aboutsummaryrefslogtreecommitdiff
path: root/config/mt-netware
diff options
context:
space:
mode:
authorJakub Jelinek <jakub@redhat.com>2002-02-19 12:40:32 +0000
committerJakub Jelinek <jakub@redhat.com>2002-02-19 12:40:32 +0000
commit0bb2d96afee35ad4b023efc2df2791c56f68cfe6 (patch)
treef38ada957252f08b081df2086a0a14bac9ce4845 /config/mt-netware
parent41d39a95af476969be023d4b7e129042c8daf5c8 (diff)
downloadgdb-0bb2d96afee35ad4b023efc2df2791c56f68cfe6.zip
gdb-0bb2d96afee35ad4b023efc2df2791c56f68cfe6.tar.gz
gdb-0bb2d96afee35ad4b023efc2df2791c56f68cfe6.tar.bz2
* elf-eh-frame.c (_bfd_elf_discard_section_eh_frame): Enable
absptr -> pcrel optimization for shared libs. Only create minimal .eh_frame_hdr if absptr FDE encoding in shared library cannot be converted to pcrel. (_bfd_elf_eh_frame_section_offset): Return -2 if making absptr relative. * elf32-i386.c (elf_i386_relocate_section): If _bfd_elf_section_offset returned -2, skip, but make sure the relocation is installed. * elf32-arm.h (elf32_arm_final_link_relocate): Likewise. * elf32-cris.c (cris_elf_relocate_section): Likewise. * elf32-hppa.c (elf32_hppa_relocate_section): Likewise. * elf32-i370.c (i370_elf_relocate_section): Likewise. * elf32-m68k.c (elf_m68k_relocate_section): Likewise. * elf32-ppc.c (ppc_elf_relocate_section): Likewise. * elf32-s390.c (elf_s390_relocate_section): Likewise. * elf32-sh.c (sh_elf_relocate_section): Likewise. * elf32-sparc.c (elf32_sparc_relocate_section): Likewise. * elf64-ppc.c (ppc64_elf_relocate_section): Likewise. * elf64-s390.c (elf_s390_relocate_section): Likewise. * elf64-sh64.c (sh_elf64_relocate_section): Likewise. * elf64-sparc.c (sparc64_elf_relocate_section): Likewise. * elf64-x86-64.c (elf64_x86_64_relocate_section): Likewise. * elf64-alpha.c (elf64_alpha_relocate_section): Handle _bfd_elf_section_offset returning -2 the same way as -1. * elfxx-ia64.c (elfNN_ia64_install_dyn_reloc): Likewise. * elf32-mips.c (mips_elf_create_dynamic_relocation): Add FIXME and BFD_ASSERT. * elf64-mips.c (mips_elf64_create_dynamic_relocation): Likewise.
Diffstat (limited to 'config/mt-netware')
0 files changed, 0 insertions, 0 deletions
a id='n176' href='#n176'>176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/* Target-dependent code for GDB, the GNU debugger.

   Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   for IBM Deutschland Entwicklung GmbH, IBM Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#include "defs.h"
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "tm.h"
#include "../bfd/bfd.h"
#include "floatformat.h"
#include "regcache.h"
#include "trad-frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "reggroups.h"
#include "regset.h"
#include "value.h"
#include "gdb_assert.h"
#include "dis-asm.h"
#include "solib-svr4.h"         /* For struct link_map_offsets.  */

#include "s390-tdep.h"


/* The tdep structure.  */

struct gdbarch_tdep
{
  /* ABI version.  */
  enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;

  /* Core file register sets.  */
  const struct regset *gregset;
  int sizeof_gregset;

  const struct regset *fpregset;
  int sizeof_fpregset;
};


/* Register information.  */

struct s390_register_info
{
  char *name;
  struct type **type;
};

static struct s390_register_info s390_register_info[S390_NUM_TOTAL_REGS] = 
{
  /* Program Status Word.  */
  { "pswm", &builtin_type_long },
  { "pswa", &builtin_type_long },

  /* General Purpose Registers.  */
  { "r0", &builtin_type_long },
  { "r1", &builtin_type_long },
  { "r2", &builtin_type_long },
  { "r3", &builtin_type_long },
  { "r4", &builtin_type_long },
  { "r5", &builtin_type_long },
  { "r6", &builtin_type_long },
  { "r7", &builtin_type_long },
  { "r8", &builtin_type_long },
  { "r9", &builtin_type_long },
  { "r10", &builtin_type_long },
  { "r11", &builtin_type_long },
  { "r12", &builtin_type_long },
  { "r13", &builtin_type_long },
  { "r14", &builtin_type_long },
  { "r15", &builtin_type_long },

  /* Access Registers.  */
  { "acr0", &builtin_type_int },
  { "acr1", &builtin_type_int },
  { "acr2", &builtin_type_int },
  { "acr3", &builtin_type_int },
  { "acr4", &builtin_type_int },
  { "acr5", &builtin_type_int },
  { "acr6", &builtin_type_int },
  { "acr7", &builtin_type_int },
  { "acr8", &builtin_type_int },
  { "acr9", &builtin_type_int },
  { "acr10", &builtin_type_int },
  { "acr11", &builtin_type_int },
  { "acr12", &builtin_type_int },
  { "acr13", &builtin_type_int },
  { "acr14", &builtin_type_int },
  { "acr15", &builtin_type_int },

  /* Floating Point Control Word.  */
  { "fpc", &builtin_type_int },

  /* Floating Point Registers.  */
  { "f0", &builtin_type_double },
  { "f1", &builtin_type_double },
  { "f2", &builtin_type_double },
  { "f3", &builtin_type_double },
  { "f4", &builtin_type_double },
  { "f5", &builtin_type_double },
  { "f6", &builtin_type_double },
  { "f7", &builtin_type_double },
  { "f8", &builtin_type_double },
  { "f9", &builtin_type_double },
  { "f10", &builtin_type_double },
  { "f11", &builtin_type_double },
  { "f12", &builtin_type_double },
  { "f13", &builtin_type_double },
  { "f14", &builtin_type_double },
  { "f15", &builtin_type_double },

  /* Pseudo registers.  */
  { "pc", &builtin_type_void_func_ptr },
  { "cc", &builtin_type_int },
};

/* Return the name of register REGNUM.  */
static const char *
s390_register_name (int regnum)
{
  gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
  return s390_register_info[regnum].name;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM. */
static struct type *
s390_register_type (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
  return *s390_register_info[regnum].type;
}

/* DWARF Register Mapping.  */

static int s390_dwarf_regmap[] =
{
  /* General Purpose Registers.  */
  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,

  /* Floating Point Registers.  */
  S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
  S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
  S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
  S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,

  /* Control Registers (not mapped).  */
  -1, -1, -1, -1, -1, -1, -1, -1, 
  -1, -1, -1, -1, -1, -1, -1, -1, 

  /* Access Registers.  */
  S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
  S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
  S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
  S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,

  /* Program Status Word.  */
  S390_PSWM_REGNUM,
  S390_PSWA_REGNUM
};

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */
static int
s390_dwarf_reg_to_regnum (int reg)
{
  int regnum = -1;

  if (reg >= 0 || reg < ARRAY_SIZE (s390_dwarf_regmap))
    regnum = s390_dwarf_regmap[reg];

  if (regnum == -1)
    warning ("Unmapped DWARF Register #%d encountered\n", reg);

  return regnum;
}

/* Pseudo registers - PC and condition code.  */

static void
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, void *buf)
{
  ULONGEST val;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
      store_unsigned_integer (buf, 4, val & 0x7fffffff);
      break;

    case S390_CC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
      store_unsigned_integer (buf, 4, (val >> 12) & 3);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const void *buf)
{
  ULONGEST val, psw;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
      psw = (psw & 0x80000000) | (val & 0x7fffffff);
      regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
      break;

    case S390_CC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
      psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, void *buf)
{
  ULONGEST val;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
      break;

    case S390_CC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
      store_unsigned_integer (buf, 4, (val >> 44) & 3);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			     int regnum, const void *buf)
{
  ULONGEST val, psw;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
      break;

    case S390_CC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
      psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

/* 'float' values are stored in the upper half of floating-point
   registers, even though we are otherwise a big-endian platform.  */

static int
s390_convert_register_p (int regno, struct type *type)
{
  return (regno >= S390_F0_REGNUM && regno <= S390_F15_REGNUM)
	 && TYPE_LENGTH (type) < 8;
}

static void
s390_register_to_value (struct frame_info *frame, int regnum,
                        struct type *valtype, void *out)
{
  char in[8];
  int len = TYPE_LENGTH (valtype);
  gdb_assert (len < 8);

  get_frame_register (frame, regnum, in);
  memcpy (out, in, len);
}

static void
s390_value_to_register (struct frame_info *frame, int regnum,
                        struct type *valtype, const void *in)
{
  char out[8];
  int len = TYPE_LENGTH (valtype);
  gdb_assert (len < 8);

  memset (out, 0, 8);
  memcpy (out, in, len);
  put_frame_register (frame, regnum, out);
}

/* Register groups.  */

static int
s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* Registers displayed via 'info regs'.  */
  if (group == general_reggroup)
    return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
	   || regnum == S390_PC_REGNUM
	   || regnum == S390_CC_REGNUM;

  /* Registers displayed via 'info float'.  */
  if (group == float_reggroup)
    return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
	   || regnum == S390_FPC_REGNUM;

  /* Registers that need to be saved/restored in order to
     push or pop frames.  */
  if (group == save_reggroup || group == restore_reggroup)
    return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Core file register sets.  */

int s390_regmap_gregset[S390_NUM_REGS] =
{
  /* Program Status Word.  */
  0x00, 0x04,
  /* General Purpose Registers.  */
  0x08, 0x0c, 0x10, 0x14,
  0x18, 0x1c, 0x20, 0x24,
  0x28, 0x2c, 0x30, 0x34,
  0x38, 0x3c, 0x40, 0x44,
  /* Access Registers.  */
  0x48, 0x4c, 0x50, 0x54,
  0x58, 0x5c, 0x60, 0x64,
  0x68, 0x6c, 0x70, 0x74,
  0x78, 0x7c, 0x80, 0x84,
  /* Floating Point Control Word.  */
  -1,
  /* Floating Point Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
};

int s390x_regmap_gregset[S390_NUM_REGS] =
{
  0x00, 0x08,
  /* General Purpose Registers.  */
  0x10, 0x18, 0x20, 0x28,
  0x30, 0x38, 0x40, 0x48,
  0x50, 0x58, 0x60, 0x68,
  0x70, 0x78, 0x80, 0x88,
  /* Access Registers.  */
  0x90, 0x94, 0x98, 0x9c,
  0xa0, 0xa4, 0xa8, 0xac,
  0xb0, 0xb4, 0xb8, 0xbc,
  0xc0, 0xc4, 0xc8, 0xcc,
  /* Floating Point Control Word.  */
  -1,
  /* Floating Point Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
};

int s390_regmap_fpregset[S390_NUM_REGS] =
{
  /* Program Status Word.  */
  -1, -1,
  /* General Purpose Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  /* Access Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  /* Floating Point Control Word.  */
  0x00,
  /* Floating Point Registers.  */
  0x08, 0x10, 0x18, 0x20,
  0x28, 0x30, 0x38, 0x40,
  0x48, 0x50, 0x58, 0x60,
  0x68, 0x70, 0x78, 0x80,
};

/* Supply register REGNUM from the register set REGSET to register cache 
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
static void
s390_supply_regset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *regs, size_t len)
{
  const int *offset = regset->descr;
  int i;

  for (i = 0; i < S390_NUM_REGS; i++)
    {
      if ((regnum == i || regnum == -1) && offset[i] != -1)
	regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
    }
}

static const struct regset s390_gregset = {
  s390_regmap_gregset, 
  s390_supply_regset
};

static const struct regset s390x_gregset = {
  s390x_regmap_gregset, 
  s390_supply_regset
};

static const struct regset s390_fpregset = {
  s390_regmap_fpregset, 
  s390_supply_regset
};

/* Return the appropriate register set for the core section identified
   by SECT_NAME and SECT_SIZE.  */
const struct regset *
s390_regset_from_core_section (struct gdbarch *gdbarch,
			       const char *sect_name, size_t sect_size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
    return tdep->gregset;

  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
    return tdep->fpregset;

  return NULL;
}


/* Prologue analysis.  */

/* When we analyze a prologue, we're really doing 'abstract
   interpretation' or 'pseudo-evaluation': running the function's code
   in simulation, but using conservative approximations of the values
   it would have when it actually runs.  For example, if our function
   starts with the instruction:

      ahi r1, 42     # add halfword immediate 42 to r1

   we don't know exactly what value will be in r1 after executing this
   instruction, but we do know it'll be 42 greater than its original
   value.

   If we then see an instruction like:

      ahi r1, 22     # add halfword immediate 22 to r1

   we still don't know what r1's value is, but again, we can say it is
   now 64 greater than its original value.

   If the next instruction were:

      lr r2, r1      # set r2 to r1's value

   then we can say that r2's value is now the original value of r1
   plus 64.  And so on.

   Of course, this can only go so far before it gets unreasonable.  If
   we wanted to be able to say anything about the value of r1 after
   the instruction:

      xr r1, r3      # exclusive-or r1 and r3, place result in r1

   then things would get pretty complex.  But remember, we're just
   doing a conservative approximation; if exclusive-or instructions
   aren't relevant to prologues, we can just say r1's value is now
   'unknown'.  We can ignore things that are too complex, if that loss
   of information is acceptable for our application.

   Once you've reached an instruction that you don't know how to
   simulate, you stop.  Now you examine the state of the registers and
   stack slots you've kept track of.  For example:

   - To see how large your stack frame is, just check the value of sp;
     if it's the original value of sp minus a constant, then that
     constant is the stack frame's size.  If the sp's value has been
     marked as 'unknown', then that means the prologue has done
     something too complex for us to track, and we don't know the
     frame size.

   - To see whether we've saved the SP in the current frame's back
     chain slot, we just check whether the current value of the back
     chain stack slot is the original value of the sp.

   Sure, this takes some work.  But prologue analyzers aren't
   quick-and-simple pattern patching to recognize a few fixed prologue
   forms any more; they're big, hairy functions.  Along with inferior
   function calls, prologue analysis accounts for a substantial
   portion of the time needed to stabilize a GDB port.  So I think
   it's worthwhile to look for an approach that will be easier to
   understand and maintain.  In the approach used here:

   - It's easier to see that the analyzer is correct: you just see
     whether the analyzer properly (albiet conservatively) simulates
     the effect of each instruction.

   - It's easier to extend the analyzer: you can add support for new
     instructions, and know that you haven't broken anything that
     wasn't already broken before.

   - It's orthogonal: to gather new information, you don't need to
     complicate the code for each instruction.  As long as your domain
     of conservative values is already detailed enough to tell you
     what you need, then all the existing instruction simulations are
     already gathering the right data for you.

   A 'struct prologue_value' is a conservative approximation of the
   real value the register or stack slot will have.  */

struct prologue_value {

  /* What sort of value is this?  This determines the interpretation
     of subsequent fields.  */
  enum {

    /* We don't know anything about the value.  This is also used for
       values we could have kept track of, when doing so would have
       been too complex and we don't want to bother.  The bottom of
       our lattice.  */
    pv_unknown,

    /* A known constant.  K is its value.  */
    pv_constant,

    /* The value that register REG originally had *UPON ENTRY TO THE
       FUNCTION*, plus K.  If K is zero, this means, obviously, just
       the value REG had upon entry to the function.  REG is a GDB
       register number.  Before we start interpreting, we initialize
       every register R to { pv_register, R, 0 }.  */
    pv_register,

  } kind;

  /* The meanings of the following fields depend on 'kind'; see the
     comments for the specific 'kind' values.  */
  int reg;
  CORE_ADDR k;
};


/* Set V to be unknown.  */
static void
pv_set_to_unknown (struct prologue_value *v)
{
  v->kind = pv_unknown;
}


/* Set V to the constant K.  */
static void
pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
{
  v->kind = pv_constant;
  v->k = k;
}


/* Set V to the original value of register REG, plus K.  */
static void
pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
{
  v->kind = pv_register;
  v->reg = reg;
  v->k = k;
}


/* If one of *A and *B is a constant, and the other isn't, swap the
   pointers as necessary to ensure that *B points to the constant.
   This can reduce the number of cases we need to analyze in the
   functions below.  */
static void
pv_constant_last (struct prologue_value **a,
                  struct prologue_value **b)
{
  if ((*a)->kind == pv_constant
      && (*b)->kind != pv_constant)
    {
      struct prologue_value *temp = *a;
      *a = *b;
      *b = temp;
    }
}


/* Set SUM to the sum of A and B.  SUM, A, and B may point to the same
   'struct prologue_value' object.  */
static void
pv_add (struct prologue_value *sum,
        struct prologue_value *a,
        struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can handle adding constants to registers, and other constants.  */
  if (b->kind == pv_constant
      && (a->kind == pv_register
          || a->kind == pv_constant))
    {
      sum->kind = a->kind;
      sum->reg = a->reg;    /* not meaningful if a is pv_constant, but
                               harmless */
      sum->k = a->k + b->k;
    }

  /* Anything else we don't know how to add.  We don't have a
     representation for, say, the sum of two registers, or a multiple
     of a register's value (adding a register to itself).  */
  else
    sum->kind = pv_unknown;
}


/* Add the constant K to V.  */
static void
pv_add_constant (struct prologue_value *v, CORE_ADDR k)
{
  struct prologue_value pv_k;

  /* Rather than thinking of all the cases we can and can't handle,
     we'll just let pv_add take care of that for us.  */
  pv_set_to_constant (&pv_k, k);
  pv_add (v, v, &pv_k);
}


/* Subtract B from A, and put the result in DIFF.

   This isn't quite the same as negating B and adding it to A, since
   we don't have a representation for the negation of anything but a
   constant.  For example, we can't negate { pv_register, R1, 10 },
   but we do know that { pv_register, R1, 10 } minus { pv_register,
   R1, 5 } is { pv_constant, <ignored>, 5 }.

   This means, for example, that we can subtract two stack addresses;
   they're both relative to the original SP.  Since the frame pointer
   is set based on the SP, its value will be the original SP plus some
   constant (probably zero), so we can use its value just fine.  */
static void
pv_subtract (struct prologue_value *diff,
             struct prologue_value *a,
             struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can subtract a constant from another constant, or from a
     register.  */
  if (b->kind == pv_constant
      && (a->kind == pv_register
          || a->kind == pv_constant))
    {
      diff->kind = a->kind;
      diff->reg = a->reg;    /* not always meaningful, but harmless */
      diff->k = a->k - b->k;
    }

  /* We can subtract a register from itself, yielding a constant.  */
  else if (a->kind == pv_register
           && b->kind == pv_register
           && a->reg == b->reg)
    {
      diff->kind = pv_constant;
      diff->k = a->k - b->k;
    }

  /* We don't know how to subtract anything else.  */
  else
    diff->kind = pv_unknown;
}


/* Set AND to the logical and of A and B.  */
static void
pv_logical_and (struct prologue_value *and,
                struct prologue_value *a,
                struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can 'and' two constants.  */
  if (a->kind == pv_constant
      && b->kind == pv_constant)
    {
      and->kind = pv_constant;
      and->k = a->k & b->k;
    }

  /* We can 'and' anything with the constant zero.  */
  else if (b->kind == pv_constant
           && b->k == 0)
    {
      and->kind = pv_constant;
      and->k = 0;
    }
  
  /* We can 'and' anything with ~0.  */
  else if (b->kind == pv_constant
           && b->k == ~ (CORE_ADDR) 0)
    *and = *a;

  /* We can 'and' a register with itself.  */
  else if (a->kind == pv_register
           && b->kind == pv_register
           && a->reg == b->reg
           && a->k == b->k)
    *and = *a;

  /* Otherwise, we don't know.  */
  else
    pv_set_to_unknown (and);
}


/* Return non-zero iff A and B are identical expressions.

   This is not the same as asking if the two values are equal; the
   result of such a comparison would have to be a pv_boolean, and
   asking whether two 'unknown' values were equal would give you
   pv_maybe.  Same for comparing, say, { pv_register, R1, 0 } and {
   pv_register, R2, 0}.  Instead, this is asking whether the two
   representations are the same.  */
static int
pv_is_identical (struct prologue_value *a,
                 struct prologue_value *b)
{
  if (a->kind != b->kind)
    return 0;

  switch (a->kind)
    {
    case pv_unknown:
      return 1;
    case pv_constant:
      return (a->k == b->k);
    case pv_register:
      return (a->reg == b->reg && a->k == b->k);
    default:
      gdb_assert (0);
    }
}


/* Return non-zero if A is the original value of register number R
   plus K, zero otherwise.  */
static int
pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
{
  return (a->kind == pv_register
          && a->reg == r
          && a->k == k);
}


/* A prologue-value-esque boolean type, including "maybe", when we
   can't figure out whether something is true or not.  */
enum pv_boolean {
  pv_maybe,
  pv_definite_yes,
  pv_definite_no,
};


/* Decide whether a reference to SIZE bytes at ADDR refers exactly to
   an element of an array.  The array starts at ARRAY_ADDR, and has
   ARRAY_LEN values of ELT_SIZE bytes each.  If ADDR definitely does
   refer to an array element, set *I to the index of the referenced
   element in the array, and return pv_definite_yes.  If it definitely
   doesn't, return pv_definite_no.  If we can't tell, return pv_maybe.

   If the reference does touch the array, but doesn't fall exactly on
   an element boundary, or doesn't refer to the whole element, return
   pv_maybe.  */
static enum pv_boolean
pv_is_array_ref (struct prologue_value *addr,
                 CORE_ADDR size,
                 struct prologue_value *array_addr,
                 CORE_ADDR array_len, 
                 CORE_ADDR elt_size,
                 int *i)
{
  struct prologue_value offset;

  /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
     if addr is *before* the start of the array, then this isn't going
     to be negative...  */
  pv_subtract (&offset, addr, array_addr);

  if (offset.kind == pv_constant)
    {
      /* This is a rather odd test.  We want to know if the SIZE bytes
         at ADDR don't overlap the array at all, so you'd expect it to
         be an || expression: "if we're completely before || we're
         completely after".  But with unsigned arithmetic, things are
         different: since it's a number circle, not a number line, the
         right values for offset.k are actually one contiguous range.  */
      if (offset.k <= -size
          && offset.k >= array_len * elt_size)
        return pv_definite_no;
      else if (offset.k % elt_size != 0
               || size != elt_size)
        return pv_maybe;
      else
        {
          *i = offset.k / elt_size;
          return pv_definite_yes;
        }
    }
  else
    return pv_maybe;
}



/* Decoding S/390 instructions.  */

/* Named opcode values for the S/390 instructions we recognize.  Some
   instructions have their opcode split across two fields; those are the
   op1_* and op2_* enums.  */
enum
  {
    op1_lhi  = 0xa7,   op2_lhi  = 0x08,
    op1_lghi = 0xa7,   op2_lghi = 0x09,
    op_lr    = 0x18,
    op_lgr   = 0xb904,
    op_l     = 0x58,
    op1_ly   = 0xe3,   op2_ly   = 0x58,
    op1_lg   = 0xe3,   op2_lg   = 0x04,
    op_lm    = 0x98,
    op1_lmy  = 0xeb,   op2_lmy  = 0x98,
    op1_lmg  = 0xeb,   op2_lmg  = 0x04,
    op_st    = 0x50,
    op1_sty  = 0xe3,   op2_sty  = 0x50,
    op1_stg  = 0xe3,   op2_stg  = 0x24,
    op_std   = 0x60,
    op_stm   = 0x90,
    op1_stmy = 0xeb,   op2_stmy = 0x90,
    op1_stmg = 0xeb,   op2_stmg = 0x24,
    op1_aghi = 0xa7,   op2_aghi = 0x0b,
    op1_ahi  = 0xa7,   op2_ahi  = 0x0a,
    op_ar    = 0x1a,
    op_agr   = 0xb908,
    op_a     = 0x5a,
    op1_ay   = 0xe3,   op2_ay   = 0x5a,
    op1_ag   = 0xe3,   op2_ag   = 0x08,
    op_sr    = 0x1b,
    op_sgr   = 0xb909,
    op_s     = 0x5b,
    op1_sy   = 0xe3,   op2_sy   = 0x5b,
    op1_sg   = 0xe3,   op2_sg   = 0x09,
    op_nr    = 0x14,
    op_ngr   = 0xb980,
    op_la    = 0x41,
    op1_lay  = 0xe3,   op2_lay  = 0x71,
    op1_larl = 0xc0,   op2_larl = 0x00,
    op_basr  = 0x0d,
    op_bas   = 0x4d,
    op_bcr   = 0x07,
    op_bc    = 0x0d,
    op1_bras = 0xa7,   op2_bras = 0x05,
    op1_brasl= 0xc0,   op2_brasl= 0x05,
    op1_brc  = 0xa7,   op2_brc  = 0x04,
    op1_brcl = 0xc0,   op2_brcl = 0x04,
  };


/* Read a single instruction from address AT.  */

#define S390_MAX_INSTR_SIZE 6
static int
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
{
  static int s390_instrlen[] = { 2, 4, 4, 6 };
  int instrlen;

  if (read_memory_nobpt (at, &instr[0], 2))
    return -1;
  instrlen = s390_instrlen[instr[0] >> 6];
  if (instrlen > 2)
    {
      if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
        return -1;
    }
  return instrlen;
}


/* The functions below are for recognizing and decoding S/390
   instructions of various formats.  Each of them checks whether INSN
   is an instruction of the given format, with the specified opcodes.
   If it is, it sets the remaining arguments to the values of the
   instruction's fields, and returns a non-zero value; otherwise, it
   returns zero.

   These functions' arguments appear in the order they appear in the
   instruction, not in the machine-language form.  So, opcodes always
   come first, even though they're sometimes scattered around the
   instructions.  And displacements appear before base and extension
   registers, as they do in the assembly syntax, not at the end, as
   they do in the machine language.  */
static int
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a 16-bit signed quantity.  */
      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
      return 1;
    }
  else
    return 0;
}


static int
is_ril (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a signed quantity.  If the host 'int' is 32 bits long,
         no sign extension is necessary, but we don't want to assume
         that.  */
      *i2 = (((insn[2] << 24)
              | (insn[3] << 16)
              | (insn[4] << 8)
              | (insn[5])) ^ 0x80000000) - 0x80000000;
      return 1;
    }
  else
    return 0;
}


static int
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r2 = insn[1] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (((insn[0] << 8) | insn[1]) == op)
    {
      /* Yes, insn[3].  insn[2] is unused in RRE format.  */
      *r1 = (insn[3] >> 4) & 0xf;
      *r2 = insn[3] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rs (bfd_byte *insn, int op,
       unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rsy (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) 
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


static int
is_rx (bfd_byte *insn, int op,
       unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rxy (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) 
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


/* Set ADDR to the effective address for an X-style instruction, like:

        L R1, D2(X2, B2)

   Here, X2 and B2 are registers, and D2 is a signed 20-bit
   constant; the effective address is the sum of all three.  If either
   X2 or B2 are zero, then it doesn't contribute to the sum --- this
   means that r0 can't be used as either X2 or B2.

   GPR is an array of general register values, indexed by GPR number,
   not GDB register number.  */
static void
compute_x_addr (struct prologue_value *addr, 
                struct prologue_value *gpr,
                int d2, unsigned int x2, unsigned int b2)
{
  /* We can't just add stuff directly in addr; it might alias some of
     the registers we need to read.  */
  struct prologue_value result;

  pv_set_to_constant (&result, d2);
  if (x2)
    pv_add (&result, &result, &gpr[x2]);
  if (b2)
    pv_add (&result, &result, &gpr[b2]);

  *addr = result;
}


/* The number of GPR and FPR spill slots in an S/390 stack frame.  We
   track general-purpose registers r2 -- r15, and floating-point
   registers f0, f2, f4, and f6.  */
#define S390_NUM_SPILL_SLOTS (14 + 4)
#define S390_NUM_GPRS 16
#define S390_NUM_FPRS 16

struct s390_prologue_data {

  /* The size of a GPR or FPR.  */
  int gpr_size;
  int fpr_size;

  /* The general-purpose registers.  */
  struct prologue_value gpr[S390_NUM_GPRS];

  /* The floating-point registers.  */
  struct prologue_value fpr[S390_NUM_FPRS];

  /* The register spill stack slots in the caller's frame ---
     general-purpose registers r2 through r15, and floating-point
     registers.  spill[i] is where gpr i+2 gets spilled;
     spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled.  */
  struct prologue_value spill[S390_NUM_SPILL_SLOTS];

  /* The value of the back chain slot.  This is only valid if the stack
     pointer is known to be less than its original value --- that is,
     if we have indeed allocated space on the stack.  */
  struct prologue_value back_chain;
};


/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
   return pv_definite_yes and set *STACK to point to the slot.  If
   we're sure that they are not any of our stack slots, then return
   pv_definite_no.  Otherwise, return pv_maybe.

   DATA describes our current state (registers and stack slots).  */
static enum pv_boolean
s390_on_stack (struct prologue_value *addr,
               CORE_ADDR size,
	       struct s390_prologue_data *data,
               struct prologue_value **stack)
{
  struct prologue_value gpr_spill_addr;
  struct prologue_value fpr_spill_addr;
  struct prologue_value back_chain_addr;  
  int i;
  enum pv_boolean b;

  /* Construct the addresses of the spill arrays and the back chain.  */
  pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * data->gpr_size);
  pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * data->gpr_size);
  back_chain_addr = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];

  /* We have to check for GPR and FPR references using two separate
     calls to pv_is_array_ref, since the GPR and FPR spill slots are
     different sizes.  (SPILL is an array, but the thing it tracks
     isn't really an array.)  */

  /* Was it a reference to the GPR spill array?  */
  b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, data->gpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->spill[i];
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* Was it a reference to the FPR spill array?  */
  b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, data->fpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->spill[14 + i];
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* Was it a reference to the back chain?
     This isn't quite right.  We ought to check whether we have
     actually allocated any new frame at all.  */
  b = pv_is_array_ref (addr, size, &back_chain_addr, 1, data->gpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->back_chain;
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* All the above queries returned definite 'no's.  */
  return pv_definite_no;
}


/* Do a SIZE-byte store of VALUE to ADDR.  */
static void
s390_store (struct prologue_value *addr,
            CORE_ADDR size,
            struct prologue_value *value,
	    struct s390_prologue_data *data)
{
  struct prologue_value *stack;

  /* We can do it if it's definitely a reference to something on the stack.  */
  if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
    {
      *stack = *value;
      return;
    }

  /* Note: If s390_on_stack returns pv_maybe, you might think we should
     forget our cached values, as any of those might have been hit.

     However, we make the assumption that --since the fields we track
     are save areas private to compiler, and never directly exposed to 
     the user-- every access to our data is explicit.  Hence, every 
     memory access we cannot follow can't hit our data.  */
}

/* Do a SIZE-byte load from ADDR into VALUE.  */
static void
s390_load (struct prologue_value *addr,
	   CORE_ADDR size,
	   struct prologue_value *value,
	   struct s390_prologue_data *data)
{
  struct prologue_value *stack;

  /* If it's a load from an in-line constant pool, then we can
     simulate that, under the assumption that the code isn't
     going to change between the time the processor actually
     executed it creating the current frame, and the time when
     we're analyzing the code to unwind past that frame.  */
  if (addr->kind == pv_constant)
    {
      struct section_table *secp;
      secp = target_section_by_addr (&current_target, addr->k);
      if (secp != NULL
          && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
              & SEC_READONLY))
	{
          pv_set_to_constant (value, read_memory_integer (addr->k, size));
	  return;
	}
    }

  /* If it's definitely a reference to something on the stack, 
     we can do that.  */
  if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
    {
      *value = *stack;
      return;
    }

  /* Otherwise, we don't know the value.  */
  pv_set_to_unknown (value);
}
            

/* Analyze the prologue of the function starting at START_PC,
   continuing at most until CURRENT_PC.  Initialize DATA to
   hold all information we find out about the state of the registers
   and stack slots.  Return the address of the instruction after
   the last one that changed the SP, FP, or back chain; or zero
   on error.  */
static CORE_ADDR
s390_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR start_pc,
		       CORE_ADDR current_pc,
		       struct s390_prologue_data *data)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* Our return value:
     The address of the instruction after the last one that changed
     the SP, FP, or back chain;  zero if we got an error trying to 
     read memory.  */
  CORE_ADDR result = start_pc;

  /* The current PC for our abstract interpretation.  */
  CORE_ADDR pc;

  /* The address of the next instruction after that.  */
  CORE_ADDR next_pc;
  
  /* Set up everything's initial value.  */
  {
    int i;

    /* For the purpose of prologue tracking, we consider the GPR size to
       be equal to the ABI word size, even if it is actually larger
       (i.e. when running a 32-bit binary under a 64-bit kernel).  */
    data->gpr_size = word_size;
    data->fpr_size = 8;

    for (i = 0; i < S390_NUM_GPRS; i++)
      pv_set_to_register (&data->gpr[i], S390_R0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_FPRS; i++)
      pv_set_to_register (&data->fpr[i], S390_F0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
      pv_set_to_unknown (&data->spill[i]);

    pv_set_to_unknown (&data->back_chain);
  }

  /* Start interpreting instructions, until we hit the frame's
     current PC or the first branch instruction.  */
  for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
    {
      bfd_byte insn[S390_MAX_INSTR_SIZE];
      int insn_len = s390_readinstruction (insn, pc);

      /* Fields for various kinds of instructions.  */
      unsigned int b2, r1, r2, x2, r3;
      int i2, d2;

      /* The values of SP, FP, and back chain before this instruction,
         for detecting instructions that change them.  */
      struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;

      /* If we got an error trying to read the instruction, report it.  */
      if (insn_len < 0)
        {
          result = 0;
          break;
        }

      next_pc = pc + insn_len;

      pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
      pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
      pre_insn_back_chain = data->back_chain;

      /* LHI r1, i2 --- load halfword immediate */
      if (word_size == 4
	  && is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], i2);

      /* LGHI r1, i2 --- load halfword immediate (64-bit version) */
      else if (word_size == 8
	       && is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], i2);

      /* LR r1, r2 --- load from register */
      else if (word_size == 4
	       && is_rr (insn, op_lr, &r1, &r2))
        data->gpr[r1] = data->gpr[r2];

      /* LGR r1, r2 --- load from register (64-bit version) */
      else if (word_size == 8
               && is_rre (insn, op_lgr, &r1, &r2))
        data->gpr[r1] = data->gpr[r2];

      /* L r1, d2(x2, b2) --- load */
      else if (word_size == 4
	       && is_rx (insn, op_l, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &data->gpr[r1], data);
        }

      /* LY r1, d2(x2, b2) --- load (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_ly, op2_ly, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &data->gpr[r1], data);
        }

      /* LG r1, d2(x2, b2) --- load (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &data->gpr[r1], data);
        }

      /* ST r1, d2(x2, b2) --- store */
      else if (word_size == 4
	       && is_rx (insn, op_st, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 4, &data->gpr[r1], data);
        }

      /* STY r1, d2(x2, b2) --- store (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_sty, op2_sty, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 4, &data->gpr[r1], data);
        }

      /* STG r1, d2(x2, b2) --- store (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 8, &data->gpr[r1], data);
        }

      /* STD r1, d2(x2,b2) --- store floating-point register  */
      else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
          s390_store (&addr, 8, &data->fpr[r1], data);
        }

      /* STM r1, r3, d2(b2) --- store multiple */
      else if (word_size == 4
	       && is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 4)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 4, &data->gpr[regnum], data);
            }
        }

      /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version) */
      else if (word_size == 4
	       && is_rsy (insn, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 4)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 4, &data->gpr[regnum], data);
            }
        }

      /* STMG r1, r3, d2(b2) --- store multiple (64-bit version) */
      else if (word_size == 8
	       && is_rsy (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 8)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 8, &data->gpr[regnum], data);
            }
        }

      /* AHI r1, i2 --- add halfword immediate */
      else if (word_size == 4
	       && is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
        pv_add_constant (&data->gpr[r1], i2);

      /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
      else if (word_size == 8
               && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
        pv_add_constant (&data->gpr[r1], i2);

      /* AR r1, r2 -- add register */
      else if (word_size == 4
	       && is_rr (insn, op_ar, &r1, &r2))
        pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* AGR r1, r2 -- add register (64-bit version) */
      else if (word_size == 8
	       && is_rre (insn, op_agr, &r1, &r2))
        pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* A r1, d2(x2, b2) -- add */
      else if (word_size == 4
	       && is_rx (insn, op_a, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* AY r1, d2(x2, b2) -- add (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_ay, op2_ay, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* AG r1, d2(x2, b2) -- add (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SR r1, r2 -- subtract register */
      else if (word_size == 4
	       && is_rr (insn, op_sr, &r1, &r2))
        pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* SGR r1, r2 -- subtract register (64-bit version) */
      else if (word_size == 8
	       && is_rre (insn, op_sgr, &r1, &r2))
        pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* S r1, d2(x2, b2) -- subtract */
      else if (word_size == 4
	       && is_rx (insn, op_s, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SY r1, d2(x2, b2) -- subtract (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_sy, op2_sy, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SG r1, d2(x2, b2) -- subtract (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* NR r1, r2 --- logical and */
      else if (word_size == 4
	       && is_rr (insn, op_nr, &r1, &r2))
        pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* NGR r1, r2 >--- logical and (64-bit version) */
      else if (word_size == 8
               && is_rre (insn, op_ngr, &r1, &r2))
        pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* LA r1, d2(x2, b2) --- load address */
      else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
        compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);

      /* LAY r1, d2(x2, b2) --- load address (long-displacement version) */
      else if (is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
        compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);

      /* LARL r1, i2 --- load address relative long */
      else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], pc + i2 * 2);

      /* BASR r1, 0 --- branch and save
         Since r2 is zero, this saves the PC in r1, but doesn't branch.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
               && r2 == 0)
        pv_set_to_constant (&data->gpr[r1], next_pc);

      /* BRAS r1, i2 --- branch relative and save */
      else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
        {
          pv_set_to_constant (&data->gpr[r1], next_pc);
          next_pc = pc + i2 * 2;

          /* We'd better not interpret any backward branches.  We'll
             never terminate.  */
          if (next_pc <= pc)
            break;
        }

      /* Terminate search when hitting any other branch instruction.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
	       || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
	       || is_rr (insn, op_bcr, &r1, &r2)
	       || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
	       || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
	       || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
	       || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
	break;

      else
        /* An instruction we don't know how to simulate.  The only
           safe thing to do would be to set every value we're tracking
           to 'unknown'.  Instead, we'll be optimistic: we assume that
	   we *can* interpret every instruction that the compiler uses
	   to manipulate any of the data we're interested in here --
	   then we can just ignore anything else.  */
        ;

      /* Record the address after the last instruction that changed
         the FP, SP, or backlink.  Ignore instructions that changed
         them back to their original values --- those are probably
         restore instructions.  (The back chain is never restored,
         just popped.)  */
      {
        struct prologue_value *sp = &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
        struct prologue_value *fp = &data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
        
        if ((! pv_is_identical (&pre_insn_sp, sp)
             && ! pv_is_register (sp, S390_SP_REGNUM, 0))
            || (! pv_is_identical (&pre_insn_fp, fp)
                && ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
            || ! pv_is_identical (&pre_insn_back_chain, &data->back_chain))
          result = next_pc;
      }
    }

  return result;
}

/* Advance PC across any function entry prologue instructions to reach 
   some "real" code.  */
static CORE_ADDR
s390_skip_prologue (CORE_ADDR pc)
{
  struct s390_prologue_data data;
  CORE_ADDR skip_pc;
  skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data);
  return skip_pc ? skip_pc : pc;
}

/* Return true if we are in the functin's epilogue, i.e. after the
   instruction that destroyed the function's stack frame.  */
static int
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* In frameless functions, there's not frame to destroy and thus
     we don't care about the epilogue.

     In functions with frame, the epilogue sequence is a pair of
     a LM-type instruction that restores (amongst others) the
     return register %r14 and the stack pointer %r15, followed
     by a branch 'br %r14' --or equivalent-- that effects the
     actual return.

     In that situation, this function needs to return 'true' in
     exactly one case: when pc points to that branch instruction.

     Thus we try to disassemble the one instructions immediately
     preceeding pc and check whether it is an LM-type instruction
     modifying the stack pointer.

     Note that disassembling backwards is not reliable, so there
     is a slight chance of false positives here ...  */

  bfd_byte insn[6];
  unsigned int r1, r3, b2;
  int d2;

  if (word_size == 4
      && !read_memory_nobpt (pc - 4, insn, 4)
      && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 4
      && !read_memory_nobpt (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 8
      && !read_memory_nobpt (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  return 0;
}


/* Normal stack frames.  */

struct s390_unwind_cache {

  CORE_ADDR func;
  CORE_ADDR frame_base;
  CORE_ADDR local_base;

  struct trad_frame_saved_reg *saved_regs;
};

static int
s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
				  struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_prologue_data data;
  struct prologue_value *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
  struct prologue_value *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
  int slot_num;
  CORE_ADDR slot_addr;
  CORE_ADDR func;
  CORE_ADDR result;
  ULONGEST reg;
  CORE_ADDR prev_sp;
  int frame_pointer;
  int size;

  /* Try to find the function start address.  If we can't find it, we don't
     bother searching for it -- with modern compilers this would be mostly
     pointless anyway.  Trust that we'll either have valid DWARF-2 CFI data
     or else a valid backchain ...  */
  func = frame_func_unwind (next_frame);
  if (!func)
    return 0;

  /* Try to analyze the prologue.  */
  result = s390_analyze_prologue (gdbarch, func,
				  frame_pc_unwind (next_frame), &data);
  if (!result)
    return 0;

  /* If this was successful, we should have found the instruction that
     sets the stack pointer register to the previous value of the stack 
     pointer minus the frame size.  */
  if (sp->kind != pv_register || sp->reg != S390_SP_REGNUM)
    return 0;

  /* A frame size of zero at this point can mean either a real 
     frameless function, or else a failure to find the prologue.
     Perform some sanity checks to verify we really have a 
     frameless function.  */
  if (sp->k == 0)
    {
      /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame 
	 size zero.  This is only possible if the next frame is a sentinel 
	 frame, a dummy frame, or a signal trampoline frame.  */
      /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
	 needed, instead the code should simpliy rely on its
	 analysis.  */
      if (get_frame_type (next_frame) == NORMAL_FRAME)
	return 0;

      /* If we really have a frameless function, %r14 must be valid
	 -- in particular, it must point to a different function.  */
      reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
      reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
      if (get_pc_function_start (reg) == func)
	{
	  /* However, there is one case where it *is* valid for %r14
	     to point to the same function -- if this is a recursive
	     call, and we have stopped in the prologue *before* the
	     stack frame was allocated.

	     Recognize this case by looking ahead a bit ...  */

	  struct s390_prologue_data data2;
	  struct prologue_value *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];

	  if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
	        && sp->kind == pv_register
	        && sp->reg == S390_SP_REGNUM
	        && sp->k != 0))
	    return 0;
	}
    }


  /* OK, we've found valid prologue data.  */
  size = -sp->k;

  /* If the frame pointer originally also holds the same value
     as the stack pointer, we're probably using it.  If it holds
     some other value -- even a constant offset -- it is most
     likely used as temp register.  */
  if (pv_is_identical (sp, fp))
    frame_pointer = S390_FRAME_REGNUM;
  else
    frame_pointer = S390_SP_REGNUM;

  /* If we've detected a function with stack frame, we'll still have to 
     treat it as frameless if we're currently within the function epilog 
     code at a point where the frame pointer has already been restored.  
     This can only happen in an innermost frame.  */
  /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
     instead the code should simpliy rely on its analysis.  */
  if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME)
    {
      /* See the comment in s390_in_function_epilogue_p on why this is
	 not completely reliable ...  */
      if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
	{
	  memset (&data, 0, sizeof (data));
	  size = 0;
	  frame_pointer = S390_SP_REGNUM;
	}
    }

  /* Once we know the frame register and the frame size, we can unwind
     the current value of the frame register from the next frame, and
     add back the frame size to arrive that the previous frame's 
     stack pointer value.  */
  prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;

  /* Scan the spill array; if a spill slot says it holds the
     original value of some register, then record that slot's
     address as the place that register was saved.  */

  /* Slots for %r2 .. %r15.  */
  for (slot_num = 0, slot_addr = prev_sp + 2 * data.gpr_size;
       slot_num < 14;
       slot_num++, slot_addr += data.gpr_size)
    {
      struct prologue_value *slot = &data.spill[slot_num];

      if (slot->kind == pv_register
          && slot->k == 0)
        info->saved_regs[slot->reg].addr = slot_addr;
    }

  /* Slots for %f0 .. %f6.  */
  for (slot_num = 14, slot_addr = prev_sp + 16 * data.gpr_size;
       slot_num < S390_NUM_SPILL_SLOTS;
       slot_num++, slot_addr += data.fpr_size)
    {
      struct prologue_value *slot = &data.spill[slot_num];

      if (slot->kind == pv_register
          && slot->k == 0)
        info->saved_regs[slot->reg].addr = slot_addr;
    }

  /* Function return will set PC to %r14.  */
  info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

  /* In frameless functions, we unwind simply by moving the return
     address to the PC.  However, if we actually stored to the
     save area, use that -- we might only think the function frameless
     because we're in the middle of the prologue ...  */
  if (size == 0
      && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
    {
      info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
    }

  /* Another sanity check: unless this is a frameless function,
     we should have found spill slots for SP and PC.
     If not, we cannot unwind further -- this happens e.g. in
     libc's thread_start routine.  */
  if (size > 0)
    {
      if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
	  || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
	prev_sp = -1;
    }

  /* We use the current value of the frame register as local_base,
     and the top of the register save area as frame_base.  */
  if (prev_sp != -1)
    {
      info->frame_base = prev_sp + 16*word_size + 32;
      info->local_base = prev_sp - size;
    }

  info->func = func;
  return 1;
}

static void
s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
				   struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  CORE_ADDR backchain;
  ULONGEST reg;
  LONGEST sp;

  /* Get the backchain.  */
  reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  backchain = read_memory_unsigned_integer (reg, word_size);

  /* A zero backchain terminates the frame chain.  As additional
     sanity check, let's verify that the spill slot for SP in the
     save area pointed to by the backchain in fact links back to
     the save area.  */
  if (backchain != 0
      && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
      && (CORE_ADDR)sp == backchain)
    {
      /* We don't know which registers were saved, but it will have
         to be at least %r14 and %r15.  This will allow us to continue
         unwinding, but other prev-frame registers may be incorrect ...  */
      info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
      info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;

      /* Function return will set PC to %r14.  */
      info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

      /* We use the current value of the frame register as local_base,
         and the top of the register save area as frame_base.  */
      info->frame_base = backchain + 16*word_size + 32;
      info->local_base = reg;
    }

  info->func = frame_pc_unwind (next_frame);
}

static struct s390_unwind_cache *
s390_frame_unwind_cache (struct frame_info *next_frame,
			 void **this_prologue_cache)
{
  struct s390_unwind_cache *info;
  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
  info->func = -1;
  info->frame_base = -1;
  info->local_base = -1;

  /* Try to use prologue analysis to fill the unwind cache.
     If this fails, fall back to reading the stack backchain.  */
  if (!s390_prologue_frame_unwind_cache (next_frame, info))
    s390_backchain_frame_unwind_cache (next_frame, info);

  return info;
}

static void
s390_frame_this_id (struct frame_info *next_frame,
		    void **this_prologue_cache,
		    struct frame_id *this_id)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_prologue_cache);

  if (info->frame_base == -1)
    return;

  *this_id = frame_id_build (info->frame_base, info->func);
}

static void
s390_frame_prev_register (struct frame_info *next_frame,
			  void **this_prologue_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *bufferp)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_frame_unwind = {
  NORMAL_FRAME,
  s390_frame_this_id,
  s390_frame_prev_register
};

static const struct frame_unwind *
s390_frame_sniffer (struct frame_info *next_frame)
{
  return &s390_frame_unwind;
}


/* Code stubs and their stack frames.  For things like PLTs and NULL
   function calls (where there is no true frame and the return address
   is in the RETADDR register).  */

struct s390_stub_unwind_cache
{
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_stub_unwind_cache *
s390_stub_frame_unwind_cache (struct frame_info *next_frame,
			      void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_stub_unwind_cache *info;
  ULONGEST reg;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  /* The return address is in register %r14.  */
  info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;

  /* Retrieve stack pointer and determine our frame base.  */
  reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  info->frame_base = reg + 16*word_size + 32;

  return info;
}

static void
s390_stub_frame_this_id (struct frame_info *next_frame,
			 void **this_prologue_cache,
			 struct frame_id *this_id)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
}

static void
s390_stub_frame_prev_register (struct frame_info *next_frame,
			       void **this_prologue_cache,
			       int regnum, int *optimizedp,
			       enum lval_type *lvalp, CORE_ADDR *addrp,
			       int *realnump, void *bufferp)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_stub_frame_unwind = {
  NORMAL_FRAME,
  s390_stub_frame_this_id,
  s390_stub_frame_prev_register
};

static const struct frame_unwind *
s390_stub_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  bfd_byte insn[S390_MAX_INSTR_SIZE];

  /* If the current PC points to non-readable memory, we assume we
     have trapped due to an invalid function pointer call.  We handle
     the non-existing current function like a PLT stub.  */
  if (in_plt_section (pc, NULL)
      || s390_readinstruction (insn, pc) < 0)
    return &s390_stub_frame_unwind;
  return NULL;
}


/* Signal trampoline stack frames.  */

struct s390_sigtramp_unwind_cache {
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_sigtramp_unwind_cache *
s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
				  void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_sigtramp_unwind_cache *info;
  ULONGEST this_sp, prev_sp;
  CORE_ADDR next_ra, next_cfa, sigreg_ptr;
  int i;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  next_ra = frame_pc_unwind (next_frame);
  next_cfa = this_sp + 16*word_size + 32;

  /* New-style RT frame:
	retcode + alignment (8 bytes)
	siginfo (128 bytes)
	ucontext (contains sigregs at offset 5 words)  */
  if (next_ra == next_cfa)
    {
      sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
    }

  /* Old-style RT frame and all non-RT frames:
	old signal mask (8 bytes)
	pointer to sigregs  */
  else
    {
      sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
    }

  /* The sigregs structure looks like this:
            long   psw_mask;
            long   psw_addr;
            long   gprs[16];
            int    acrs[16];
            int    fpc;
            int    __pad;
            double fprs[16];  */

  /* Let's ignore the PSW mask, it will not be restored anyway.  */
  sigreg_ptr += word_size;

  /* Next comes the PSW address.  */
  info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += word_size;

  /* Then the GPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += word_size;
    }

  /* Then the ACRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 4;
    }

  /* The floating-point control word.  */
  info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += 8;

  /* And finally the FPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 8;
    }

  /* Restore the previous frame's SP.  */
  prev_sp = read_memory_unsigned_integer (
			info->saved_regs[S390_SP_REGNUM].addr,
			word_size);

  /* Determine our frame base.  */
  info->frame_base = prev_sp + 16*word_size + 32;

  return info;
}

static void
s390_sigtramp_frame_this_id (struct frame_info *next_frame,
			     void **this_prologue_cache,
			     struct frame_id *this_id)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
}

static void
s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
				   void **this_prologue_cache,
				   int regnum, int *optimizedp,
				   enum lval_type *lvalp, CORE_ADDR *addrp,
				   int *realnump, void *bufferp)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_sigtramp_frame_unwind = {
  SIGTRAMP_FRAME,
  s390_sigtramp_frame_this_id,
  s390_sigtramp_frame_prev_register
};

static const struct frame_unwind *
s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  bfd_byte sigreturn[2];

  if (read_memory_nobpt (pc, sigreturn, 2))
    return NULL;

  if (sigreturn[0] != 0x0a /* svc */)
    return NULL;

  if (sigreturn[1] != 119 /* sigreturn */
      && sigreturn[1] != 173 /* rt_sigreturn */)
    return NULL;
  
  return &s390_sigtramp_frame_unwind;
}


/* Frame base handling.  */

static CORE_ADDR
s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_cache);
  return info->frame_base;
}

static CORE_ADDR
s390_local_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_cache);
  return info->local_base;
}

static const struct frame_base s390_frame_base = {
  &s390_frame_unwind,
  s390_frame_base_address,
  s390_local_base_address,
  s390_local_base_address
};

static CORE_ADDR
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;
  pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
  return gdbarch_addr_bits_remove (gdbarch, pc);
}

static CORE_ADDR
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST sp;
  sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  return gdbarch_addr_bits_remove (gdbarch, sp);
}


/* DWARF-2 frame support.  */

static void
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
                            struct dwarf2_frame_state_reg *reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  switch (tdep->abi)
    {
    case ABI_LINUX_S390:
      /* Call-saved registers.  */
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || regnum == S390_F4_REGNUM
	  || regnum == S390_F6_REGNUM)
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered registers.  */
      else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
	       || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
		   && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;

      /* The return address column.  */
      else if (regnum == S390_PC_REGNUM)
	reg->how = DWARF2_FRAME_REG_RA;
      break;

    case ABI_LINUX_ZSERIES:
      /* Call-saved registers.  */
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered registers.  */
      else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
	       || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;

      /* The return address column.  */
      else if (regnum == S390_PC_REGNUM)
	reg->how = DWARF2_FRAME_REG_RA;
      break;
    }
}


/* Dummy function calls.  */

/* Return non-zero if TYPE is an integer-like type, zero otherwise.
   "Integer-like" types are those that should be passed the way
   integers are: integers, enums, ranges, characters, and booleans.  */
static int
is_integer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
          || code == TYPE_CODE_ENUM
          || code == TYPE_CODE_RANGE
          || code == TYPE_CODE_CHAR
          || code == TYPE_CODE_BOOL);
}

/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
   "Pointer-like" types are those that should be passed the way
   pointers are: pointers and references.  */
static int
is_pointer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_PTR
          || code == TYPE_CODE_REF);
}


/* Return non-zero if TYPE is a `float singleton' or `double
   singleton', zero otherwise.

   A `T singleton' is a struct type with one member, whose type is
   either T or a `T singleton'.  So, the following are all float
   singletons:

   struct { float x };
   struct { struct { float x; } x; };
   struct { struct { struct { float x; } x; } x; };

   ... and so on.

   All such structures are passed as if they were floats or doubles,
   as the (revised) ABI says.  */
static int
is_float_singleton (struct type *type)
{
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
    {
      struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
      CHECK_TYPEDEF (singleton_type);

      return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
	      || is_float_singleton (singleton_type));
    }

  return 0;
}


/* Return non-zero if TYPE is a struct-like type, zero otherwise.
   "Struct-like" types are those that should be passed as structs are:
   structs and unions.

   As an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_struct_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_UNION
          || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
}


/* Return non-zero if TYPE is a float-like type, zero otherwise.
   "Float-like" types are those that should be passed as
   floating-point values are.

   You'd think this would just be floats, doubles, long doubles, etc.
   But as an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we include
   those types here.  *shrug* */
static int
is_float_like (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_FLT
          || is_float_singleton (type));
}


static int
is_power_of_two (unsigned int n)
{
  return ((n & (n - 1)) == 0);
}

/* Return non-zero if TYPE should be passed as a pointer to a copy,
   zero otherwise.  */
static int
s390_function_arg_pass_by_reference (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 1;

  /* FIXME: All complex and vector types are also returned by reference.  */
  return is_struct_like (type) && !is_power_of_two (length);
}

/* Return non-zero if TYPE should be passed in a float register
   if possible.  */
static int
s390_function_arg_float (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 0;

  return is_float_like (type);
}

/* Return non-zero if TYPE should be passed in an integer register
   (or a pair of integer registers) if possible.  */
static int
s390_function_arg_integer (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 0;

   return is_integer_like (type)
	  || is_pointer_like (type)
	  || (is_struct_like (type) && is_power_of_two (length));
}

/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
   word as required for the ABI.  */
static LONGEST
extend_simple_arg (struct value *arg)
{
  struct type *type = VALUE_TYPE (arg);

  /* Even structs get passed in the least significant bits of the
     register / memory word.  It's not really right to extract them as
     an integer, but it does take care of the extension.  */
  if (TYPE_UNSIGNED (type))
    return extract_unsigned_integer (VALUE_CONTENTS (arg),
                                     TYPE_LENGTH (type));
  else
    return extract_signed_integer (VALUE_CONTENTS (arg),
                                   TYPE_LENGTH (type));
}


/* Return the alignment required by TYPE.  */
static int
alignment_of (struct type *type)
{
  int alignment;

  if (is_integer_like (type)
      || is_pointer_like (type)
      || TYPE_CODE (type) == TYPE_CODE_FLT)
    alignment = TYPE_LENGTH (type);
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      int i;

      alignment = 1;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
        {
          int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));

          if (field_alignment > alignment)
            alignment = field_alignment;
        }
    }
  else
    alignment = 1;

  /* Check that everything we ever return is a power of two.  Lots of
     code doesn't want to deal with aligning things to arbitrary
     boundaries.  */
  gdb_assert ((alignment & (alignment - 1)) == 0);

  return alignment;
}


/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
   place to be passed to a function, as specified by the "GNU/Linux
   for S/390 ELF Application Binary Interface Supplement".

   SP is the current stack pointer.  We must put arguments, links,
   padding, etc. whereever they belong, and return the new stack
   pointer value.
   
   If STRUCT_RETURN is non-zero, then the function we're calling is
   going to return a structure by value; STRUCT_ADDR is the address of
   a block we've allocated for it on the stack.

   Our caller has taken care of any type promotions needed to satisfy
   prototypes or the old K&R argument-passing rules.  */
static CORE_ADDR
s390_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  ULONGEST orig_sp;
  int i;

  /* If the i'th argument is passed as a reference to a copy, then
     copy_addr[i] is the address of the copy we made.  */
  CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));

  /* Build the reference-to-copy area.  */
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = VALUE_TYPE (arg);
      unsigned length = TYPE_LENGTH (type);

      if (s390_function_arg_pass_by_reference (type))
        {
          sp -= length;
          sp = align_down (sp, alignment_of (type));
          write_memory (sp, VALUE_CONTENTS (arg), length);
          copy_addr[i] = sp;
        }
    }

  /* Reserve space for the parameter area.  As a conservative
     simplification, we assume that everything will be passed on the
     stack.  Since every argument larger than 8 bytes will be 
     passed by reference, we use this simple upper bound.  */
  sp -= nargs * 8;

  /* After all that, make sure it's still aligned on an eight-byte
     boundary.  */
  sp = align_down (sp, 8);

  /* Finally, place the actual parameters, working from SP towards
     higher addresses.  The code above is supposed to reserve enough
     space for this.  */
  {
    int fr = 0;
    int gr = 2;
    CORE_ADDR starg = sp;

    /* A struct is returned using general register 2.  */
    if (struct_return)
      {
	regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
				        struct_addr);
	gr++;
      }

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        unsigned length = TYPE_LENGTH (type);

	if (s390_function_arg_pass_by_reference (type))
	  {
	    if (gr <= 6)
	      {
		regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
					        copy_addr[i]);
		gr++;
	      }
	    else
	      {
		write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
		starg += word_size;
	      }
	  }
	else if (s390_function_arg_float (type))
	  {
	    /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
	       the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6.  */
	    if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
	      {
		/* When we store a single-precision value in an FP register,
		   it occupies the leftmost bits.  */
		regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
					    0, length, VALUE_CONTENTS (arg));
		fr += 2;
	      }
	    else
	      {
		/* When we store a single-precision value in a stack slot,
		   it occupies the rightmost bits.  */
		starg = align_up (starg + length, word_size);
                write_memory (starg - length, VALUE_CONTENTS (arg), length);
	      }
	  }
	else if (s390_function_arg_integer (type) && length <= word_size)
	  {
	    if (gr <= 6)
	      {
		/* Integer arguments are always extended to word size.  */
		regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
					      extend_simple_arg (arg));
		gr++;
	      }
	    else
	      {
		/* Integer arguments are always extended to word size.  */
		write_memory_signed_integer (starg, word_size,
                                             extend_simple_arg (arg));
                starg += word_size;
	      }
	  }
	else if (s390_function_arg_integer (type) && length == 2*word_size)
	  {
	    if (gr <= 5)
	      {
		regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
				       VALUE_CONTENTS (arg));
		regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
				       VALUE_CONTENTS (arg) + word_size);
		gr += 2;
	      }
	    else
	      {
		/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
		   in it, then don't go back and use it again later.  */
		gr = 7;

		write_memory (starg, VALUE_CONTENTS (arg), length);
		starg += length;
	      }
	  }
	else
	  internal_error (__FILE__, __LINE__, "unknown argument type");
      }
  }

  /* Allocate the standard frame areas: the register save area, the
     word reserved for the compiler (which seems kind of meaningless),
     and the back chain pointer.  */
  sp -= 16*word_size + 32;

  /* Write the back chain pointer into the first word of the stack
     frame.  This is needed to unwind across a dummy frame.  */
  regcache_cooked_read_unsigned (regcache, S390_SP_REGNUM, &orig_sp);
  write_memory_unsigned_integer (sp, word_size, orig_sp);

  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
  
  /* Store updated stack pointer.  */
  regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);

  /* We need to return the 'stack part' of the frame ID,
     which is actually the top of the register save area
     allocated on the original stack.  */
  return orig_sp + 16*word_size + 32;
}

/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   returned by push_dummy_call, and the PC match the dummy frame's
   breakpoint.  */
static struct frame_id
s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  CORE_ADDR this_sp = s390_unwind_sp (gdbarch, next_frame);
  CORE_ADDR prev_sp = read_memory_unsigned_integer (this_sp, word_size);

  return frame_id_build (prev_sp + 16*word_size + 32,
                         frame_pc_unwind (next_frame));
}

static CORE_ADDR
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* Both the 32- and 64-bit ABI's say that the stack pointer should
     always be aligned on an eight-byte boundary.  */
  return (addr & -8);
}


/* Function return value access.  */

static enum return_value_convention
s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
{
  int length = TYPE_LENGTH (type);
  if (length > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      return RETURN_VALUE_STRUCT_CONVENTION;

    default:
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

static enum return_value_convention
s390_return_value (struct gdbarch *gdbarch, struct type *type, 
		   struct regcache *regcache, void *out, const void *in)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  int length = TYPE_LENGTH (type);
  enum return_value_convention rvc = 
			s390_return_value_convention (gdbarch, type);
  if (in)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  if (TYPE_CODE (type) == TYPE_CODE_FLT)
	    {
	      /* When we store a single-precision value in an FP register,
		 it occupies the leftmost bits.  */
	      regcache_cooked_write_part (regcache, S390_F0_REGNUM, 
					  0, length, in);
	    }
	  else if (length <= word_size)
	    {
	      /* Integer arguments are always extended to word size.  */
	      if (TYPE_UNSIGNED (type))
		regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
			extract_unsigned_integer (in, length));
	      else
		regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
			extract_signed_integer (in, length));
	    }
	  else if (length == 2*word_size)
	    {
	      regcache_cooked_write (regcache, S390_R2_REGNUM, in);
	      regcache_cooked_write (regcache, S390_R3_REGNUM,
				     (const char *)in + word_size);
	    }
	  else
	    internal_error (__FILE__, __LINE__, "invalid return type");
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Cannot set function return value.");
	  break;
	}
    }
  else if (out)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  if (TYPE_CODE (type) == TYPE_CODE_FLT)
	    {
	      /* When we store a single-precision value in an FP register,
		 it occupies the leftmost bits.  */
	      regcache_cooked_read_part (regcache, S390_F0_REGNUM, 
					 0, length, out);
	    }
	  else if (length <= word_size)
	    {
	      /* Integer arguments occupy the rightmost bits.  */
	      regcache_cooked_read_part (regcache, S390_R2_REGNUM, 
					 word_size - length, length, out);
	    }
	  else if (length == 2*word_size)
	    {
	      regcache_cooked_read (regcache, S390_R2_REGNUM, out);
	      regcache_cooked_read (regcache, S390_R3_REGNUM,
				    (char *)out + word_size);
	    }
	  else
	    internal_error (__FILE__, __LINE__, "invalid return type");
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Function return value unknown.");
	  break;
	}
    }

  return rvc;
}


/* Breakpoints.  */

static const unsigned char *
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = { 0x0, 0x1 };

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}


/* Address handling.  */

static CORE_ADDR
s390_addr_bits_remove (CORE_ADDR addr)
{
  return addr & 0x7fffffff;
}

static int
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
  if (byte_size == 4)
    return TYPE_FLAG_ADDRESS_CLASS_1;
  else
    return 0;
}

static const char *
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
{
  if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
    return "mode32";
  else
    return NULL;
}

static int
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
				       int *type_flags_ptr)
{
  if (strcmp (name, "mode32") == 0)
    {
      *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
      return 1;
    }
  else
    return 0;
}


/* Link map offsets.  */

static struct link_map_offsets *
s390_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;

      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

  return lmp;
}

static struct link_map_offsets *
s390x_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 16;   /* All we need.  */

      lmo.r_map_offset = 8;
      lmo.r_map_size   = 8;

      lmo.link_map_size = 40;   /* All we need.  */

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 8;

      lmo.l_name_offset = 8;
      lmo.l_name_size   = 8;

      lmo.l_next_offset = 24;
      lmo.l_next_size   = 8;

      lmo.l_prev_offset = 32;
      lmo.l_prev_size   = 8;
    }

  return lmp;
}


/* Set up gdbarch struct.  */

static struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* First see if there is already a gdbarch that can satisfy the request.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found: is the request for a s390 architecture? */
  if (info.bfd_arch_info->arch != bfd_arch_s390)
    return NULL;		/* No; then it's not for us.  */

  /* Yes: create a new gdbarch for the specified machine type.  */
  tdep = XCALLOC (1, struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);

  /* Amount PC must be decremented by after a breakpoint.  This is
     often the number of bytes returned by BREAKPOINT_FROM_PC but not
     always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 2);
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
  set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);

  set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
  set_gdbarch_register_name (gdbarch, s390_register_name);
  set_gdbarch_register_type (gdbarch, s390_register_type);
  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_convert_register_p (gdbarch, s390_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, s390_register_to_value);
  set_gdbarch_value_to_register (gdbarch, s390_value_to_register);
  set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
  set_gdbarch_regset_from_core_section (gdbarch,
                                        s390_regset_from_core_section);

  /* Inferior function calls.  */
  set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
  set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id);
  set_gdbarch_frame_align (gdbarch, s390_frame_align);
  set_gdbarch_return_value (gdbarch, s390_return_value);

  /* Frame handling.  */
  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
  dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
  frame_base_set_default (gdbarch, &s390_frame_base);
  set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_s390_31:
      tdep->abi = ABI_LINUX_S390;

      tdep->gregset = &s390_gregset;
      tdep->sizeof_gregset = s390_sizeof_gregset;
      tdep->fpregset = &s390_fpregset;
      tdep->sizeof_fpregset = s390_sizeof_fpregset;

      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
      set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
      set_solib_svr4_fetch_link_map_offsets (gdbarch,
					     s390_svr4_fetch_link_map_offsets);

      break;
    case bfd_mach_s390_64:
      tdep->abi = ABI_LINUX_ZSERIES;

      tdep->gregset = &s390x_gregset;
      tdep->sizeof_gregset = s390x_sizeof_gregset;
      tdep->fpregset = &s390_fpregset;
      tdep->sizeof_fpregset = s390_sizeof_fpregset;

      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
      set_solib_svr4_fetch_link_map_offsets (gdbarch,
					     s390x_svr4_fetch_link_map_offsets);
      set_gdbarch_address_class_type_flags (gdbarch,
                                            s390_address_class_type_flags);
      set_gdbarch_address_class_type_flags_to_name (gdbarch,
                                                    s390_address_class_type_flags_to_name);
      set_gdbarch_address_class_name_to_type_flags (gdbarch,
                                                    s390_address_class_name_to_type_flags);
      break;
    }

  set_gdbarch_print_insn (gdbarch, print_insn_s390);

  return gdbarch;
}



extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */

void
_initialize_s390_tdep (void)
{

  /* Hook us into the gdbarch mechanism.  */
  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
}