the
   mips 16 variant, but fortunately, there fewer instructions.  We have
   to cope ith extensions for 16 bit instructions and a pair of actual
   32 bit instructions.  We dont want to set a single step instruction
   on the extend instruction either.  */

/* Lots of mips16 instruction formats */
/* Predicting jumps requires itype,ritype,i8type
   and their extensions      extItype,extritype,extI8type.  */
enum mips16_inst_fmts
{
  itype,			/* 0  immediate 5,10 */
  ritype,			/* 1   5,3,8 */
  rrtype,			/* 2   5,3,3,5 */
  rritype,			/* 3   5,3,3,5 */
  rrrtype,			/* 4   5,3,3,3,2 */
  rriatype,			/* 5   5,3,3,1,4 */
  shifttype,			/* 6   5,3,3,3,2 */
  i8type,			/* 7   5,3,8 */
  i8movtype,			/* 8   5,3,3,5 */
  i8mov32rtype,			/* 9   5,3,5,3 */
  i64type,			/* 10  5,3,8 */
  ri64type,			/* 11  5,3,3,5 */
  jalxtype,			/* 12  5,1,5,5,16 - a 32 bit instruction */
  exiItype,			/* 13  5,6,5,5,1,1,1,1,1,1,5 */
  extRitype,			/* 14  5,6,5,5,3,1,1,1,5 */
  extRRItype,			/* 15  5,5,5,5,3,3,5 */
  extRRIAtype,			/* 16  5,7,4,5,3,3,1,4 */
  EXTshifttype,			/* 17  5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
  extI8type,			/* 18  5,6,5,5,3,1,1,1,5 */
  extI64type,			/* 19  5,6,5,5,3,1,1,1,5 */
  extRi64type,			/* 20  5,6,5,5,3,3,5 */
  extshift64type		/* 21  5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
};
/* I am heaping all the fields of the formats into one structure and
   then, only the fields which are involved in instruction extension.  */
struct upk_mips16
{
  CORE_ADDR offset;
  unsigned int regx;		/* Function in i8 type.  */
  unsigned int regy;
};


/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
   for the bits which make up the immediate extension.  */

static CORE_ADDR
extended_offset (unsigned int extension)
{
  CORE_ADDR value;

  value = (extension >> 16) & 0x1f;	/* Extract 15:11.  */
  value = value << 6;
  value |= (extension >> 21) & 0x3f;	/* Extract 10:5.  */
  value = value << 5;
  value |= extension & 0x1f;		/* Extract 4:0.  */

  return value;
}

/* Only call this function if you know that this is an extendable
   instruction.  It won't malfunction, but why make excess remote memory
   references?  If the immediate operands get sign extended or something,
   do it after the extension is performed.  */
/* FIXME: Every one of these cases needs to worry about sign extension
   when the offset is to be used in relative addressing.  */

static unsigned int
fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[8];
  pc &= 0xfffffffe;		/* Clear the low order bit.  */
  target_read_memory (pc, buf, 2);
  return extract_unsigned_integer (buf, 2, byte_order);
}

static void
unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
	       unsigned int extension,
	       unsigned int inst,
	       enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
{
  CORE_ADDR offset;
  int regx;
  int regy;
  switch (insn_format)
    {
    case itype:
      {
	CORE_ADDR value;
	if (extension)
	  {
	    value = extended_offset ((extension << 16) | inst);
	    value = (value ^ 0x8000) - 0x8000;		/* Sign-extend.  */
	  }
	else
	  {
	    value = inst & 0x7ff;
	    value = (value ^ 0x400) - 0x400;		/* Sign-extend.  */
	  }
	offset = value;
	regx = -1;
	regy = -1;
      }
      break;
    case ritype:
    case i8type:
      {				/* A register identifier and an offset.  */
	/* Most of the fields are the same as I type but the
	   immediate value is of a different length.  */
	CORE_ADDR value;
	if (extension)
	  {
	    value = extended_offset ((extension << 16) | inst);
	    value = (value ^ 0x8000) - 0x8000;		/* Sign-extend.  */
	  }
	else
	  {
	    value = inst & 0xff;			/* 8 bits */
	    value = (value ^ 0x80) - 0x80;		/* Sign-extend.  */
	  }
	offset = value;
	regx = (inst >> 8) & 0x07;			/* i8 funct */
	regy = -1;
	break;
      }
    case jalxtype:
      {
	unsigned long value;
	unsigned int nexthalf;
	value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
	value = value << 16;
	nexthalf = mips_fetch_instruction (gdbarch, pc + 2);  /* low bit
								 still set.  */
	value |= nexthalf;
	offset = value;
	regx = -1;
	regy = -1;
	break;
      }
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  upk->offset = offset;
  upk->regx = regx;
  upk->regy = regy;
}


static CORE_ADDR
add_offset_16 (CORE_ADDR pc, int offset)
{
  return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
}

static CORE_ADDR
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
			 unsigned int extension, unsigned int insn)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int op = (insn >> 11);
  switch (op)
    {
    case 2:			/* Branch */
      {
	CORE_ADDR offset;
	struct upk_mips16 upk;
	unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
	pc += (upk.offset << 1) + 2;
	break;
      }
    case 3:			/* JAL , JALX - Watch out, these are 32 bit
				   instructions.  */
      {
	struct upk_mips16 upk;
	unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
	pc = add_offset_16 (pc, upk.offset);
	if ((insn >> 10) & 0x01)	/* Exchange mode */
	  pc = pc & ~0x01;	/* Clear low bit, indicate 32 bit mode.  */
	else
	  pc |= 0x01;
	break;
      }
    case 4:			/* beqz */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
	reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
	if (reg == 0)
	  pc += (upk.offset << 1) + 2;
	else
	  pc += 2;
	break;
      }
    case 5:			/* bnez */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
	reg = get_frame_register_signed (frame, mips16_to_32_reg[upk.regx]);
	if (reg != 0)
	  pc += (upk.offset << 1) + 2;
	else
	  pc += 2;
	break;
      }
    case 12:			/* I8 Formats btez btnez */
      {
	struct upk_mips16 upk;
	int reg;
	unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
	/* upk.regx contains the opcode */
	reg = get_frame_register_signed (frame, 24);  /* Test register is 24 */
	if (((upk.regx == 0) && (reg == 0))	/* BTEZ */
	    || ((upk.regx == 1) && (reg != 0)))	/* BTNEZ */
	  /* pc = add_offset_16(pc,upk.offset) ; */
	  pc += (upk.offset << 1) + 2;
	else
	  pc += 2;
	break;
      }
    case 29:			/* RR Formats JR, JALR, JALR-RA */
      {
	struct upk_mips16 upk;
	/* upk.fmt = rrtype; */
	op = insn & 0x1f;
	if (op == 0)
	  {
	    int reg;
	    upk.regx = (insn >> 8) & 0x07;
	    upk.regy = (insn >> 5) & 0x07;
	    if ((upk.regy & 1) == 0)
	      reg = mips16_to_32_reg[upk.regx];
	    else
	      reg = 31;		/* Function return instruction.  */
	    pc = get_frame_register_signed (frame, reg);
	  }
	else
	  pc += 2;
	break;
      }
    case 30:
      /* This is an instruction extension.  Fetch the real instruction
         (which follows the extension) and decode things based on
         that.  */
      {
	pc += 2;
	pc = extended_mips16_next_pc (frame, pc, insn,
				      fetch_mips_16 (gdbarch, pc));
	break;
      }
    default:
      {
	pc += 2;
	break;
      }
    }
  return pc;
}

static CORE_ADDR
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned int insn = fetch_mips_16 (gdbarch, pc);
  return extended_mips16_next_pc (frame, pc, 0, insn);
}

/* The mips_next_pc function supports single_step when the remote
   target monitor or stub is not developed enough to do a single_step.
   It works by decoding the current instruction and predicting where a
   branch will go.  This isnt hard because all the data is available.
   The MIPS32 and MIPS16 variants are quite different.  */
static CORE_ADDR
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  if (mips_pc_is_mips16 (pc))
    return mips16_next_pc (frame, pc);
  else
    return mips32_next_pc (frame, pc);
}

struct mips_frame_cache
{
  CORE_ADDR base;
  struct trad_frame_saved_reg *saved_regs;
};

/* Set a register's saved stack address in temp_saved_regs.  If an
   address has already been set for this register, do nothing; this
   way we will only recognize the first save of a given register in a
   function prologue.

   For simplicity, save the address in both [0 .. gdbarch_num_regs) and
   [gdbarch_num_regs .. 2*gdbarch_num_regs).
   Strictly speaking, only the second range is used as it is only second
   range (the ABI instead of ISA registers) that comes into play when finding
   saved registers in a frame.  */

static void
set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
		int regnum, CORE_ADDR offset)
{
  if (this_cache != NULL
      && this_cache->saved_regs[regnum].addr == -1)
    {
      this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
        = offset;
      this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
        = offset;
    }
}


/* Fetch the immediate value from a MIPS16 instruction.
   If the previous instruction was an EXTEND, use it to extend
   the upper bits of the immediate value.  This is a helper function
   for mips16_scan_prologue.  */

static int
mips16_get_imm (unsigned short prev_inst,	/* previous instruction */
		unsigned short inst,	/* current instruction */
		int nbits,	/* number of bits in imm field */
		int scale,	/* scale factor to be applied to imm */
		int is_signed)	/* is the imm field signed?  */
{
  int offset;

  if ((prev_inst & 0xf800) == 0xf000)	/* prev instruction was EXTEND? */
    {
      offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
      if (offset & 0x8000)	/* check for negative extend */
	offset = 0 - (0x10000 - (offset & 0xffff));
      return offset | (inst & 0x1f);
    }
  else
    {
      int max_imm = 1 << nbits;
      int mask = max_imm - 1;
      int sign_bit = max_imm >> 1;

      offset = inst & mask;
      if (is_signed && (offset & sign_bit))
	offset = 0 - (max_imm - offset);
      return offset * scale;
    }
}


/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
   the associated FRAME_CACHE if not null.
   Return the address of the first instruction past the prologue.  */

static CORE_ADDR
mips16_scan_prologue (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
{
  CORE_ADDR cur_pc;
  CORE_ADDR frame_addr = 0;	/* Value of $r17, used as frame pointer.  */
  CORE_ADDR sp;
  long frame_offset = 0;        /* Size of stack frame.  */
  long frame_adjust = 0;        /* Offset of FP from SP.  */
  int frame_reg = MIPS_SP_REGNUM;
  unsigned short prev_inst = 0;	/* saved copy of previous instruction.  */
  unsigned inst = 0;		/* current instruction */
  unsigned entry_inst = 0;	/* the entry instruction */
  unsigned save_inst = 0;	/* the save instruction */
  int reg, offset;

  int extend_bytes = 0;
  int prev_extend_bytes;
  CORE_ADDR end_prologue_addr = 0;

  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch)
				    + MIPS_SP_REGNUM);
  else
    sp = 0;

  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;

  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
    {
      /* Save the previous instruction.  If it's an EXTEND, we'll extract
         the immediate offset extension from it in mips16_get_imm.  */
      prev_inst = inst;

      /* Fetch and decode the instruction.  */
      inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);

      /* Normally we ignore extend instructions.  However, if it is
         not followed by a valid prologue instruction, then this
         instruction is not part of the prologue either.  We must
         remember in this case to adjust the end_prologue_addr back
         over the extend.  */
      if ((inst & 0xf800) == 0xf000)    /* extend */
        {
          extend_bytes = MIPS_INSN16_SIZE;
          continue;
        }

      prev_extend_bytes = extend_bytes;
      extend_bytes = 0;

      if ((inst & 0xff00) == 0x6300	/* addiu sp */
	  || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
	  if (offset < 0)	/* Negative stack adjustment?  */
	    frame_offset -= offset;
	  else
	    /* Exit loop if a positive stack adjustment is found, which
	       usually means that the stack cleanup code in the function
	       epilogue is reached.  */
	    break;
	}
      else if ((inst & 0xf800) == 0xd000)	/* sw reg,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  reg = mips16_to_32_reg[(inst & 0x700) >> 8];
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if ((inst & 0xff00) == 0xf900)	/* sd reg,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	}
      else if ((inst & 0xff00) == 0x6200)	/* sw $ra,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	}
      else if ((inst & 0xff00) == 0xfa00)	/* sd $ra,n($sp) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	}
      else if (inst == 0x673d)	/* move $s1, $sp */
	{
	  frame_addr = sp;
	  frame_reg = 17;
	}
      else if ((inst & 0xff00) == 0x0100)	/* addiu $s1,sp,n */
	{
	  offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
	  frame_addr = sp + offset;
	  frame_reg = 17;
	  frame_adjust = offset;
	}
      else if ((inst & 0xFF00) == 0xd900)	/* sw reg,offset($s1) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
	}
      else if ((inst & 0xFF00) == 0x7900)	/* sd reg,offset($s1) */
	{
	  offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
	  reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
	}
      else if ((inst & 0xf81f) == 0xe809
               && (inst & 0x700) != 0x700)	/* entry */
	entry_inst = inst;	/* Save for later processing.  */
      else if ((inst & 0xff80) == 0x6480)	/* save */
	{
	  save_inst = inst;	/* Save for later processing.  */
	  if (prev_extend_bytes)		/* extend */
	    save_inst |= prev_inst << 16;
	}
      else if ((inst & 0xf800) == 0x1800)	/* jal(x) */
	cur_pc += MIPS_INSN16_SIZE;	/* 32-bit instruction */
      else if ((inst & 0xff1c) == 0x6704)	/* move reg,$a0-$a3 */
        {
          /* This instruction is part of the prologue, but we don't
             need to do anything special to handle it.  */
        }
      else
        {
          /* This instruction is not an instruction typically found
             in a prologue, so we must have reached the end of the
             prologue.  */
          if (end_prologue_addr == 0)
            end_prologue_addr = cur_pc - prev_extend_bytes;
        }
    }

  /* The entry instruction is typically the first instruction in a function,
     and it stores registers at offsets relative to the value of the old SP
     (before the prologue).  But the value of the sp parameter to this
     function is the new SP (after the prologue has been executed).  So we
     can't calculate those offsets until we've seen the entire prologue,
     and can calculate what the old SP must have been.  */
  if (entry_inst != 0)
    {
      int areg_count = (entry_inst >> 8) & 7;
      int sreg_count = (entry_inst >> 6) & 3;

      /* The entry instruction always subtracts 32 from the SP.  */
      frame_offset += 32;

      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
      sp += frame_offset;

      /* Check if a0-a3 were saved in the caller's argument save area.  */
      for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset += mips_abi_regsize (gdbarch);
	}

      /* Check if the ra register was pushed on the stack.  */
      offset = -4;
      if (entry_inst & 0x20)
	{
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the s0 and s1 registers were pushed on the stack.  */
      for (reg = 16; reg < sreg_count + 16; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
    }

  /* The SAVE instruction is similar to ENTRY, except that defined by the
     MIPS16e ASE of the MIPS Architecture.  Unlike with ENTRY though, the
     size of the frame is specified as an immediate field of instruction
     and an extended variation exists which lets additional registers and
     frame space to be specified.  The instruction always treats registers
     as 32-bit so its usefulness for 64-bit ABIs is questionable.  */
  if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
    {
      static int args_table[16] = {
	0, 0, 0, 0, 1, 1, 1, 1,
	2, 2, 2, 0, 3, 3, 4, -1,
      };
      static int astatic_table[16] = {
	0, 1, 2, 3, 0, 1, 2, 3,
	0, 1, 2, 4, 0, 1, 0, -1,
      };
      int aregs = (save_inst >> 16) & 0xf;
      int xsregs = (save_inst >> 24) & 0x7;
      int args = args_table[aregs];
      int astatic = astatic_table[aregs];
      long frame_size;

      if (args < 0)
	{
	  warning (_("Invalid number of argument registers encoded in SAVE."));
	  args = 0;
	}
      if (astatic < 0)
	{
	  warning (_("Invalid number of static registers encoded in SAVE."));
	  astatic = 0;
	}

      /* For standard SAVE the frame size of 0 means 128.  */
      frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
      if (frame_size == 0 && (save_inst >> 16) == 0)
	frame_size = 16;
      frame_size *= 8;
      frame_offset += frame_size;

      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
      sp += frame_offset;

      /* Check if A0-A3 were saved in the caller's argument save area.  */
      for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset += mips_abi_regsize (gdbarch);
	}

      offset = -4;

      /* Check if the RA register was pushed on the stack.  */
      if (save_inst & 0x40)
	{
	  set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the S8 register was pushed on the stack.  */
      if (xsregs > 6)
	{
	  set_reg_offset (gdbarch, this_cache, 30, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	  xsregs--;
	}
      /* Check if S2-S7 were pushed on the stack.  */
      for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if the S1 register was pushed on the stack.  */
      if (save_inst & 0x10)
	{
	  set_reg_offset (gdbarch, this_cache, 17, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
      /* Check if the S0 register was pushed on the stack.  */
      if (save_inst & 0x20)
	{
	  set_reg_offset (gdbarch, this_cache, 16, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}

      /* Check if A0-A3 were pushed on the stack.  */
      for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + offset);
	  offset -= mips_abi_regsize (gdbarch);
	}
    }

  if (this_cache != NULL)
    {
      this_cache->base =
        (get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset - frame_adjust);
      /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
         be able to get rid of the assignment below, evetually.  But it's
         still needed for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
    }

  /* If we didn't reach the end of the prologue when scanning the function
     instructions, then set end_prologue_addr to the address of the
     instruction immediately after the last one we scanned.  */
  if (end_prologue_addr == 0)
    end_prologue_addr = cur_pc;

  return end_prologue_addr;
}

/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
   Procedures that use the 32-bit instruction set are handled by the
   mips_insn32 unwinder.  */

static struct mips_frame_cache *
mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;

  if ((*this_cache) != NULL)
    return (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Analyze the function prologue.  */
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;

    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
    if (start_addr == 0)
      return cache;

    mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
  }
  
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
			gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
			cache->base);

  return (*this_cache);
}

static void
mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
			   struct frame_id *this_id)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
mips_insn16_frame_prev_register (struct frame_info *this_frame,
				 void **this_cache, int regnum)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static int
mips_insn16_frame_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (pc))
    return 1;
  return 0;
}

static const struct frame_unwind mips_insn16_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_insn16_frame_this_id,
  mips_insn16_frame_prev_register,
  NULL,
  mips_insn16_frame_sniffer
};

static CORE_ADDR
mips_insn16_frame_base_address (struct frame_info *this_frame,
				void **this_cache)
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
							   this_cache);
  return info->base;
}

static const struct frame_base mips_insn16_frame_base =
{
  &mips_insn16_frame_unwind,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address
};

static const struct frame_base *
mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (pc))
    return &mips_insn16_frame_base;
  else
    return NULL;
}

/* Mark all the registers as unset in the saved_regs array
   of THIS_CACHE.  Do nothing if THIS_CACHE is null.  */

static void
reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
{
  if (this_cache == NULL || this_cache->saved_regs == NULL)
    return;

  {
    const int num_regs = gdbarch_num_regs (gdbarch);
    int i;

    for (i = 0; i < num_regs; i++)
      {
        this_cache->saved_regs[i].addr = -1;
      }
  }
}

/* Analyze the function prologue from START_PC to LIMIT_PC.  Builds
   the associated FRAME_CACHE if not null.  
   Return the address of the first instruction past the prologue.  */

static CORE_ADDR
mips32_scan_prologue (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
{
  CORE_ADDR cur_pc;
  CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
			       frame-pointer.  */
  CORE_ADDR sp;
  long frame_offset;
  int  frame_reg = MIPS_SP_REGNUM;

  CORE_ADDR end_prologue_addr = 0;
  int seen_sp_adjust = 0;
  int load_immediate_bytes = 0;
  int in_delay_slot = 0;
  int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);

  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch)
				    + MIPS_SP_REGNUM);
  else
    sp = 0;

  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;

restart:

  frame_offset = 0;
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
    {
      unsigned long inst, high_word, low_word;
      int reg;

      /* Fetch the instruction.  */
      inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);

      /* Save some code by pre-extracting some useful fields.  */
      high_word = (inst >> 16) & 0xffff;
      low_word = inst & 0xffff;
      reg = high_word & 0x1f;

      if (high_word == 0x27bd		/* addiu $sp,$sp,-i */
	  || high_word == 0x23bd	/* addi $sp,$sp,-i */
	  || high_word == 0x67bd)	/* daddiu $sp,$sp,-i */
	{
	  if (low_word & 0x8000)	/* Negative stack adjustment?  */
            frame_offset += 0x10000 - low_word;
	  else
	    /* Exit loop if a positive stack adjustment is found, which
	       usually means that the stack cleanup code in the function
	       epilogue is reached.  */
	    break;
          seen_sp_adjust = 1;
	}
      else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
               && !regsize_is_64_bits)
	{
	  set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
	}
      else if (((high_word & 0xFFE0) == 0xffa0)	/* sd reg,offset($sp) */
               && regsize_is_64_bits)
	{
	  /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra.  */
	  set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
	}
      else if (high_word == 0x27be)	/* addiu $30,$sp,size */
	{
	  /* Old gcc frame, r30 is virtual frame pointer.  */
	  if ((long) low_word != frame_offset)
	    frame_addr = sp + low_word;
	  else if (this_frame && frame_reg == MIPS_SP_REGNUM)
	    {
	      unsigned alloca_adjust;

	      frame_reg = 30;
	      frame_addr = get_frame_register_signed
		(this_frame, gdbarch_num_regs (gdbarch) + 30);

	      alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
	      if (alloca_adjust > 0)
		{
                  /* FP > SP + frame_size.  This may be because of
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
		  sp += alloca_adjust;
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
		  goto restart;
		}
	    }
	}
      /* move $30,$sp.  With different versions of gas this will be either
         `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
         Accept any one of these.  */
      else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
	{
	  /* New gcc frame, virtual frame pointer is at r30 + frame_size.  */
	  if (this_frame && frame_reg == MIPS_SP_REGNUM)
	    {
	      unsigned alloca_adjust;

	      frame_reg = 30;
	      frame_addr = get_frame_register_signed
		(this_frame, gdbarch_num_regs (gdbarch) + 30);

	      alloca_adjust = (unsigned) (frame_addr - sp);
	      if (alloca_adjust > 0)
	        {
                  /* FP > SP + frame_size.  This may be because of
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
	          sp = frame_addr;
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
	          goto restart;
	        }
	    }
	}
      else if ((high_word & 0xFFE0) == 0xafc0 	/* sw reg,offset($30) */
               && !regsize_is_64_bits)
	{
	  set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
	}
      else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
               || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
               || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
               || high_word == 0x3c1c /* lui $gp,n */
               || high_word == 0x279c /* addiu $gp,$gp,n */
               || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
               || inst == 0x033ce021 /* addu $gp,$t9,$gp */
              )
       {
         /* These instructions are part of the prologue, but we don't
            need to do anything special to handle them.  */
       }
      /* The instructions below load $at or $t0 with an immediate
         value in preparation for a stack adjustment via
         subu $sp,$sp,[$at,$t0].  These instructions could also
         initialize a local variable, so we accept them only before
         a stack adjustment instruction was seen.  */
      else if (!seen_sp_adjust
               && (high_word == 0x3c01 /* lui $at,n */
                   || high_word == 0x3c08 /* lui $t0,n */
                   || high_word == 0x3421 /* ori $at,$at,n */
                   || high_word == 0x3508 /* ori $t0,$t0,n */
                   || high_word == 0x3401 /* ori $at,$zero,n */
                   || high_word == 0x3408 /* ori $t0,$zero,n */
                  ))
       {
	 if (end_prologue_addr == 0)
	   load_immediate_bytes += MIPS_INSN32_SIZE;		/* FIXME!  */
       }
      else
       {
         /* This instruction is not an instruction typically found
            in a prologue, so we must have reached the end of the
            prologue.  */
         /* FIXME: brobecker/2004-10-10: Can't we just break out of this
            loop now?  Why would we need to continue scanning the function
            instructions?  */
         if (end_prologue_addr == 0)
           end_prologue_addr = cur_pc;

	 /* Check for branches and jumps.  For now, only jump to
	    register are caught (i.e. returns).  */
	 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
	   in_delay_slot = 1;
       }

      /* If the previous instruction was a jump, we must have reached
	 the end of the prologue by now.  Stop scanning so that we do
	 not go past the function return.  */
      if (in_delay_slot)
	break;
    }

  if (this_cache != NULL)
    {
      this_cache->base = 
        (get_frame_register_signed (this_frame,
				    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset);
      /* FIXME: brobecker/2004-09-15: We should be able to get rid of
         this assignment below, eventually.  But it's still needed
         for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
			     + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
				 + MIPS_RA_REGNUM];
    }

  /* If we didn't reach the end of the prologue when scanning the function
     instructions, then set end_prologue_addr to the address of the
     instruction immediately after the last one we scanned.  */
  /* brobecker/2004-10-10: I don't think this would ever happen, but
     we may as well be careful and do our best if we have a null
     end_prologue_addr.  */
  if (end_prologue_addr == 0)
    end_prologue_addr = cur_pc;
     
  /* In a frameless function, we might have incorrectly
     skipped some load immediate instructions.  Undo the skipping
     if the load immediate was not followed by a stack adjustment.  */
  if (load_immediate_bytes && !seen_sp_adjust)
    end_prologue_addr -= load_immediate_bytes;

  return end_prologue_addr;
}

/* Heuristic unwinder for procedures using 32-bit instructions (covers
   both 32-bit and 64-bit MIPS ISAs).  Procedures using 16-bit
   instructions (a.k.a. MIPS16) are handled by the mips_insn16
   unwinder.  */

static struct mips_frame_cache *
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;

  if ((*this_cache) != NULL)
    return (*this_cache);

  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Analyze the function prologue.  */
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;

    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
    if (start_addr == 0)
      return cache;

    mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
  }
  
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
			gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
			cache->base);

  return (*this_cache);
}

static void
mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
			   struct frame_id *this_id)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
mips_insn32_frame_prev_register (struct frame_info *this_frame,
				 void **this_cache, int regnum)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static int
mips_insn32_frame_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (! mips_pc_is_mips16 (pc))
    return 1;
  return 0;
}

static const struct frame_unwind mips_insn32_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_insn32_frame_this_id,
  mips_insn32_frame_prev_register,
  NULL,
  mips_insn32_frame_sniffer
};

static CORE_ADDR
mips_insn32_frame_base_address (struct frame_info *this_frame,
				void **this_cache)
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
							   this_cache);
  return info->base;
}

static const struct frame_base mips_insn32_frame_base =
{
  &mips_insn32_frame_unwind,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address
};

static const struct frame_base *
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (! mips_pc_is_mips16 (pc))
    return &mips_insn32_frame_base;
  else
    return NULL;
}

static struct trad_frame_cache *
mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc;
  CORE_ADDR start_addr;
  CORE_ADDR stack_addr;
  struct trad_frame_cache *this_trad_cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int num_regs = gdbarch_num_regs (gdbarch);

  if ((*this_cache) != NULL)
    return (*this_cache);
  this_trad_cache = trad_frame_cache_zalloc (this_frame);
  (*this_cache) = this_trad_cache;

  /* The return address is in the link register.  */
  trad_frame_set_reg_realreg (this_trad_cache,
			      gdbarch_pc_regnum (gdbarch),
			      num_regs + MIPS_RA_REGNUM);

  /* Frame ID, since it's a frameless / stackless function, no stack
     space is allocated and SP on entry is the current SP.  */
  pc = get_frame_pc (this_frame);
  find_pc_partial_function (pc, NULL, &start_addr, NULL);
  stack_addr = get_frame_register_signed (this_frame,
					  num_regs + MIPS_SP_REGNUM);
  trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));

  /* Assume that the frame's base is the same as the
     stack-pointer.  */
  trad_frame_set_this_base (this_trad_cache, stack_addr);

  return this_trad_cache;
}

static void
mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
			 struct frame_id *this_id)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  trad_frame_get_id (this_trad_cache, this_id);
}

static struct value *
mips_stub_frame_prev_register (struct frame_info *this_frame,
			       void **this_cache, int regnum)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
}

static int
mips_stub_frame_sniffer (const struct frame_unwind *self,
			 struct frame_info *this_frame, void **this_cache)
{
  gdb_byte dummy[4];
  struct obj_section *s;
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct minimal_symbol *msym;

  /* Use the stub unwinder for unreadable code.  */
  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
    return 1;

  if (in_plt_section (pc, NULL))
    return 1;

  /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs.  */
  s = find_pc_section (pc);

  if (s != NULL
      && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
		 ".MIPS.stubs") == 0)
    return 1;

  /* Calling a PIC function from a non-PIC function passes through a
     stub.  The stub for foo is named ".pic.foo".  */
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym != NULL
      && SYMBOL_LINKAGE_NAME (msym) != NULL
      && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
    return 1;

  return 0;
}

static const struct frame_unwind mips_stub_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mips_stub_frame_this_id,
  mips_stub_frame_prev_register,
  NULL,
  mips_stub_frame_sniffer
};

static CORE_ADDR
mips_stub_frame_base_address (struct frame_info *this_frame,
			      void **this_cache)
{
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_this_base (this_trad_cache);
}

static const struct frame_base mips_stub_frame_base =
{
  &mips_stub_frame_unwind,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address
};

static const struct frame_base *
mips_stub_frame_base_sniffer (struct frame_info *this_frame)
{
  if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
    return &mips_stub_frame_base;
  else
    return NULL;
}

/* mips_addr_bits_remove - remove useless address bits  */

static CORE_ADDR
mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (is_mips16_addr (addr))
    addr = unmake_mips16_addr (addr);

  if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
    /* This hack is a work-around for existing boards using PMON, the
       simulator, and any other 64-bit targets that doesn't have true
       64-bit addressing.  On these targets, the upper 32 bits of
       addresses are ignored by the hardware.  Thus, the PC or SP are
       likely to have been sign extended to all 1s by instruction
       sequences that load 32-bit addresses.  For example, a typical
       piece of code that loads an address is this:

       lui $r2, <upper 16 bits>
       ori $r2, <lower 16 bits>

       But the lui sign-extends the value such that the upper 32 bits
       may be all 1s.  The workaround is simply to mask off these
       bits.  In the future, gcc may be changed to support true 64-bit
       addressing, and this masking will have to be disabled.  */
    return addr &= 0xffffffffUL;
  else
    return addr;
}

/* Instructions used during single-stepping of atomic sequences.  */
#define LL_OPCODE 0x30
#define LLD_OPCODE 0x34
#define SC_OPCODE 0x38
#define SCD_OPCODE 0x3c

/* Checks for an atomic sequence of instructions beginning with a LL/LLD
   instruction and ending with a SC/SCD instruction.  If such a sequence
   is found, attempt to step through it.  A breakpoint is placed at the end of 
   the sequence.  */

static int
deal_with_atomic_sequence (struct gdbarch *gdbarch,
			   struct address_space *aspace, CORE_ADDR pc)
{
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR loc = pc;
  CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination.  */
  unsigned long insn;
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */

  if (pc & 0x01)
    return 0;

  insn = mips_fetch_instruction (gdbarch, loc);
  /* Assume all atomic sequences start with a ll/lld instruction.  */
  if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
    return 0;

  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      int is_branch = 0;
      loc += MIPS_INSN32_SIZE;
      insn = mips_fetch_instruction (gdbarch, loc);

      /* Assume that there is at most one branch in the atomic
	 sequence.  If a branch is found, put a breakpoint in its
	 destination address.  */
      switch (itype_op (insn))
	{
	case 0: /* SPECIAL */
	  if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
	    return 0; /* fallback to the standard single-step code.  */
	  break;
	case 1: /* REGIMM */
	  is_branch = ((itype_rt (insn) & 0xc) == 0); /* B{LT,GE}Z* */
	  break;
	case 2: /* J */
	case 3: /* JAL */
	  return 0; /* fallback to the standard single-step code.  */
	case 4: /* BEQ */
	case 5: /* BNE */
	case 6: /* BLEZ */
	case 7: /* BGTZ */
	case 20: /* BEQL */
	case 21: /* BNEL */
	case 22: /* BLEZL */
	case 23: /* BGTTL */
	  is_branch = 1;
	  break;
	case 17: /* COP1 */
	case 18: /* COP2 */
	case 19: /* COP3 */
	  is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
	  break;
	}
      if (is_branch)
	{
	  branch_bp = loc + mips32_relative_offset (insn) + 4;
	  if (last_breakpoint >= 1)
	    return 0; /* More than one branch found, fallback to the
			 standard single-step code.  */
	  breaks[1] = branch_bp;
	  last_breakpoint++;
	}

      if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
	break;
    }

  /* Assume that the atomic sequence ends with a sc/scd instruction.  */
  if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
    return 0;

  loc += MIPS_INSN32_SIZE;

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) in the atomic sequence.  */
  if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
    last_breakpoint = 0;

  /* Effectively inserts the breakpoints.  */
  for (index = 0; index <= last_breakpoint; index++)
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);

  return 1;
}

/* mips_software_single_step() is called just before we want to resume
   the inferior, if we want to single-step it but there is no hardware
   or kernel single-step support (MIPS on GNU/Linux for example).  We find
   the target of the coming instruction and breakpoint it.  */

int
mips_software_single_step (struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct address_space *aspace = get_frame_address_space (frame);
  CORE_ADDR pc, next_pc;

  pc = get_frame_pc (frame);
  if (deal_with_atomic_sequence (gdbarch, aspace, pc))
    return 1;

  next_pc = mips_next_pc (frame, pc);

  insert_single_step_breakpoint (gdbarch, aspace, next_pc);
  return 1;
}

/* Test whether the PC points to the return instruction at the
   end of a function.  */

static int
mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  if (mips_pc_is_mips16 (pc))
    /* This mips16 case isn't necessarily reliable.  Sometimes the compiler
       generates a "jr $ra"; other times it generates code to load
       the return address from the stack to an accessible register (such
       as $a3), then a "jr" using that register.  This second case
       is almost impossible to distinguish from an indirect jump
       used for switch statements, so we don't even try.  */
    return mips_fetch_instruction (gdbarch, pc) == 0xe820;	/* jr $ra */
  else
    return mips_fetch_instruction (gdbarch, pc) == 0x3e00008;	/* jr $ra */
}


/* This fencepost looks highly suspicious to me.  Removing it also
   seems suspicious as it could affect remote debugging across serial
   lines.  */

static CORE_ADDR
heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR start_pc;
  CORE_ADDR fence;
  int instlen;
  int seen_adjsp = 0;
  struct inferior *inf;

  pc = gdbarch_addr_bits_remove (gdbarch, pc);
  start_pc = pc;
  fence = start_pc - heuristic_fence_post;
  if (start_pc == 0)
    return 0;

  if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
    fence = VM_MIN_ADDRESS;

  instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;

  inf = current_inferior ();

  /* Search back for previous return.  */
  for (start_pc -= instlen;; start_pc -= instlen)
    if (start_pc < fence)
      {
	/* It's not clear to me why we reach this point when
	   stop_soon, but with this test, at least we
	   don't print out warnings for every child forked (eg, on
	   decstation).  22apr93 rich@cygnus.com.  */
	if (inf->control.stop_soon == NO_STOP_QUIETLY)
	  {
	    static int blurb_printed = 0;

	    warning (_("GDB can't find the start of the function at %s."),
		     paddress (gdbarch, pc));

	    if (!blurb_printed)
	      {
		/* This actually happens frequently in embedded
		   development, when you first connect to a board
		   and your stack pointer and pc are nowhere in
		   particular.  This message needs to give people
		   in that situation enough information to
		   determine that it's no big deal.  */
		printf_filtered ("\n\
    GDB is unable to find the start of the function at %s\n\
and thus can't determine the size of that function's stack frame.\n\
This means that GDB may be unable to access that stack frame, or\n\
the frames below it.\n\
    This problem is most likely caused by an invalid program counter or\n\
stack pointer.\n\
    However, if you think GDB should simply search farther back\n\
from %s for code which looks like the beginning of a\n\
function, you can increase the range of the search using the `set\n\
heuristic-fence-post' command.\n",
			paddress (gdbarch, pc), paddress (gdbarch, pc));
		blurb_printed = 1;
	      }
	  }

	return 0;
      }
    else if (mips_pc_is_mips16 (start_pc))
      {
	unsigned short inst;

	/* On MIPS16, any one of the following is likely to be the
	   start of a function:
  	   extend save
	   save
	   entry
	   addiu sp,-n
	   daddiu sp,-n
	   extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'.  */
	inst = mips_fetch_instruction (gdbarch, start_pc);
	if ((inst & 0xff80) == 0x6480)		/* save */
	  {
	    if (start_pc - instlen >= fence)
	      {
		inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
		if ((inst & 0xf800) == 0xf000)	/* extend */
		  start_pc -= instlen;
	      }
	    break;
	  }
	else if (((inst & 0xf81f) == 0xe809
		  && (inst & 0x700) != 0x700)	/* entry */
		 || (inst & 0xff80) == 0x6380	/* addiu sp,-n */
		 || (inst & 0xff80) == 0xfb80	/* daddiu sp,-n */
		 || ((inst & 0xf810) == 0xf010 && seen_adjsp))	/* extend -n */
	  break;
	else if ((inst & 0xff00) == 0x6300	/* addiu sp */
		 || (inst & 0xff00) == 0xfb00)	/* daddiu sp */
	  seen_adjsp = 1;
	else
	  seen_adjsp = 0;
      }
    else if (mips_about_to_return (gdbarch, start_pc))
      {
	/* Skip return and its delay slot.  */
	start_pc += 2 * MIPS_INSN32_SIZE;
	break;
      }

  return start_pc;
}

struct mips_objfile_private
{
  bfd_size_type size;
  char *contents;
};

/* According to the current ABI, should the type be passed in a
   floating-point register (assuming that there is space)?  When there
   is no FPU, FP are not even considered as possible candidates for
   FP registers and, consequently this returns false - forces FP
   arguments into integer registers.  */

static int
fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
		   struct type *arg_type)
{
  return ((typecode == TYPE_CODE_FLT
	   || (MIPS_EABI (gdbarch)
	       && (typecode == TYPE_CODE_STRUCT
		   || typecode == TYPE_CODE_UNION)
	       && TYPE_NFIELDS (arg_type) == 1
	       && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0))) 
	       == TYPE_CODE_FLT))
	  && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
}

/* On o32, argument passing in GPRs depends on the alignment of the type being
   passed.  Return 1 if this type must be aligned to a doubleword boundary.  */

static int
mips_type_needs_double_align (struct type *type)
{
  enum type_code typecode = TYPE_CODE (type);

  if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
    return 1;
  else if (typecode == TYPE_CODE_STRUCT)
    {
      if (TYPE_NFIELDS (type) < 1)
	return 0;
      return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
    }
  else if (typecode == TYPE_CODE_UNION)
    {
      int i, n;

      n = TYPE_NFIELDS (type);
      for (i = 0; i < n; i++)
	if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
	  return 1;
      return 0;
    }
  return 0;
}

/* Adjust the address downward (direction of stack growth) so that it
   is correctly aligned for a new stack frame.  */
static CORE_ADDR
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 16);
}

static CORE_ADDR
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			   struct regcache *regcache, CORE_ADDR bp_addr,
			   int nargs, struct value **args, CORE_ADDR sp,
			   int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  int regsize = mips_abi_regsize (gdbarch);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  We allocate more
     than necessary for EABI, because the first few arguments are
     passed in registers, but that's OK.  */
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_eabi_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_eabi_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      /* Function pointer arguments to mips16 code need to be made into
         mips16 pointers.  */
      if (typecode == TYPE_CODE_PTR
          && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
	{
	  CORE_ADDR addr = extract_signed_integer (value_contents (arg),
						   len, byte_order);
	  if (mips_pc_is_mips16 (addr))
	    {
	      store_signed_integer (valbuf, len, byte_order, 
				    make_mips16_addr (addr));
	      val = valbuf;
	    }
	  else
	    val = value_contents (arg);
	}
      /* The EABI passes structures that do not fit in a register by
         reference.  */
      else if (len > regsize
	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
	{
	  store_unsigned_integer (valbuf, regsize, byte_order,
				  value_address (arg));
	  typecode = TYPE_CODE_PTR;
	  len = regsize;
	  val = valbuf;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " push");
	}
      else
	val = value_contents (arg);

      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         left.  Non MIPS_EABI targets also pass the FP in the integer
         registers so also round up normal registers.  */
      if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
	{
	  if ((float_argreg & 1))
	    float_argreg++;
	}

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         On non-EABI processors, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */
      /* MIPS_EABI squeezes a struct that contains a single floating
         point value into an FP register instead of pushing it onto the
         stack.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  /* EABI32 will pass doubles in consecutive registers, even on
	     64-bit cores.  At one time, we used to check the size of
	     `float_argreg' to determine whether or not to pass doubles
	     in consecutive registers, but this is not sufficient for
	     making the ABI determination.  */
	  if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
	    {
	      int low_offset = gdbarch_byte_order (gdbarch)
			       == BFD_ENDIAN_BIG ? 4 : 0;
	      long regval;

	      /* Write the low word of the double to the even register(s).  */
	      regval = extract_signed_integer (val + low_offset,
					       4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);

	      /* Write the high word of the double to the odd register(s).  */
	      regval = extract_signed_integer (val + 4 - low_offset,
					       4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);
	    }
	  else
	    {
	      /* This is a floating point value that fits entirely
	         in a single register.  */
	      /* On 32 bit ABI's the float_argreg is further adjusted
	         above to ensure that it is even register aligned.  */
	      LONGEST regval = extract_signed_integer (val, len, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, len));
	      regcache_cooked_write_signed (regcache, float_argreg++, regval);
	    }
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of regsize
	     are treated specially: Irix cc passes
	     them in registers where gcc sometimes puts them on the
	     stack.  For maximum compatibility, we will put them in
	     both places.  */
	  int odd_sized_struct = (len > regsize && len % regsize != 0);

	  /* Note: Floating-point values that didn't fit into an FP
	     register are only written to memory.  */
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < regsize ? len : regsize);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct
		  || fp_register_arg_p (gdbarch, typecode, arg_type))
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if (regsize == 8
			  && (typecode == TYPE_CODE_INT
			      || typecode == TYPE_CODE_PTR
			      || typecode == TYPE_CODE_FLT) && len <= 4)
			longword_offset = regsize - len;
		      else if ((typecode == TYPE_CODE_STRUCT
				|| typecode == TYPE_CODE_UNION)
			       && TYPE_LENGTH (arg_type) < regsize)
			longword_offset = regsize - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  Floating point
	         arguments will not.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
		  && !fp_register_arg_p (gdbarch, typecode, arg_type))
		{
		  LONGEST regval =
		    extract_signed_integer (val, partial_len, byte_order);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, regsize));
		  regcache_cooked_write_signed (regcache, argreg, regval);
		  argreg++;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In the new EABI (and the NABI32), the stack_offset
	         only needs to be adjusted when it has been used.  */

	      if (stack_used_p)
		stack_offset += align_up (partial_len, regsize);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

/* Determine the return value convention being used.  */

static enum return_value_convention
mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
			struct type *type, struct regcache *regcache,
			gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int fp_return_type = 0;
  int offset, regnum, xfer;

  if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
    return RETURN_VALUE_STRUCT_CONVENTION;

  /* Floating point type?  */
  if (tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	fp_return_type = 1;
      /* Structs with a single field of float type 
	 are returned in a floating point register.  */
      if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION)
	  && TYPE_NFIELDS (type) == 1)
	{
	  struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);

	  if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
	    fp_return_type = 1;
	}
    }

  if (fp_return_type)      
    {
      /* A floating-point value belongs in the least significant part
	 of FP0/FP1.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      regnum = mips_regnum (gdbarch)->fp0;
    }
  else 
    {
      /* An integer value goes in V0/V1.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
      regnum = MIPS_V0_REGNUM;
    }
  for (offset = 0;
       offset < TYPE_LENGTH (type);
       offset += mips_abi_regsize (gdbarch), regnum++)
    {
      xfer = mips_abi_regsize (gdbarch);
      if (offset + xfer > TYPE_LENGTH (type))
	xfer = TYPE_LENGTH (type) - offset;
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch) + regnum, xfer,
			  gdbarch_byte_order (gdbarch), readbuf, writebuf,
			  offset);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* N32/N64 ABI stuff.  */

/* Search for a naturally aligned double at OFFSET inside a struct
   ARG_TYPE.  The N32 / N64 ABIs pass these in floating point
   registers.  */

static int
mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
			    int offset)
{
  int i;

  if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
    return 0;

  if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
    return 0;

  if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
    return 0;

  for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
    {
      int pos;
      struct type *field_type;

      /* We're only looking at normal fields.  */
      if (field_is_static (&TYPE_FIELD (arg_type, i))
	  || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
	continue;

      /* If we have gone past the offset, there is no double to pass.  */
      pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
      if (pos > offset)
	return 0;

      field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));

      /* If this field is entirely before the requested offset, go
	 on to the next one.  */
      if (pos + TYPE_LENGTH (field_type) <= offset)
	continue;

      /* If this is our special aligned double, we can stop.  */
      if (TYPE_CODE (field_type) == TYPE_CODE_FLT
	  && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
	return 1;

      /* This field starts at or before the requested offset, and
	 overlaps it.  If it is a structure, recurse inwards.  */
      return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
    }

  return 0;
}

static CORE_ADDR
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			     struct regcache *regcache, CORE_ADDR bp_addr,
			     int nargs, struct value **args, CORE_ADDR sp,
			     int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_n32n64_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_n32n64_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* A 128-bit long double value requires an even-odd pair of
	 floating-point registers.  */
      if (len == 16
	  && fp_register_arg_p (gdbarch, typecode, arg_type)
	  && (float_argreg & 1))
	{
	  float_argreg++;
	  argreg++;
	}

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
	{
	  /* This is a floating point value that fits entirely
	     in a single register or a pair of registers.  */
	  int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
	  LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				float_argreg, phex (regval, reglen));
	  regcache_cooked_write_unsigned (regcache, float_argreg, regval);

	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				argreg, phex (regval, reglen));
	  regcache_cooked_write_unsigned (regcache, argreg, regval);
	  float_argreg++;
	  argreg++;
	  if (len == 16)
	    {
	      regval = extract_unsigned_integer (val + reglen,
						 reglen, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, reglen));
	      regcache_cooked_write_unsigned (regcache, float_argreg, regval);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, reglen));
	      regcache_cooked_write_unsigned (regcache, argreg, regval);
	      float_argreg++;
	      argreg++;
	    }
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* For N32/N64, structs, unions, or other composite types are
	     treated as a sequence of doublewords, and are passed in integer
	     or floating point registers as though they were simple scalar
	     parameters to the extent that they fit, with any excess on the
	     stack packed according to the normal memory layout of the
	     object.
	     The caller does not reserve space for the register arguments;
	     the callee is responsible for reserving it if required.  */
	  /* Note: Floating-point values that didn't fit into an FP
	     register are only written to memory.  */
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      if (fp_register_arg_p (gdbarch, typecode, arg_type))
		gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if ((typecode == TYPE_CODE_INT
			   || typecode == TYPE_CODE_PTR)
			  && len <= 4)
			longword_offset = MIPS64_REGSIZE - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval;

		  /* Sign extend pointers, 32-bit integers and signed
		     16-bit and 8-bit integers; everything else is taken
		     as is.  */

		  if ((partial_len == 4
		       && (typecode == TYPE_CODE_PTR
			   || typecode == TYPE_CODE_INT))
		      || (partial_len < 4
			  && typecode == TYPE_CODE_INT
			  && !TYPE_UNSIGNED (arg_type)))
		    regval = extract_signed_integer (val, partial_len,
						     byte_order);
		  else
		    regval = extract_unsigned_integer (val, partial_len,
						       byte_order);

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS64_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS64_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS64_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);

		  if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
						  TYPE_LENGTH (arg_type) - len))
		    {
		      if (mips_debug)
			fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
					  float_argreg,
					  phex (regval, MIPS64_REGSIZE));
		      regcache_cooked_write_unsigned (regcache, float_argreg,
						      regval);
		    }

		  float_argreg++;
		  argreg++;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In N32 (N64?), the stack_offset only needs to be
	         adjusted when it has been used.  */

	      if (stack_used_p)
		stack_offset += align_up (partial_len, MIPS64_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
			  struct type *type, struct regcache *regcache,
			  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004

     Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
     if needed), as appropriate for the type.  Composite results (struct,
     union, or array) are returned in $2/$f0 and $3/$f2 according to the
     following rules:

     * A struct with only one or two floating point fields is returned in $f0
     (and $f2 if necessary).  This is a generalization of the Fortran COMPLEX
     case.

     * Any other composite results of at most 128 bits are returned in
     $2 (first 64 bits) and $3 (remainder, if necessary).

     * Larger composite results are handled by converting the function to a
     procedure with an implicit first parameter, which is a pointer to an area
     reserved by the caller to receive the result.  [The o32-bit ABI requires
     that all composite results be handled by conversion to implicit first
     parameters.  The MIPS/SGI Fortran implementation has always made a
     specific exception to return COMPLEX results in the floating point
     registers.]  */

  if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 16
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A 128-bit floating-point value fills both $f0 and $f2.  The
	 two registers are used in the same as memory order, so the
	 eight bytes with the lower memory address are in $f0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch)
			  + mips_regnum (gdbarch)->fp0,
			  8, gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch)
			  + mips_regnum (gdbarch)->fp0 + 2,
			  8, gdbarch_byte_order (gdbarch),
			  readbuf ? readbuf + 8 : readbuf,
			  writebuf ? writebuf + 8 : writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A single or double floating-point value that fits in FP0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch)
			  + mips_regnum (gdbarch)->fp0,
			  TYPE_LENGTH (type),
			  gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   && TYPE_NFIELDS (type) <= 2
	   && TYPE_NFIELDS (type) >= 1
	   && ((TYPE_NFIELDS (type) == 1
		&& (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
		    == TYPE_CODE_FLT))
	       || (TYPE_NFIELDS (type) == 2
		   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
		       == TYPE_CODE_FLT)
		   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
		       == TYPE_CODE_FLT))))
    {
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         register (or GPR, for soft float).  */
      int regnum;
      int field;
      for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
				? mips_regnum (gdbarch)->fp0
				: MIPS_V0_REGNUM);
	   field < TYPE_NFIELDS (type); field++, regnum += 2)
	{
	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
			/ TARGET_CHAR_BIT);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
				offset);
	  if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
	    {
	      /* A 16-byte long double field goes in two consecutive
		 registers.  */
	      mips_xfer_register (gdbarch, regcache,
				  gdbarch_num_regs (gdbarch) + regnum,
				  8,
				  gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, offset);
	      mips_xfer_register (gdbarch, regcache,
				  gdbarch_num_regs (gdbarch) + regnum + 1,
				  8,
				  gdbarch_byte_order (gdbarch),
				  readbuf, writebuf, offset + 8);
	    }
	  else
	    mips_xfer_register (gdbarch, regcache,
				gdbarch_num_regs (gdbarch) + regnum,
				TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
				gdbarch_byte_order (gdbarch),
				readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION
	   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      /* A composite type.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
			      offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* O32 ABI stuff.  */

static CORE_ADDR
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			  struct regcache *regcache, CORE_ADDR bp_addr,
			  int nargs, struct value **args, CORE_ADDR sp,
			  int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      int arglen = TYPE_LENGTH (arg_type);

      /* Align to double-word if necessary.  */
      if (mips_type_needs_double_align (arg_type))
	len = align_up (len, MIPS32_REGSIZE * 2);
      /* Allocate space on the stack.  */
      len += align_up (arglen, MIPS32_REGSIZE);
    }
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_o32_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o32_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS32_REGSIZE;
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o32_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         left.  O32/O64 targets also pass the FP in the integer
         registers so also round up normal registers.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type))
	{
	  if ((float_argreg & 1))
	    float_argreg++;
	}

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         On O32/O64, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  if (register_size (gdbarch, float_argreg) < 8 && len == 8)
	    {
	      int low_offset = gdbarch_byte_order (gdbarch)
			       == BFD_ENDIAN_BIG ? 4 : 0;
	      unsigned long regval;

	      /* Write the low word of the double to the even register(s).  */
	      regval = extract_unsigned_integer (val + low_offset,
						 4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++, regval);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);

	      /* Write the high word of the double to the odd register(s).  */
	      regval = extract_unsigned_integer (val + 4 - low_offset,
						 4, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++, regval);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, 4));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
	    }
	  else
	    {
	      /* This is a floating point value that fits entirely
	         in a single register.  */
	      /* On 32 bit ABI's the float_argreg is further adjusted
	         above to ensure that it is even register aligned.  */
	      LONGEST regval = extract_unsigned_integer (val, len, byte_order);
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				    float_argreg, phex (regval, len));
	      regcache_cooked_write_unsigned (regcache,
					      float_argreg++, regval);
	      /* Although two FP registers are reserved for each
		 argument, only one corresponding integer register is
		 reserved.  */
	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				    argreg, phex (regval, len));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
	    }
	  /* Reserve space for the FP register.  */
	  stack_offset += align_up (len, MIPS32_REGSIZE);
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
	     are treated specially: Irix cc passes
	     them in registers where gcc sometimes puts them on the
	     stack.  For maximum compatibility, we will put them in
	     both places.  */
	  int odd_sized_struct = (len > MIPS32_REGSIZE
				  && len % MIPS32_REGSIZE != 0);
	  /* Structures should be aligned to eight bytes (even arg registers)
	     on MIPS_ABI_O32, if their first member has double precision.  */
	  if (mips_type_needs_double_align (arg_type))
	    {
	      if ((argreg & 1))
		{
		  argreg++;
		  stack_offset += MIPS32_REGSIZE;
		}
	    }
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct)
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval = extract_signed_integer (val, partial_len,
							   byte_order);
		  /* Value may need to be sign extended, because
		     mips_isa_regsize() != mips_abi_regsize().  */

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.

		     Also don't do this adjustment on O64 binaries.

		     cagney/2001-07-23: gdb/179: Also, GCC, when
		     outputting LE O32 with sizeof (struct) <
		     mips_abi_regsize(), generates a left shift
		     as part of storing the argument in a register
		     (the left shift isn't generated when
		     sizeof (struct) >= mips_abi_regsize()).  Since
		     it is quite possible that this is GCC
		     contradicting the LE/O32 ABI, GDB has not been
		     adjusted to accommodate this.  Either someone
		     needs to demonstrate that the LE/O32 ABI
		     specifies such a left shift OR this new ABI gets
		     identified as such and GDB gets tweaked
		     accordingly.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS32_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS32_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS32_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);
		  argreg++;

		  /* Prevent subsequent floating point arguments from
		     being passed in floating point registers.  */
		  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In older ABIs, the caller reserved space for
	         registers that contained arguments.  This was loosely
	         refered to as their "home".  Consequently, space is
	         always allocated.  */

	      stack_offset += align_up (partial_len, MIPS32_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
		       struct type *type, struct regcache *regcache,
		       gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A single-precision floating-point value.  It fits in the
         least significant part of FP0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch)
			    + mips_regnum (gdbarch)->fp0,
			  TYPE_LENGTH (type),
			  gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
	   && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A double-precision floating-point value.  The most
         significant part goes in FP1, and the least significant in
         FP0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
      switch (gdbarch_byte_order (gdbarch))
	{
	case BFD_ENDIAN_LITTLE:
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch)
				+ mips_regnum (gdbarch)->fp0 +
			      0, 4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 0);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch)
				+ mips_regnum (gdbarch)->fp0 + 1,
			      4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 4);
	  break;
	case BFD_ENDIAN_BIG:
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch)
				+ mips_regnum (gdbarch)->fp0 + 1,
			      4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 0);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch)
				+ mips_regnum (gdbarch)->fp0 + 0,
			      4, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, 4);
	  break;
	default:
	  internal_error (__FILE__, __LINE__, _("bad switch"));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   && TYPE_NFIELDS (type) <= 2
	   && TYPE_NFIELDS (type) >= 1
	   && ((TYPE_NFIELDS (type) == 1
		&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
		    == TYPE_CODE_FLT))
	       || (TYPE_NFIELDS (type) == 2
		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
		       == TYPE_CODE_FLT)
		   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
		       == TYPE_CODE_FLT)))
	   && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         register..  */
      gdb_byte reg[MAX_REGISTER_SIZE];
      int regnum;
      int field;
      for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
	   field < TYPE_NFIELDS (type); field++, regnum += 2)
	{
	  int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
			/ TARGET_CHAR_BIT);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
				offset);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
			      gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#endif
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      /* A structure or union.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += register_size (gdbarch, regnum), regnum++)
	{
	  int xfer = register_size (gdbarch, regnum);
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum, xfer,
			      BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
#endif
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  o32 thinks registers are 4 byte, regardless of
         the ISA.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += MIPS32_REGSIZE, regnum++)
	{
	  int xfer = MIPS32_REGSIZE;
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum, xfer,
			      gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* O64 ABI.  This is a hacked up kind of 64-bit version of the o32
   ABI.  */

static CORE_ADDR
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			  struct regcache *regcache, CORE_ADDR bp_addr,
			  int nargs,
			  struct value **args, CORE_ADDR sp,
			  int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  /* For shared libraries, "t9" needs to point at the function
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);

  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */

  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      int arglen = TYPE_LENGTH (arg_type);

      /* Allocate space on the stack.  */
      len += align_up (arglen, MIPS64_REGSIZE);
    }
  sp -= align_up (len, 16);

  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_o64_push_dummy_call: sp=%s allocated %ld\n",
			paddress (gdbarch, sp), (long) align_up (len, 16));

  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);

  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
    {
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o64_push_dummy_call: "
			    "struct_return reg=%d %s\n",
			    argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS64_REGSIZE;
    }

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "mips_o64_push_dummy_call: %d len=%d type=%d",
			    argnum + 1, len, (int) typecode);

      val = value_contents (arg);

      /* Function pointer arguments to mips16 code need to be made into
         mips16 pointers.  */
      if (typecode == TYPE_CODE_PTR
          && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
	{
	  CORE_ADDR addr = extract_signed_integer (value_contents (arg),
						   len, byte_order);
	  if (mips_pc_is_mips16 (addr))
	    {
	      store_signed_integer (valbuf, len, byte_order, 
				    make_mips16_addr (addr));
	      val = valbuf;
	    }
	}

      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         On O32/O64, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */

      if (fp_register_arg_p (gdbarch, typecode, arg_type)
	  && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
	{
	  LONGEST regval = extract_unsigned_integer (val, len, byte_order);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
				float_argreg, phex (regval, len));
	  regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
				argreg, phex (regval, len));
	  regcache_cooked_write_unsigned (regcache, argreg, regval);
	  argreg++;
	  /* Reserve space for the FP register.  */
	  stack_offset += align_up (len, MIPS64_REGSIZE);
	}
      else
	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
	     are treated specially: Irix cc passes them in registers
	     where gcc sometimes puts them on the stack.  For maximum
	     compatibility, we will put them in both places.  */
	  int odd_sized_struct = (len > MIPS64_REGSIZE
				  && len % MIPS64_REGSIZE != 0);
	  while (len > 0)
	    {
	      /* Remember if the argument was written to the stack.  */
	      int stack_used_p = 0;
	      int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);

	      if (mips_debug)
		fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
				    partial_len);

	      /* Write this portion of the argument to the stack.  */
	      if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
		  || odd_sized_struct)
		{
		  /* Should shorter than int integer values be
		     promoted to int before being stored?  */
		  int longword_offset = 0;
		  CORE_ADDR addr;
		  stack_used_p = 1;
		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		    {
		      if ((typecode == TYPE_CODE_INT
			   || typecode == TYPE_CODE_PTR
			   || typecode == TYPE_CODE_FLT)
			  && len <= 4)
			longword_offset = MIPS64_REGSIZE - len;
		    }

		  if (mips_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
					  paddress (gdbarch, stack_offset));
		      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
					  paddress (gdbarch, longword_offset));
		    }

		  addr = sp + stack_offset + longword_offset;

		  if (mips_debug)
		    {
		      int i;
		      fprintf_unfiltered (gdb_stdlog, " @%s ",
					  paddress (gdbarch, addr));
		      for (i = 0; i < partial_len; i++)
			{
			  fprintf_unfiltered (gdb_stdlog, "%02x",
					      val[i] & 0xff);
			}
		    }
		  write_memory (addr, val, partial_len);
		}

	      /* Note!!! This is NOT an else clause.  Odd sized
	         structs may go thru BOTH paths.  */
	      /* Write this portion of the argument to a general
	         purpose register.  */
	      if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
		{
		  LONGEST regval = extract_signed_integer (val, partial_len,
							   byte_order);
		  /* Value may need to be sign extended, because
		     mips_isa_regsize() != mips_abi_regsize().  */

		  /* A non-floating-point argument being passed in a
		     general register.  If a struct or union, and if
		     the remaining length is smaller than the register
		     size, we have to adjust the register value on
		     big endian targets.

		     It does not seem to be necessary to do the
		     same for integral types.  */

		  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
		      && partial_len < MIPS64_REGSIZE
		      && (typecode == TYPE_CODE_STRUCT
			  || typecode == TYPE_CODE_UNION))
		    regval <<= ((MIPS64_REGSIZE - partial_len)
				* TARGET_CHAR_BIT);

		  if (mips_debug)
		    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
				      argreg,
				      phex (regval, MIPS64_REGSIZE));
		  regcache_cooked_write_unsigned (regcache, argreg, regval);
		  argreg++;

		  /* Prevent subsequent floating point arguments from
		     being passed in floating point registers.  */
		  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
		}

	      len -= partial_len;
	      val += partial_len;

	      /* Compute the offset into the stack at which we will
	         copy the next parameter.

	         In older ABIs, the caller reserved space for
	         registers that contained arguments.  This was loosely
	         refered to as their "home".  Consequently, space is
	         always allocated.  */

	      stack_offset += align_up (partial_len, MIPS64_REGSIZE);
	    }
	}
      if (mips_debug)
	fprintf_unfiltered (gdb_stdlog, "\n");
    }

  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

static enum return_value_convention
mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
		       struct type *type, struct regcache *regcache,
		       gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
    {
      /* A floating-point value.  It fits in the least significant
         part of FP0.  */
      if (mips_debug)
	fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
			  gdbarch_num_regs (gdbarch)
			    + mips_regnum (gdbarch)->fp0,
			  TYPE_LENGTH (type),
			  gdbarch_byte_order (gdbarch),
			  readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else
    {
      /* A scalar extract each part but least-significant-byte
         justified.  */
      int offset;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
	   offset < TYPE_LENGTH (type);
	   offset += MIPS64_REGSIZE, regnum++)
	{
	  int xfer = MIPS64_REGSIZE;
	  if (offset + xfer > TYPE_LENGTH (type))
	    xfer = TYPE_LENGTH (type) - offset;
	  if (mips_debug)
	    fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
				offset, xfer, regnum);
	  mips_xfer_register (gdbarch, regcache,
			      gdbarch_num_regs (gdbarch) + regnum,
			      xfer, gdbarch_byte_order (gdbarch),
			      readbuf, writebuf, offset);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* Floating point register management.

   Background: MIPS1 & 2 fp registers are 32 bits wide.  To support
   64bit operations, these early MIPS cpus treat fp register pairs
   (f0,f1) as a single register (d0).  Later MIPS cpu's have 64 bit fp
   registers and offer a compatibility mode that emulates the MIPS2 fp
   model.  When operating in MIPS2 fp compat mode, later cpu's split
   double precision floats into two 32-bit chunks and store them in
   consecutive fp regs.  To display 64-bit floats stored in this
   fashion, we have to combine 32 bits from f0 and 32 bits from f1.
   Throw in user-configurable endianness and you have a real mess.

   The way this works is:
     - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
       double-precision value will be split across two logical registers.
       The lower-numbered logical register will hold the low-order bits,
       regardless of the processor's endianness.
     - If we are on a 64-bit processor, and we are looking for a
       single-precision value, it will be in the low ordered bits
       of a 64-bit GPR (after mfc1, for example) or a 64-bit register
       save slot in memory.
     - If we are in 64-bit mode, everything is straightforward.

   Note that this code only deals with "live" registers at the top of the
   stack.  We will attempt to deal with saved registers later, when
   the raw/cooked register interface is in place.  (We need a general
   interface that can deal with dynamic saved register sizes -- fp
   regs could be 32 bits wide in one frame and 64 on the frame above
   and below).  */

/* Copy a 32-bit single-precision value from the current frame
   into rare_buffer.  */

static void
mips_read_fp_register_single (struct frame_info *frame, int regno,
			      gdb_byte *rare_buffer)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);
  gdb_byte *raw_buffer = alloca (raw_size);

  if (!frame_register_read (frame, regno, raw_buffer))
    error (_("can't read register %d (%s)"),
	   regno, gdbarch_register_name (gdbarch, regno));
  if (raw_size == 8)
    {
      /* We have a 64-bit value for this register.  Find the low-order
         32 bits.  */
      int offset;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 4;
      else
	offset = 0;

      memcpy (rare_buffer, raw_buffer + offset, 4);
    }
  else
    {
      memcpy (rare_buffer, raw_buffer, 4);
    }
}

/* Copy a 64-bit double-precision value from the current frame into
   rare_buffer.  This may include getting half of it from the next
   register.  */

static void
mips_read_fp_register_double (struct frame_info *frame, int regno,
			      gdb_byte *rare_buffer)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);

  if (raw_size == 8 && !mips2_fp_compat (frame))
    {
      /* We have a 64-bit value for this register, and we should use
         all 64 bits.  */
      if (!frame_register_read (frame, regno, rare_buffer))
	error (_("can't read register %d (%s)"),
	       regno, gdbarch_register_name (gdbarch, regno));
    }
  else
    {
      int rawnum = regno % gdbarch_num_regs (gdbarch);

      if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
	internal_error (__FILE__, __LINE__,
			_("mips_read_fp_register_double: bad access to "
			"odd-numbered FP register"));

      /* mips_read_fp_register_single will find the correct 32 bits from
         each register.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	{
	  mips_read_fp_register_single (frame, regno, rare_buffer + 4);
	  mips_read_fp_register_single (frame, regno + 1, rare_buffer);
	}
      else
	{
	  mips_read_fp_register_single (frame, regno, rare_buffer);
	  mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
	}
    }
}

static void
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
			int regnum)
{				/* Do values for FP (float) regs.  */
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte *raw_buffer;
  double doub, flt1;	/* Doubles extracted from raw hex data.  */
  int inv1, inv2;

  raw_buffer = alloca (2 * register_size (gdbarch,
					  mips_regnum (gdbarch)->fp0));

  fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
  fprintf_filtered (file, "%*s",
		    4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
		    "");

  if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
    {
      struct value_print_options opts;

      /* 4-byte registers: Print hex and floating.  Also print even
         numbered registers as doubles.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
			    raw_buffer, &inv1);

      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
			      builtin_type (gdbarch)->builtin_uint32,
			      &opts, 'w', file);

      fprintf_filtered (file, " flt: ");
      if (inv1)
	fprintf_filtered (file, " <invalid float> ");
      else
	fprintf_filtered (file, "%-17.9g", flt1);

      if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
	{
	  mips_read_fp_register_double (frame, regnum, raw_buffer);
	  doub = unpack_double (builtin_type (gdbarch)->builtin_double,
				raw_buffer, &inv2);

	  fprintf_filtered (file, " dbl: ");
	  if (inv2)
	    fprintf_filtered (file, "<invalid double>");
	  else
	    fprintf_filtered (file, "%-24.17g", doub);
	}
    }
  else
    {
      struct value_print_options opts;

      /* Eight byte registers: print each one as hex, float and double.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
			    raw_buffer, &inv1);

      mips_read_fp_register_double (frame, regnum, raw_buffer);
      doub = unpack_double (builtin_type (gdbarch)->builtin_double,
			    raw_buffer, &inv2);

      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
			      builtin_type (gdbarch)->builtin_uint64,
			      &opts, 'g', file);

      fprintf_filtered (file, " flt: ");
      if (inv1)
	fprintf_filtered (file, "<invalid float>");
      else
	fprintf_filtered (file, "%-17.9g", flt1);

      fprintf_filtered (file, " dbl: ");
      if (inv2)
	fprintf_filtered (file, "<invalid double>");
      else
	fprintf_filtered (file, "%-24.17g", doub);
    }
}

static void
mips_print_register (struct ui_file *file, struct frame_info *frame,
		     int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int offset;
  struct value_print_options opts;
  struct value *val;

  if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
    {
      mips_print_fp_register (file, frame, regnum);
      return;
    }

  val = get_frame_register_value (frame, regnum);
  if (value_optimized_out (val))
    {
      fprintf_filtered (file, "%s: [Invalid]",
			gdbarch_register_name (gdbarch, regnum));
      return;
    }

  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);

  /* The problem with printing numeric register names (r26, etc.) is that
     the user can't use them on input.  Probably the best solution is to
     fix it so that either the numeric or the funky (a2, etc.) names
     are accepted on input.  */
  if (regnum < MIPS_NUMREGS)
    fprintf_filtered (file, "(r%d): ", regnum);
  else
    fprintf_filtered (file, ": ");

  get_formatted_print_options (&opts, 'x');
  val_print_scalar_formatted (value_type (val),
			      value_contents_for_printing (val),
			      value_embedded_offset (val),
			      val,
			      &opts, 0, file);
}

/* Replacement for generic do_registers_info.
   Print regs in pretty columns.  */

static int
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
		       int regnum)
{
  fprintf_filtered (file, " ");
  mips_print_fp_register (file, frame, regnum);
  fprintf_filtered (file, "\n");
  return regnum + 1;
}


/* Print a row's worth of GP (int) registers, with name labels above.  */

static int
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
		       int start_regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* Do values for GP (int) regs.  */
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8);    /* display cols
							       per row.  */
  int col, byte;
  int regnum;

  /* For GP registers, we print a separate row of names above the vals.  */
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
			       + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
	continue;		/* unused register */
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
	  TYPE_CODE_FLT)
	break;			/* End the row: reached FP register.  */
      /* Large registers are handled separately.  */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
	{
	  if (col > 0)
	    break;		/* End the row before this register.  */

	  /* Print this register on a row by itself.  */
	  mips_print_register (file, frame, regnum);
	  fprintf_filtered (file, "\n");
	  return regnum + 1;
	}
      if (col == 0)
	fprintf_filtered (file, "     ");
      fprintf_filtered (file,
			mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
			gdbarch_register_name (gdbarch, regnum));
      col++;
    }

  if (col == 0)
    return regnum;

  /* Print the R0 to R31 names.  */
  if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
    fprintf_filtered (file, "\n R%-4d",
		      start_regnum % gdbarch_num_regs (gdbarch));
  else
    fprintf_filtered (file, "\n      ");

  /* Now print the values in hex, 4 or 8 to the row.  */
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
			       + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
	continue;		/* unused register */
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
	  TYPE_CODE_FLT)
	break;			/* End row: reached FP register.  */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
	break;			/* End row: large register.  */

      /* OK: get the data in raw format.  */
      if (!frame_register_read (frame, regnum, raw_buffer))
	error (_("can't read register %d (%s)"),
	       regnum, gdbarch_register_name (gdbarch, regnum));
      /* pad small registers */
      for (byte = 0;
	   byte < (mips_abi_regsize (gdbarch)
		   - register_size (gdbarch, regnum)); byte++)
	printf_filtered ("  ");
      /* Now print the register value in hex, endian order.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	for (byte =
	     register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
	     byte < register_size (gdbarch, regnum); byte++)
	  fprintf_filtered (file, "%02x", raw_buffer[byte]);
      else
	for (byte = register_size (gdbarch, regnum) - 1;
	     byte >= 0; byte--)
	  fprintf_filtered (file, "%02x", raw_buffer[byte]);
      fprintf_filtered (file, " ");
      col++;
    }
  if (col > 0)			/* ie. if we actually printed anything...  */
    fprintf_filtered (file, "\n");

  return regnum;
}

/* MIPS_DO_REGISTERS_INFO(): called by "info register" command.  */

static void
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			   struct frame_info *frame, int regnum, int all)
{
  if (regnum != -1)		/* Do one specified register.  */
    {
      gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	error (_("Not a valid register for the current processor type"));

      mips_print_register (file, frame, regnum);
      fprintf_filtered (file, "\n");
    }
  else
    /* Do all (or most) registers.  */
    {
      regnum = gdbarch_num_regs (gdbarch);
      while (regnum < gdbarch_num_regs (gdbarch)
		      + gdbarch_num_pseudo_regs (gdbarch))
	{
	  if (TYPE_CODE (register_type (gdbarch, regnum)) ==
	      TYPE_CODE_FLT)
	    {
	      if (all)		/* True for "INFO ALL-REGISTERS" command.  */
		regnum = print_fp_register_row (file, frame, regnum);
	      else
		regnum += MIPS_NUMREGS;	/* Skip floating point regs.  */
	    }
	  else
	    regnum = print_gp_register_row (file, frame, regnum);
	}
    }
}

/* Is this a branch with a delay slot?  */

static int
is_delayed (unsigned long insn)
{
  int i;
  for (i = 0; i < NUMOPCODES; ++i)
    if (mips_opcodes[i].pinfo != INSN_MACRO
	&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
      break;
  return (i < NUMOPCODES
	  && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
				       | INSN_COND_BRANCH_DELAY
				       | INSN_COND_BRANCH_LIKELY)));
}

static int
mips_single_step_through_delay (struct gdbarch *gdbarch,
				struct frame_info *frame)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR pc = get_frame_pc (frame);
  gdb_byte buf[MIPS_INSN32_SIZE];

  /* There is no branch delay slot on MIPS16.  */
  if (mips_pc_is_mips16 (pc))
    return 0;

  if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
    return 0;

  if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
    /* If error reading memory, guess that it is not a delayed
       branch.  */
    return 0;
  return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
}

/* To skip prologues, I use this predicate.  Returns either PC itself
   if the code at PC does not look like a function prologue; otherwise
   returns an address that (if we're lucky) follows the prologue.  If
   LENIENT, then we must skip everything which is involved in setting
   up the frame (it's OK to skip more, just so long as we don't skip
   anything which might clobber the registers which are being saved.
   We must skip more in the case where part of the prologue is in the
   delay slot of a non-prologue instruction).  */

static CORE_ADDR
mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR limit_pc;
  CORE_ADDR func_addr;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
    limit_pc = pc + 100;          /* Magic.  */

  if (mips_pc_is_mips16 (pc))
    return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
  else
    return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
}

/* Check whether the PC is in a function epilogue (32-bit version).
   This is a helper function for mips_in_function_epilogue_p.  */
static int
mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;

      if (addr < func_addr + 4)
        addr = func_addr + 4;
      if (pc < addr)
        return 0;

      for (; pc < func_end; pc += MIPS_INSN32_SIZE)
	{
	  unsigned long high_word;
	  unsigned long inst;

	  inst = mips_fetch_instruction (gdbarch, pc);
	  high_word = (inst >> 16) & 0xffff;

	  if (high_word != 0x27bd	/* addiu $sp,$sp,offset */
	      && high_word != 0x67bd	/* daddiu $sp,$sp,offset */
	      && inst != 0x03e00008	/* jr $ra */
	      && inst != 0x00000000)	/* nop */
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* Check whether the PC is in a function epilogue (16-bit version).
   This is a helper function for mips_in_function_epilogue_p.  */
static int
mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;

      if (addr < func_addr + 4)
        addr = func_addr + 4;
      if (pc < addr)
        return 0;

      for (; pc < func_end; pc += MIPS_INSN16_SIZE)
	{
	  unsigned short inst;

	  inst = mips_fetch_instruction (gdbarch, pc);

	  if ((inst & 0xf800) == 0xf000)	/* extend */
	    continue;

	  if (inst != 0x6300		/* addiu $sp,offset */
	      && inst != 0xfb00		/* daddiu $sp,$sp,offset */
	      && inst != 0xe820		/* jr $ra */
	      && inst != 0xe8a0		/* jrc $ra */
	      && inst != 0x6500)	/* nop */
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* The epilogue is defined here as the area at the end of a function,
   after an instruction which destroys the function's stack frame.  */
static int
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  if (mips_pc_is_mips16 (pc))
    return mips16_in_function_epilogue_p (gdbarch, pc);
  else
    return mips32_in_function_epilogue_p (gdbarch, pc);
}

/* Root of all "set mips "/"show mips " commands.  This will eventually be
   used for all MIPS-specific commands.  */

static void
show_mips_command (char *args, int from_tty)
{
  help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
}

static void
set_mips_command (char *args, int from_tty)
{
  printf_unfiltered
    ("\"set mips\" must be followed by an appropriate subcommand.\n");
  help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
}

/* Commands to show/set the MIPS FPU type.  */

static void
show_mipsfpu_command (char *args, int from_tty)
{
  char *fpu;

  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
    {
      printf_unfiltered
	("The MIPS floating-point coprocessor is unknown "
	 "because the current architecture is not MIPS.\n");
      return;
    }

  switch (MIPS_FPU_TYPE (target_gdbarch))
    {
    case MIPS_FPU_SINGLE:
      fpu = "single-precision";
      break;
    case MIPS_FPU_DOUBLE:
      fpu = "double-precision";
      break;
    case MIPS_FPU_NONE:
      fpu = "absent (none)";
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
  if (mips_fpu_type_auto)
    printf_unfiltered ("The MIPS floating-point coprocessor "
		       "is set automatically (currently %s)\n",
		       fpu);
  else
    printf_unfiltered
      ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
}


static void
set_mipsfpu_command (char *args, int from_tty)
{
  printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
		     "\"single\",\"none\" or \"auto\".\n");
  show_mipsfpu_command (args, from_tty);
}

static void
set_mipsfpu_single_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_SINGLE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_double_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_DOUBLE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_none_command (char *args, int from_tty)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_NONE;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}

static void
set_mipsfpu_auto_command (char *args, int from_tty)
{
  mips_fpu_type_auto = 1;
}

/* Attempt to identify the particular processor model by reading the
   processor id.  NOTE: cagney/2003-11-15: Firstly it isn't clear that
   the relevant processor still exists (it dates back to '94) and
   secondly this is not the way to do this.  The processor type should
   be set by forcing an architecture change.  */

void
deprecated_mips_set_processor_regs_hack (void)
{
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST prid;

  regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
  if ((prid & ~0xf) == 0x700)
    tdep->mips_processor_reg_names = mips_r3041_reg_names;
}

/* Just like reinit_frame_cache, but with the right arguments to be
   callable as an sfunc.  */

static void
reinit_frame_cache_sfunc (char *args, int from_tty,
			  struct cmd_list_element *c)
{
  reinit_frame_cache ();
}

static int
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
{
  /* FIXME: cagney/2003-06-26: Is this even necessary?  The
     disassembler needs to be able to locally determine the ISA, and
     not rely on GDB.  Otherwize the stand-alone 'objdump -d' will not
     work.  */
  if (mips_pc_is_mips16 (memaddr))
    info->mach = bfd_mach_mips16;

  /* Round down the instruction address to the appropriate boundary.  */
  memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);

  /* Set the disassembler options.  */
  if (!info->disassembler_options)
    /* This string is not recognized explicitly by the disassembler,
       but it tells the disassembler to not try to guess the ABI from
       the bfd elf headers, such that, if the user overrides the ABI
       of a program linked as NewABI, the disassembly will follow the
       register naming conventions specified by the user.  */
    info->disassembler_options = "gpr-names=32";

  /* Call the appropriate disassembler based on the target endian-ness.  */
  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_mips (memaddr, info);
  else
    return print_insn_little_mips (memaddr, info);
}

static int
gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
{
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=n32";
  info->flavour = bfd_target_elf_flavour;

  return gdb_print_insn_mips (memaddr, info);
}

static int
gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
{
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=64";
  info->flavour = bfd_target_elf_flavour;

  return gdb_print_insn_mips (memaddr, info);
}

/* This function implements gdbarch_breakpoint_from_pc.  It uses the
   program counter value to determine whether a 16- or 32-bit breakpoint
   should be used.  It returns a pointer to a string of bytes that encode a
   breakpoint instruction, stores the length of the string to *lenptr, and
   adjusts pc (if necessary) to point to the actual memory location where
   the breakpoint should be inserted.  */

static const gdb_byte *
mips_breakpoint_from_pc (struct gdbarch *gdbarch,
			 CORE_ADDR *pcptr, int *lenptr)
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      if (mips_pc_is_mips16 (*pcptr))
	{
	  static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
	  *pcptr = unmake_mips16_addr (*pcptr);
	  *lenptr = sizeof (mips16_big_breakpoint);
	  return mips16_big_breakpoint;
	}
      else
	{
	  /* The IDT board uses an unusual breakpoint value, and
	     sometimes gets confused when it sees the usual MIPS
	     breakpoint instruction.  */
	  static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
	  static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
	  static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
	  /* Likewise, IRIX appears to expect a different breakpoint,
	     although this is not apparent until you try to use pthreads.  */
	  static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };

	  *lenptr = sizeof (big_breakpoint);

	  if (strcmp (target_shortname, "mips") == 0)
	    return idt_big_breakpoint;
	  else if (strcmp (target_shortname, "ddb") == 0
		   || strcmp (target_shortname, "pmon") == 0
		   || strcmp (target_shortname, "lsi") == 0)
	    return pmon_big_breakpoint;
	  else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
	    return irix_big_breakpoint;
	  else
	    return big_breakpoint;
	}
    }
  else
    {
      if (mips_pc_is_mips16 (*pcptr))
	{
	  static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
	  *pcptr = unmake_mips16_addr (*pcptr);
	  *lenptr = sizeof (mips16_little_breakpoint);
	  return mips16_little_breakpoint;
	}
      else
	{
	  static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
	  static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
	  static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };

	  *lenptr = sizeof (little_breakpoint);

	  if (strcmp (target_shortname, "mips") == 0)
	    return idt_little_breakpoint;
	  else if (strcmp (target_shortname, "ddb") == 0
		   || strcmp (target_shortname, "pmon") == 0
		   || strcmp (target_shortname, "lsi") == 0)
	    return pmon_little_breakpoint;
	  else
	    return little_breakpoint;
	}
    }
}

/* If PC is in a mips16 call or return stub, return the address of the target
   PC, which is either the callee or the caller.  There are several
   cases which must be handled:

   * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
   target PC is in $31 ($ra).
   * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
   and the target PC is in $2.
   * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
   before the jal instruction, this is effectively a call stub
   and the target PC is in $2.  Otherwise this is effectively
   a return stub and the target PC is in $18.

   See the source code for the stubs in gcc/config/mips/mips16.S for
   gory details.  */

static CORE_ADDR
mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  const char *name;
  CORE_ADDR start_addr;

  /* Find the starting address and name of the function containing the PC.  */
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
    return 0;

  /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
     target PC is in $31 ($ra).  */
  if (strcmp (name, "__mips16_ret_sf") == 0
      || strcmp (name, "__mips16_ret_df") == 0)
    return get_frame_register_signed (frame, MIPS_RA_REGNUM);

  if (strncmp (name, "__mips16_call_stub_", 19) == 0)
    {
      /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
         and the target PC is in $2.  */
      if (name[19] >= '0' && name[19] <= '9')
	return get_frame_register_signed (frame, 2);

      /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
         before the jal instruction, this is effectively a call stub
         and the target PC is in $2.  Otherwise this is effectively
         a return stub and the target PC is in $18.  */
      else if (name[19] == 's' || name[19] == 'd')
	{
	  if (pc == start_addr)
	    {
	      /* Check if the target of the stub is a compiler-generated
	         stub.  Such a stub for a function bar might have a name
	         like __fn_stub_bar, and might look like this:
	         mfc1    $4,$f13
	         mfc1    $5,$f12
	         mfc1    $6,$f15
	         mfc1    $7,$f14
	         la      $1,bar   (becomes a lui/addiu pair)
	         jr      $1
	         So scan down to the lui/addi and extract the target
	         address from those two instructions.  */

	      CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
	      int i;

	      /* See if the name of the target function is  __fn_stub_*.  */
	      if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
		  0)
		return target_pc;
	      if (strncmp (name, "__fn_stub_", 10) != 0
		  && strcmp (name, "etext") != 0
		  && strcmp (name, "_etext") != 0)
		return target_pc;

	      /* Scan through this _fn_stub_ code for the lui/addiu pair.
	         The limit on the search is arbitrarily set to 20
	         instructions.  FIXME.  */
	      for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
		{
		  ULONGEST inst = mips_fetch_instruction (gdbarch, target_pc);
		  CORE_ADDR addr = inst;

		  if ((inst & 0xffff0000) == 0x3c010000)	/* lui $at */
		    pc = (((addr & 0xffff) ^ 0x8000) - 0x8000) << 16;
								/* high word */
		  else if ((inst & 0xffff0000) == 0x24210000)	/* addiu $at */
		    return pc + ((addr & 0xffff) ^ 0x8000) - 0x8000;
								/* low word */
		}

	      /* Couldn't find the lui/addui pair, so return stub address.  */
	      return target_pc;
	    }
	  else
	    /* This is the 'return' part of a call stub.  The return
	       address is in $r18.  */
	    return get_frame_register_signed (frame, 18);
	}
    }
  return 0;			/* not a stub */
}

/* If the current PC is the start of a non-PIC-to-PIC stub, return the
   PC of the stub target.  The stub just loads $t9 and jumps to it,
   so that $t9 has the correct value at function entry.  */

static CORE_ADDR
mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct minimal_symbol *msym;
  int i;
  gdb_byte stub_code[16];
  int32_t stub_words[4];

  /* The stub for foo is named ".pic.foo", and is either two
     instructions inserted before foo or a three instruction sequence
     which jumps to foo.  */
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym == NULL
      || SYMBOL_VALUE_ADDRESS (msym) != pc
      || SYMBOL_LINKAGE_NAME (msym) == NULL
      || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
    return 0;

  /* A two-instruction header.  */
  if (MSYMBOL_SIZE (msym) == 8)
    return pc + 8;

  /* A three-instruction (plus delay slot) trampoline.  */
  if (MSYMBOL_SIZE (msym) == 16)
    {
      if (target_read_memory (pc, stub_code, 16) != 0)
	return 0;
      for (i = 0; i < 4; i++)
	stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
						  4, byte_order);

      /* A stub contains these instructions:
	 lui	t9, %hi(target)
	 j	target
	  addiu	t9, t9, %lo(target)
	 nop

	 This works even for N64, since stubs are only generated with
	 -msym32.  */
      if ((stub_words[0] & 0xffff0000U) == 0x3c190000
	  && (stub_words[1] & 0xfc000000U) == 0x08000000
	  && (stub_words[2] & 0xffff0000U) == 0x27390000
	  && stub_words[3] == 0x00000000)
	return (((stub_words[0] & 0x0000ffff) << 16)
		+ (stub_words[2] & 0x0000ffff));
    }

  /* Not a recognized stub.  */
  return 0;
}

static CORE_ADDR
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  CORE_ADDR target_pc;

  target_pc = mips_skip_mips16_trampoline_code (frame, pc);
  if (target_pc)
    return target_pc;

  target_pc = find_solib_trampoline_target (frame, pc);
  if (target_pc)
    return target_pc;

  target_pc = mips_skip_pic_trampoline_code (frame, pc);
  if (target_pc)
    return target_pc;

  return 0;
}

/* Convert a dbx stab register number (from `r' declaration) to a GDB
   [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */

static int
mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  int regnum;
  if (num >= 0 && num < 32)
    regnum = num;
  else if (num >= 38 && num < 70)
    regnum = num + mips_regnum (gdbarch)->fp0 - 38;
  else if (num == 70)
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 71)
    regnum = mips_regnum (gdbarch)->lo;
  else
    /* This will hopefully (eventually) provoke a warning.  Should
       we be calling complaint() here?  */
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
  return gdbarch_num_regs (gdbarch) + regnum;
}


/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */

static int
mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  int regnum;
  if (num >= 0 && num < 32)
    regnum = num;
  else if (num >= 32 && num < 64)
    regnum = num + mips_regnum (gdbarch)->fp0 - 32;
  else if (num == 64)
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 65)
    regnum = mips_regnum (gdbarch)->lo;
  else
    /* This will hopefully (eventually) provoke a warning.  Should we
       be calling complaint() here?  */
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
  return gdbarch_num_regs (gdbarch) + regnum;
}

static int
mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
  /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
     decide if it is valid.  Should instead define a standard sim/gdb
     register numbering scheme.  */
  if (gdbarch_register_name (gdbarch,
			     gdbarch_num_regs (gdbarch) + regnum) != NULL
      && gdbarch_register_name (gdbarch,
			        gdbarch_num_regs (gdbarch)
				+ regnum)[0] != '\0')
    return regnum;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}


/* Convert an integer into an address.  Extracting the value signed
   guarantees a correctly sign extended address.  */

static CORE_ADDR
mips_integer_to_address (struct gdbarch *gdbarch,
			 struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
}

/* Dummy virtual frame pointer method.  This is no more or less accurate
   than most other architectures; we just need to be explicit about it,
   because the pseudo-register gdbarch_sp_regnum will otherwise lead to
   an assertion failure.  */

static void
mips_virtual_frame_pointer (struct gdbarch *gdbarch, 
			    CORE_ADDR pc, int *reg, LONGEST *offset)
{
  *reg = MIPS_SP_REGNUM;
  *offset = 0;
}

static void
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
{
  enum mips_abi *abip = (enum mips_abi *) obj;
  const char *name = bfd_get_section_name (abfd, sect);

  if (*abip != MIPS_ABI_UNKNOWN)
    return;

  if (strncmp (name, ".mdebug.", 8) != 0)
    return;

  if (strcmp (name, ".mdebug.abi32") == 0)
    *abip = MIPS_ABI_O32;
  else if (strcmp (name, ".mdebug.abiN32") == 0)
    *abip = MIPS_ABI_N32;
  else if (strcmp (name, ".mdebug.abi64") == 0)
    *abip = MIPS_ABI_N64;
  else if (strcmp (name, ".mdebug.abiO64") == 0)
    *abip = MIPS_ABI_O64;
  else if (strcmp (name, ".mdebug.eabi32") == 0)
    *abip = MIPS_ABI_EABI32;
  else if (strcmp (name, ".mdebug.eabi64") == 0)
    *abip = MIPS_ABI_EABI64;
  else
    warning (_("unsupported ABI %s."), name + 8);
}

static void
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
{
  int *lbp = (int *) obj;
  const char *name = bfd_get_section_name (abfd, sect);

  if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
    *lbp = 32;
  else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
    *lbp = 64;
  else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
    warning (_("unrecognized .gcc_compiled_longXX"));
}

static enum mips_abi
global_mips_abi (void)
{
  int i;

  for (i = 0; mips_abi_strings[i] != NULL; i++)
    if (mips_abi_strings[i] == mips_abi_string)
      return (enum mips_abi) i;

  internal_error (__FILE__, __LINE__, _("unknown ABI string"));
}

static void
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
{
  /* If the size matches the set of 32-bit or 64-bit integer registers,
     assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);

  /* If the size matches the full set of registers GDB traditionally
     knows about, including floating point, for either 32-bit or
     64-bit, assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);

  /* Otherwise we don't have a useful guess.  */
}

static struct value *
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
{
  const int *reg_p = baton;
  return value_of_register (*reg_p, frame);
}

static struct gdbarch *
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;
  enum mips_abi mips_abi, found_abi, wanted_abi;
  int i, num_regs;
  enum mips_fpu_type fpu_type;
  struct tdesc_arch_data *tdesc_data = NULL;
  int elf_fpu_type = 0;

  /* Check any target description for validity.  */
  if (tdesc_has_registers (info.target_desc))
    {
      static const char *const mips_gprs[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
      };
      static const char *const mips_fprs[] = {
	"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
	"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
	"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
	"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
      };

      const struct tdesc_feature *feature;
      int valid_p;

      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.cpu");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					    mips_gprs[i]);


      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_LO_REGNUM, "lo");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_HI_REGNUM, "hi");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_PC_REGNUM, "pc");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.cp0");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      valid_p = 1;
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_BADVADDR_REGNUM,
					  "badvaddr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_PS_REGNUM, "status");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_CAUSE_REGNUM, "cause");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      /* FIXME drow/2007-05-17: The FPU should be optional.  The MIPS
	 backend is not prepared for that, though.  */
      feature = tdesc_find_feature (info.target_desc,
				    "org.gnu.gdb.mips.fpu");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      valid_p = 1;
      for (i = 0; i < 32; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data,
					    i + MIPS_EMBED_FP0_REGNUM,
					    mips_fprs[i]);

      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  MIPS_EMBED_FP0_REGNUM + 33, "fir");

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      /* It would be nice to detect an attempt to use a 64-bit ABI
	 when only 32-bit registers are provided.  */
    }

  /* First of all, extract the elf_flags, if available.  */
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else if (arches != NULL)
    elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
  else
    elf_flags = 0;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);

  /* Check ELF_FLAGS to see if it specifies the ABI being used.  */
  switch ((elf_flags & EF_MIPS_ABI))
    {
    case E_MIPS_ABI_O32:
      found_abi = MIPS_ABI_O32;
      break;
    case E_MIPS_ABI_O64:
      found_abi = MIPS_ABI_O64;
      break;
    case E_MIPS_ABI_EABI32:
      found_abi = MIPS_ABI_EABI32;
      break;
    case E_MIPS_ABI_EABI64:
      found_abi = MIPS_ABI_EABI64;
      break;
    default:
      if ((elf_flags & EF_MIPS_ABI2))
	found_abi = MIPS_ABI_N32;
      else
	found_abi = MIPS_ABI_UNKNOWN;
      break;
    }

  /* GCC creates a pseudo-section whose name describes the ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
    bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);

  /* If we have no useful BFD information, use the ABI from the last
     MIPS architecture (if there is one).  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
    found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;

  /* Try the architecture for any hint of the correct ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.bfd_arch_info != NULL
      && info.bfd_arch_info->arch == bfd_arch_mips)
    {
      switch (info.bfd_arch_info->mach)
	{
	case bfd_mach_mips3900:
	  found_abi = MIPS_ABI_EABI32;
	  break;
	case bfd_mach_mips4100:
	case bfd_mach_mips5000:
	  found_abi = MIPS_ABI_EABI64;
	  break;
	case bfd_mach_mips8000:
	case bfd_mach_mips10000:
	  /* On Irix, ELF64 executables use the N64 ABI.  The
	     pseudo-sections which describe the ABI aren't present
	     on IRIX.  (Even for executables created by gcc.)  */
	  if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
	      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
	    found_abi = MIPS_ABI_N64;
	  else
	    found_abi = MIPS_ABI_N32;
	  break;
	}
    }

  /* Default 64-bit objects to N64 instead of O32.  */
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
    found_abi = MIPS_ABI_N64;

  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
			found_abi);

  /* What has the user specified from the command line?  */
  wanted_abi = global_mips_abi ();
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
			wanted_abi);

  /* Now that we have found what the ABI for this binary would be,
     check whether the user is overriding it.  */
  if (wanted_abi != MIPS_ABI_UNKNOWN)
    mips_abi = wanted_abi;
  else if (found_abi != MIPS_ABI_UNKNOWN)
    mips_abi = found_abi;
  else
    mips_abi = MIPS_ABI_O32;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
			mips_abi);

  /* Also used when doing an architecture lookup.  */
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: "
			"mips64_transfers_32bit_regs_p = %d\n",
			mips64_transfers_32bit_regs_p);

  /* Determine the MIPS FPU type.  */
#ifdef HAVE_ELF
  if (info.abfd
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					     Tag_GNU_MIPS_ABI_FP);
#endif /* HAVE_ELF */

  if (!mips_fpu_type_auto)
    fpu_type = mips_fpu_type;
  else if (elf_fpu_type != 0)
    {
      switch (elf_fpu_type)
	{
	case 1:
	  fpu_type = MIPS_FPU_DOUBLE;
	  break;
	case 2:
	  fpu_type = MIPS_FPU_SINGLE;
	  break;
	case 3:
	default:
	  /* Soft float or unknown.  */
	  fpu_type = MIPS_FPU_NONE;
	  break;
	}
    }
  else if (info.bfd_arch_info != NULL
	   && info.bfd_arch_info->arch == bfd_arch_mips)
    switch (info.bfd_arch_info->mach)
      {
      case bfd_mach_mips3900:
      case bfd_mach_mips4100:
      case bfd_mach_mips4111:
      case bfd_mach_mips4120:
	fpu_type = MIPS_FPU_NONE;
	break;
      case bfd_mach_mips4650:
	fpu_type = MIPS_FPU_SINGLE;
	break;
      default:
	fpu_type = MIPS_FPU_DOUBLE;
	break;
      }
  else if (arches != NULL)
    fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
  else
    fpu_type = MIPS_FPU_DOUBLE;
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
			"mips_gdbarch_init: fpu_type = %d\n", fpu_type);

  /* Check for blatant incompatibilities.  */

  /* If we have only 32-bit registers, then we can't debug a 64-bit
     ABI.  */
  if (info.target_desc
      && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
      && mips_abi != MIPS_ABI_EABI32
      && mips_abi != MIPS_ABI_O32)
    {
      if (tdesc_data != NULL)
	tdesc_data_cleanup (tdesc_data);
      return NULL;
    }

  /* Try to find a pre-existing architecture.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* MIPS needs to be pedantic about which ABI the object is
         using.  */
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
	continue;
      if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
	continue;
      /* Need to be pedantic about which register virtual size is
         used.  */
      if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
	  != mips64_transfers_32bit_regs_p)
	continue;
      /* Be pedantic about which FPU is selected.  */
      if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
	continue;

      if (tdesc_data != NULL)
	tdesc_data_cleanup (tdesc_data);
      return arches->gdbarch;
    }

  /* Need a new architecture.  Fill in a target specific vector.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;
  tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
  tdep->found_abi = found_abi;
  tdep->mips_abi = mips_abi;
  tdep->mips_fpu_type = fpu_type;
  tdep->register_size_valid_p = 0;
  tdep->register_size = 0;
  tdep->gregset = NULL;
  tdep->gregset64 = NULL;
  tdep->fpregset = NULL;
  tdep->fpregset64 = NULL;

  if (info.target_desc)
    {
      /* Some useful properties can be inferred from the target.  */
      if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
	{
	  tdep->register_size_valid_p = 1;
	  tdep->register_size = 4;
	}
      else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
	{
	  tdep->register_size_valid_p = 1;
	  tdep->register_size = 8;
	}
    }

  /* Initially set everything according to the default ABI/ISA.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
  set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);

  set_gdbarch_ax_pseudo_register_collect (gdbarch,
					  mips_ax_pseudo_register_collect);
  set_gdbarch_ax_pseudo_register_push_stack
      (gdbarch, mips_ax_pseudo_register_push_stack);

  set_gdbarch_elf_make_msymbol_special (gdbarch,
					mips_elf_make_msymbol_special);

  /* Fill in the OS dependant register numbers and names.  */
  {
    const char **reg_names;
    struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
							 struct mips_regnum);
    if (tdesc_has_registers (info.target_desc))
      {
	regnum->lo = MIPS_EMBED_LO_REGNUM;
	regnum->hi = MIPS_EMBED_HI_REGNUM;
	regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
	regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
	regnum->pc = MIPS_EMBED_PC_REGNUM;
	regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
	regnum->fp_control_status = 70;
	regnum->fp_implementation_revision = 71;
	num_regs = MIPS_LAST_EMBED_REGNUM + 1;
	reg_names = NULL;
      }
    else if (info.osabi == GDB_OSABI_IRIX)
      {
	regnum->fp0 = 32;
	regnum->pc = 64;
	regnum->cause = 65;
	regnum->badvaddr = 66;
	regnum->hi = 67;
	regnum->lo = 68;
	regnum->fp_control_status = 69;
	regnum->fp_implementation_revision = 70;
	num_regs = 71;
	reg_names = mips_irix_reg_names;
      }
    else
      {
	regnum->lo = MIPS_EMBED_LO_REGNUM;
	regnum->hi = MIPS_EMBED_HI_REGNUM;
	regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
	regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
	regnum->pc = MIPS_EMBED_PC_REGNUM;
	regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
	regnum->fp_control_status = 70;
	regnum->fp_implementation_revision = 71;
	num_regs = 90;
	if (info.bfd_arch_info != NULL
	    && info.bfd_arch_info->mach == bfd_mach_mips3900)
	  reg_names = mips_tx39_reg_names;
	else
	  reg_names = mips_generic_reg_names;
      }
    /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
       replaced by gdbarch_read_pc?  */
    set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
    set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
    set_gdbarch_num_regs (gdbarch, num_regs);
    set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
    set_gdbarch_register_name (gdbarch, mips_register_name);
    set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
    tdep->mips_processor_reg_names = reg_names;
    tdep->regnum = regnum;
  }

  switch (mips_abi)
    {
    case MIPS_ABI_O32:
      set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o32_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_O64:
      set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_EABI32:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_EABI64:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
    case MIPS_ABI_N32:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
    case MIPS_ABI_N64:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
    default:
      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
    }

  /* GCC creates a pseudo-section whose name specifies the size of
     longs, since -mlong32 or -mlong64 may be used independent of
     other options.  How those options affect pointer sizes is ABI and
     architecture dependent, so use them to override the default sizes
     set by the ABI.  This table shows the relationship between ABI,
     -mlongXX, and size of pointers:

     ABI		-mlongXX	ptr bits
     ---		--------	--------
     o32		32		32
     o32		64		32
     n32		32		32
     n32		64		64
     o64		32		32
     o64		64		64
     n64		32		32
     n64		64		64
     eabi32		32		32
     eabi32		64		32
     eabi64		32		32
     eabi64		64		64

    Note that for o32 and eabi32, pointers are always 32 bits
    regardless of any -mlongXX option.  For all others, pointers and
    longs are the same, as set by -mlongXX or set by defaults.  */

  if (info.abfd != NULL)
    {
      int long_bit = 0;

      bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
      if (long_bit)
	{
	  set_gdbarch_long_bit (gdbarch, long_bit);
	  switch (mips_abi)
	    {
	    case MIPS_ABI_O32:
	    case MIPS_ABI_EABI32:
	      break;
	    case MIPS_ABI_N32:
	    case MIPS_ABI_O64:
	    case MIPS_ABI_N64:
	    case MIPS_ABI_EABI64:
	      set_gdbarch_ptr_bit (gdbarch, long_bit);
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
	    }
	}
    }

  /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
     that could indicate -gp32 BUT gas/config/tc-mips.c contains the
     comment:

     ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
     flag in object files because to do so would make it impossible to
     link with libraries compiled without "-gp32".  This is
     unnecessarily restrictive.

     We could solve this problem by adding "-gp32" multilibs to gcc,
     but to set this flag before gcc is built with such multilibs will
     break too many systems.''

     But even more unhelpfully, the default linker output target for
     mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
     for 64-bit programs - you need to change the ABI to change this,
     and not all gcc targets support that currently.  Therefore using
     this flag to detect 32-bit mode would do the wrong thing given
     the current gcc - it would make GDB treat these 64-bit programs
     as 32-bit programs by default.  */

  set_gdbarch_read_pc (gdbarch, mips_read_pc);
  set_gdbarch_write_pc (gdbarch, mips_write_pc);

  /* Add/remove bits from an address.  The MIPS needs be careful to
     ensure that all 32 bit addresses are sign extended to 64 bits.  */
  set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);

  /* Unwind the frame.  */
  set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
  set_gdbarch_dummy_id (gdbarch, mips_dummy_id);

  /* Map debug register numbers onto internal register numbers.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
  set_gdbarch_ecoff_reg_to_regnum (gdbarch,
				   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
				    mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);

  /* MIPS version of CALL_DUMMY.  */

  /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
     replaced by a command, and all targets will default to on stack
     (regardless of the stack's execute status).  */
  set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
  set_gdbarch_frame_align (gdbarch, mips_frame_align);

  set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
  set_gdbarch_value_to_register (gdbarch, mips_value_to_register);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);

  set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);

  set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);

  set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
  set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
  set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);

  set_gdbarch_register_type (gdbarch, mips_register_type);

  set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);

  if (mips_abi == MIPS_ABI_N32)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
  else if (mips_abi == MIPS_ABI_N64)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
  else
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);

  /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
     HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
     need to all be folded into the target vector.  Since they are
     being used as guards for target_stopped_by_watchpoint, why not have
     target_stopped_by_watchpoint return the type of watchpoint that the code
     is sitting on?  */
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);

  set_gdbarch_single_step_through_delay (gdbarch,
					 mips_single_step_through_delay);

  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);

  mips_register_g_packet_guesses (gdbarch);

  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  info.tdep_info = (void *) tdesc_data;
  gdbarch_init_osabi (info, gdbarch);

  /* Unwind the frame.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);

  if (tdesc_data)
    {
      set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);

      /* Override the normal target description methods to handle our
	 dual real and pseudo registers.  */
      set_gdbarch_register_name (gdbarch, mips_register_name);
      set_gdbarch_register_reggroup_p (gdbarch,
				       mips_tdesc_register_reggroup_p);

      num_regs = gdbarch_num_regs (gdbarch);
      set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
      set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
      set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    }

  /* Add ABI-specific aliases for the registers.  */
  if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
    for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
      user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
		    value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
  else
    for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
      user_reg_add (gdbarch, mips_o32_aliases[i].name,
		    value_of_mips_user_reg, &mips_o32_aliases[i].regnum);

  /* Add some other standard aliases.  */
  for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
    user_reg_add (gdbarch, mips_register_aliases[i].name,
		  value_of_mips_user_reg, &mips_register_aliases[i].regnum);

  for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
    user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
		  value_of_mips_user_reg, 
		  &mips_numeric_register_aliases[i].regnum);

  return gdbarch;
}

static void
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
  struct gdbarch_info info;

  /* Force the architecture to update, and (if it's a MIPS architecture)
     mips_gdbarch_init will take care of the rest.  */
  gdbarch_info_init (&info);
  gdbarch_update_p (info);
}

/* Print out which MIPS ABI is in use.  */

static void
show_mips_abi (struct ui_file *file,
	       int from_tty,
	       struct cmd_list_element *ignored_cmd,
	       const char *ignored_value)
{
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
    fprintf_filtered
      (file, 
       "The MIPS ABI is unknown because the current architecture "
       "is not MIPS.\n");
  else
    {
      enum mips_abi global_abi = global_mips_abi ();
      enum mips_abi actual_abi = mips_abi (target_gdbarch);
      const char *actual_abi_str = mips_abi_strings[actual_abi];

      if (global_abi == MIPS_ABI_UNKNOWN)
	fprintf_filtered
	  (file, 
	   "The MIPS ABI is set automatically (currently \"%s\").\n",
	   actual_abi_str);
      else if (global_abi == actual_abi)
	fprintf_filtered
	  (file,
	   "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
	   actual_abi_str);
      else
	{
	  /* Probably shouldn't happen...  */
	  fprintf_filtered (file,
			    "The (auto detected) MIPS ABI \"%s\" is in use "
			    "even though the user setting was \"%s\".\n",
	     actual_abi_str, mips_abi_strings[global_abi]);
	}
    }
}

static void
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep != NULL)
    {
      int ef_mips_arch;
      int ef_mips_32bitmode;
      /* Determine the ISA.  */
      switch (tdep->elf_flags & EF_MIPS_ARCH)
	{
	case E_MIPS_ARCH_1:
	  ef_mips_arch = 1;
	  break;
	case E_MIPS_ARCH_2:
	  ef_mips_arch = 2;
	  break;
	case E_MIPS_ARCH_3:
	  ef_mips_arch = 3;
	  break;
	case E_MIPS_ARCH_4:
	  ef_mips_arch = 4;
	  break;
	default:
	  ef_mips_arch = 0;
	  break;
	}
      /* Determine the size of a pointer.  */
      ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
			  tdep->elf_flags);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: ef_mips_32bitmode = %d\n",
			  ef_mips_32bitmode);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: ef_mips_arch = %d\n",
			  ef_mips_arch);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
			  tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
      fprintf_unfiltered (file,
			  "mips_dump_tdep: "
			  "mips_mask_address_p() %d (default %d)\n",
			  mips_mask_address_p (tdep),
			  tdep->default_mask_address_p);
    }
  fprintf_unfiltered (file,
		      "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
		      MIPS_DEFAULT_FPU_TYPE,
		      (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
		       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
		       : "???"));
  fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
		      MIPS_EABI (gdbarch));
  fprintf_unfiltered (file,
		      "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
		      MIPS_FPU_TYPE (gdbarch),
		      (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
		       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
		       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
		       : "???"));
}

extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */

void
_initialize_mips_tdep (void)
{
  static struct cmd_list_element *mipsfpulist = NULL;
  struct cmd_list_element *c;

  mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
  if (MIPS_ABI_LAST + 1
      != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
    internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));

  gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);

  mips_pdr_data = register_objfile_data ();

  /* Create feature sets with the appropriate properties.  The values
     are not important.  */
  mips_tdesc_gp32 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");

  mips_tdesc_gp64 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");

  /* Add root prefix command for all "set mips"/"show mips" commands.  */
  add_prefix_cmd ("mips", no_class, set_mips_command,
		  _("Various MIPS specific commands."),
		  &setmipscmdlist, "set mips ", 0, &setlist);

  add_prefix_cmd ("mips", no_class, show_mips_command,
		  _("Various MIPS specific commands."),
		  &showmipscmdlist, "show mips ", 0, &showlist);

  /* Allow the user to override the ABI.  */
  add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
			&mips_abi_string, _("\
Set the MIPS ABI used by this program."), _("\
Show the MIPS ABI used by this program."), _("\
This option can be set to one of:\n\
  auto  - the default ABI associated with the current binary\n\
  o32\n\
  o64\n\
  n32\n\
  n64\n\
  eabi32\n\
  eabi64"),
			mips_abi_update,
			show_mips_abi,
			&setmipscmdlist, &showmipscmdlist);

  /* Let the user turn off floating point and set the fence post for
     heuristic_proc_start.  */

  add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
		  _("Set use of MIPS floating-point coprocessor."),
		  &mipsfpulist, "set mipsfpu ", 0, &setlist);
  add_cmd ("single", class_support, set_mipsfpu_single_command,
	   _("Select single-precision MIPS floating-point coprocessor."),
	   &mipsfpulist);
  add_cmd ("double", class_support, set_mipsfpu_double_command,
	   _("Select double-precision MIPS floating-point coprocessor."),
	   &mipsfpulist);
  add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
  add_cmd ("none", class_support, set_mipsfpu_none_command,
	   _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
  add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
  add_cmd ("auto", class_support, set_mipsfpu_auto_command,
	   _("Select MIPS floating-point coprocessor automatically."),
	   &mipsfpulist);
  add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
	   _("Show current use of MIPS floating-point coprocessor target."),
	   &showlist);

  /* We really would like to have both "0" and "unlimited" work, but
     command.c doesn't deal with that.  So make it a var_zinteger
     because the user can always use "999999" or some such for unlimited.  */
  add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
			    &heuristic_fence_post, _("\
Set the distance searched for the start of a function."), _("\
Show the distance searched for the start of a function."), _("\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function.  This command sets the distance of the\n\
search.  The only need to set it is when debugging a stripped executable."),
			    reinit_frame_cache_sfunc,
			    NULL, /* FIXME: i18n: The distance searched for
				     the start of a function is %s.  */
			    &setlist, &showlist);

  /* Allow the user to control whether the upper bits of 64-bit
     addresses should be zeroed.  */
  add_setshow_auto_boolean_cmd ("mask-address", no_class,
				&mask_address_var, _("\
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
allow GDB to determine the correct value."),
				NULL, show_mask_address,
				&setmipscmdlist, &showmipscmdlist);

  /* Allow the user to control the size of 32 bit registers within the
     raw remote packet.  */
  add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
			   &mips64_transfers_32bit_regs_p, _("\
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
			   _("\
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
			   _("\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
64 bits for others.  Use \"off\" to disable compatibility mode"),
			   set_mips64_transfers_32bit_regs,
			   NULL, /* FIXME: i18n: Compatibility with 64-bit
				    MIPS target that transfers 32-bit
				    quantities is %s.  */
			   &setlist, &showlist);

  /* Debug this files internals.  */
  add_setshow_zinteger_cmd ("mips", class_maintenance,
			    &mips_debug, _("\
Set mips debugging."), _("\
Show mips debugging."), _("\
When non-zero, mips specific debugging is enabled."),
			    NULL,
			    NULL, /* FIXME: i18n: Mips debugging is
				     currently %s.  */
			    &setdebuglist, &showdebuglist);
}