aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i386.c
diff options
context:
space:
mode:
authorK. Richard Pixley <rich@cygnus>1991-04-04 18:19:53 +0000
committerK. Richard Pixley <rich@cygnus>1991-04-04 18:19:53 +0000
commitfecd2382e77b89f12c9d630ed4e42e9a54ba6953 (patch)
tree6cddf76f492c3485605175c97c13d9a24c65306f /gas/config/tc-i386.c
parentb6fc45ca4c306a4f6f6bdbaf90a69d3dab62777a (diff)
downloadgdb-fecd2382e77b89f12c9d630ed4e42e9a54ba6953.zip
gdb-fecd2382e77b89f12c9d630ed4e42e9a54ba6953.tar.gz
gdb-fecd2382e77b89f12c9d630ed4e42e9a54ba6953.tar.bz2
Initial revision
Diffstat (limited to 'gas/config/tc-i386.c')
-rw-r--r--gas/config/tc-i386.c1983
1 files changed, 1983 insertions, 0 deletions
diff --git a/gas/config/tc-i386.c b/gas/config/tc-i386.c
new file mode 100644
index 0000000..cff66a4
--- /dev/null
+++ b/gas/config/tc-i386.c
@@ -0,0 +1,1983 @@
+/* i386.c -- Assemble code for the Intel 80386
+ Copyright (C) 1989, 1991 Free Software Foundation.
+
+This file is part of GAS, the GNU Assembler.
+
+GAS is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 1, or (at your option)
+any later version.
+
+GAS is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GAS; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* $Id$ */
+
+/*
+ Intel 80386 machine specific gas.
+ Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
+ Bugs & suggestions are completely welcome. This is free software.
+ Please help us make it better.
+*/
+
+#include "as.h"
+
+#include "obstack.h"
+#include "i386-opcode.h"
+
+/* 'md_assemble ()' gathers together information and puts it into a
+ i386_insn. */
+
+typedef struct {
+ /* TM holds the template for the insn were currently assembling. */
+ template tm;
+ /* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */
+ char suffix;
+ /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
+
+ /* OPERANDS gives the number of given operands. */
+ unsigned int operands;
+
+ /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number of
+ given register, displacement, memory operands and immediate operands. */
+ unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
+
+ /* TYPES [i] is the type (see above #defines) which tells us how to
+ search through DISPS [i] & IMMS [i] & REGS [i] for the required
+ operand. */
+ unsigned int types [MAX_OPERANDS];
+
+ /* Displacements (if given) for each operand. */
+ expressionS * disps [MAX_OPERANDS];
+
+ /* Immediate operands (if given) for each operand. */
+ expressionS * imms [MAX_OPERANDS];
+
+ /* Register operands (if given) for each operand. */
+ reg_entry * regs [MAX_OPERANDS];
+
+ /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
+ the base index byte below. */
+ reg_entry * base_reg;
+ reg_entry * index_reg;
+ unsigned int log2_scale_factor;
+
+ /* SEG gives the seg_entry of this insn. It is equal to zero unless
+ an explicit segment override is given. */
+ seg_entry * seg; /* segment for memory operands (if given) */
+
+ /* PREFIX holds all the given prefix opcodes (usually null).
+ PREFIXES is the size of PREFIX. */
+ char prefix [MAX_PREFIXES];
+ unsigned int prefixes;
+
+ /* RM and IB are the modrm byte and the base index byte where the addressing
+ modes of this insn are encoded. */
+
+ modrm_byte rm;
+ base_index_byte bi;
+} i386_insn;
+
+char FLT_CHARS[] = "fFdDxX";
+char EXP_CHARS[] = "eE";
+char line_comment_chars[] = "#";
+char comment_chars[] = "#/";
+
+/* tables for lexical analysis */
+static char opcode_chars[256];
+static char register_chars[256];
+static char operand_chars[256];
+static char space_chars[256];
+static char identifier_chars[256];
+static char digit_chars[256];
+
+/* lexical macros */
+#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
+#define is_operand_char(x) (operand_chars[(unsigned char) x])
+#define is_register_char(x) (register_chars[(unsigned char) x])
+#define is_space_char(x) (space_chars[(unsigned char) x])
+#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
+#define is_digit_char(x) (digit_chars[(unsigned char) x])
+
+/* put here all non-digit non-letter charcters that may occur in an operand */
+static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:";
+
+static char *ordinal_names[] = { "first", "second", "third" }; /* for printfs */
+
+/* md_assemble() always leaves the strings it's passed unaltered. To
+ effect this we maintain a stack of saved characters that we've smashed
+ with '\0's (indicating end of strings for various sub-fields of the
+ assembler instruction). */
+static char save_stack[32];
+static char *save_stack_p; /* stack pointer */
+#define END_STRING_AND_SAVE(s) *save_stack_p++ = *s; *s = '\0'
+#define RESTORE_END_STRING(s) *s = *--save_stack_p
+
+/* The instruction we're assembling. */
+static i386_insn i;
+
+/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
+static expressionS disp_expressions[2], im_expressions[2];
+
+/* pointers to ebp & esp entries in reg_hash hash table */
+static reg_entry *ebp, *esp;
+
+static int this_operand; /* current operand we are working on */
+
+/*
+Interface to relax_segment.
+There are 2 relax states for 386 jump insns: one for conditional & one
+for unconditional jumps. This is because the these two types of jumps
+add different sizes to frags when we're figuring out what sort of jump
+to choose to reach a given label. */
+
+/* types */
+#define COND_JUMP 1 /* conditional jump */
+#define UNCOND_JUMP 2 /* unconditional jump */
+/* sizes */
+#define BYTE 0
+#define WORD 1
+#define DWORD 2
+#define UNKNOWN_SIZE 3
+
+#define ENCODE_RELAX_STATE(type,size) ((type<<2) | (size))
+#define SIZE_FROM_RELAX_STATE(s) \
+ ( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) )
+
+const relax_typeS md_relax_table[] = {
+/*
+ The fields are:
+ 1) most positive reach of this state,
+ 2) most negative reach of this state,
+ 3) how many bytes this mode will add to the size of the current frag
+ 4) which index into the table to try if we can't fit into this one.
+*/
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+
+ /* For now we don't use word displacement jumps: they may be
+ untrustworthy. */
+ {127+1, -128+1, 0, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
+ /* word conditionals add 3 bytes to frag:
+ 2 opcode prefix; 1 displacement bytes */
+ {32767+2, -32768+2, 3, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
+ /* dword conditionals adds 4 bytes to frag:
+ 1 opcode prefix; 3 displacement bytes */
+ {0, 0, 4, 0},
+ {1, 1, 0, 0},
+
+ {127+1, -128+1, 0, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
+ /* word jmp adds 2 bytes to frag:
+ 1 opcode prefix; 1 displacement bytes */
+ {32767+2, -32768+2, 2, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
+ /* dword jmp adds 3 bytes to frag:
+ 0 opcode prefix; 3 displacement bytes */
+ {0, 0, 3, 0},
+ {1, 1, 0, 0},
+
+};
+
+#ifdef __STDC__
+
+static char *output_invalid(int c);
+static int i386_operand(char *operand_string);
+static reg_entry *parse_register(char *reg_string);
+
+#else /* __STDC__ */
+
+static char *output_invalid();
+static int i386_operand();
+static reg_entry *parse_register();
+
+#endif /* __STDC__ */
+
+
+/* Ignore certain directives generated by gcc. This probably should
+ not be here. */
+void dummy ()
+{
+ while (*input_line_pointer && *input_line_pointer != '\n')
+ input_line_pointer++;
+}
+
+const pseudo_typeS md_pseudo_table[] = {
+ { "ffloat", float_cons, 'f' },
+ { "dfloat", float_cons, 'd' },
+ { "tfloat", float_cons, 'x' },
+ { "value", cons, 2 },
+ { "ident", dummy, 0 }, /* ignore these directives */
+#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
+ { "def", dummy, 0 },
+#endif /* OBJ_AOUT or OBJ_BOUT */
+ { "def", dummy, 0 },
+ { "optim", dummy, 0 }, /* For sun386i cc */
+ { "version", dummy, 0 },
+#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
+ { "ln", dummy, 0 },
+#endif /* OBJ_AOUT or OBJ_BOUT */
+ { "ln", dummy, 0 },
+ { 0, 0, 0 }
+};
+
+/* for interface with expression () */
+extern char * input_line_pointer;
+
+/* obstack for constructing various things in md_begin */
+struct obstack o;
+
+/* hash table for opcode lookup */
+static struct hash_control *op_hash = (struct hash_control *) 0;
+/* hash table for register lookup */
+static struct hash_control *reg_hash = (struct hash_control *) 0;
+/* hash table for prefix lookup */
+static struct hash_control *prefix_hash = (struct hash_control *) 0;
+
+
+void md_begin ()
+{
+ char * hash_err;
+
+ obstack_begin (&o,4096);
+
+ /* initialize op_hash hash table */
+ op_hash = hash_new(); /* xmalloc handles error */
+
+ {
+ register const template *optab;
+ register templates *core_optab;
+ char *prev_name;
+
+ optab = i386_optab; /* setup for loop */
+ prev_name = optab->name;
+ obstack_grow (&o, optab, sizeof(template));
+ core_optab = (templates *) xmalloc (sizeof (templates));
+
+ for (optab++; optab < i386_optab_end; optab++) {
+ if (! strcmp (optab->name, prev_name)) {
+ /* same name as before --> append to current template list */
+ obstack_grow (&o, optab, sizeof(template));
+ } else {
+ /* different name --> ship out current template list;
+ add to hash table; & begin anew */
+ /* Note: end must be set before start! since obstack_next_free changes
+ upon opstack_finish */
+ core_optab->end = (template *) obstack_next_free(&o);
+ core_optab->start = (template *) obstack_finish(&o);
+ hash_err = hash_insert (op_hash, prev_name, (char *) core_optab);
+ if (hash_err && *hash_err) {
+ hash_error:
+ as_fatal("Internal Error: Can't hash %s: %s", prev_name, hash_err);
+ }
+ prev_name = optab->name;
+ core_optab = (templates *) xmalloc (sizeof(templates));
+ obstack_grow (&o, optab, sizeof(template));
+ }
+ }
+ }
+
+ /* initialize reg_hash hash table */
+ reg_hash = hash_new();
+ {
+ register const reg_entry *regtab;
+
+ for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++) {
+ hash_err = hash_insert (reg_hash, regtab->reg_name, regtab);
+ if (hash_err && *hash_err) goto hash_error;
+ }
+ }
+
+ esp = (reg_entry *) hash_find (reg_hash, "esp");
+ ebp = (reg_entry *) hash_find (reg_hash, "ebp");
+
+ /* initialize reg_hash hash table */
+ prefix_hash = hash_new();
+ {
+ register const prefix_entry *prefixtab;
+
+ for (prefixtab = i386_prefixtab;
+ prefixtab < i386_prefixtab_end; prefixtab++) {
+ hash_err = hash_insert (prefix_hash, prefixtab->prefix_name, prefixtab);
+ if (hash_err && *hash_err) goto hash_error;
+ }
+ }
+
+ /* fill in lexical tables: opcode_chars, operand_chars, space_chars */
+ {
+ register unsigned int c;
+
+ bzero (opcode_chars, sizeof(opcode_chars));
+ bzero (operand_chars, sizeof(operand_chars));
+ bzero (space_chars, sizeof(space_chars));
+ bzero (identifier_chars, sizeof(identifier_chars));
+ bzero (digit_chars, sizeof(digit_chars));
+
+ for (c = 0; c < 256; c++) {
+ if (islower(c) || isdigit(c)) {
+ opcode_chars[c] = c;
+ register_chars[c] = c;
+ } else if (isupper(c)) {
+ opcode_chars[c] = tolower(c);
+ register_chars[c] = opcode_chars[c];
+ } else if (c == PREFIX_SEPERATOR) {
+ opcode_chars[c] = c;
+ } else if (c == ')' || c == '(') {
+ register_chars[c] = c;
+ }
+
+ if (isupper(c) || islower(c) || isdigit(c))
+ operand_chars[c] = c;
+ else if (c && strchr(operand_special_chars, c))
+ operand_chars[c] = c;
+
+ if (isdigit(c) || c == '-') digit_chars[c] = c;
+
+ if (isalpha(c) || c == '_' || c == '.' || isdigit(c))
+ identifier_chars[c] = c;
+
+ if (c == ' ' || c == '\t') space_chars[c] = c;
+ }
+ }
+}
+
+void md_end() {} /* not much to do here. */
+
+
+#ifdef DEBUG386
+
+/* debugging routines for md_assemble */
+/* static void pi (), pte (), pt (), pe (), ps (); */
+
+static void pi (line, x)
+ char * line;
+ i386_insn *x;
+{
+ register template *p;
+ int i;
+
+ fprintf (stdout, "%s: template ", line);
+ pte (&x->tm);
+ fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
+ x->rm.mode, x->rm.reg, x->rm.regmem);
+ fprintf (stdout, " base %x index %x scale %x\n",
+ x->bi.base, x->bi.index, x->bi.scale);
+ for (i = 0; i < x->operands; i++) {
+ fprintf (stdout, " #%d: ", i+1);
+ pt (x->types[i]);
+ fprintf (stdout, "\n");
+ if (x->types[i] & Reg) fprintf (stdout, "%s\n", x->regs[i]->reg_name);
+ if (x->types[i] & Imm) pe (x->imms[i]);
+ if (x->types[i] & (Disp|Abs)) pe (x->disps[i]);
+ }
+}
+
+static void pte (t)
+ template *t;
+{
+ int i;
+ fprintf (stdout, " %d operands ", t->operands);
+ fprintf (stdout, "opcode %x ",
+ t->base_opcode);
+ if (t->extension_opcode != None)
+ fprintf (stdout, "ext %x ", t->extension_opcode);
+ if (t->opcode_modifier&D)
+ fprintf (stdout, "D");
+ if (t->opcode_modifier&W)
+ fprintf (stdout, "W");
+ fprintf (stdout, "\n");
+ for (i = 0; i < t->operands; i++) {
+ fprintf (stdout, " #%d type ", i+1);
+ pt (t->operand_types[i]);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void pe (e)
+ expressionS *e;
+{
+ fprintf (stdout, " segment %s\n", segment_name (e->X_seg));
+ fprintf (stdout, " add_number %d (%x)\n",
+ e->X_add_number, e->X_add_number);
+ if (e->X_add_symbol) {
+ fprintf (stdout, " add_symbol ");
+ ps (e->X_add_symbol);
+ fprintf (stdout, "\n");
+ }
+ if (e->X_subtract_symbol) {
+ fprintf (stdout, " sub_symbol ");
+ ps (e->X_subtract_symbol);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void ps (s)
+ symbolS *s;
+{
+ fprintf (stdout, "%s type %s%s",
+ S_GET_NAME(s),
+ S_IS_EXTERNAL(s) ? "EXTERNAL " : "",
+ segment_name(S_GET_SEGMENT(s)));
+}
+
+struct type_name {
+ unsigned int mask;
+ char *tname;
+} type_names[] = {
+ { Reg8, "r8" }, { Reg16, "r16" }, { Reg32, "r32" }, { Imm8, "i8" },
+ { Imm8S, "i8s" },
+ { Imm16, "i16" }, { Imm32, "i32" }, { Mem8, "Mem8"}, { Mem16, "Mem16"},
+ { Mem32, "Mem32"}, { BaseIndex, "BaseIndex" },
+ { Abs8, "Abs8" }, { Abs16, "Abs16" }, { Abs32, "Abs32" },
+ { Disp8, "d8" }, { Disp16, "d16" },
+ { Disp32, "d32" }, { SReg2, "SReg2" }, { SReg3, "SReg3" }, { Acc, "Acc" },
+ { InOutPortReg, "InOutPortReg" }, { ShiftCount, "ShiftCount" },
+ { Imm1, "i1" }, { Control, "control reg" }, {Test, "test reg"},
+ { FloatReg, "FReg"}, {FloatAcc, "FAcc"},
+ { JumpAbsolute, "Jump Absolute"},
+ { 0, "" }
+};
+
+static void pt (t)
+ unsigned int t;
+{
+ register struct type_name *ty;
+
+ if (t == Unknown) {
+ fprintf (stdout, "Unknown");
+ } else {
+ for (ty = type_names; ty->mask; ty++)
+ if (t & ty->mask) fprintf (stdout, "%s, ", ty->tname);
+ }
+ fflush (stdout);
+}
+
+#endif /* DEBUG386 */
+
+/*
+ This is the guts of the machine-dependent assembler. LINE points to a
+ machine dependent instruction. This funciton is supposed to emit
+ the frags/bytes it assembles to.
+ */
+void md_assemble (line)
+ char *line;
+{
+ /* Holds temlate once we've found it. */
+ register template * t;
+
+ /* Possible templates for current insn */
+ templates *current_templates = (templates *) 0;
+
+ /* Initialize globals. */
+ bzero (&i, sizeof(i));
+ bzero (disp_expressions, sizeof(disp_expressions));
+ bzero (im_expressions, sizeof(im_expressions));
+ save_stack_p = save_stack; /* reset stack pointer */
+
+ /* Fist parse an opcode & call i386_operand for the operands.
+ We assume that the scrubber has arranged it so that line[0] is the valid
+ start of a (possibly prefixed) opcode. */
+ {
+ register char *l = line; /* Fast place to put LINE. */
+
+ /* 1 if operand is pending after ','. */
+ unsigned int expecting_operand = 0;
+ /* 1 if we found a prefix only acceptable with string insns. */
+ unsigned int expecting_string_instruction = 0;
+ /* Non-zero if operand parens not balenced. */
+ unsigned int paren_not_balenced;
+ char * token_start = l;
+
+ while (! is_space_char(*l) && *l != END_OF_INSN) {
+ if (! is_opcode_char(*l)) {
+ as_bad("invalid character %s in opcode", output_invalid(*l));
+ return;
+ } else if (*l != PREFIX_SEPERATOR) {
+ *l = opcode_chars[(unsigned char) *l]; /* fold case of opcodes */
+ l++;
+ } else { /* this opcode's got a prefix */
+ register unsigned int q;
+ register prefix_entry * prefix;
+
+ if (l == token_start) {
+ as_bad("expecting prefix; got nothing");
+ return;
+ }
+ END_STRING_AND_SAVE (l);
+ prefix = (prefix_entry *) hash_find (prefix_hash, token_start);
+ if (! prefix) {
+ as_bad("no such opcode prefix ('%s')", token_start);
+ return;
+ }
+ RESTORE_END_STRING (l);
+ /* check for repeated prefix */
+ for (q = 0; q < i.prefixes; q++)
+ if (i.prefix[q] == prefix->prefix_code) {
+ as_bad("same prefix used twice; you don't really want this!");
+ return;
+ }
+ if (i.prefixes == MAX_PREFIXES) {
+ as_bad("too many opcode prefixes");
+ return;
+ }
+ i.prefix[i.prefixes++] = prefix->prefix_code;
+ if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE)
+ expecting_string_instruction = 1;
+ /* skip past PREFIX_SEPERATOR and reset token_start */
+ token_start = ++l;
+ }
+ }
+ END_STRING_AND_SAVE (l);
+ if (token_start == l) {
+ as_bad("expecting opcode; got nothing");
+ return;
+ }
+
+ /* Lookup insn in hash; try intel & att naming conventions if appropriate;
+ that is: we only use the opcode suffix 'b' 'w' or 'l' if we need to. */
+ current_templates = (templates *) hash_find (op_hash, token_start);
+ if (! current_templates) {
+ int last_index = strlen(token_start) - 1;
+ char last_char = token_start[last_index];
+ switch (last_char) {
+ case DWORD_OPCODE_SUFFIX:
+ case WORD_OPCODE_SUFFIX:
+ case BYTE_OPCODE_SUFFIX:
+ token_start[last_index] = '\0';
+ current_templates = (templates *) hash_find (op_hash, token_start);
+ token_start[last_index] = last_char;
+ i.suffix = last_char;
+ }
+ if (!current_templates) {
+ as_bad("no such 386 instruction: `%s'", token_start); return;
+ }
+ }
+ RESTORE_END_STRING (l);
+
+ /* check for rep/repne without a string instruction */
+ if (expecting_string_instruction &&
+ ! IS_STRING_INSTRUCTION (current_templates->
+ start->base_opcode)) {
+ as_bad("expecting string instruction after rep/repne");
+ return;
+ }
+
+ /* There may be operands to parse. */
+ if (*l != END_OF_INSN &&
+ /* For string instructions, we ignore any operands if given. This
+ kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where
+ the operands are always going to be the same, and are not really
+ encoded in machine code. */
+ ! IS_STRING_INSTRUCTION (current_templates->
+ start->base_opcode)) {
+ /* parse operands */
+ do {
+ /* skip optional white space before operand */
+ while (! is_operand_char(*l) && *l != END_OF_INSN) {
+ if (! is_space_char(*l)) {
+ as_bad("invalid character %s before %s operand",
+ output_invalid(*l),
+ ordinal_names[i.operands]);
+ return;
+ }
+ l++;
+ }
+ token_start = l; /* after white space */
+ paren_not_balenced = 0;
+ while (paren_not_balenced || *l != ',') {
+ if (*l == END_OF_INSN) {
+ if (paren_not_balenced) {
+ as_bad("unbalenced parenthesis in %s operand.",
+ ordinal_names[i.operands]);
+ return;
+ } else break; /* we are done */
+ } else if (! is_operand_char(*l)) {
+ as_bad("invalid character %s in %s operand",
+ output_invalid(*l),
+ ordinal_names[i.operands]);
+ return;
+ }
+ if (*l == '(') ++paren_not_balenced;
+ if (*l == ')') --paren_not_balenced;
+ l++;
+ }
+ if (l != token_start) { /* yes, we've read in another operand */
+ unsigned int operand_ok;
+ this_operand = i.operands++;
+ if (i.operands > MAX_OPERANDS) {
+ as_bad("spurious operands; (%d operands/instruction max)",
+ MAX_OPERANDS);
+ return;
+ }
+ /* now parse operand adding info to 'i' as we go along */
+ END_STRING_AND_SAVE (l);
+ operand_ok = i386_operand (token_start);
+ RESTORE_END_STRING (l); /* restore old contents */
+ if (!operand_ok) return;
+ } else {
+ if (expecting_operand) {
+ expecting_operand_after_comma:
+ as_bad("expecting operand after ','; got nothing");
+ return;
+ }
+ if (*l == ',') {
+ as_bad("expecting operand before ','; got nothing");
+ return;
+ }
+ }
+
+ /* now *l must be either ',' or END_OF_INSN */
+ if (*l == ',') {
+ if (*++l == END_OF_INSN) { /* just skip it, if it's \n complain */
+ goto expecting_operand_after_comma;
+ }
+ expecting_operand = 1;
+ }
+ } while (*l != END_OF_INSN); /* until we get end of insn */
+ }
+ }
+
+ /* Now we've parsed the opcode into a set of templates, and have the
+ operands at hand.
+ Next, we find a template that matches the given insn,
+ making sure the overlap of the given operands types is consistent
+ with the template operand types. */
+
+#define MATCH(overlap,given_type) \
+ (overlap && \
+ (overlap & (JumpAbsolute|BaseIndex|Mem8)) \
+ == (given_type & (JumpAbsolute|BaseIndex|Mem8)))
+
+ /* If m0 and m1 are register matches they must be consistent
+ with the expected operand types t0 and t1.
+ That is, if both m0 & m1 are register matches
+ i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ?
+ then, either 1. or 2. must be true:
+ 1. the expected operand type register overlap is null:
+ (t0 & t1 & Reg) == 0
+ AND
+ the given register overlap is null:
+ (m0 & m1 & Reg) == 0
+ 2. the expected operand type register overlap == the given
+ operand type overlap: (t0 & t1 & m0 & m1 & Reg).
+ */
+#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \
+ ( ((m0 & (Reg)) && (m1 & (Reg))) ? \
+ ( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \
+ ((t0 & t1) & (m0 & m1) & (Reg)) \
+ ) : 1)
+ {
+ register unsigned int overlap0, overlap1;
+ expressionS * exp;
+ unsigned int overlap2;
+ unsigned int found_reverse_match;
+
+ overlap0 = overlap1 = overlap2 = found_reverse_match = 0;
+ for (t = current_templates->start;
+ t < current_templates->end;
+ t++) {
+
+ /* must have right number of operands */
+ if (i.operands != t->operands) continue;
+ else if (!t->operands) break; /* 0 operands always matches */
+
+ overlap0 = i.types[0] & t->operand_types[0];
+ switch (t->operands) {
+ case 1:
+ if (! MATCH (overlap0,i.types[0])) continue;
+ break;
+ case 2: case 3:
+ overlap1 = i.types[1] & t->operand_types[1];
+ if (! MATCH (overlap0,i.types[0]) ||
+ ! MATCH (overlap1,i.types[1]) ||
+ ! CONSISTENT_REGISTER_MATCH(overlap0, overlap1,
+ t->operand_types[0],
+ t->operand_types[1])) {
+
+ /* check if other direction is valid ... */
+ if (! (t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS))
+ continue;
+
+ /* try reversing direction of operands */
+ overlap0 = i.types[0] & t->operand_types[1];
+ overlap1 = i.types[1] & t->operand_types[0];
+ if (! MATCH (overlap0,i.types[0]) ||
+ ! MATCH (overlap1,i.types[1]) ||
+ ! CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
+ t->operand_types[0],
+ t->operand_types[1])) {
+ /* does not match either direction */
+ continue;
+ }
+ /* found a reverse match here -- slip through */
+ /* found_reverse_match holds which of D or FloatD we've found */
+ found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS;
+ } /* endif: not forward match */
+ /* found either forward/reverse 2 operand match here */
+ if (t->operands == 3) {
+ overlap2 = i.types[2] & t->operand_types[2];
+ if (! MATCH (overlap2,i.types[2]) ||
+ ! CONSISTENT_REGISTER_MATCH (overlap0, overlap2,
+ t->operand_types[0],
+ t->operand_types[2]) ||
+ ! CONSISTENT_REGISTER_MATCH (overlap1, overlap2,
+ t->operand_types[1],
+ t->operand_types[2]))
+ continue;
+ }
+ /* found either forward/reverse 2 or 3 operand match here:
+ slip through to break */
+ }
+ break; /* we've found a match; break out of loop */
+ } /* for (t = ... */
+ if (t == current_templates->end) { /* we found no match */
+ as_bad("operands given don't match any known 386 instruction");
+ return;
+ }
+
+ /* Copy the template we found (we may change it!). */
+ bcopy (t, &i.tm, sizeof (template));
+ t = &i.tm; /* alter new copy of template */
+
+ /* If there's no opcode suffix we try to invent one based on register
+ operands. */
+ if (! i.suffix && i.reg_operands) {
+ /* We take i.suffix from the LAST register operand specified. This
+ assumes that the last register operands is the destination register
+ operand. */
+ int o;
+ for (o = 0; o < MAX_OPERANDS; o++)
+ if (i.types[o] & Reg) {
+ i.suffix = (i.types[o] == Reg8) ? BYTE_OPCODE_SUFFIX :
+ (i.types[o] == Reg16) ? WORD_OPCODE_SUFFIX :
+ DWORD_OPCODE_SUFFIX;
+ }
+ }
+
+ /* Make still unresolved immediate matches conform to size of immediate
+ given in i.suffix. Note: overlap2 cannot be an immediate!
+ We assume this. */
+ if ((overlap0 & (Imm8|Imm8S|Imm16|Imm32))
+ && overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32) {
+ if (! i.suffix) {
+ as_bad("no opcode suffix given; can't determine immediate size");
+ return;
+ }
+ overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
+ (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
+ }
+ if ((overlap1 & (Imm8|Imm8S|Imm16|Imm32))
+ && overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32) {
+ if (! i.suffix) {
+ as_bad("no opcode suffix given; can't determine immediate size");
+ return;
+ }
+ overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
+ (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
+ }
+
+ i.types[0] = overlap0;
+ i.types[1] = overlap1;
+ i.types[2] = overlap2;
+
+ if (overlap0 & ImplicitRegister) i.reg_operands--;
+ if (overlap1 & ImplicitRegister) i.reg_operands--;
+ if (overlap2 & ImplicitRegister) i.reg_operands--;
+ if (overlap0 & Imm1) i.imm_operands = 0; /* kludge for shift insns */
+
+ if (found_reverse_match) {
+ unsigned int save;
+ save = t->operand_types[0];
+ t->operand_types[0] = t->operand_types[1];
+ t->operand_types[1] = save;
+ }
+
+ /* Finalize opcode. First, we change the opcode based on the operand
+ size given by i.suffix: we never have to change things for byte insns,
+ or when no opcode suffix is need to size the operands. */
+
+ if (! i.suffix && (t->opcode_modifier & W)) {
+ as_bad("no opcode suffix given and no register operands; can't size instruction");
+ return;
+ }
+
+ if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX) {
+ /* Select between byte and word/dword operations. */
+ if (t->opcode_modifier & W)
+ t->base_opcode |= W;
+ /* Now select between word & dword operations via the
+ operand size prefix. */
+ if (i.suffix == WORD_OPCODE_SUFFIX) {
+ if (i.prefixes == MAX_PREFIXES) {
+ as_bad("%d prefixes given and 'w' opcode suffix gives too many prefixes",
+ MAX_PREFIXES);
+ return;
+ }
+ i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE;
+ }
+ }
+
+ /* For insns with operands there are more diddles to do to the opcode. */
+ if (i.operands) {
+ /* If we found a reverse match we must alter the opcode direction bit
+ found_reverse_match holds bit to set (different for int &
+ float insns). */
+
+ if (found_reverse_match) {
+ t->base_opcode |= found_reverse_match;
+ }
+
+ /*
+ The imul $imm, %reg instruction is converted into
+ imul $imm, %reg, %reg. */
+ if (t->opcode_modifier & imulKludge) {
+ i.regs[2] = i.regs[1]; /* Pretend we saw the 3 operand case. */
+ i.reg_operands = 2;
+ }
+
+ /* Certain instructions expect the destination to be in the i.rm.reg
+ field. This is by far the exceptional case. For these instructions,
+ if the source operand is a register, we must reverse the i.rm.reg
+ and i.rm.regmem fields. We accomplish this by faking that the
+ two register operands were given in the reverse order. */
+ if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2) {
+ unsigned int first_reg_operand = (i.types[0] & Reg) ? 0 : 1;
+ unsigned int second_reg_operand = first_reg_operand + 1;
+ reg_entry *tmp = i.regs[first_reg_operand];
+ i.regs[first_reg_operand] = i.regs[second_reg_operand];
+ i.regs[second_reg_operand] = tmp;
+ }
+
+ if (t->opcode_modifier & ShortForm) {
+ /* The register or float register operand is in operand 0 or 1. */
+ unsigned int o = (i.types[0] & (Reg|FloatReg)) ? 0 : 1;
+ /* Register goes in low 3 bits of opcode. */
+ t->base_opcode |= i.regs[o]->reg_num;
+ } else if (t->opcode_modifier & ShortFormW) {
+ /* Short form with 0x8 width bit. Register is always dest. operand */
+ t->base_opcode |= i.regs[1]->reg_num;
+ if (i.suffix == WORD_OPCODE_SUFFIX ||
+ i.suffix == DWORD_OPCODE_SUFFIX)
+ t->base_opcode |= 0x8;
+ } else if (t->opcode_modifier & Seg2ShortForm) {
+ if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1) {
+ as_bad("you can't 'pop cs' on the 386.");
+ return;
+ }
+ t->base_opcode |= (i.regs[0]->reg_num << 3);
+ } else if (t->opcode_modifier & Seg3ShortForm) {
+ /* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1.
+ 'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9.
+ So, only if i.regs[0]->reg_num == 5 (%gs) do we need
+ to change the opcode. */
+ if (i.regs[0]->reg_num == 5)
+ t->base_opcode |= 0x08;
+ } else if (t->opcode_modifier & Modrm) {
+ /* The opcode is completed (modulo t->extension_opcode which must
+ be put into the modrm byte.
+ Now, we make the modrm & index base bytes based on all the info
+ we've collected. */
+
+ /* i.reg_operands MUST be the number of real register operands;
+ implicit registers do not count. */
+ if (i.reg_operands == 2) {
+ unsigned int source, dest;
+ source = (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 : 1;
+ dest = source + 1;
+ i.rm.mode = 3;
+ /* We must be careful to make sure that all segment/control/test/
+ debug registers go into the i.rm.reg field (despite the whether
+ they are source or destination operands). */
+ if (i.regs[dest]->reg_type & (SReg2|SReg3|Control|Debug|Test)) {
+ i.rm.reg = i.regs[dest]->reg_num;
+ i.rm.regmem = i.regs[source]->reg_num;
+ } else {
+ i.rm.reg = i.regs[source]->reg_num;
+ i.rm.regmem = i.regs[dest]->reg_num;
+ }
+ } else { /* if it's not 2 reg operands... */
+ if (i.mem_operands) {
+ unsigned int fake_zero_displacement = 0;
+ unsigned int o = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2);
+
+ /* Encode memory operand into modrm byte and base index byte. */
+
+ if (i.base_reg == esp && ! i.index_reg) {
+ /* <disp>(%esp) becomes two byte modrm with no index register. */
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
+ i.bi.base = ESP_REG_NUM;
+ i.bi.index = NO_INDEX_REGISTER;
+ i.bi.scale = 0; /* Must be zero! */
+ } else if (i.base_reg == ebp && !i.index_reg) {
+ if (! (i.types[o] & Disp)) {
+ /* Must fake a zero byte displacement.
+ There is no direct way to code '(%ebp)' directly. */
+ fake_zero_displacement = 1;
+ /* fake_zero_displacement code does not set this. */
+ i.types[o] |= Disp8;
+ }
+ i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
+ i.rm.regmem = EBP_REG_NUM;
+ } else if (! i.base_reg && (i.types[o] & BaseIndex)) {
+ /* There are three cases here.
+ Case 1: '<32bit disp>(,1)' -- indirect absolute.
+ (Same as cases 2 & 3 with NO index register)
+ Case 2: <32bit disp> (,<index>) -- no base register with disp
+ Case 3: (, <index>) --- no base register;
+ no disp (must add 32bit 0 disp). */
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.rm.mode = 0; /* 32bit mode */
+ i.bi.base = NO_BASE_REGISTER;
+ i.types[o] &= ~Disp;
+ i.types[o] |= Disp32; /* Must be 32bit! */
+ if (i.index_reg) { /* case 2 or case 3 */
+ i.bi.index = i.index_reg->reg_num;
+ i.bi.scale = i.log2_scale_factor;
+ if (i.disp_operands == 0)
+ fake_zero_displacement = 1; /* case 3 */
+ } else {
+ i.bi.index = NO_INDEX_REGISTER;
+ i.bi.scale = 0;
+ }
+ } else if (i.disp_operands && !i.base_reg && !i.index_reg) {
+ /* Operand is just <32bit disp> */
+ i.rm.regmem = EBP_REG_NUM;
+ i.rm.mode = 0;
+ i.types[o] &= ~Disp;
+ i.types[o] |= Disp32;
+ } else {
+ /* It's not a special case; rev'em up. */
+ i.rm.regmem = i.base_reg->reg_num;
+ i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
+ if (i.index_reg) {
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.bi.base = i.base_reg->reg_num;
+ i.bi.index = i.index_reg->reg_num;
+ i.bi.scale = i.log2_scale_factor;
+ if (i.base_reg == ebp && i.disp_operands == 0) { /* pace */
+ fake_zero_displacement = 1;
+ i.types[o] |= Disp8;
+ i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
+ }
+ }
+ }
+ if (fake_zero_displacement) {
+ /* Fakes a zero displacement assuming that i.types[o] holds
+ the correct displacement size. */
+ exp = &disp_expressions[i.disp_operands++];
+ i.disps[o] = exp;
+ exp->X_seg = SEG_ABSOLUTE;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_subtract_symbol = (symbolS *) 0;
+ }
+
+ /* Select the correct segment for the memory operand. */
+ if (i.seg) {
+ const unsigned int seg_index;
+ const seg_entry * default_seg;
+
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING) {
+ seg_index = (i.rm.mode<<3) | i.bi.base;
+ default_seg = two_byte_segment_defaults [seg_index];
+ } else {
+ seg_index = (i.rm.mode<<3) | i.rm.regmem;
+ default_seg = one_byte_segment_defaults [seg_index];
+ }
+ /* If the specified segment is not the default, use an
+ opcode prefix to select it */
+ if (i.seg != default_seg) {
+ if (i.prefixes == MAX_PREFIXES) {
+ as_bad("%d prefixes given and %s segment override gives too many prefixes",
+ MAX_PREFIXES, i.seg->seg_name);
+ return;
+ }
+ i.prefix[i.prefixes++] = i.seg->seg_prefix;
+ }
+ }
+ }
+
+ /* Fill in i.rm.reg or i.rm.regmem field with register operand
+ (if any) based on t->extension_opcode. Again, we must be careful
+ to make sure that segment/control/debug/test registers are coded
+ into the i.rm.reg field. */
+ if (i.reg_operands) {
+ unsigned int o =
+ (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 :
+ (i.types[1] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 1 : 2;
+ /* If there is an extension opcode to put here, the register number
+ must be put into the regmem field. */
+ if (t->extension_opcode != None)
+ i.rm.regmem = i.regs[o]->reg_num;
+ else i.rm.reg = i.regs[o]->reg_num;
+
+ /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
+ we must set it to 3 to indicate this is a register operand
+ int the regmem field */
+ if (! i.mem_operands) i.rm.mode = 3;
+ }
+
+ /* Fill in i.rm.reg field with extension opcode (if any). */
+ if (t->extension_opcode != None)
+ i.rm.reg = t->extension_opcode;
+ }
+ }
+ }
+ }
+
+ /* Handle conversion of 'int $3' --> special int3 insn. */
+ if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3) {
+ t->base_opcode = INT3_OPCODE;
+ i.imm_operands = 0;
+ }
+
+ /* We are ready to output the insn. */
+ {
+ register char * p;
+
+ /* Output jumps. */
+ if (t->opcode_modifier & Jump) {
+ int n = i.disps[0]->X_add_number;
+
+ switch (i.disps[0]->X_seg) {
+ case SEG_ABSOLUTE:
+ if (FITS_IN_SIGNED_BYTE (n)) {
+ p = frag_more (2);
+ p[0] = t->base_opcode;
+ p[1] = n;
+#if 0 /* leave out 16 bit jumps - pace */
+ } else if (FITS_IN_SIGNED_WORD (n)) {
+ p = frag_more (4);
+ p[0] = WORD_PREFIX_OPCODE;
+ p[1] = t->base_opcode;
+ md_number_to_chars (&p[2], n, 2);
+#endif
+ } else { /* It's an absolute dword displacement. */
+ if (t->base_opcode == JUMP_PC_RELATIVE) { /* pace */
+ /* unconditional jump */
+ p = frag_more (5);
+ p[0] = 0xe9;
+ md_number_to_chars (&p[1], n, 4);
+ } else {
+ /* conditional jump */
+ p = frag_more (6);
+ p[0] = TWO_BYTE_OPCODE_ESCAPE;
+ p[1] = t->base_opcode + 0x10;
+ md_number_to_chars (&p[2], n, 4);
+ }
+ }
+ break;
+ default:
+ /* It's a symbol; end frag & setup for relax.
+ Make sure there are 6 chars left in the current frag; if not
+ we'll have to start a new one. */
+ /* I caught it failing with obstack_room == 6,
+ so I changed to <= pace */
+ if (obstack_room (&frags) <= 6) {
+ frag_wane(frag_now);
+ frag_new (0);
+ }
+ p = frag_more (1);
+ p[0] = t->base_opcode;
+ frag_var (rs_machine_dependent,
+ 6, /* 2 opcode/prefix + 4 displacement */
+ 1,
+ ((unsigned char) *p == JUMP_PC_RELATIVE
+ ? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE)
+ : ENCODE_RELAX_STATE (COND_JUMP, BYTE)),
+ i.disps[0]->X_add_symbol,
+ n, p);
+ break;
+ }
+ } else if (t->opcode_modifier & (JumpByte|JumpDword)) {
+ int size = (t->opcode_modifier & JumpByte) ? 1 : 4;
+ int n = i.disps[0]->X_add_number;
+
+ if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
+ FRAG_APPEND_1_CHAR (t->base_opcode);
+ } else {
+ p = frag_more (2); /* opcode can be at most two bytes */
+ /* put out high byte first: can't use md_number_to_chars! */
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = t->base_opcode & 0xff;
+ }
+
+ p = frag_more (size);
+ switch (i.disps[0]->X_seg) {
+ case SEG_ABSOLUTE:
+ md_number_to_chars (p, n, size);
+ if (size == 1 && ! FITS_IN_SIGNED_BYTE (n)) {
+ as_bad("loop/jecx only takes byte displacement; %d shortened to %d",
+ n, *p);
+ }
+ break;
+ default:
+ fix_new (frag_now, p - frag_now->fr_literal, size,
+ i.disps[0]->X_add_symbol, i.disps[0]->X_subtract_symbol,
+ i.disps[0]->X_add_number, 1, NO_RELOC);
+ break;
+ }
+ } else if (t->opcode_modifier & JumpInterSegment) {
+ p = frag_more (1 + 2 + 4); /* 1 opcode; 2 segment; 4 offset */
+ p[0] = t->base_opcode;
+ if (i.imms[1]->X_seg == SEG_ABSOLUTE)
+ md_number_to_chars (p + 1, i.imms[1]->X_add_number, 4);
+ else
+ fix_new (frag_now, p + 1 - frag_now->fr_literal, 4,
+ i.imms[1]->X_add_symbol,
+ i.imms[1]->X_subtract_symbol,
+ i.imms[1]->X_add_number, 0, NO_RELOC);
+ if (i.imms[0]->X_seg != SEG_ABSOLUTE)
+ as_bad("can't handle non absolute segment in long call/jmp");
+ md_number_to_chars (p + 5, i.imms[0]->X_add_number, 2);
+ } else {
+ /* Output normal instructions here. */
+ register char *q;
+
+ /* First the prefix bytes. */
+ for (q = i.prefix; q < i.prefix + i.prefixes; q++) {
+ p = frag_more (1);
+ md_number_to_chars (p, (unsigned int) *q, 1);
+ }
+
+ /* Now the opcode; be careful about word order here! */
+ if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
+ FRAG_APPEND_1_CHAR (t->base_opcode);
+ } else if (FITS_IN_UNSIGNED_WORD(t->base_opcode)) {
+ p = frag_more (2);
+ /* put out high byte first: can't use md_number_to_chars! */
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = t->base_opcode & 0xff;
+ } else { /* opcode is either 3 or 4 bytes */
+ if (t->base_opcode & 0xff000000) {
+ p = frag_more (4);
+ *p++ = (t->base_opcode >> 24) & 0xff;
+ } else p = frag_more (3);
+ *p++ = (t->base_opcode >> 16) & 0xff;
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = (t->base_opcode ) & 0xff;
+ }
+
+ /* Now the modrm byte and base index byte (if present). */
+ if (t->opcode_modifier & Modrm) {
+ p = frag_more (1);
+ /* md_number_to_chars (p, i.rm, 1); */
+ md_number_to_chars (p, (i.rm.regmem<<0 | i.rm.reg<<3 | i.rm.mode<<6), 1);
+ /* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode)
+ ==> need second modrm byte. */
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3) {
+ p = frag_more (1);
+ /* md_number_to_chars (p, i.bi, 1); */
+ md_number_to_chars (p,(i.bi.base<<0 | i.bi.index<<3 | i.bi.scale<<6), 1);
+ }
+ }
+
+ if (i.disp_operands) {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++) {
+ if (i.disps[n]) {
+ if (i.disps[n]->X_seg == SEG_ABSOLUTE) {
+ if (i.types[n] & (Disp8|Abs8)) {
+ p = frag_more (1);
+ md_number_to_chars (p, i.disps[n]->X_add_number, 1);
+ } else if (i.types[n] & (Disp16|Abs16)) {
+ p = frag_more (2);
+ md_number_to_chars (p, i.disps[n]->X_add_number, 2);
+ } else { /* Disp32|Abs32 */
+ p = frag_more (4);
+ md_number_to_chars (p, i.disps[n]->X_add_number, 4);
+ }
+ } else { /* not SEG_ABSOLUTE */
+ /* need a 32-bit fixup (don't support 8bit non-absolute disps) */
+ p = frag_more (4);
+ fix_new (frag_now, p - frag_now->fr_literal, 4,
+ i.disps[n]->X_add_symbol, i.disps[n]->X_subtract_symbol,
+ i.disps[n]->X_add_number, 0, NO_RELOC);
+ }
+ }
+ }
+ } /* end displacement output */
+
+ /* output immediate */
+ if (i.imm_operands) {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++) {
+ if (i.imms[n]) {
+ if (i.imms[n]->X_seg == SEG_ABSOLUTE) {
+ if (i.types[n] & (Imm8|Imm8S)) {
+ p = frag_more (1);
+ md_number_to_chars (p, i.imms[n]->X_add_number, 1);
+ } else if (i.types[n] & Imm16) {
+ p = frag_more (2);
+ md_number_to_chars (p, i.imms[n]->X_add_number, 2);
+ } else {
+ p = frag_more (4);
+ md_number_to_chars (p, i.imms[n]->X_add_number, 4);
+ }
+ } else { /* not SEG_ABSOLUTE */
+ /* need a 32-bit fixup (don't support 8bit non-absolute ims) */
+ /* try to support other sizes ... */
+ int size;
+ if (i.types[n] & (Imm8|Imm8S))
+ size = 1;
+ else if (i.types[n] & Imm16)
+ size = 2;
+ else
+ size = 4;
+ p = frag_more (size);
+ fix_new (frag_now, p - frag_now->fr_literal, size,
+ i.imms[n]->X_add_symbol, i.imms[n]->X_subtract_symbol,
+ i.imms[n]->X_add_number, 0, NO_RELOC);
+ }
+ }
+ }
+ } /* end immediate output */
+ }
+
+#ifdef DEBUG386
+ if (flagseen ['D']) {
+ pi (line, &i);
+ }
+#endif /* DEBUG386 */
+
+ }
+ return;
+}
+
+/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
+ on error. */
+
+static int i386_operand (operand_string)
+ char *operand_string;
+{
+ register char *op_string = operand_string;
+
+ /* Address of '\0' at end of operand_string. */
+ char * end_of_operand_string = operand_string + strlen(operand_string);
+
+ /* Start and end of displacement string expression (if found). */
+ char * displacement_string_start = 0;
+ char * displacement_string_end;
+
+ /* We check for an absolute prefix (differentiating,
+ for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
+ if (*op_string == ABSOLUTE_PREFIX) {
+ op_string++;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+
+ /* Check if operand is a register. */
+ if (*op_string == REGISTER_PREFIX) {
+ register reg_entry * r;
+ if (! (r = parse_register (op_string))) {
+ as_bad("bad register name ('%s')", op_string);
+ return 0;
+ }
+ /* Check for segment override, rather than segment register by
+ searching for ':' after %<x>s where <x> = s, c, d, e, f, g. */
+ if ((r->reg_type & (SReg2|SReg3)) && op_string[3] == ':') {
+ switch (r->reg_num) {
+ case 0:
+ i.seg = &es; break;
+ case 1:
+ i.seg = &cs; break;
+ case 2:
+ i.seg = &ss; break;
+ case 3:
+ i.seg = &ds; break;
+ case 4:
+ i.seg = &fs; break;
+ case 5:
+ i.seg = &gs; break;
+ }
+ op_string += 4; /* skip % <x> s : */
+ operand_string = op_string; /* Pretend given string starts here. */
+ if (!is_digit_char(*op_string) && !is_identifier_char(*op_string)
+ && *op_string != '(' && *op_string != ABSOLUTE_PREFIX) {
+ as_bad("bad memory operand after segment override");
+ return 0;
+ }
+ /* Handle case of %es:*foo. */
+ if (*op_string == ABSOLUTE_PREFIX) {
+ op_string++;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+ goto do_memory_reference;
+ }
+ i.types[this_operand] |= r->reg_type;
+ i.regs[this_operand] = r;
+ i.reg_operands++;
+ } else if (*op_string == IMMEDIATE_PREFIX) { /* ... or an immediate */
+ char * save_input_line_pointer;
+ register expressionS *exp;
+ segT exp_seg;
+ if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) {
+ as_bad("only 1 or 2 immediate operands are allowed");
+ return 0;
+ }
+ exp = &im_expressions[i.imm_operands++];
+ i.imms [this_operand] = exp;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = ++op_string; /* must advance op_string! */
+ exp_seg = expression (exp);
+ input_line_pointer = save_input_line_pointer;
+ switch (exp_seg) {
+ case SEG_ABSENT: /* missing or bad expr becomes absolute 0 */
+ as_bad("missing or invalid immediate expression '%s' taken as 0",
+ operand_string);
+ exp->X_seg = SEG_ABSOLUTE;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_subtract_symbol = (symbolS *) 0;
+ i.types[this_operand] |= Imm;
+ break;
+ case SEG_ABSOLUTE:
+ i.types[this_operand] |= SMALLEST_IMM_TYPE (exp->X_add_number);
+ break;
+ case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN:
+ i.types[this_operand] |= Imm32; /* this is an address ==> 32bit */
+ break;
+ default:
+seg_unimplemented:
+ as_bad("Unimplemented segment type %d in parse_operand", exp_seg);
+ return 0;
+ }
+ /* shorten this type of this operand if the instruction wants
+ * fewer bits than are present in the immediate. The bit field
+ * code can put out 'andb $0xffffff, %al', for example. pace
+ * also 'movw $foo,(%eax)'
+ */
+ switch (i.suffix) {
+ case WORD_OPCODE_SUFFIX:
+ i.types[this_operand] |= Imm16;
+ break;
+ case BYTE_OPCODE_SUFFIX:
+ i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
+ break;
+ }
+ } else if (is_digit_char(*op_string) || is_identifier_char(*op_string)
+ || *op_string == '(') {
+ /* This is a memory reference of some sort. */
+ register char * base_string;
+ unsigned int found_base_index_form;
+
+ do_memory_reference:
+ if (i.mem_operands == MAX_MEMORY_OPERANDS) {
+ as_bad("more than 1 memory reference in instruction");
+ return 0;
+ }
+ i.mem_operands++;
+
+ /* Determine type of memory operand from opcode_suffix;
+ no opcode suffix implies general memory references. */
+ switch (i.suffix) {
+ case BYTE_OPCODE_SUFFIX:
+ i.types[this_operand] |= Mem8;
+ break;
+ case WORD_OPCODE_SUFFIX:
+ i.types[this_operand] |= Mem16;
+ break;
+ case DWORD_OPCODE_SUFFIX:
+ default:
+ i.types[this_operand] |= Mem32;
+ }
+
+ /* Check for base index form. We detect the base index form by
+ looking for an ')' at the end of the operand, searching
+ for the '(' matching it, and finding a REGISTER_PREFIX or ','
+ after it. */
+ base_string = end_of_operand_string - 1;
+ found_base_index_form = 0;
+ if (*base_string == ')') {
+ unsigned int parens_balenced = 1;
+ /* We've already checked that the number of left & right ()'s are equal,
+ so this loop will not be infinite. */
+ do {
+ base_string--;
+ if (*base_string == ')') parens_balenced++;
+ if (*base_string == '(') parens_balenced--;
+ } while (parens_balenced);
+ base_string++; /* Skip past '('. */
+ if (*base_string == REGISTER_PREFIX || *base_string == ',')
+ found_base_index_form = 1;
+ }
+
+ /* If we can't parse a base index register expression, we've found
+ a pure displacement expression. We set up displacement_string_start
+ and displacement_string_end for the code below. */
+ if (! found_base_index_form) {
+ displacement_string_start = op_string;
+ displacement_string_end = end_of_operand_string;
+ } else {
+ char *base_reg_name, *index_reg_name, *num_string;
+ int num;
+
+ i.types[this_operand] |= BaseIndex;
+
+ /* If there is a displacement set-up for it to be parsed later. */
+ if (base_string != op_string + 1) {
+ displacement_string_start = op_string;
+ displacement_string_end = base_string - 1;
+ }
+
+ /* Find base register (if any). */
+ if (*base_string != ',') {
+ base_reg_name = base_string++;
+ /* skip past register name & parse it */
+ while (isalpha(*base_string)) base_string++;
+ if (base_string == base_reg_name+1) {
+ as_bad("can't find base register name after '(%c'",
+ REGISTER_PREFIX);
+ return 0;
+ }
+ END_STRING_AND_SAVE (base_string);
+ if (! (i.base_reg = parse_register (base_reg_name))) {
+ as_bad("bad base register name ('%s')", base_reg_name);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ }
+
+ /* Now check seperator; must be ',' ==> index reg
+ OR num ==> no index reg. just scale factor
+ OR ')' ==> end. (scale factor = 1) */
+ if (*base_string != ',' && *base_string != ')') {
+ as_bad("expecting ',' or ')' after base register in `%s'",
+ operand_string);
+ return 0;
+ }
+
+ /* There may index reg here; and there may be a scale factor. */
+ if (*base_string == ',' && *(base_string+1) == REGISTER_PREFIX) {
+ index_reg_name = ++base_string;
+ while (isalpha(*++base_string));
+ END_STRING_AND_SAVE (base_string);
+ if (! (i.index_reg = parse_register(index_reg_name))) {
+ as_bad("bad index register name ('%s')", index_reg_name);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ }
+
+ /* Check for scale factor. */
+ if (*base_string == ',' && isdigit(*(base_string+1))) {
+ num_string = ++base_string;
+ while (is_digit_char(*base_string)) base_string++;
+ if (base_string == num_string) {
+ as_bad("can't find a scale factor after ','");
+ return 0;
+ }
+ END_STRING_AND_SAVE (base_string);
+ /* We've got a scale factor. */
+ if (! sscanf (num_string, "%d", &num)) {
+ as_bad("can't parse scale factor from '%s'", num_string);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ switch (num) { /* must be 1 digit scale */
+ case 1: i.log2_scale_factor = 0; break;
+ case 2: i.log2_scale_factor = 1; break;
+ case 4: i.log2_scale_factor = 2; break;
+ case 8: i.log2_scale_factor = 3; break;
+ default:
+ as_bad("expecting scale factor of 1, 2, 4, 8; got %d", num);
+ return 0;
+ }
+ } else {
+ if (! i.index_reg && *base_string == ',') {
+ as_bad("expecting index register or scale factor after ','; got '%c'",
+ *(base_string+1));
+ return 0;
+ }
+ }
+ }
+
+ /* If there's an expression begining the operand, parse it,
+ assuming displacement_string_start and displacement_string_end
+ are meaningful. */
+ if (displacement_string_start) {
+ register expressionS * exp;
+ segT exp_seg;
+ char * save_input_line_pointer;
+ exp = &disp_expressions[i.disp_operands];
+ i.disps [this_operand] = exp;
+ i.disp_operands++;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = displacement_string_start;
+ END_STRING_AND_SAVE (displacement_string_end);
+ exp_seg = expression (exp);
+ if(*input_line_pointer)
+ as_bad("Ignoring junk '%s' after expression",input_line_pointer);
+ RESTORE_END_STRING (displacement_string_end);
+ input_line_pointer = save_input_line_pointer;
+ switch (exp_seg) {
+ case SEG_ABSENT:
+ /* missing expr becomes absolute 0 */
+ as_bad("missing or invalid displacement '%s' taken as 0",
+ operand_string);
+ i.types[this_operand] |= (Disp|Abs);
+ exp->X_seg = SEG_ABSOLUTE;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_subtract_symbol = (symbolS *) 0;
+ break;
+ case SEG_ABSOLUTE:
+ i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number);
+ break;
+ case SEG_TEXT: case SEG_DATA: case SEG_BSS:
+ case SEG_UNKNOWN: /* must be 32 bit displacement (i.e. address) */
+ i.types[this_operand] |= Disp32;
+ break;
+ default:
+ goto seg_unimplemented;
+ }
+ }
+
+ /* Make sure the memory operand we've been dealt is valid. */
+ if (i.base_reg && i.index_reg &&
+ ! (i.base_reg->reg_type & i.index_reg->reg_type & Reg)) {
+ as_bad("register size mismatch in (base,index,scale) expression");
+ return 0;
+ }
+ if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) ||
+ (i.index_reg && (i.index_reg->reg_type & Reg32) == 0)) {
+ as_bad("base/index register must be 32 bit register");
+ return 0;
+ }
+ if (i.index_reg && i.index_reg == esp) {
+ as_bad("%s may not be used as an index register", esp->reg_name);
+ return 0;
+ }
+ } else { /* it's not a memory operand; argh! */
+ as_bad("invalid char %s begining %s operand '%s'",
+ output_invalid(*op_string), ordinal_names[this_operand],
+ op_string);
+ return 0;
+ }
+ return 1; /* normal return */
+}
+
+/*
+ * md_estimate_size_before_relax()
+ *
+ * Called just before relax().
+ * Any symbol that is now undefined will not become defined.
+ * Return the correct fr_subtype in the frag.
+ * Return the initial "guess for fr_var" to caller.
+ * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
+ * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
+ * Although it may not be explicit in the frag, pretend fr_var starts with a
+ * 0 value.
+ */
+int
+md_estimate_size_before_relax (fragP, segment)
+ register fragS * fragP;
+ register segT segment;
+{
+ register unsigned char * opcode;
+ register int old_fr_fix;
+
+ old_fr_fix = fragP -> fr_fix;
+ opcode = (unsigned char *) fragP -> fr_opcode;
+ /* We've already got fragP->fr_subtype right; all we have to do is check
+ for un-relaxable symbols. */
+ if (S_GET_SEGMENT(fragP -> fr_symbol) != segment) {
+ /* symbol is undefined in this segment */
+ switch (opcode[0]) {
+ case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
+ opcode[0] = 0xe9; /* dword disp jmp */
+ fragP -> fr_fix += 4;
+ fix_new (fragP, old_fr_fix, 4,
+ fragP -> fr_symbol,
+ (symbolS *) 0,
+ fragP -> fr_offset, 1, NO_RELOC);
+ break;
+
+ default:
+ /* This changes the byte-displacement jump 0x7N -->
+ the dword-displacement jump 0x0f8N */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
+ fragP -> fr_fix += 1 + 4; /* we've added an opcode byte */
+ fix_new (fragP, old_fr_fix + 1, 4,
+ fragP -> fr_symbol,
+ (symbolS *) 0,
+ fragP -> fr_offset, 1, NO_RELOC);
+ break;
+ }
+ frag_wane (fragP);
+ }
+ return (fragP -> fr_var + fragP -> fr_fix - old_fr_fix);
+} /* md_estimate_size_before_relax() */
+
+/*
+ * md_convert_frag();
+ *
+ * Called after relax() is finished.
+ * In: Address of frag.
+ * fr_type == rs_machine_dependent.
+ * fr_subtype is what the address relaxed to.
+ *
+ * Out: Any fixSs and constants are set up.
+ * Caller will turn frag into a ".space 0".
+ */
+void
+md_convert_frag (fragP)
+ register fragS * fragP;
+{
+ register unsigned char * opcode;
+ unsigned char * where_to_put_displacement;
+ unsigned int target_address, opcode_address;
+ unsigned int extension;
+ int displacement_from_opcode_start;
+
+ opcode = (unsigned char *) fragP -> fr_opcode;
+
+ /* Address we want to reach in file space. */
+ target_address = S_GET_VALUE(fragP->fr_symbol) + fragP->fr_offset;
+
+ /* Address opcode resides at in file space. */
+ opcode_address = fragP->fr_address + fragP->fr_fix;
+
+ /* Displacement from opcode start to fill into instruction. */
+ displacement_from_opcode_start = target_address - opcode_address;
+
+ switch (fragP->fr_subtype) {
+ case ENCODE_RELAX_STATE (COND_JUMP, BYTE):
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE):
+ /* don't have to change opcode */
+ extension = 1; /* 1 opcode + 1 displacement */
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, WORD):
+ opcode[1] = TWO_BYTE_OPCODE_ESCAPE;
+ opcode[2] = opcode[0] + 0x10;
+ opcode[0] = WORD_PREFIX_OPCODE;
+ extension = 4; /* 3 opcode + 2 displacement */
+ where_to_put_displacement = &opcode[3];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD):
+ opcode[1] = 0xe9;
+ opcode[0] = WORD_PREFIX_OPCODE;
+ extension = 3; /* 2 opcode + 2 displacement */
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, DWORD):
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ extension = 5; /* 2 opcode + 4 displacement */
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD):
+ opcode[0] = 0xe9;
+ extension = 4; /* 1 opcode + 4 displacement */
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ default:
+ BAD_CASE(fragP -> fr_subtype);
+ break;
+ }
+ /* now put displacement after opcode */
+ md_number_to_chars (where_to_put_displacement,
+ displacement_from_opcode_start - extension,
+ SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
+ fragP -> fr_fix += extension;
+}
+
+
+int md_short_jump_size = 2; /* size of byte displacement jmp */
+int md_long_jump_size = 5; /* size of dword displacement jmp */
+int md_reloc_size = 8; /* Size of relocation record */
+
+void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ long from_addr, to_addr;
+fragS *frag;
+symbolS *to_symbol;
+{
+ long offset;
+
+ offset = to_addr - (from_addr + 2);
+ md_number_to_chars (ptr, (long) 0xeb, 1); /* opcode for byte-disp jump */
+ md_number_to_chars (ptr + 1, offset, 1);
+}
+
+void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ long from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ long offset;
+
+ if (flagseen['m']) {
+ offset = to_addr - S_GET_VALUE(to_symbol);
+ md_number_to_chars (ptr, 0xe9, 1); /* opcode for long jmp */
+ md_number_to_chars (ptr + 1, offset, 4);
+ fix_new (frag, (ptr+1) - frag->fr_literal, 4,
+ to_symbol, (symbolS *) 0, (long) 0, 0, NO_RELOC);
+ } else {
+ offset = to_addr - (from_addr + 5);
+ md_number_to_chars(ptr, (long) 0xe9, 1);
+ md_number_to_chars(ptr + 1, offset, 4);
+ }
+}
+
+int
+md_parse_option(argP,cntP,vecP)
+char **argP;
+int *cntP;
+char ***vecP;
+{
+ return 1;
+}
+
+void /* Knows about order of bytes in address. */
+md_number_to_chars (con, value, nbytes)
+ char con []; /* Return 'nbytes' of chars here. */
+ long value; /* The value of the bits. */
+ int nbytes; /* Number of bytes in the output. */
+{
+ register char * p = con;
+
+ switch (nbytes) {
+ case 1:
+ p[0] = value & 0xff;
+ break;
+ case 2:
+ p[0] = value & 0xff;
+ p[1] = (value >> 8) & 0xff;
+ break;
+ case 4:
+ p[0] = value & 0xff;
+ p[1] = (value>>8) & 0xff;
+ p[2] = (value>>16) & 0xff;
+ p[3] = (value>>24) & 0xff;
+ break;
+ default:
+ BAD_CASE (nbytes);
+ }
+}
+
+
+/* Apply a fixup (fixS) to segment data, once it has been determined
+ by our caller that we have all the info we need to fix it up.
+
+ On the 386, immediates, displacements, and data pointers are all in
+ the same (little-endian) format, so we don't need to care about which
+ we are handling. */
+
+void
+md_apply_fix (fixP, value)
+ fixS * fixP; /* The fix we're to put in */
+ long value; /* The value of the bits. */
+{
+ register char * p = fixP->fx_where + fixP->fx_frag->fr_literal;
+
+ switch (fixP->fx_size) {
+ case 1:
+ *p = value;
+ break;
+ case 2:
+ *p++ = value;
+ *p = (value>>8);
+ break;
+ case 4:
+ *p++ = value;
+ *p++ = (value>>8);
+ *p++ = (value>>16);
+ *p = (value>>24);
+ break;
+ default:
+ BAD_CASE (fixP->fx_size);
+ }
+}
+
+long /* Knows about the byte order in a word. */
+md_chars_to_number (con, nbytes)
+unsigned char con[]; /* Low order byte 1st. */
+ int nbytes; /* Number of bytes in the input. */
+{
+ long retval;
+ for (retval=0, con+=nbytes-1; nbytes--; con--)
+ {
+ retval <<= BITS_PER_CHAR;
+ retval |= *con;
+ }
+ return retval;
+}
+
+/* Not needed for coff since relocation structure does not
+ contain bitfields. */
+#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
+/* Output relocation information in the target's format. */
+void
+md_ri_to_chars(the_bytes, ri)
+ char *the_bytes;
+ struct reloc_info_generic *ri;
+{
+ /* this is easy */
+ md_number_to_chars(the_bytes, ri->r_address, 4);
+ /* now the fun stuff */
+ the_bytes[6] = (ri->r_symbolnum >> 16) & 0x0ff;
+ the_bytes[5] = (ri->r_symbolnum >> 8) & 0x0ff;
+ the_bytes[4] = ri->r_symbolnum & 0x0ff;
+ the_bytes[7] = (((ri->r_extern << 3) & 0x08) | ((ri->r_length << 1) & 0x06) |
+ ((ri->r_pcrel << 0) & 0x01)) & 0x0F;
+}
+#endif /* OBJ_AOUT or OBJ_BOUT */
+
+
+#define MAX_LITTLENUMS 6
+
+/* Turn the string pointed to by litP into a floating point constant of type
+ type, and emit the appropriate bytes. The number of LITTLENUMS emitted
+ is stored in *sizeP . An error message is returned, or NULL on OK.
+ */
+char *
+md_atof(type,litP,sizeP)
+ char type;
+ char *litP;
+ int *sizeP;
+{
+ int prec;
+ LITTLENUM_TYPE words[MAX_LITTLENUMS];
+ LITTLENUM_TYPE *wordP;
+ char *t;
+
+ switch(type) {
+ case 'f':
+ case 'F':
+ prec = 2;
+ break;
+
+ case 'd':
+ case 'D':
+ prec = 4;
+ break;
+
+ case 'x':
+ case 'X':
+ prec = 5;
+ break;
+
+ default:
+ *sizeP=0;
+ return "Bad call to md_atof ()";
+ }
+ t = atof_ieee (input_line_pointer,type,words);
+ if(t)
+ input_line_pointer=t;
+
+ *sizeP = prec * sizeof(LITTLENUM_TYPE);
+ /* this loops outputs the LITTLENUMs in REVERSE order; in accord with
+ the bigendian 386 */
+ for(wordP = words + prec - 1;prec--;) {
+ md_number_to_chars (litP, (long) (*wordP--), sizeof(LITTLENUM_TYPE));
+ litP += sizeof(LITTLENUM_TYPE);
+ }
+ return ""; /* Someone should teach Dean about null pointers */
+}
+
+char output_invalid_buf[8];
+
+static char * output_invalid (c)
+ char c;
+{
+ if (isprint(c)) sprintf (output_invalid_buf, "'%c'", c);
+ else sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
+ return output_invalid_buf;
+}
+
+static reg_entry *parse_register (reg_string)
+ char *reg_string; /* reg_string starts *before* REGISTER_PREFIX */
+{
+ register char *s = reg_string;
+ register char *p;
+ char reg_name_given[MAX_REG_NAME_SIZE];
+
+ s++; /* skip REGISTER_PREFIX */
+ for (p = reg_name_given; is_register_char (*s); p++, s++) {
+ *p = register_chars [*s];
+ if (p >= reg_name_given + MAX_REG_NAME_SIZE)
+ return (reg_entry *) 0;
+ }
+ *p = '\0';
+ return (reg_entry *) hash_find (reg_hash, reg_name_given);
+}
+
+
+/* We have no need to default values of symbols. */
+
+/* ARGSUSED */
+symbolS *
+md_undefined_symbol (name)
+ char *name;
+{
+ return 0;
+}
+
+/* Parse an operand that is machine-specific.
+ We just return without modifying the expression if we have nothing
+ to do. */
+
+/* ARGSUSED */
+void
+md_operand (expressionP)
+ expressionS *expressionP;
+{
+}
+
+/* Round up a section size to the appropriate boundary. */
+long
+md_section_align (segment, size)
+ segT segment;
+ long size;
+{
+ return size; /* Byte alignment is fine */
+}
+
+/* Exactly what point is a PC-relative offset relative TO?
+ On the i386, they're relative to the address of the offset, plus
+ its size. (??? Is this right? FIXME-SOON!) */
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
+}
+
+/*
+ * $Log$
+ * Revision 1.1 1991/04/04 18:16:41 rich
+ * Initial revision
+ *
+ * Revision 1.2 1991/03/30 17:11:30 rich
+ * Updated md_create_short_jump calling protocol.
+ *
+ *
+ */
+
+/*
+ * Local Variables:
+ * comment-column: 0
+ * End:
+ */
+
+/* end of tc-i386.c */