aboutsummaryrefslogtreecommitdiff
path: root/bfd/elfxx-mips.c
diff options
context:
space:
mode:
authorThiemo Seufer <ths@networkno.de>2002-04-04 07:10:00 +0000
committerThiemo Seufer <ths@networkno.de>2002-04-04 07:10:00 +0000
commitb49e97c9441cc347fa37fb4ad887595afe4b3cc6 (patch)
tree9a66724da7121e2cfb58d3a1f6c5b75b296a89f9 /bfd/elfxx-mips.c
parentc6e90b027b91f0b15fd90bcacfd602eca768e4d7 (diff)
downloadgdb-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.zip
gdb-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.tar.gz
gdb-b49e97c9441cc347fa37fb4ad887595afe4b3cc6.tar.bz2
Actually commit the new files ommitted before.
Diffstat (limited to 'bfd/elfxx-mips.c')
-rw-r--r--bfd/elfxx-mips.c7772
1 files changed, 7772 insertions, 0 deletions
diff --git a/bfd/elfxx-mips.c b/bfd/elfxx-mips.c
new file mode 100644
index 0000000..7cfa733
--- /dev/null
+++ b/bfd/elfxx-mips.c
@@ -0,0 +1,7772 @@
+/* MIPS-specific support for ELF
+ Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+
+ Most of the information added by Ian Lance Taylor, Cygnus Support,
+ <ian@cygnus.com>.
+ N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
+ <mark@codesourcery.com>
+ Traditional MIPS targets support added by Koundinya.K, Dansk Data
+ Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
+
+This file is part of BFD, the Binary File Descriptor library.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* This file handles functionality common to the different MIPS ABI's. */
+
+#include "bfd.h"
+#include "sysdep.h"
+#include "libbfd.h"
+#include "elf-bfd.h"
+#include "elfxx-mips.h"
+#include "elf/mips.h"
+
+/* Get the ECOFF swapping routines. */
+#include "coff/sym.h"
+#include "coff/symconst.h"
+#include "coff/ecoff.h"
+#include "coff/mips.h"
+
+/* This structure is used to hold .got information when linking. It
+ is stored in the tdata field of the bfd_elf_section_data structure. */
+
+struct mips_got_info
+{
+ /* The global symbol in the GOT with the lowest index in the dynamic
+ symbol table. */
+ struct elf_link_hash_entry *global_gotsym;
+ /* The number of global .got entries. */
+ unsigned int global_gotno;
+ /* The number of local .got entries. */
+ unsigned int local_gotno;
+ /* The number of local .got entries we have used. */
+ unsigned int assigned_gotno;
+};
+
+/* This structure is passed to mips_elf_sort_hash_table_f when sorting
+ the dynamic symbols. */
+
+struct mips_elf_hash_sort_data
+{
+ /* The symbol in the global GOT with the lowest dynamic symbol table
+ index. */
+ struct elf_link_hash_entry *low;
+ /* The least dynamic symbol table index corresponding to a symbol
+ with a GOT entry. */
+ long min_got_dynindx;
+ /* The greatest dynamic symbol table index not corresponding to a
+ symbol without a GOT entry. */
+ long max_non_got_dynindx;
+};
+
+/* The MIPS ELF linker needs additional information for each symbol in
+ the global hash table. */
+
+struct mips_elf_link_hash_entry
+{
+ struct elf_link_hash_entry root;
+
+ /* External symbol information. */
+ EXTR esym;
+
+ /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
+ this symbol. */
+ unsigned int possibly_dynamic_relocs;
+
+ /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
+ a readonly section. */
+ boolean readonly_reloc;
+
+ /* The index of the first dynamic relocation (in the .rel.dyn
+ section) against this symbol. */
+ unsigned int min_dyn_reloc_index;
+
+ /* We must not create a stub for a symbol that has relocations
+ related to taking the function's address, i.e. any but
+ R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
+ p. 4-20. */
+ boolean no_fn_stub;
+
+ /* If there is a stub that 32 bit functions should use to call this
+ 16 bit function, this points to the section containing the stub. */
+ asection *fn_stub;
+
+ /* Whether we need the fn_stub; this is set if this symbol appears
+ in any relocs other than a 16 bit call. */
+ boolean need_fn_stub;
+
+ /* If there is a stub that 16 bit functions should use to call this
+ 32 bit function, this points to the section containing the stub. */
+ asection *call_stub;
+
+ /* This is like the call_stub field, but it is used if the function
+ being called returns a floating point value. */
+ asection *call_fp_stub;
+};
+
+/* MIPS ELF linker hash table. */
+
+struct mips_elf_link_hash_table
+{
+ struct elf_link_hash_table root;
+#if 0
+ /* We no longer use this. */
+ /* String section indices for the dynamic section symbols. */
+ bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
+#endif
+ /* The number of .rtproc entries. */
+ bfd_size_type procedure_count;
+ /* The size of the .compact_rel section (if SGI_COMPAT). */
+ bfd_size_type compact_rel_size;
+ /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
+ entry is set to the address of __rld_obj_head as in Irix 5. */
+ boolean use_rld_obj_head;
+ /* This is the value of the __rld_map or __rld_obj_head symbol. */
+ bfd_vma rld_value;
+ /* This is set if we see any mips16 stub sections. */
+ boolean mips16_stubs_seen;
+};
+
+/* Structure used to pass information to mips_elf_output_extsym. */
+
+struct extsym_info
+{
+ bfd *abfd;
+ struct bfd_link_info *info;
+ struct ecoff_debug_info *debug;
+ const struct ecoff_debug_swap *swap;
+ boolean failed;
+};
+
+/* The names of the runtime procedure table symbols used on Irix 5. */
+
+static const char * const mips_elf_dynsym_rtproc_names[] =
+{
+ "_procedure_table",
+ "_procedure_string_table",
+ "_procedure_table_size",
+ NULL
+};
+
+/* These structures are used to generate the .compact_rel section on
+ Irix 5. */
+
+typedef struct
+{
+ unsigned long id1; /* Always one? */
+ unsigned long num; /* Number of compact relocation entries. */
+ unsigned long id2; /* Always two? */
+ unsigned long offset; /* The file offset of the first relocation. */
+ unsigned long reserved0; /* Zero? */
+ unsigned long reserved1; /* Zero? */
+} Elf32_compact_rel;
+
+typedef struct
+{
+ bfd_byte id1[4];
+ bfd_byte num[4];
+ bfd_byte id2[4];
+ bfd_byte offset[4];
+ bfd_byte reserved0[4];
+ bfd_byte reserved1[4];
+} Elf32_External_compact_rel;
+
+typedef struct
+{
+ unsigned int ctype : 1; /* 1: long 0: short format. See below. */
+ unsigned int rtype : 4; /* Relocation types. See below. */
+ unsigned int dist2to : 8;
+ unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
+ unsigned long konst; /* KONST field. See below. */
+ unsigned long vaddr; /* VADDR to be relocated. */
+} Elf32_crinfo;
+
+typedef struct
+{
+ unsigned int ctype : 1; /* 1: long 0: short format. See below. */
+ unsigned int rtype : 4; /* Relocation types. See below. */
+ unsigned int dist2to : 8;
+ unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
+ unsigned long konst; /* KONST field. See below. */
+} Elf32_crinfo2;
+
+typedef struct
+{
+ bfd_byte info[4];
+ bfd_byte konst[4];
+ bfd_byte vaddr[4];
+} Elf32_External_crinfo;
+
+typedef struct
+{
+ bfd_byte info[4];
+ bfd_byte konst[4];
+} Elf32_External_crinfo2;
+
+/* These are the constants used to swap the bitfields in a crinfo. */
+
+#define CRINFO_CTYPE (0x1)
+#define CRINFO_CTYPE_SH (31)
+#define CRINFO_RTYPE (0xf)
+#define CRINFO_RTYPE_SH (27)
+#define CRINFO_DIST2TO (0xff)
+#define CRINFO_DIST2TO_SH (19)
+#define CRINFO_RELVADDR (0x7ffff)
+#define CRINFO_RELVADDR_SH (0)
+
+/* A compact relocation info has long (3 words) or short (2 words)
+ formats. A short format doesn't have VADDR field and relvaddr
+ fields contains ((VADDR - vaddr of the previous entry) >> 2). */
+#define CRF_MIPS_LONG 1
+#define CRF_MIPS_SHORT 0
+
+/* There are 4 types of compact relocation at least. The value KONST
+ has different meaning for each type:
+
+ (type) (konst)
+ CT_MIPS_REL32 Address in data
+ CT_MIPS_WORD Address in word (XXX)
+ CT_MIPS_GPHI_LO GP - vaddr
+ CT_MIPS_JMPAD Address to jump
+ */
+
+#define CRT_MIPS_REL32 0xa
+#define CRT_MIPS_WORD 0xb
+#define CRT_MIPS_GPHI_LO 0xc
+#define CRT_MIPS_JMPAD 0xd
+
+#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
+#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
+#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
+#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
+
+/* The structure of the runtime procedure descriptor created by the
+ loader for use by the static exception system. */
+
+typedef struct runtime_pdr {
+ bfd_vma adr; /* memory address of start of procedure */
+ long regmask; /* save register mask */
+ long regoffset; /* save register offset */
+ long fregmask; /* save floating point register mask */
+ long fregoffset; /* save floating point register offset */
+ long frameoffset; /* frame size */
+ short framereg; /* frame pointer register */
+ short pcreg; /* offset or reg of return pc */
+ long irpss; /* index into the runtime string table */
+ long reserved;
+ struct exception_info *exception_info;/* pointer to exception array */
+} RPDR, *pRPDR;
+#define cbRPDR sizeof (RPDR)
+#define rpdNil ((pRPDR) 0)
+
+static struct bfd_hash_entry *mips_elf_link_hash_newfunc
+ PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
+static void ecoff_swap_rpdr_out
+ PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
+static boolean mips_elf_create_procedure_table
+ PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
+ struct ecoff_debug_info *));
+static boolean mips_elf_check_mips16_stubs
+ PARAMS ((struct mips_elf_link_hash_entry *, PTR));
+static void bfd_mips_elf32_swap_gptab_in
+ PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
+static void bfd_mips_elf32_swap_gptab_out
+ PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
+static void bfd_elf32_swap_compact_rel_out
+ PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
+static void bfd_elf32_swap_crinfo_out
+ PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
+#if 0
+static void bfd_mips_elf_swap_msym_in
+ PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
+#endif
+static void bfd_mips_elf_swap_msym_out
+ PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
+static int sort_dynamic_relocs
+ PARAMS ((const void *, const void *));
+static boolean mips_elf_output_extsym
+ PARAMS ((struct mips_elf_link_hash_entry *, PTR));
+static int gptab_compare PARAMS ((const void *, const void *));
+static asection * mips_elf_got_section PARAMS ((bfd *));
+static struct mips_got_info *mips_elf_got_info
+ PARAMS ((bfd *, asection **));
+static bfd_vma mips_elf_local_got_index
+ PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
+static bfd_vma mips_elf_global_got_index
+ PARAMS ((bfd *, struct elf_link_hash_entry *));
+static bfd_vma mips_elf_got_page
+ PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
+static bfd_vma mips_elf_got16_entry
+ PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
+static bfd_vma mips_elf_got_offset_from_index
+ PARAMS ((bfd *, bfd *, bfd_vma));
+static bfd_vma mips_elf_create_local_got_entry
+ PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
+static boolean mips_elf_sort_hash_table
+ PARAMS ((struct bfd_link_info *, unsigned long));
+static boolean mips_elf_sort_hash_table_f
+ PARAMS ((struct mips_elf_link_hash_entry *, PTR));
+static boolean mips_elf_record_global_got_symbol
+ PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
+ struct mips_got_info *));
+static const Elf_Internal_Rela *mips_elf_next_relocation
+ PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
+ const Elf_Internal_Rela *));
+static boolean mips_elf_local_relocation_p
+ PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
+static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
+static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
+static bfd_vma mips_elf_high PARAMS ((bfd_vma));
+static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
+static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
+static boolean mips_elf_create_compact_rel_section
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean mips_elf_create_got_section
+ PARAMS ((bfd *, struct bfd_link_info *));
+static asection *mips_elf_create_msym_section
+ PARAMS ((bfd *));
+static bfd_reloc_status_type mips_elf_calculate_relocation
+ PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
+ const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
+ Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
+ boolean *));
+static bfd_vma mips_elf_obtain_contents
+ PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
+static boolean mips_elf_perform_relocation
+ PARAMS ((struct bfd_link_info *, reloc_howto_type *,
+ const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
+ boolean));
+static boolean mips_elf_stub_section_p
+ PARAMS ((bfd *, asection *));
+static void mips_elf_allocate_dynamic_relocations
+ PARAMS ((bfd *, unsigned int));
+static boolean mips_elf_create_dynamic_relocation
+ PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
+ struct mips_elf_link_hash_entry *, asection *,
+ bfd_vma, bfd_vma *, asection *));
+static INLINE int elf_mips_isa PARAMS ((flagword));
+static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
+static void mips_elf_irix6_finish_dynamic_symbol
+ PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
+
+/* This will be used when we sort the dynamic relocation records. */
+static bfd *reldyn_sorting_bfd;
+
+/* Nonzero if ABFD is using the N32 ABI. */
+
+#define ABI_N32_P(abfd) \
+ ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
+
+/* Nonzero if ABFD is using the 64-bit ABI. */
+#define ABI_64_P(abfd) \
+ ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
+
+#define IRIX_COMPAT(abfd) \
+ (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
+
+#define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
+
+/* Whether we are trying to be compatible with IRIX at all. */
+#define SGI_COMPAT(abfd) \
+ (IRIX_COMPAT (abfd) != ict_none)
+
+/* The name of the options section. */
+#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
+ (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
+
+/* The name of the stub section. */
+#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
+ (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
+
+/* The size of an external REL relocation. */
+#define MIPS_ELF_REL_SIZE(abfd) \
+ (get_elf_backend_data (abfd)->s->sizeof_rel)
+
+/* The size of an external dynamic table entry. */
+#define MIPS_ELF_DYN_SIZE(abfd) \
+ (get_elf_backend_data (abfd)->s->sizeof_dyn)
+
+/* The size of a GOT entry. */
+#define MIPS_ELF_GOT_SIZE(abfd) \
+ (get_elf_backend_data (abfd)->s->arch_size / 8)
+
+/* The size of a symbol-table entry. */
+#define MIPS_ELF_SYM_SIZE(abfd) \
+ (get_elf_backend_data (abfd)->s->sizeof_sym)
+
+/* The default alignment for sections, as a power of two. */
+#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
+ (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
+
+/* Get word-sized data. */
+#define MIPS_ELF_GET_WORD(abfd, ptr) \
+ (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
+
+/* Put out word-sized data. */
+#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
+ (ABI_64_P (abfd) \
+ ? bfd_put_64 (abfd, val, ptr) \
+ : bfd_put_32 (abfd, val, ptr))
+
+/* Add a dynamic symbol table-entry. */
+#ifdef BFD64
+#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
+ (ABI_64_P (elf_hash_table (info)->dynobj) \
+ ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
+ : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
+#else
+#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
+ (ABI_64_P (elf_hash_table (info)->dynobj) \
+ ? (boolean) (abort (), false) \
+ : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
+#endif
+
+#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
+ (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
+
+/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
+ from smaller values. Start with zero, widen, *then* decrement. */
+#define MINUS_ONE (((bfd_vma)0) - 1)
+
+/* The number of local .got entries we reserve. */
+#define MIPS_RESERVED_GOTNO (2)
+
+/* Instructions which appear in a stub. For some reason the stub is
+ slightly different on an SGI system. */
+#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
+#define STUB_LW(abfd) \
+ (SGI_COMPAT (abfd) \
+ ? (ABI_64_P (abfd) \
+ ? 0xdf998010 /* ld t9,0x8010(gp) */ \
+ : 0x8f998010) /* lw t9,0x8010(gp) */ \
+ : 0x8f998010) /* lw t9,0x8000(gp) */
+#define STUB_MOVE(abfd) \
+ (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
+#define STUB_JALR 0x0320f809 /* jal t9 */
+#define STUB_LI16(abfd) \
+ (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
+#define MIPS_FUNCTION_STUB_SIZE (16)
+
+/* The name of the dynamic interpreter. This is put in the .interp
+ section. */
+
+#define ELF_DYNAMIC_INTERPRETER(abfd) \
+ (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
+ : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
+ : "/usr/lib/libc.so.1")
+
+#ifdef BFD64
+#define ELF_R_SYM(bfd, i) \
+ (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
+#define ELF_R_TYPE(bfd, i) \
+ (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
+#define ELF_R_INFO(bfd, s, t) \
+ (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
+#else
+#define ELF_R_SYM(bfd, i) \
+ (ELF32_R_SYM (i))
+#define ELF_R_TYPE(bfd, i) \
+ (ELF32_R_TYPE (i))
+#define ELF_R_INFO(bfd, s, t) \
+ (ELF32_R_INFO (s, t))
+#endif
+
+ /* The mips16 compiler uses a couple of special sections to handle
+ floating point arguments.
+
+ Section names that look like .mips16.fn.FNNAME contain stubs that
+ copy floating point arguments from the fp regs to the gp regs and
+ then jump to FNNAME. If any 32 bit function calls FNNAME, the
+ call should be redirected to the stub instead. If no 32 bit
+ function calls FNNAME, the stub should be discarded. We need to
+ consider any reference to the function, not just a call, because
+ if the address of the function is taken we will need the stub,
+ since the address might be passed to a 32 bit function.
+
+ Section names that look like .mips16.call.FNNAME contain stubs
+ that copy floating point arguments from the gp regs to the fp
+ regs and then jump to FNNAME. If FNNAME is a 32 bit function,
+ then any 16 bit function that calls FNNAME should be redirected
+ to the stub instead. If FNNAME is not a 32 bit function, the
+ stub should be discarded.
+
+ .mips16.call.fp.FNNAME sections are similar, but contain stubs
+ which call FNNAME and then copy the return value from the fp regs
+ to the gp regs. These stubs store the return value in $18 while
+ calling FNNAME; any function which might call one of these stubs
+ must arrange to save $18 around the call. (This case is not
+ needed for 32 bit functions that call 16 bit functions, because
+ 16 bit functions always return floating point values in both
+ $f0/$f1 and $2/$3.)
+
+ Note that in all cases FNNAME might be defined statically.
+ Therefore, FNNAME is not used literally. Instead, the relocation
+ information will indicate which symbol the section is for.
+
+ We record any stubs that we find in the symbol table. */
+
+#define FN_STUB ".mips16.fn."
+#define CALL_STUB ".mips16.call."
+#define CALL_FP_STUB ".mips16.call.fp."
+
+/* Look up an entry in a MIPS ELF linker hash table. */
+
+#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
+ ((struct mips_elf_link_hash_entry *) \
+ elf_link_hash_lookup (&(table)->root, (string), (create), \
+ (copy), (follow)))
+
+/* Traverse a MIPS ELF linker hash table. */
+
+#define mips_elf_link_hash_traverse(table, func, info) \
+ (elf_link_hash_traverse \
+ (&(table)->root, \
+ (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
+ (info)))
+
+/* Get the MIPS ELF linker hash table from a link_info structure. */
+
+#define mips_elf_hash_table(p) \
+ ((struct mips_elf_link_hash_table *) ((p)->hash))
+
+/* Create an entry in a MIPS ELF linker hash table. */
+
+static struct bfd_hash_entry *
+mips_elf_link_hash_newfunc (entry, table, string)
+ struct bfd_hash_entry *entry;
+ struct bfd_hash_table *table;
+ const char *string;
+{
+ struct mips_elf_link_hash_entry *ret =
+ (struct mips_elf_link_hash_entry *) entry;
+
+ /* Allocate the structure if it has not already been allocated by a
+ subclass. */
+ if (ret == (struct mips_elf_link_hash_entry *) NULL)
+ ret = ((struct mips_elf_link_hash_entry *)
+ bfd_hash_allocate (table,
+ sizeof (struct mips_elf_link_hash_entry)));
+ if (ret == (struct mips_elf_link_hash_entry *) NULL)
+ return (struct bfd_hash_entry *) ret;
+
+ /* Call the allocation method of the superclass. */
+ ret = ((struct mips_elf_link_hash_entry *)
+ _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
+ table, string));
+ if (ret != (struct mips_elf_link_hash_entry *) NULL)
+ {
+ /* Set local fields. */
+ memset (&ret->esym, 0, sizeof (EXTR));
+ /* We use -2 as a marker to indicate that the information has
+ not been set. -1 means there is no associated ifd. */
+ ret->esym.ifd = -2;
+ ret->possibly_dynamic_relocs = 0;
+ ret->readonly_reloc = false;
+ ret->min_dyn_reloc_index = 0;
+ ret->no_fn_stub = false;
+ ret->fn_stub = NULL;
+ ret->need_fn_stub = false;
+ ret->call_stub = NULL;
+ ret->call_fp_stub = NULL;
+ }
+
+ return (struct bfd_hash_entry *) ret;
+}
+
+/* Read ECOFF debugging information from a .mdebug section into a
+ ecoff_debug_info structure. */
+
+boolean
+_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
+ bfd *abfd;
+ asection *section;
+ struct ecoff_debug_info *debug;
+{
+ HDRR *symhdr;
+ const struct ecoff_debug_swap *swap;
+ char *ext_hdr = NULL;
+
+ swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
+ memset (debug, 0, sizeof (*debug));
+
+ ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
+ if (ext_hdr == NULL && swap->external_hdr_size != 0)
+ goto error_return;
+
+ if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
+ swap->external_hdr_size)
+ == false)
+ goto error_return;
+
+ symhdr = &debug->symbolic_header;
+ (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
+
+ /* The symbolic header contains absolute file offsets and sizes to
+ read. */
+#define READ(ptr, offset, count, size, type) \
+ if (symhdr->count == 0) \
+ debug->ptr = NULL; \
+ else \
+ { \
+ bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
+ debug->ptr = (type) bfd_malloc (amt); \
+ if (debug->ptr == NULL) \
+ goto error_return; \
+ if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
+ || bfd_bread (debug->ptr, amt, abfd) != amt) \
+ goto error_return; \
+ }
+
+ READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
+ READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
+ READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
+ READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
+ READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
+ READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
+ union aux_ext *);
+ READ (ss, cbSsOffset, issMax, sizeof (char), char *);
+ READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
+ READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
+ READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
+ READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
+#undef READ
+
+ debug->fdr = NULL;
+ debug->adjust = NULL;
+
+ return true;
+
+ error_return:
+ if (ext_hdr != NULL)
+ free (ext_hdr);
+ if (debug->line != NULL)
+ free (debug->line);
+ if (debug->external_dnr != NULL)
+ free (debug->external_dnr);
+ if (debug->external_pdr != NULL)
+ free (debug->external_pdr);
+ if (debug->external_sym != NULL)
+ free (debug->external_sym);
+ if (debug->external_opt != NULL)
+ free (debug->external_opt);
+ if (debug->external_aux != NULL)
+ free (debug->external_aux);
+ if (debug->ss != NULL)
+ free (debug->ss);
+ if (debug->ssext != NULL)
+ free (debug->ssext);
+ if (debug->external_fdr != NULL)
+ free (debug->external_fdr);
+ if (debug->external_rfd != NULL)
+ free (debug->external_rfd);
+ if (debug->external_ext != NULL)
+ free (debug->external_ext);
+ return false;
+}
+
+/* Swap RPDR (runtime procedure table entry) for output. */
+
+static void
+ecoff_swap_rpdr_out (abfd, in, ex)
+ bfd *abfd;
+ const RPDR *in;
+ struct rpdr_ext *ex;
+{
+ H_PUT_S32 (abfd, in->adr, ex->p_adr);
+ H_PUT_32 (abfd, in->regmask, ex->p_regmask);
+ H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
+ H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
+ H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
+ H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
+
+ H_PUT_16 (abfd, in->framereg, ex->p_framereg);
+ H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
+
+ H_PUT_32 (abfd, in->irpss, ex->p_irpss);
+#if 0 /* FIXME */
+ H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
+#endif
+}
+
+/* Create a runtime procedure table from the .mdebug section. */
+
+static boolean
+mips_elf_create_procedure_table (handle, abfd, info, s, debug)
+ PTR handle;
+ bfd *abfd;
+ struct bfd_link_info *info;
+ asection *s;
+ struct ecoff_debug_info *debug;
+{
+ const struct ecoff_debug_swap *swap;
+ HDRR *hdr = &debug->symbolic_header;
+ RPDR *rpdr, *rp;
+ struct rpdr_ext *erp;
+ PTR rtproc;
+ struct pdr_ext *epdr;
+ struct sym_ext *esym;
+ char *ss, **sv;
+ char *str;
+ bfd_size_type size;
+ bfd_size_type count;
+ unsigned long sindex;
+ unsigned long i;
+ PDR pdr;
+ SYMR sym;
+ const char *no_name_func = _("static procedure (no name)");
+
+ epdr = NULL;
+ rpdr = NULL;
+ esym = NULL;
+ ss = NULL;
+ sv = NULL;
+
+ swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
+
+ sindex = strlen (no_name_func) + 1;
+ count = hdr->ipdMax;
+ if (count > 0)
+ {
+ size = swap->external_pdr_size;
+
+ epdr = (struct pdr_ext *) bfd_malloc (size * count);
+ if (epdr == NULL)
+ goto error_return;
+
+ if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
+ goto error_return;
+
+ size = sizeof (RPDR);
+ rp = rpdr = (RPDR *) bfd_malloc (size * count);
+ if (rpdr == NULL)
+ goto error_return;
+
+ size = sizeof (char *);
+ sv = (char **) bfd_malloc (size * count);
+ if (sv == NULL)
+ goto error_return;
+
+ count = hdr->isymMax;
+ size = swap->external_sym_size;
+ esym = (struct sym_ext *) bfd_malloc (size * count);
+ if (esym == NULL)
+ goto error_return;
+
+ if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
+ goto error_return;
+
+ count = hdr->issMax;
+ ss = (char *) bfd_malloc (count);
+ if (ss == NULL)
+ goto error_return;
+ if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
+ goto error_return;
+
+ count = hdr->ipdMax;
+ for (i = 0; i < (unsigned long) count; i++, rp++)
+ {
+ (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
+ (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
+ rp->adr = sym.value;
+ rp->regmask = pdr.regmask;
+ rp->regoffset = pdr.regoffset;
+ rp->fregmask = pdr.fregmask;
+ rp->fregoffset = pdr.fregoffset;
+ rp->frameoffset = pdr.frameoffset;
+ rp->framereg = pdr.framereg;
+ rp->pcreg = pdr.pcreg;
+ rp->irpss = sindex;
+ sv[i] = ss + sym.iss;
+ sindex += strlen (sv[i]) + 1;
+ }
+ }
+
+ size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
+ size = BFD_ALIGN (size, 16);
+ rtproc = (PTR) bfd_alloc (abfd, size);
+ if (rtproc == NULL)
+ {
+ mips_elf_hash_table (info)->procedure_count = 0;
+ goto error_return;
+ }
+
+ mips_elf_hash_table (info)->procedure_count = count + 2;
+
+ erp = (struct rpdr_ext *) rtproc;
+ memset (erp, 0, sizeof (struct rpdr_ext));
+ erp++;
+ str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
+ strcpy (str, no_name_func);
+ str += strlen (no_name_func) + 1;
+ for (i = 0; i < count; i++)
+ {
+ ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
+ strcpy (str, sv[i]);
+ str += strlen (sv[i]) + 1;
+ }
+ H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
+
+ /* Set the size and contents of .rtproc section. */
+ s->_raw_size = size;
+ s->contents = (bfd_byte *) rtproc;
+
+ /* Skip this section later on (I don't think this currently
+ matters, but someday it might). */
+ s->link_order_head = (struct bfd_link_order *) NULL;
+
+ if (epdr != NULL)
+ free (epdr);
+ if (rpdr != NULL)
+ free (rpdr);
+ if (esym != NULL)
+ free (esym);
+ if (ss != NULL)
+ free (ss);
+ if (sv != NULL)
+ free (sv);
+
+ return true;
+
+ error_return:
+ if (epdr != NULL)
+ free (epdr);
+ if (rpdr != NULL)
+ free (rpdr);
+ if (esym != NULL)
+ free (esym);
+ if (ss != NULL)
+ free (ss);
+ if (sv != NULL)
+ free (sv);
+ return false;
+}
+
+/* Check the mips16 stubs for a particular symbol, and see if we can
+ discard them. */
+
+static boolean
+mips_elf_check_mips16_stubs (h, data)
+ struct mips_elf_link_hash_entry *h;
+ PTR data ATTRIBUTE_UNUSED;
+{
+ if (h->root.root.type == bfd_link_hash_warning)
+ h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
+
+ if (h->fn_stub != NULL
+ && ! h->need_fn_stub)
+ {
+ /* We don't need the fn_stub; the only references to this symbol
+ are 16 bit calls. Clobber the size to 0 to prevent it from
+ being included in the link. */
+ h->fn_stub->_raw_size = 0;
+ h->fn_stub->_cooked_size = 0;
+ h->fn_stub->flags &= ~SEC_RELOC;
+ h->fn_stub->reloc_count = 0;
+ h->fn_stub->flags |= SEC_EXCLUDE;
+ }
+
+ if (h->call_stub != NULL
+ && h->root.other == STO_MIPS16)
+ {
+ /* We don't need the call_stub; this is a 16 bit function, so
+ calls from other 16 bit functions are OK. Clobber the size
+ to 0 to prevent it from being included in the link. */
+ h->call_stub->_raw_size = 0;
+ h->call_stub->_cooked_size = 0;
+ h->call_stub->flags &= ~SEC_RELOC;
+ h->call_stub->reloc_count = 0;
+ h->call_stub->flags |= SEC_EXCLUDE;
+ }
+
+ if (h->call_fp_stub != NULL
+ && h->root.other == STO_MIPS16)
+ {
+ /* We don't need the call_stub; this is a 16 bit function, so
+ calls from other 16 bit functions are OK. Clobber the size
+ to 0 to prevent it from being included in the link. */
+ h->call_fp_stub->_raw_size = 0;
+ h->call_fp_stub->_cooked_size = 0;
+ h->call_fp_stub->flags &= ~SEC_RELOC;
+ h->call_fp_stub->reloc_count = 0;
+ h->call_fp_stub->flags |= SEC_EXCLUDE;
+ }
+
+ return true;
+}
+
+bfd_reloc_status_type
+_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
+ relocateable, data, gp)
+ bfd *abfd;
+ asymbol *symbol;
+ arelent *reloc_entry;
+ asection *input_section;
+ boolean relocateable;
+ PTR data;
+ bfd_vma gp;
+{
+ bfd_vma relocation;
+ unsigned long insn;
+ unsigned long val;
+
+ if (bfd_is_com_section (symbol->section))
+ relocation = 0;
+ else
+ relocation = symbol->value;
+
+ relocation += symbol->section->output_section->vma;
+ relocation += symbol->section->output_offset;
+
+ if (reloc_entry->address > input_section->_cooked_size)
+ return bfd_reloc_outofrange;
+
+ insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
+
+ /* Set val to the offset into the section or symbol. */
+ if (reloc_entry->howto->src_mask == 0)
+ {
+ /* This case occurs with the 64-bit MIPS ELF ABI. */
+ val = reloc_entry->addend;
+ }
+ else
+ {
+ val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
+ if (val & 0x8000)
+ val -= 0x10000;
+ }
+
+ /* Adjust val for the final section location and GP value. If we
+ are producing relocateable output, we don't want to do this for
+ an external symbol. */
+ if (! relocateable
+ || (symbol->flags & BSF_SECTION_SYM) != 0)
+ val += relocation - gp;
+
+ insn = (insn & ~0xffff) | (val & 0xffff);
+ bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
+
+ if (relocateable)
+ reloc_entry->address += input_section->output_offset;
+
+ else if ((long) val >= 0x8000 || (long) val < -0x8000)
+ return bfd_reloc_overflow;
+
+ return bfd_reloc_ok;
+}
+
+/* Swap an entry in a .gptab section. Note that these routines rely
+ on the equivalence of the two elements of the union. */
+
+static void
+bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
+ bfd *abfd;
+ const Elf32_External_gptab *ex;
+ Elf32_gptab *in;
+{
+ in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
+ in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
+}
+
+static void
+bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf32_gptab *in;
+ Elf32_External_gptab *ex;
+{
+ H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
+ H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
+}
+
+static void
+bfd_elf32_swap_compact_rel_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf32_compact_rel *in;
+ Elf32_External_compact_rel *ex;
+{
+ H_PUT_32 (abfd, in->id1, ex->id1);
+ H_PUT_32 (abfd, in->num, ex->num);
+ H_PUT_32 (abfd, in->id2, ex->id2);
+ H_PUT_32 (abfd, in->offset, ex->offset);
+ H_PUT_32 (abfd, in->reserved0, ex->reserved0);
+ H_PUT_32 (abfd, in->reserved1, ex->reserved1);
+}
+
+static void
+bfd_elf32_swap_crinfo_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf32_crinfo *in;
+ Elf32_External_crinfo *ex;
+{
+ unsigned long l;
+
+ l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
+ | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
+ | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
+ | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
+ H_PUT_32 (abfd, l, ex->info);
+ H_PUT_32 (abfd, in->konst, ex->konst);
+ H_PUT_32 (abfd, in->vaddr, ex->vaddr);
+}
+
+#if 0
+/* Swap in an MSYM entry. */
+
+static void
+bfd_mips_elf_swap_msym_in (abfd, ex, in)
+ bfd *abfd;
+ const Elf32_External_Msym *ex;
+ Elf32_Internal_Msym *in;
+{
+ in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
+ in->ms_info = H_GET_32 (abfd, ex->ms_info);
+}
+#endif
+/* Swap out an MSYM entry. */
+
+static void
+bfd_mips_elf_swap_msym_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf32_Internal_Msym *in;
+ Elf32_External_Msym *ex;
+{
+ H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
+ H_PUT_32 (abfd, in->ms_info, ex->ms_info);
+}
+
+/* A .reginfo section holds a single Elf32_RegInfo structure. These
+ routines swap this structure in and out. They are used outside of
+ BFD, so they are globally visible. */
+
+void
+bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
+ bfd *abfd;
+ const Elf32_External_RegInfo *ex;
+ Elf32_RegInfo *in;
+{
+ in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
+ in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
+ in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
+ in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
+ in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
+ in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
+}
+
+void
+bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf32_RegInfo *in;
+ Elf32_External_RegInfo *ex;
+{
+ H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
+ H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
+ H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
+ H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
+ H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
+ H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
+}
+
+/* In the 64 bit ABI, the .MIPS.options section holds register
+ information in an Elf64_Reginfo structure. These routines swap
+ them in and out. They are globally visible because they are used
+ outside of BFD. These routines are here so that gas can call them
+ without worrying about whether the 64 bit ABI has been included. */
+
+void
+bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
+ bfd *abfd;
+ const Elf64_External_RegInfo *ex;
+ Elf64_Internal_RegInfo *in;
+{
+ in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
+ in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
+ in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
+ in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
+ in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
+ in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
+ in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
+}
+
+void
+bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf64_Internal_RegInfo *in;
+ Elf64_External_RegInfo *ex;
+{
+ H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
+ H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
+ H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
+ H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
+ H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
+ H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
+ H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
+}
+
+/* Swap in an options header. */
+
+void
+bfd_mips_elf_swap_options_in (abfd, ex, in)
+ bfd *abfd;
+ const Elf_External_Options *ex;
+ Elf_Internal_Options *in;
+{
+ in->kind = H_GET_8 (abfd, ex->kind);
+ in->size = H_GET_8 (abfd, ex->size);
+ in->section = H_GET_16 (abfd, ex->section);
+ in->info = H_GET_32 (abfd, ex->info);
+}
+
+/* Swap out an options header. */
+
+void
+bfd_mips_elf_swap_options_out (abfd, in, ex)
+ bfd *abfd;
+ const Elf_Internal_Options *in;
+ Elf_External_Options *ex;
+{
+ H_PUT_8 (abfd, in->kind, ex->kind);
+ H_PUT_8 (abfd, in->size, ex->size);
+ H_PUT_16 (abfd, in->section, ex->section);
+ H_PUT_32 (abfd, in->info, ex->info);
+}
+
+/* This function is called via qsort() to sort the dynamic relocation
+ entries by increasing r_symndx value. */
+
+static int
+sort_dynamic_relocs (arg1, arg2)
+ const PTR arg1;
+ const PTR arg2;
+{
+ const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
+ const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
+
+ Elf_Internal_Rel int_reloc1;
+ Elf_Internal_Rel int_reloc2;
+
+ bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
+ bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
+
+ return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
+}
+
+/* This routine is used to write out ECOFF debugging external symbol
+ information. It is called via mips_elf_link_hash_traverse. The
+ ECOFF external symbol information must match the ELF external
+ symbol information. Unfortunately, at this point we don't know
+ whether a symbol is required by reloc information, so the two
+ tables may wind up being different. We must sort out the external
+ symbol information before we can set the final size of the .mdebug
+ section, and we must set the size of the .mdebug section before we
+ can relocate any sections, and we can't know which symbols are
+ required by relocation until we relocate the sections.
+ Fortunately, it is relatively unlikely that any symbol will be
+ stripped but required by a reloc. In particular, it can not happen
+ when generating a final executable. */
+
+static boolean
+mips_elf_output_extsym (h, data)
+ struct mips_elf_link_hash_entry *h;
+ PTR data;
+{
+ struct extsym_info *einfo = (struct extsym_info *) data;
+ boolean strip;
+ asection *sec, *output_section;
+
+ if (h->root.root.type == bfd_link_hash_warning)
+ h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
+
+ if (h->root.indx == -2)
+ strip = false;
+ else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
+ && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
+ strip = true;
+ else if (einfo->info->strip == strip_all
+ || (einfo->info->strip == strip_some
+ && bfd_hash_lookup (einfo->info->keep_hash,
+ h->root.root.root.string,
+ false, false) == NULL))
+ strip = true;
+ else
+ strip = false;
+
+ if (strip)
+ return true;
+
+ if (h->esym.ifd == -2)
+ {
+ h->esym.jmptbl = 0;
+ h->esym.cobol_main = 0;
+ h->esym.weakext = 0;
+ h->esym.reserved = 0;
+ h->esym.ifd = ifdNil;
+ h->esym.asym.value = 0;
+ h->esym.asym.st = stGlobal;
+
+ if (h->root.root.type == bfd_link_hash_undefined
+ || h->root.root.type == bfd_link_hash_undefweak)
+ {
+ const char *name;
+
+ /* Use undefined class. Also, set class and type for some
+ special symbols. */
+ name = h->root.root.root.string;
+ if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
+ || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
+ {
+ h->esym.asym.sc = scData;
+ h->esym.asym.st = stLabel;
+ h->esym.asym.value = 0;
+ }
+ else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
+ {
+ h->esym.asym.sc = scAbs;
+ h->esym.asym.st = stLabel;
+ h->esym.asym.value =
+ mips_elf_hash_table (einfo->info)->procedure_count;
+ }
+ else if (strcmp (name, "_gp_disp") == 0)
+ {
+ h->esym.asym.sc = scAbs;
+ h->esym.asym.st = stLabel;
+ h->esym.asym.value = elf_gp (einfo->abfd);
+ }
+ else
+ h->esym.asym.sc = scUndefined;
+ }
+ else if (h->root.root.type != bfd_link_hash_defined
+ && h->root.root.type != bfd_link_hash_defweak)
+ h->esym.asym.sc = scAbs;
+ else
+ {
+ const char *name;
+
+ sec = h->root.root.u.def.section;
+ output_section = sec->output_section;
+
+ /* When making a shared library and symbol h is the one from
+ the another shared library, OUTPUT_SECTION may be null. */
+ if (output_section == NULL)
+ h->esym.asym.sc = scUndefined;
+ else
+ {
+ name = bfd_section_name (output_section->owner, output_section);
+
+ if (strcmp (name, ".text") == 0)
+ h->esym.asym.sc = scText;
+ else if (strcmp (name, ".data") == 0)
+ h->esym.asym.sc = scData;
+ else if (strcmp (name, ".sdata") == 0)
+ h->esym.asym.sc = scSData;
+ else if (strcmp (name, ".rodata") == 0
+ || strcmp (name, ".rdata") == 0)
+ h->esym.asym.sc = scRData;
+ else if (strcmp (name, ".bss") == 0)
+ h->esym.asym.sc = scBss;
+ else if (strcmp (name, ".sbss") == 0)
+ h->esym.asym.sc = scSBss;
+ else if (strcmp (name, ".init") == 0)
+ h->esym.asym.sc = scInit;
+ else if (strcmp (name, ".fini") == 0)
+ h->esym.asym.sc = scFini;
+ else
+ h->esym.asym.sc = scAbs;
+ }
+ }
+
+ h->esym.asym.reserved = 0;
+ h->esym.asym.index = indexNil;
+ }
+
+ if (h->root.root.type == bfd_link_hash_common)
+ h->esym.asym.value = h->root.root.u.c.size;
+ else if (h->root.root.type == bfd_link_hash_defined
+ || h->root.root.type == bfd_link_hash_defweak)
+ {
+ if (h->esym.asym.sc == scCommon)
+ h->esym.asym.sc = scBss;
+ else if (h->esym.asym.sc == scSCommon)
+ h->esym.asym.sc = scSBss;
+
+ sec = h->root.root.u.def.section;
+ output_section = sec->output_section;
+ if (output_section != NULL)
+ h->esym.asym.value = (h->root.root.u.def.value
+ + sec->output_offset
+ + output_section->vma);
+ else
+ h->esym.asym.value = 0;
+ }
+ else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
+ {
+ struct mips_elf_link_hash_entry *hd = h;
+ boolean no_fn_stub = h->no_fn_stub;
+
+ while (hd->root.root.type == bfd_link_hash_indirect)
+ {
+ hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
+ no_fn_stub = no_fn_stub || hd->no_fn_stub;
+ }
+
+ if (!no_fn_stub)
+ {
+ /* Set type and value for a symbol with a function stub. */
+ h->esym.asym.st = stProc;
+ sec = hd->root.root.u.def.section;
+ if (sec == NULL)
+ h->esym.asym.value = 0;
+ else
+ {
+ output_section = sec->output_section;
+ if (output_section != NULL)
+ h->esym.asym.value = (hd->root.plt.offset
+ + sec->output_offset
+ + output_section->vma);
+ else
+ h->esym.asym.value = 0;
+ }
+#if 0 /* FIXME? */
+ h->esym.ifd = 0;
+#endif
+ }
+ }
+
+ if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
+ h->root.root.root.string,
+ &h->esym))
+ {
+ einfo->failed = true;
+ return false;
+ }
+
+ return true;
+}
+
+/* A comparison routine used to sort .gptab entries. */
+
+static int
+gptab_compare (p1, p2)
+ const PTR p1;
+ const PTR p2;
+{
+ const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
+ const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
+
+ return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
+}
+
+/* Returns the GOT section for ABFD. */
+
+static asection *
+mips_elf_got_section (abfd)
+ bfd *abfd;
+{
+ return bfd_get_section_by_name (abfd, ".got");
+}
+
+/* Returns the GOT information associated with the link indicated by
+ INFO. If SGOTP is non-NULL, it is filled in with the GOT
+ section. */
+
+static struct mips_got_info *
+mips_elf_got_info (abfd, sgotp)
+ bfd *abfd;
+ asection **sgotp;
+{
+ asection *sgot;
+ struct mips_got_info *g;
+
+ sgot = mips_elf_got_section (abfd);
+ BFD_ASSERT (sgot != NULL);
+ BFD_ASSERT (elf_section_data (sgot) != NULL);
+ g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
+ BFD_ASSERT (g != NULL);
+
+ if (sgotp)
+ *sgotp = sgot;
+ return g;
+}
+
+/* Returns the GOT offset at which the indicated address can be found.
+ If there is not yet a GOT entry for this value, create one. Returns
+ -1 if no satisfactory GOT offset can be found. */
+
+static bfd_vma
+mips_elf_local_got_index (abfd, info, value)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ bfd_vma value;
+{
+ asection *sgot;
+ struct mips_got_info *g;
+ bfd_byte *entry;
+
+ g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
+
+ /* Look to see if we already have an appropriate entry. */
+ for (entry = (sgot->contents
+ + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
+ entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
+ entry += MIPS_ELF_GOT_SIZE (abfd))
+ {
+ bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
+ if (address == value)
+ return entry - sgot->contents;
+ }
+
+ return mips_elf_create_local_got_entry (abfd, g, sgot, value);
+}
+
+/* Returns the GOT index for the global symbol indicated by H. */
+
+static bfd_vma
+mips_elf_global_got_index (abfd, h)
+ bfd *abfd;
+ struct elf_link_hash_entry *h;
+{
+ bfd_vma index;
+ asection *sgot;
+ struct mips_got_info *g;
+
+ g = mips_elf_got_info (abfd, &sgot);
+
+ /* Once we determine the global GOT entry with the lowest dynamic
+ symbol table index, we must put all dynamic symbols with greater
+ indices into the GOT. That makes it easy to calculate the GOT
+ offset. */
+ BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
+ index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
+ * MIPS_ELF_GOT_SIZE (abfd));
+ BFD_ASSERT (index < sgot->_raw_size);
+
+ return index;
+}
+
+/* Find a GOT entry that is within 32KB of the VALUE. These entries
+ are supposed to be placed at small offsets in the GOT, i.e.,
+ within 32KB of GP. Return the index into the GOT for this page,
+ and store the offset from this entry to the desired address in
+ OFFSETP, if it is non-NULL. */
+
+static bfd_vma
+mips_elf_got_page (abfd, info, value, offsetp)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ bfd_vma value;
+ bfd_vma *offsetp;
+{
+ asection *sgot;
+ struct mips_got_info *g;
+ bfd_byte *entry;
+ bfd_byte *last_entry;
+ bfd_vma index = 0;
+ bfd_vma address;
+
+ g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
+
+ /* Look to see if we aleady have an appropriate entry. */
+ last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
+ for (entry = (sgot->contents
+ + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
+ entry != last_entry;
+ entry += MIPS_ELF_GOT_SIZE (abfd))
+ {
+ address = MIPS_ELF_GET_WORD (abfd, entry);
+
+ if (!mips_elf_overflow_p (value - address, 16))
+ {
+ /* This entry will serve as the page pointer. We can add a
+ 16-bit number to it to get the actual address. */
+ index = entry - sgot->contents;
+ break;
+ }
+ }
+
+ /* If we didn't have an appropriate entry, we create one now. */
+ if (entry == last_entry)
+ index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
+
+ if (offsetp)
+ {
+ address = MIPS_ELF_GET_WORD (abfd, entry);
+ *offsetp = value - address;
+ }
+
+ return index;
+}
+
+/* Find a GOT entry whose higher-order 16 bits are the same as those
+ for value. Return the index into the GOT for this entry. */
+
+static bfd_vma
+mips_elf_got16_entry (abfd, info, value, external)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ bfd_vma value;
+ boolean external;
+{
+ asection *sgot;
+ struct mips_got_info *g;
+ bfd_byte *entry;
+ bfd_byte *last_entry;
+ bfd_vma index = 0;
+ bfd_vma address;
+
+ if (! external)
+ {
+ /* Although the ABI says that it is "the high-order 16 bits" that we
+ want, it is really the %high value. The complete value is
+ calculated with a `addiu' of a LO16 relocation, just as with a
+ HI16/LO16 pair. */
+ value = mips_elf_high (value) << 16;
+ }
+
+ g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
+
+ /* Look to see if we already have an appropriate entry. */
+ last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
+ for (entry = (sgot->contents
+ + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
+ entry != last_entry;
+ entry += MIPS_ELF_GOT_SIZE (abfd))
+ {
+ address = MIPS_ELF_GET_WORD (abfd, entry);
+ if (address == value)
+ {
+ /* This entry has the right high-order 16 bits, and the low-order
+ 16 bits are set to zero. */
+ index = entry - sgot->contents;
+ break;
+ }
+ }
+
+ /* If we didn't have an appropriate entry, we create one now. */
+ if (entry == last_entry)
+ index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
+
+ return index;
+}
+
+/* Returns the offset for the entry at the INDEXth position
+ in the GOT. */
+
+static bfd_vma
+mips_elf_got_offset_from_index (dynobj, output_bfd, index)
+ bfd *dynobj;
+ bfd *output_bfd;
+ bfd_vma index;
+{
+ asection *sgot;
+ bfd_vma gp;
+
+ sgot = mips_elf_got_section (dynobj);
+ gp = _bfd_get_gp_value (output_bfd);
+ return (sgot->output_section->vma + sgot->output_offset + index -
+ gp);
+}
+
+/* Create a local GOT entry for VALUE. Return the index of the entry,
+ or -1 if it could not be created. */
+
+static bfd_vma
+mips_elf_create_local_got_entry (abfd, g, sgot, value)
+ bfd *abfd;
+ struct mips_got_info *g;
+ asection *sgot;
+ bfd_vma value;
+{
+ if (g->assigned_gotno >= g->local_gotno)
+ {
+ /* We didn't allocate enough space in the GOT. */
+ (*_bfd_error_handler)
+ (_("not enough GOT space for local GOT entries"));
+ bfd_set_error (bfd_error_bad_value);
+ return (bfd_vma) -1;
+ }
+
+ MIPS_ELF_PUT_WORD (abfd, value,
+ (sgot->contents
+ + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
+ return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
+}
+
+/* Sort the dynamic symbol table so that symbols that need GOT entries
+ appear towards the end. This reduces the amount of GOT space
+ required. MAX_LOCAL is used to set the number of local symbols
+ known to be in the dynamic symbol table. During
+ _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
+ section symbols are added and the count is higher. */
+
+static boolean
+mips_elf_sort_hash_table (info, max_local)
+ struct bfd_link_info *info;
+ unsigned long max_local;
+{
+ struct mips_elf_hash_sort_data hsd;
+ struct mips_got_info *g;
+ bfd *dynobj;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ hsd.low = NULL;
+ hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
+ hsd.max_non_got_dynindx = max_local;
+ mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
+ elf_hash_table (info)),
+ mips_elf_sort_hash_table_f,
+ &hsd);
+
+ /* There should have been enough room in the symbol table to
+ accomodate both the GOT and non-GOT symbols. */
+ BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
+
+ /* Now we know which dynamic symbol has the lowest dynamic symbol
+ table index in the GOT. */
+ g = mips_elf_got_info (dynobj, NULL);
+ g->global_gotsym = hsd.low;
+
+ return true;
+}
+
+/* If H needs a GOT entry, assign it the highest available dynamic
+ index. Otherwise, assign it the lowest available dynamic
+ index. */
+
+static boolean
+mips_elf_sort_hash_table_f (h, data)
+ struct mips_elf_link_hash_entry *h;
+ PTR data;
+{
+ struct mips_elf_hash_sort_data *hsd
+ = (struct mips_elf_hash_sort_data *) data;
+
+ if (h->root.root.type == bfd_link_hash_warning)
+ h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
+
+ /* Symbols without dynamic symbol table entries aren't interesting
+ at all. */
+ if (h->root.dynindx == -1)
+ return true;
+
+ if (h->root.got.offset != 1)
+ h->root.dynindx = hsd->max_non_got_dynindx++;
+ else
+ {
+ h->root.dynindx = --hsd->min_got_dynindx;
+ hsd->low = (struct elf_link_hash_entry *) h;
+ }
+
+ return true;
+}
+
+/* If H is a symbol that needs a global GOT entry, but has a dynamic
+ symbol table index lower than any we've seen to date, record it for
+ posterity. */
+
+static boolean
+mips_elf_record_global_got_symbol (h, info, g)
+ struct elf_link_hash_entry *h;
+ struct bfd_link_info *info;
+ struct mips_got_info *g ATTRIBUTE_UNUSED;
+{
+ /* A global symbol in the GOT must also be in the dynamic symbol
+ table. */
+ if (h->dynindx == -1
+ && !bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+
+ /* If we've already marked this entry as needing GOT space, we don't
+ need to do it again. */
+ if (h->got.offset != MINUS_ONE)
+ return true;
+
+ /* By setting this to a value other than -1, we are indicating that
+ there needs to be a GOT entry for H. Avoid using zero, as the
+ generic ELF copy_indirect_symbol tests for <= 0. */
+ h->got.offset = 1;
+
+ return true;
+}
+
+/* Returns the first relocation of type r_type found, beginning with
+ RELOCATION. RELEND is one-past-the-end of the relocation table. */
+
+static const Elf_Internal_Rela *
+mips_elf_next_relocation (abfd, r_type, relocation, relend)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ unsigned int r_type;
+ const Elf_Internal_Rela *relocation;
+ const Elf_Internal_Rela *relend;
+{
+ /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
+ immediately following. However, for the IRIX6 ABI, the next
+ relocation may be a composed relocation consisting of several
+ relocations for the same address. In that case, the R_MIPS_LO16
+ relocation may occur as one of these. We permit a similar
+ extension in general, as that is useful for GCC. */
+ while (relocation < relend)
+ {
+ if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
+ return relocation;
+
+ ++relocation;
+ }
+
+ /* We didn't find it. */
+ bfd_set_error (bfd_error_bad_value);
+ return NULL;
+}
+
+/* Return whether a relocation is against a local symbol. */
+
+static boolean
+mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
+ check_forced)
+ bfd *input_bfd;
+ const Elf_Internal_Rela *relocation;
+ asection **local_sections;
+ boolean check_forced;
+{
+ unsigned long r_symndx;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct mips_elf_link_hash_entry *h;
+ size_t extsymoff;
+
+ r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
+
+ if (r_symndx < extsymoff)
+ return true;
+ if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
+ return true;
+
+ if (check_forced)
+ {
+ /* Look up the hash table to check whether the symbol
+ was forced local. */
+ h = (struct mips_elf_link_hash_entry *)
+ elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
+ /* Find the real hash-table entry for this symbol. */
+ while (h->root.root.type == bfd_link_hash_indirect
+ || h->root.root.type == bfd_link_hash_warning)
+ h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
+ if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ return true;
+ }
+
+ return false;
+}
+
+/* Sign-extend VALUE, which has the indicated number of BITS. */
+
+static bfd_vma
+mips_elf_sign_extend (value, bits)
+ bfd_vma value;
+ int bits;
+{
+ if (value & ((bfd_vma) 1 << (bits - 1)))
+ /* VALUE is negative. */
+ value |= ((bfd_vma) - 1) << bits;
+
+ return value;
+}
+
+/* Return non-zero if the indicated VALUE has overflowed the maximum
+ range expressable by a signed number with the indicated number of
+ BITS. */
+
+static boolean
+mips_elf_overflow_p (value, bits)
+ bfd_vma value;
+ int bits;
+{
+ bfd_signed_vma svalue = (bfd_signed_vma) value;
+
+ if (svalue > (1 << (bits - 1)) - 1)
+ /* The value is too big. */
+ return true;
+ else if (svalue < -(1 << (bits - 1)))
+ /* The value is too small. */
+ return true;
+
+ /* All is well. */
+ return false;
+}
+
+/* Calculate the %high function. */
+
+static bfd_vma
+mips_elf_high (value)
+ bfd_vma value;
+{
+ return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
+}
+
+/* Calculate the %higher function. */
+
+static bfd_vma
+mips_elf_higher (value)
+ bfd_vma value ATTRIBUTE_UNUSED;
+{
+#ifdef BFD64
+ return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
+#else
+ abort ();
+ return (bfd_vma) -1;
+#endif
+}
+
+/* Calculate the %highest function. */
+
+static bfd_vma
+mips_elf_highest (value)
+ bfd_vma value ATTRIBUTE_UNUSED;
+{
+#ifdef BFD64
+ return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
+#else
+ abort ();
+ return (bfd_vma) -1;
+#endif
+}
+
+/* Create the .compact_rel section. */
+
+static boolean
+mips_elf_create_compact_rel_section (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info ATTRIBUTE_UNUSED;
+{
+ flagword flags;
+ register asection *s;
+
+ if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
+ {
+ flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
+ | SEC_READONLY);
+
+ s = bfd_make_section (abfd, ".compact_rel");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags)
+ || ! bfd_set_section_alignment (abfd, s,
+ MIPS_ELF_LOG_FILE_ALIGN (abfd)))
+ return false;
+
+ s->_raw_size = sizeof (Elf32_External_compact_rel);
+ }
+
+ return true;
+}
+
+/* Create the .got section to hold the global offset table. */
+
+static boolean
+mips_elf_create_got_section (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ flagword flags;
+ register asection *s;
+ struct elf_link_hash_entry *h;
+ struct mips_got_info *g;
+ bfd_size_type amt;
+
+ /* This function may be called more than once. */
+ if (mips_elf_got_section (abfd))
+ return true;
+
+ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED);
+
+ s = bfd_make_section (abfd, ".got");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags)
+ || ! bfd_set_section_alignment (abfd, s, 4))
+ return false;
+
+ /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
+ linker script because we don't want to define the symbol if we
+ are not creating a global offset table. */
+ h = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (info->shared
+ && ! bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+
+ /* The first several global offset table entries are reserved. */
+ s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
+
+ amt = sizeof (struct mips_got_info);
+ g = (struct mips_got_info *) bfd_alloc (abfd, amt);
+ if (g == NULL)
+ return false;
+ g->global_gotsym = NULL;
+ g->local_gotno = MIPS_RESERVED_GOTNO;
+ g->assigned_gotno = MIPS_RESERVED_GOTNO;
+ if (elf_section_data (s) == NULL)
+ {
+ amt = sizeof (struct bfd_elf_section_data);
+ s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
+ if (elf_section_data (s) == NULL)
+ return false;
+ }
+ elf_section_data (s)->tdata = (PTR) g;
+ elf_section_data (s)->this_hdr.sh_flags
+ |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
+
+ return true;
+}
+
+/* Returns the .msym section for ABFD, creating it if it does not
+ already exist. Returns NULL to indicate error. */
+
+static asection *
+mips_elf_create_msym_section (abfd)
+ bfd *abfd;
+{
+ asection *s;
+
+ s = bfd_get_section_by_name (abfd, ".msym");
+ if (!s)
+ {
+ s = bfd_make_section (abfd, ".msym");
+ if (!s
+ || !bfd_set_section_flags (abfd, s,
+ SEC_ALLOC
+ | SEC_LOAD
+ | SEC_HAS_CONTENTS
+ | SEC_LINKER_CREATED
+ | SEC_READONLY)
+ || !bfd_set_section_alignment (abfd, s,
+ MIPS_ELF_LOG_FILE_ALIGN (abfd)))
+ return NULL;
+ }
+
+ return s;
+}
+
+/* Calculate the value produced by the RELOCATION (which comes from
+ the INPUT_BFD). The ADDEND is the addend to use for this
+ RELOCATION; RELOCATION->R_ADDEND is ignored.
+
+ The result of the relocation calculation is stored in VALUEP.
+ REQUIRE_JALXP indicates whether or not the opcode used with this
+ relocation must be JALX.
+
+ This function returns bfd_reloc_continue if the caller need take no
+ further action regarding this relocation, bfd_reloc_notsupported if
+ something goes dramatically wrong, bfd_reloc_overflow if an
+ overflow occurs, and bfd_reloc_ok to indicate success. */
+
+static bfd_reloc_status_type
+mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
+ relocation, addend, howto, local_syms,
+ local_sections, valuep, namep,
+ require_jalxp)
+ bfd *abfd;
+ bfd *input_bfd;
+ asection *input_section;
+ struct bfd_link_info *info;
+ const Elf_Internal_Rela *relocation;
+ bfd_vma addend;
+ reloc_howto_type *howto;
+ Elf_Internal_Sym *local_syms;
+ asection **local_sections;
+ bfd_vma *valuep;
+ const char **namep;
+ boolean *require_jalxp;
+{
+ /* The eventual value we will return. */
+ bfd_vma value;
+ /* The address of the symbol against which the relocation is
+ occurring. */
+ bfd_vma symbol = 0;
+ /* The final GP value to be used for the relocatable, executable, or
+ shared object file being produced. */
+ bfd_vma gp = MINUS_ONE;
+ /* The place (section offset or address) of the storage unit being
+ relocated. */
+ bfd_vma p;
+ /* The value of GP used to create the relocatable object. */
+ bfd_vma gp0 = MINUS_ONE;
+ /* The offset into the global offset table at which the address of
+ the relocation entry symbol, adjusted by the addend, resides
+ during execution. */
+ bfd_vma g = MINUS_ONE;
+ /* The section in which the symbol referenced by the relocation is
+ located. */
+ asection *sec = NULL;
+ struct mips_elf_link_hash_entry *h = NULL;
+ /* True if the symbol referred to by this relocation is a local
+ symbol. */
+ boolean local_p;
+ /* True if the symbol referred to by this relocation is "_gp_disp". */
+ boolean gp_disp_p = false;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t extsymoff;
+ unsigned long r_symndx;
+ int r_type;
+ /* True if overflow occurred during the calculation of the
+ relocation value. */
+ boolean overflowed_p;
+ /* True if this relocation refers to a MIPS16 function. */
+ boolean target_is_16_bit_code_p = false;
+
+ /* Parse the relocation. */
+ r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
+ r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
+ p = (input_section->output_section->vma
+ + input_section->output_offset
+ + relocation->r_offset);
+
+ /* Assume that there will be no overflow. */
+ overflowed_p = false;
+
+ /* Figure out whether or not the symbol is local, and get the offset
+ used in the array of hash table entries. */
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ local_p = mips_elf_local_relocation_p (input_bfd, relocation,
+ local_sections, false);
+ if (! elf_bad_symtab (input_bfd))
+ extsymoff = symtab_hdr->sh_info;
+ else
+ {
+ /* The symbol table does not follow the rule that local symbols
+ must come before globals. */
+ extsymoff = 0;
+ }
+
+ /* Figure out the value of the symbol. */
+ if (local_p)
+ {
+ Elf_Internal_Sym *sym;
+
+ sym = local_syms + r_symndx;
+ sec = local_sections[r_symndx];
+
+ symbol = sec->output_section->vma + sec->output_offset;
+ if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
+ symbol += sym->st_value;
+
+ /* MIPS16 text labels should be treated as odd. */
+ if (sym->st_other == STO_MIPS16)
+ ++symbol;
+
+ /* Record the name of this symbol, for our caller. */
+ *namep = bfd_elf_string_from_elf_section (input_bfd,
+ symtab_hdr->sh_link,
+ sym->st_name);
+ if (*namep == '\0')
+ *namep = bfd_section_name (input_bfd, sec);
+
+ target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
+ }
+ else
+ {
+ /* For global symbols we look up the symbol in the hash-table. */
+ h = ((struct mips_elf_link_hash_entry *)
+ elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
+ /* Find the real hash-table entry for this symbol. */
+ while (h->root.root.type == bfd_link_hash_indirect
+ || h->root.root.type == bfd_link_hash_warning)
+ h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
+
+ /* Record the name of this symbol, for our caller. */
+ *namep = h->root.root.root.string;
+
+ /* See if this is the special _gp_disp symbol. Note that such a
+ symbol must always be a global symbol. */
+ if (strcmp (h->root.root.root.string, "_gp_disp") == 0
+ && ! NEWABI_P (input_bfd))
+ {
+ /* Relocations against _gp_disp are permitted only with
+ R_MIPS_HI16 and R_MIPS_LO16 relocations. */
+ if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
+ return bfd_reloc_notsupported;
+
+ gp_disp_p = true;
+ }
+ /* If this symbol is defined, calculate its address. Note that
+ _gp_disp is a magic symbol, always implicitly defined by the
+ linker, so it's inappropriate to check to see whether or not
+ its defined. */
+ else if ((h->root.root.type == bfd_link_hash_defined
+ || h->root.root.type == bfd_link_hash_defweak)
+ && h->root.root.u.def.section)
+ {
+ sec = h->root.root.u.def.section;
+ if (sec->output_section)
+ symbol = (h->root.root.u.def.value
+ + sec->output_section->vma
+ + sec->output_offset);
+ else
+ symbol = h->root.root.u.def.value;
+ }
+ else if (h->root.root.type == bfd_link_hash_undefweak)
+ /* We allow relocations against undefined weak symbols, giving
+ it the value zero, so that you can undefined weak functions
+ and check to see if they exist by looking at their
+ addresses. */
+ symbol = 0;
+ else if (info->shared
+ && (!info->symbolic || info->allow_shlib_undefined)
+ && !info->no_undefined
+ && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
+ symbol = 0;
+ else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
+ strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
+ {
+ /* If this is a dynamic link, we should have created a
+ _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
+ in in _bfd_mips_elf_create_dynamic_sections.
+ Otherwise, we should define the symbol with a value of 0.
+ FIXME: It should probably get into the symbol table
+ somehow as well. */
+ BFD_ASSERT (! info->shared);
+ BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
+ symbol = 0;
+ }
+ else
+ {
+ if (! ((*info->callbacks->undefined_symbol)
+ (info, h->root.root.root.string, input_bfd,
+ input_section, relocation->r_offset,
+ (!info->shared || info->no_undefined
+ || ELF_ST_VISIBILITY (h->root.other)))))
+ return bfd_reloc_undefined;
+ symbol = 0;
+ }
+
+ target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
+ }
+
+ /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
+ need to redirect the call to the stub, unless we're already *in*
+ a stub. */
+ if (r_type != R_MIPS16_26 && !info->relocateable
+ && ((h != NULL && h->fn_stub != NULL)
+ || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
+ && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
+ && !mips_elf_stub_section_p (input_bfd, input_section))
+ {
+ /* This is a 32- or 64-bit call to a 16-bit function. We should
+ have already noticed that we were going to need the
+ stub. */
+ if (local_p)
+ sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
+ else
+ {
+ BFD_ASSERT (h->need_fn_stub);
+ sec = h->fn_stub;
+ }
+
+ symbol = sec->output_section->vma + sec->output_offset;
+ }
+ /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
+ need to redirect the call to the stub. */
+ else if (r_type == R_MIPS16_26 && !info->relocateable
+ && h != NULL
+ && (h->call_stub != NULL || h->call_fp_stub != NULL)
+ && !target_is_16_bit_code_p)
+ {
+ /* If both call_stub and call_fp_stub are defined, we can figure
+ out which one to use by seeing which one appears in the input
+ file. */
+ if (h->call_stub != NULL && h->call_fp_stub != NULL)
+ {
+ asection *o;
+
+ sec = NULL;
+ for (o = input_bfd->sections; o != NULL; o = o->next)
+ {
+ if (strncmp (bfd_get_section_name (input_bfd, o),
+ CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
+ {
+ sec = h->call_fp_stub;
+ break;
+ }
+ }
+ if (sec == NULL)
+ sec = h->call_stub;
+ }
+ else if (h->call_stub != NULL)
+ sec = h->call_stub;
+ else
+ sec = h->call_fp_stub;
+
+ BFD_ASSERT (sec->_raw_size > 0);
+ symbol = sec->output_section->vma + sec->output_offset;
+ }
+
+ /* Calls from 16-bit code to 32-bit code and vice versa require the
+ special jalx instruction. */
+ *require_jalxp = (!info->relocateable
+ && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
+ || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
+
+ local_p = mips_elf_local_relocation_p (input_bfd, relocation,
+ local_sections, true);
+
+ /* If we haven't already determined the GOT offset, or the GP value,
+ and we're going to need it, get it now. */
+ switch (r_type)
+ {
+ case R_MIPS_CALL16:
+ case R_MIPS_GOT16:
+ case R_MIPS_GOT_DISP:
+ case R_MIPS_GOT_HI16:
+ case R_MIPS_CALL_HI16:
+ case R_MIPS_GOT_LO16:
+ case R_MIPS_CALL_LO16:
+ /* Find the index into the GOT where this value is located. */
+ if (!local_p)
+ {
+ BFD_ASSERT (addend == 0);
+ g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
+ (struct elf_link_hash_entry *) h);
+ if (! elf_hash_table(info)->dynamic_sections_created
+ || (info->shared
+ && (info->symbolic || h->root.dynindx == -1)
+ && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
+ {
+ /* This is a static link or a -Bsymbolic link. The
+ symbol is defined locally, or was forced to be local.
+ We must initialize this entry in the GOT. */
+ bfd *tmpbfd = elf_hash_table (info)->dynobj;
+ asection *sgot = mips_elf_got_section(tmpbfd);
+ MIPS_ELF_PUT_WORD (tmpbfd, symbol + addend, sgot->contents + g);
+ }
+ }
+ else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
+ /* There's no need to create a local GOT entry here; the
+ calculation for a local GOT16 entry does not involve G. */
+ break;
+ else
+ {
+ g = mips_elf_local_got_index (abfd, info, symbol + addend);
+ if (g == MINUS_ONE)
+ return bfd_reloc_outofrange;
+ }
+
+ /* Convert GOT indices to actual offsets. */
+ g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
+ abfd, g);
+ break;
+
+ case R_MIPS_HI16:
+ case R_MIPS_LO16:
+ case R_MIPS16_GPREL:
+ case R_MIPS_GPREL16:
+ case R_MIPS_GPREL32:
+ case R_MIPS_LITERAL:
+ gp0 = _bfd_get_gp_value (input_bfd);
+ gp = _bfd_get_gp_value (abfd);
+ break;
+
+ default:
+ break;
+ }
+
+ /* Figure out what kind of relocation is being performed. */
+ switch (r_type)
+ {
+ case R_MIPS_NONE:
+ return bfd_reloc_continue;
+
+ case R_MIPS_16:
+ value = symbol + mips_elf_sign_extend (addend, 16);
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+
+ case R_MIPS_32:
+ case R_MIPS_REL32:
+ case R_MIPS_64:
+ if ((info->shared
+ || (elf_hash_table (info)->dynamic_sections_created
+ && h != NULL
+ && ((h->root.elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
+ && ((h->root.elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_REGULAR) == 0)))
+ && r_symndx != 0
+ && (input_section->flags & SEC_ALLOC) != 0)
+ {
+ /* If we're creating a shared library, or this relocation is
+ against a symbol in a shared library, then we can't know
+ where the symbol will end up. So, we create a relocation
+ record in the output, and leave the job up to the dynamic
+ linker. */
+ value = addend;
+ if (!mips_elf_create_dynamic_relocation (abfd,
+ info,
+ relocation,
+ h,
+ sec,
+ symbol,
+ &value,
+ input_section))
+ return bfd_reloc_undefined;
+ }
+ else
+ {
+ if (r_type != R_MIPS_REL32)
+ value = symbol + addend;
+ else
+ value = addend;
+ }
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_PC32:
+ case R_MIPS_PC64:
+ case R_MIPS_GNU_REL_LO16:
+ value = symbol + addend - p;
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_GNU_REL16_S2:
+ value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
+ overflowed_p = mips_elf_overflow_p (value, 18);
+ value = (value >> 2) & howto->dst_mask;
+ break;
+
+ case R_MIPS_GNU_REL_HI16:
+ /* Instead of subtracting 'p' here, we should be subtracting the
+ equivalent value for the LO part of the reloc, since the value
+ here is relative to that address. Because that's not easy to do,
+ we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
+ the comment there for more information. */
+ value = mips_elf_high (addend + symbol - p);
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS16_26:
+ /* The calculation for R_MIPS16_26 is just the same as for an
+ R_MIPS_26. It's only the storage of the relocated field into
+ the output file that's different. That's handled in
+ mips_elf_perform_relocation. So, we just fall through to the
+ R_MIPS_26 case here. */
+ case R_MIPS_26:
+ if (local_p)
+ value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
+ else
+ value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_HI16:
+ if (!gp_disp_p)
+ {
+ value = mips_elf_high (addend + symbol);
+ value &= howto->dst_mask;
+ }
+ else
+ {
+ value = mips_elf_high (addend + gp - p);
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ }
+ break;
+
+ case R_MIPS_LO16:
+ if (!gp_disp_p)
+ value = (symbol + addend) & howto->dst_mask;
+ else
+ {
+ value = addend + gp - p + 4;
+ /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
+ for overflow. But, on, say, Irix 5, relocations against
+ _gp_disp are normally generated from the .cpload
+ pseudo-op. It generates code that normally looks like
+ this:
+
+ lui $gp,%hi(_gp_disp)
+ addiu $gp,$gp,%lo(_gp_disp)
+ addu $gp,$gp,$t9
+
+ Here $t9 holds the address of the function being called,
+ as required by the MIPS ELF ABI. The R_MIPS_LO16
+ relocation can easily overflow in this situation, but the
+ R_MIPS_HI16 relocation will handle the overflow.
+ Therefore, we consider this a bug in the MIPS ABI, and do
+ not check for overflow here. */
+ }
+ break;
+
+ case R_MIPS_LITERAL:
+ /* Because we don't merge literal sections, we can handle this
+ just like R_MIPS_GPREL16. In the long run, we should merge
+ shared literals, and then we will need to additional work
+ here. */
+
+ /* Fall through. */
+
+ case R_MIPS16_GPREL:
+ /* The R_MIPS16_GPREL performs the same calculation as
+ R_MIPS_GPREL16, but stores the relocated bits in a different
+ order. We don't need to do anything special here; the
+ differences are handled in mips_elf_perform_relocation. */
+ case R_MIPS_GPREL16:
+ if (local_p)
+ value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
+ else
+ value = mips_elf_sign_extend (addend, 16) + symbol - gp;
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+
+ case R_MIPS_GOT16:
+ case R_MIPS_CALL16:
+ if (local_p)
+ {
+ boolean forced;
+
+ /* The special case is when the symbol is forced to be local. We
+ need the full address in the GOT since no R_MIPS_LO16 relocation
+ follows. */
+ forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
+ local_sections, false);
+ value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
+ if (value == MINUS_ONE)
+ return bfd_reloc_outofrange;
+ value
+ = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
+ abfd,
+ value);
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+ }
+
+ /* Fall through. */
+
+ case R_MIPS_GOT_DISP:
+ value = g;
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+
+ case R_MIPS_GPREL32:
+ value = (addend + symbol + gp0 - gp) & howto->dst_mask;
+ break;
+
+ case R_MIPS_PC16:
+ value = mips_elf_sign_extend (addend, 16) + symbol - p;
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ value = (bfd_vma) ((bfd_signed_vma) value / 4);
+ break;
+
+ case R_MIPS_GOT_HI16:
+ case R_MIPS_CALL_HI16:
+ /* We're allowed to handle these two relocations identically.
+ The dynamic linker is allowed to handle the CALL relocations
+ differently by creating a lazy evaluation stub. */
+ value = g;
+ value = mips_elf_high (value);
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_GOT_LO16:
+ case R_MIPS_CALL_LO16:
+ value = g & howto->dst_mask;
+ break;
+
+ case R_MIPS_GOT_PAGE:
+ value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
+ if (value == MINUS_ONE)
+ return bfd_reloc_outofrange;
+ value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
+ abfd,
+ value);
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+
+ case R_MIPS_GOT_OFST:
+ mips_elf_got_page (abfd, info, symbol + addend, &value);
+ overflowed_p = mips_elf_overflow_p (value, 16);
+ break;
+
+ case R_MIPS_SUB:
+ value = symbol - addend;
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_HIGHER:
+ value = mips_elf_higher (addend + symbol);
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_HIGHEST:
+ value = mips_elf_highest (addend + symbol);
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_SCN_DISP:
+ value = symbol + addend - sec->output_offset;
+ value &= howto->dst_mask;
+ break;
+
+ case R_MIPS_PJUMP:
+ case R_MIPS_JALR:
+ /* Both of these may be ignored. R_MIPS_JALR is an optimization
+ hint; we could improve performance by honoring that hint. */
+ return bfd_reloc_continue;
+
+ case R_MIPS_GNU_VTINHERIT:
+ case R_MIPS_GNU_VTENTRY:
+ /* We don't do anything with these at present. */
+ return bfd_reloc_continue;
+
+ default:
+ /* An unrecognized relocation type. */
+ return bfd_reloc_notsupported;
+ }
+
+ /* Store the VALUE for our caller. */
+ *valuep = value;
+ return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
+}
+
+/* Obtain the field relocated by RELOCATION. */
+
+static bfd_vma
+mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
+ reloc_howto_type *howto;
+ const Elf_Internal_Rela *relocation;
+ bfd *input_bfd;
+ bfd_byte *contents;
+{
+ bfd_vma x;
+ bfd_byte *location = contents + relocation->r_offset;
+
+ /* Obtain the bytes. */
+ x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
+
+ if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
+ || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
+ && bfd_little_endian (input_bfd))
+ /* The two 16-bit words will be reversed on a little-endian system.
+ See mips_elf_perform_relocation for more details. */
+ x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
+
+ return x;
+}
+
+/* It has been determined that the result of the RELOCATION is the
+ VALUE. Use HOWTO to place VALUE into the output file at the
+ appropriate position. The SECTION is the section to which the
+ relocation applies. If REQUIRE_JALX is true, then the opcode used
+ for the relocation must be either JAL or JALX, and it is
+ unconditionally converted to JALX.
+
+ Returns false if anything goes wrong. */
+
+static boolean
+mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
+ input_section, contents, require_jalx)
+ struct bfd_link_info *info;
+ reloc_howto_type *howto;
+ const Elf_Internal_Rela *relocation;
+ bfd_vma value;
+ bfd *input_bfd;
+ asection *input_section;
+ bfd_byte *contents;
+ boolean require_jalx;
+{
+ bfd_vma x;
+ bfd_byte *location;
+ int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
+
+ /* Figure out where the relocation is occurring. */
+ location = contents + relocation->r_offset;
+
+ /* Obtain the current value. */
+ x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
+
+ /* Clear the field we are setting. */
+ x &= ~howto->dst_mask;
+
+ /* If this is the R_MIPS16_26 relocation, we must store the
+ value in a funny way. */
+ if (r_type == R_MIPS16_26)
+ {
+ /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
+ Most mips16 instructions are 16 bits, but these instructions
+ are 32 bits.
+
+ The format of these instructions is:
+
+ +--------------+--------------------------------+
+ ! JALX ! X! Imm 20:16 ! Imm 25:21 !
+ +--------------+--------------------------------+
+ ! Immediate 15:0 !
+ +-----------------------------------------------+
+
+ JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
+ Note that the immediate value in the first word is swapped.
+
+ When producing a relocateable object file, R_MIPS16_26 is
+ handled mostly like R_MIPS_26. In particular, the addend is
+ stored as a straight 26-bit value in a 32-bit instruction.
+ (gas makes life simpler for itself by never adjusting a
+ R_MIPS16_26 reloc to be against a section, so the addend is
+ always zero). However, the 32 bit instruction is stored as 2
+ 16-bit values, rather than a single 32-bit value. In a
+ big-endian file, the result is the same; in a little-endian
+ file, the two 16-bit halves of the 32 bit value are swapped.
+ This is so that a disassembler can recognize the jal
+ instruction.
+
+ When doing a final link, R_MIPS16_26 is treated as a 32 bit
+ instruction stored as two 16-bit values. The addend A is the
+ contents of the targ26 field. The calculation is the same as
+ R_MIPS_26. When storing the calculated value, reorder the
+ immediate value as shown above, and don't forget to store the
+ value as two 16-bit values.
+
+ To put it in MIPS ABI terms, the relocation field is T-targ26-16,
+ defined as
+
+ big-endian:
+ +--------+----------------------+
+ | | |
+ | | targ26-16 |
+ |31 26|25 0|
+ +--------+----------------------+
+
+ little-endian:
+ +----------+------+-------------+
+ | | | |
+ | sub1 | | sub2 |
+ |0 9|10 15|16 31|
+ +----------+--------------------+
+ where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
+ ((sub1 << 16) | sub2)).
+
+ When producing a relocateable object file, the calculation is
+ (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
+ When producing a fully linked file, the calculation is
+ let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
+ ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
+
+ if (!info->relocateable)
+ /* Shuffle the bits according to the formula above. */
+ value = (((value & 0x1f0000) << 5)
+ | ((value & 0x3e00000) >> 5)
+ | (value & 0xffff));
+ }
+ else if (r_type == R_MIPS16_GPREL)
+ {
+ /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
+ mode. A typical instruction will have a format like this:
+
+ +--------------+--------------------------------+
+ ! EXTEND ! Imm 10:5 ! Imm 15:11 !
+ +--------------+--------------------------------+
+ ! Major ! rx ! ry ! Imm 4:0 !
+ +--------------+--------------------------------+
+
+ EXTEND is the five bit value 11110. Major is the instruction
+ opcode.
+
+ This is handled exactly like R_MIPS_GPREL16, except that the
+ addend is retrieved and stored as shown in this diagram; that
+ is, the Imm fields above replace the V-rel16 field.
+
+ All we need to do here is shuffle the bits appropriately. As
+ above, the two 16-bit halves must be swapped on a
+ little-endian system. */
+ value = (((value & 0x7e0) << 16)
+ | ((value & 0xf800) << 5)
+ | (value & 0x1f));
+ }
+
+ /* Set the field. */
+ x |= (value & howto->dst_mask);
+
+ /* If required, turn JAL into JALX. */
+ if (require_jalx)
+ {
+ boolean ok;
+ bfd_vma opcode = x >> 26;
+ bfd_vma jalx_opcode;
+
+ /* Check to see if the opcode is already JAL or JALX. */
+ if (r_type == R_MIPS16_26)
+ {
+ ok = ((opcode == 0x6) || (opcode == 0x7));
+ jalx_opcode = 0x7;
+ }
+ else
+ {
+ ok = ((opcode == 0x3) || (opcode == 0x1d));
+ jalx_opcode = 0x1d;
+ }
+
+ /* If the opcode is not JAL or JALX, there's a problem. */
+ if (!ok)
+ {
+ (*_bfd_error_handler)
+ (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
+ bfd_archive_filename (input_bfd),
+ input_section->name,
+ (unsigned long) relocation->r_offset);
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+
+ /* Make this the JALX opcode. */
+ x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
+ }
+
+ /* Swap the high- and low-order 16 bits on little-endian systems
+ when doing a MIPS16 relocation. */
+ if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
+ && bfd_little_endian (input_bfd))
+ x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
+
+ /* Put the value into the output. */
+ bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
+ return true;
+}
+
+/* Returns true if SECTION is a MIPS16 stub section. */
+
+static boolean
+mips_elf_stub_section_p (abfd, section)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ asection *section;
+{
+ const char *name = bfd_get_section_name (abfd, section);
+
+ return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
+ || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
+ || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
+}
+
+/* Add room for N relocations to the .rel.dyn section in ABFD. */
+
+static void
+mips_elf_allocate_dynamic_relocations (abfd, n)
+ bfd *abfd;
+ unsigned int n;
+{
+ asection *s;
+
+ s = bfd_get_section_by_name (abfd, ".rel.dyn");
+ BFD_ASSERT (s != NULL);
+
+ if (s->_raw_size == 0)
+ {
+ /* Make room for a null element. */
+ s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
+ ++s->reloc_count;
+ }
+ s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
+}
+
+/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
+ is the original relocation, which is now being transformed into a
+ dynamic relocation. The ADDENDP is adjusted if necessary; the
+ caller should store the result in place of the original addend. */
+
+static boolean
+mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
+ symbol, addendp, input_section)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ const Elf_Internal_Rela *rel;
+ struct mips_elf_link_hash_entry *h;
+ asection *sec;
+ bfd_vma symbol;
+ bfd_vma *addendp;
+ asection *input_section;
+{
+ Elf_Internal_Rel outrel[3];
+ boolean skip;
+ asection *sreloc;
+ bfd *dynobj;
+ int r_type;
+
+ r_type = ELF_R_TYPE (output_bfd, rel->r_info);
+ dynobj = elf_hash_table (info)->dynobj;
+ sreloc
+ = bfd_get_section_by_name (dynobj, ".rel.dyn");
+ BFD_ASSERT (sreloc != NULL);
+ BFD_ASSERT (sreloc->contents != NULL);
+ BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
+ < sreloc->_raw_size);
+
+ skip = false;
+ outrel[0].r_offset =
+ _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
+ outrel[1].r_offset =
+ _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
+ outrel[2].r_offset =
+ _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
+
+#if 0
+ /* We begin by assuming that the offset for the dynamic relocation
+ is the same as for the original relocation. We'll adjust this
+ later to reflect the correct output offsets. */
+ if (elf_section_data (input_section)->sec_info_type != ELF_INFO_TYPE_STABS)
+ {
+ outrel[1].r_offset = rel[1].r_offset;
+ outrel[2].r_offset = rel[2].r_offset;
+ }
+ else
+ {
+ /* Except that in a stab section things are more complex.
+ Because we compress stab information, the offset given in the
+ relocation may not be the one we want; we must let the stabs
+ machinery tell us the offset. */
+ outrel[1].r_offset = outrel[0].r_offset;
+ outrel[2].r_offset = outrel[0].r_offset;
+ /* If we didn't need the relocation at all, this value will be
+ -1. */
+ if (outrel[0].r_offset == (bfd_vma) -1)
+ skip = true;
+ }
+#endif
+
+ if (outrel[0].r_offset == (bfd_vma) -1)
+ skip = true;
+ /* FIXME: For -2 runtime relocation needs to be skipped, but
+ properly resolved statically and installed. */
+ BFD_ASSERT (outrel[0].r_offset != (bfd_vma) -2);
+
+ /* If we've decided to skip this relocation, just output an empty
+ record. Note that R_MIPS_NONE == 0, so that this call to memset
+ is a way of setting R_TYPE to R_MIPS_NONE. */
+ if (skip)
+ memset (outrel, 0, sizeof (Elf_Internal_Rel) * 3);
+ else
+ {
+ long indx;
+ bfd_vma section_offset;
+
+ /* We must now calculate the dynamic symbol table index to use
+ in the relocation. */
+ if (h != NULL
+ && (! info->symbolic || (h->root.elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_REGULAR) == 0))
+ {
+ indx = h->root.dynindx;
+ /* h->root.dynindx may be -1 if this symbol was marked to
+ become local. */
+ if (indx == -1)
+ indx = 0;
+ }
+ else
+ {
+ if (sec != NULL && bfd_is_abs_section (sec))
+ indx = 0;
+ else if (sec == NULL || sec->owner == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ else
+ {
+ indx = elf_section_data (sec->output_section)->dynindx;
+ if (indx == 0)
+ abort ();
+ }
+
+ /* Figure out how far the target of the relocation is from
+ the beginning of its section. */
+ section_offset = symbol - sec->output_section->vma;
+ /* The relocation we're building is section-relative.
+ Therefore, the original addend must be adjusted by the
+ section offset. */
+ *addendp += section_offset;
+ /* Now, the relocation is just against the section. */
+ symbol = sec->output_section->vma;
+ }
+
+ /* If the relocation was previously an absolute relocation and
+ this symbol will not be referred to by the relocation, we must
+ adjust it by the value we give it in the dynamic symbol table.
+ Otherwise leave the job up to the dynamic linker. */
+ if (!indx && r_type != R_MIPS_REL32)
+ *addendp += symbol;
+
+ /* The relocation is always an REL32 relocation because we don't
+ know where the shared library will wind up at load-time. */
+ outrel[0].r_info = ELF_R_INFO (output_bfd, indx, R_MIPS_REL32);
+
+ /* Adjust the output offset of the relocation to reference the
+ correct location in the output file. */
+ outrel[0].r_offset += (input_section->output_section->vma
+ + input_section->output_offset);
+ outrel[1].r_offset += (input_section->output_section->vma
+ + input_section->output_offset);
+ outrel[2].r_offset += (input_section->output_section->vma
+ + input_section->output_offset);
+ }
+
+ /* Put the relocation back out. We have to use the special
+ relocation outputter in the 64-bit case since the 64-bit
+ relocation format is non-standard. */
+ if (ABI_64_P (output_bfd))
+ {
+ (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
+ (output_bfd, &outrel[0],
+ (sreloc->contents
+ + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
+ }
+ else
+ bfd_elf32_swap_reloc_out (output_bfd, &outrel[0],
+ (((Elf32_External_Rel *)
+ sreloc->contents)
+ + sreloc->reloc_count));
+
+ /* Record the index of the first relocation referencing H. This
+ information is later emitted in the .msym section. */
+ if (h != NULL
+ && (h->min_dyn_reloc_index == 0
+ || sreloc->reloc_count < h->min_dyn_reloc_index))
+ h->min_dyn_reloc_index = sreloc->reloc_count;
+
+ /* We've now added another relocation. */
+ ++sreloc->reloc_count;
+
+ /* Make sure the output section is writable. The dynamic linker
+ will be writing to it. */
+ elf_section_data (input_section->output_section)->this_hdr.sh_flags
+ |= SHF_WRITE;
+
+ /* On IRIX5, make an entry of compact relocation info. */
+ if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
+ {
+ asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
+ bfd_byte *cr;
+
+ if (scpt)
+ {
+ Elf32_crinfo cptrel;
+
+ mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
+ cptrel.vaddr = (rel->r_offset
+ + input_section->output_section->vma
+ + input_section->output_offset);
+ if (r_type == R_MIPS_REL32)
+ mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
+ else
+ mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
+ mips_elf_set_cr_dist2to (cptrel, 0);
+ cptrel.konst = *addendp;
+
+ cr = (scpt->contents
+ + sizeof (Elf32_External_compact_rel));
+ bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
+ ((Elf32_External_crinfo *) cr
+ + scpt->reloc_count));
+ ++scpt->reloc_count;
+ }
+ }
+
+ return true;
+}
+
+/* Return the ISA for a MIPS e_flags value. */
+
+static INLINE int
+elf_mips_isa (flags)
+ flagword flags;
+{
+ switch (flags & EF_MIPS_ARCH)
+ {
+ case E_MIPS_ARCH_1:
+ return 1;
+ case E_MIPS_ARCH_2:
+ return 2;
+ case E_MIPS_ARCH_3:
+ return 3;
+ case E_MIPS_ARCH_4:
+ return 4;
+ case E_MIPS_ARCH_5:
+ return 5;
+ case E_MIPS_ARCH_32:
+ return 32;
+ case E_MIPS_ARCH_64:
+ return 64;
+ }
+ return 4;
+}
+
+/* Return the MACH for a MIPS e_flags value. */
+
+unsigned long
+_bfd_elf_mips_mach (flags)
+ flagword flags;
+{
+ switch (flags & EF_MIPS_MACH)
+ {
+ case E_MIPS_MACH_3900:
+ return bfd_mach_mips3900;
+
+ case E_MIPS_MACH_4010:
+ return bfd_mach_mips4010;
+
+ case E_MIPS_MACH_4100:
+ return bfd_mach_mips4100;
+
+ case E_MIPS_MACH_4111:
+ return bfd_mach_mips4111;
+
+ case E_MIPS_MACH_4650:
+ return bfd_mach_mips4650;
+
+ case E_MIPS_MACH_SB1:
+ return bfd_mach_mips_sb1;
+
+ default:
+ switch (flags & EF_MIPS_ARCH)
+ {
+ default:
+ case E_MIPS_ARCH_1:
+ return bfd_mach_mips3000;
+ break;
+
+ case E_MIPS_ARCH_2:
+ return bfd_mach_mips6000;
+ break;
+
+ case E_MIPS_ARCH_3:
+ return bfd_mach_mips4000;
+ break;
+
+ case E_MIPS_ARCH_4:
+ return bfd_mach_mips8000;
+ break;
+
+ case E_MIPS_ARCH_5:
+ return bfd_mach_mips5;
+ break;
+
+ case E_MIPS_ARCH_32:
+ return bfd_mach_mipsisa32;
+ break;
+
+ case E_MIPS_ARCH_64:
+ return bfd_mach_mipsisa64;
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Return printable name for ABI. */
+
+static INLINE char *
+elf_mips_abi_name (abfd)
+ bfd *abfd;
+{
+ flagword flags;
+
+ flags = elf_elfheader (abfd)->e_flags;
+ switch (flags & EF_MIPS_ABI)
+ {
+ case 0:
+ if (ABI_N32_P (abfd))
+ return "N32";
+ else if (ABI_64_P (abfd))
+ return "64";
+ else
+ return "none";
+ case E_MIPS_ABI_O32:
+ return "O32";
+ case E_MIPS_ABI_O64:
+ return "O64";
+ case E_MIPS_ABI_EABI32:
+ return "EABI32";
+ case E_MIPS_ABI_EABI64:
+ return "EABI64";
+ default:
+ return "unknown abi";
+ }
+}
+
+/* MIPS ELF uses two common sections. One is the usual one, and the
+ other is for small objects. All the small objects are kept
+ together, and then referenced via the gp pointer, which yields
+ faster assembler code. This is what we use for the small common
+ section. This approach is copied from ecoff.c. */
+static asection mips_elf_scom_section;
+static asymbol mips_elf_scom_symbol;
+static asymbol *mips_elf_scom_symbol_ptr;
+
+/* MIPS ELF also uses an acommon section, which represents an
+ allocated common symbol which may be overridden by a
+ definition in a shared library. */
+static asection mips_elf_acom_section;
+static asymbol mips_elf_acom_symbol;
+static asymbol *mips_elf_acom_symbol_ptr;
+
+/* Handle the special MIPS section numbers that a symbol may use.
+ This is used for both the 32-bit and the 64-bit ABI. */
+
+void
+_bfd_mips_elf_symbol_processing (abfd, asym)
+ bfd *abfd;
+ asymbol *asym;
+{
+ elf_symbol_type *elfsym;
+
+ elfsym = (elf_symbol_type *) asym;
+ switch (elfsym->internal_elf_sym.st_shndx)
+ {
+ case SHN_MIPS_ACOMMON:
+ /* This section is used in a dynamically linked executable file.
+ It is an allocated common section. The dynamic linker can
+ either resolve these symbols to something in a shared
+ library, or it can just leave them here. For our purposes,
+ we can consider these symbols to be in a new section. */
+ if (mips_elf_acom_section.name == NULL)
+ {
+ /* Initialize the acommon section. */
+ mips_elf_acom_section.name = ".acommon";
+ mips_elf_acom_section.flags = SEC_ALLOC;
+ mips_elf_acom_section.output_section = &mips_elf_acom_section;
+ mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
+ mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
+ mips_elf_acom_symbol.name = ".acommon";
+ mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
+ mips_elf_acom_symbol.section = &mips_elf_acom_section;
+ mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
+ }
+ asym->section = &mips_elf_acom_section;
+ break;
+
+ case SHN_COMMON:
+ /* Common symbols less than the GP size are automatically
+ treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
+ if (asym->value > elf_gp_size (abfd)
+ || IRIX_COMPAT (abfd) == ict_irix6)
+ break;
+ /* Fall through. */
+ case SHN_MIPS_SCOMMON:
+ if (mips_elf_scom_section.name == NULL)
+ {
+ /* Initialize the small common section. */
+ mips_elf_scom_section.name = ".scommon";
+ mips_elf_scom_section.flags = SEC_IS_COMMON;
+ mips_elf_scom_section.output_section = &mips_elf_scom_section;
+ mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
+ mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
+ mips_elf_scom_symbol.name = ".scommon";
+ mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
+ mips_elf_scom_symbol.section = &mips_elf_scom_section;
+ mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
+ }
+ asym->section = &mips_elf_scom_section;
+ asym->value = elfsym->internal_elf_sym.st_size;
+ break;
+
+ case SHN_MIPS_SUNDEFINED:
+ asym->section = bfd_und_section_ptr;
+ break;
+
+#if 0 /* for SGI_COMPAT */
+ case SHN_MIPS_TEXT:
+ asym->section = mips_elf_text_section_ptr;
+ break;
+
+ case SHN_MIPS_DATA:
+ asym->section = mips_elf_data_section_ptr;
+ break;
+#endif
+ }
+}
+
+/* Work over a section just before writing it out. This routine is
+ used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
+ sections that need the SHF_MIPS_GPREL flag by name; there has to be
+ a better way. */
+
+boolean
+_bfd_mips_elf_section_processing (abfd, hdr)
+ bfd *abfd;
+ Elf_Internal_Shdr *hdr;
+{
+ if (hdr->sh_type == SHT_MIPS_REGINFO
+ && hdr->sh_size > 0)
+ {
+ bfd_byte buf[4];
+
+ BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
+ BFD_ASSERT (hdr->contents == NULL);
+
+ if (bfd_seek (abfd,
+ hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
+ SEEK_SET) != 0)
+ return false;
+ H_PUT_32 (abfd, elf_gp (abfd), buf);
+ if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
+ return false;
+ }
+
+ if (hdr->sh_type == SHT_MIPS_OPTIONS
+ && hdr->bfd_section != NULL
+ && elf_section_data (hdr->bfd_section) != NULL
+ && elf_section_data (hdr->bfd_section)->tdata != NULL)
+ {
+ bfd_byte *contents, *l, *lend;
+
+ /* We stored the section contents in the elf_section_data tdata
+ field in the set_section_contents routine. We save the
+ section contents so that we don't have to read them again.
+ At this point we know that elf_gp is set, so we can look
+ through the section contents to see if there is an
+ ODK_REGINFO structure. */
+
+ contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
+ l = contents;
+ lend = contents + hdr->sh_size;
+ while (l + sizeof (Elf_External_Options) <= lend)
+ {
+ Elf_Internal_Options intopt;
+
+ bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
+ &intopt);
+ if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
+ {
+ bfd_byte buf[8];
+
+ if (bfd_seek (abfd,
+ (hdr->sh_offset
+ + (l - contents)
+ + sizeof (Elf_External_Options)
+ + (sizeof (Elf64_External_RegInfo) - 8)),
+ SEEK_SET) != 0)
+ return false;
+ H_PUT_64 (abfd, elf_gp (abfd), buf);
+ if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
+ return false;
+ }
+ else if (intopt.kind == ODK_REGINFO)
+ {
+ bfd_byte buf[4];
+
+ if (bfd_seek (abfd,
+ (hdr->sh_offset
+ + (l - contents)
+ + sizeof (Elf_External_Options)
+ + (sizeof (Elf32_External_RegInfo) - 4)),
+ SEEK_SET) != 0)
+ return false;
+ H_PUT_32 (abfd, elf_gp (abfd), buf);
+ if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
+ return false;
+ }
+ l += intopt.size;
+ }
+ }
+
+ if (hdr->bfd_section != NULL)
+ {
+ const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
+
+ if (strcmp (name, ".sdata") == 0
+ || strcmp (name, ".lit8") == 0
+ || strcmp (name, ".lit4") == 0)
+ {
+ hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
+ hdr->sh_type = SHT_PROGBITS;
+ }
+ else if (strcmp (name, ".sbss") == 0)
+ {
+ hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
+ hdr->sh_type = SHT_NOBITS;
+ }
+ else if (strcmp (name, ".srdata") == 0)
+ {
+ hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
+ hdr->sh_type = SHT_PROGBITS;
+ }
+ else if (strcmp (name, ".compact_rel") == 0)
+ {
+ hdr->sh_flags = 0;
+ hdr->sh_type = SHT_PROGBITS;
+ }
+ else if (strcmp (name, ".rtproc") == 0)
+ {
+ if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
+ {
+ unsigned int adjust;
+
+ adjust = hdr->sh_size % hdr->sh_addralign;
+ if (adjust != 0)
+ hdr->sh_size += hdr->sh_addralign - adjust;
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Handle a MIPS specific section when reading an object file. This
+ is called when elfcode.h finds a section with an unknown type.
+ This routine supports both the 32-bit and 64-bit ELF ABI.
+
+ FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
+ how to. */
+
+boolean
+_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
+ bfd *abfd;
+ Elf_Internal_Shdr *hdr;
+ char *name;
+{
+ flagword flags = 0;
+
+ /* There ought to be a place to keep ELF backend specific flags, but
+ at the moment there isn't one. We just keep track of the
+ sections by their name, instead. Fortunately, the ABI gives
+ suggested names for all the MIPS specific sections, so we will
+ probably get away with this. */
+ switch (hdr->sh_type)
+ {
+ case SHT_MIPS_LIBLIST:
+ if (strcmp (name, ".liblist") != 0)
+ return false;
+ break;
+ case SHT_MIPS_MSYM:
+ if (strcmp (name, ".msym") != 0)
+ return false;
+ break;
+ case SHT_MIPS_CONFLICT:
+ if (strcmp (name, ".conflict") != 0)
+ return false;
+ break;
+ case SHT_MIPS_GPTAB:
+ if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
+ return false;
+ break;
+ case SHT_MIPS_UCODE:
+ if (strcmp (name, ".ucode") != 0)
+ return false;
+ break;
+ case SHT_MIPS_DEBUG:
+ if (strcmp (name, ".mdebug") != 0)
+ return false;
+ flags = SEC_DEBUGGING;
+ break;
+ case SHT_MIPS_REGINFO:
+ if (strcmp (name, ".reginfo") != 0
+ || hdr->sh_size != sizeof (Elf32_External_RegInfo))
+ return false;
+ flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
+ break;
+ case SHT_MIPS_IFACE:
+ if (strcmp (name, ".MIPS.interfaces") != 0)
+ return false;
+ break;
+ case SHT_MIPS_CONTENT:
+ if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
+ return false;
+ break;
+ case SHT_MIPS_OPTIONS:
+ if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
+ return false;
+ break;
+ case SHT_MIPS_DWARF:
+ if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
+ return false;
+ break;
+ case SHT_MIPS_SYMBOL_LIB:
+ if (strcmp (name, ".MIPS.symlib") != 0)
+ return false;
+ break;
+ case SHT_MIPS_EVENTS:
+ if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
+ && strncmp (name, ".MIPS.post_rel",
+ sizeof ".MIPS.post_rel" - 1) != 0)
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
+ return false;
+
+ if (flags)
+ {
+ if (! bfd_set_section_flags (abfd, hdr->bfd_section,
+ (bfd_get_section_flags (abfd,
+ hdr->bfd_section)
+ | flags)))
+ return false;
+ }
+
+ /* FIXME: We should record sh_info for a .gptab section. */
+
+ /* For a .reginfo section, set the gp value in the tdata information
+ from the contents of this section. We need the gp value while
+ processing relocs, so we just get it now. The .reginfo section
+ is not used in the 64-bit MIPS ELF ABI. */
+ if (hdr->sh_type == SHT_MIPS_REGINFO)
+ {
+ Elf32_External_RegInfo ext;
+ Elf32_RegInfo s;
+
+ if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
+ (file_ptr) 0,
+ (bfd_size_type) sizeof ext))
+ return false;
+ bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
+ elf_gp (abfd) = s.ri_gp_value;
+ }
+
+ /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
+ set the gp value based on what we find. We may see both
+ SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
+ they should agree. */
+ if (hdr->sh_type == SHT_MIPS_OPTIONS)
+ {
+ bfd_byte *contents, *l, *lend;
+
+ contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
+ if (contents == NULL)
+ return false;
+ if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
+ (file_ptr) 0, hdr->sh_size))
+ {
+ free (contents);
+ return false;
+ }
+ l = contents;
+ lend = contents + hdr->sh_size;
+ while (l + sizeof (Elf_External_Options) <= lend)
+ {
+ Elf_Internal_Options intopt;
+
+ bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
+ &intopt);
+ if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
+ {
+ Elf64_Internal_RegInfo intreg;
+
+ bfd_mips_elf64_swap_reginfo_in
+ (abfd,
+ ((Elf64_External_RegInfo *)
+ (l + sizeof (Elf_External_Options))),
+ &intreg);
+ elf_gp (abfd) = intreg.ri_gp_value;
+ }
+ else if (intopt.kind == ODK_REGINFO)
+ {
+ Elf32_RegInfo intreg;
+
+ bfd_mips_elf32_swap_reginfo_in
+ (abfd,
+ ((Elf32_External_RegInfo *)
+ (l + sizeof (Elf_External_Options))),
+ &intreg);
+ elf_gp (abfd) = intreg.ri_gp_value;
+ }
+ l += intopt.size;
+ }
+ free (contents);
+ }
+
+ return true;
+}
+
+/* Set the correct type for a MIPS ELF section. We do this by the
+ section name, which is a hack, but ought to work. This routine is
+ used by both the 32-bit and the 64-bit ABI. */
+
+boolean
+_bfd_mips_elf_fake_sections (abfd, hdr, sec)
+ bfd *abfd;
+ Elf32_Internal_Shdr *hdr;
+ asection *sec;
+{
+ register const char *name;
+
+ name = bfd_get_section_name (abfd, sec);
+
+ if (strcmp (name, ".liblist") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_LIBLIST;
+ hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
+ /* The sh_link field is set in final_write_processing. */
+ }
+ else if (strcmp (name, ".conflict") == 0)
+ hdr->sh_type = SHT_MIPS_CONFLICT;
+ else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
+ {
+ hdr->sh_type = SHT_MIPS_GPTAB;
+ hdr->sh_entsize = sizeof (Elf32_External_gptab);
+ /* The sh_info field is set in final_write_processing. */
+ }
+ else if (strcmp (name, ".ucode") == 0)
+ hdr->sh_type = SHT_MIPS_UCODE;
+ else if (strcmp (name, ".mdebug") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_DEBUG;
+ /* In a shared object on Irix 5.3, the .mdebug section has an
+ entsize of 0. FIXME: Does this matter? */
+ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
+ hdr->sh_entsize = 0;
+ else
+ hdr->sh_entsize = 1;
+ }
+ else if (strcmp (name, ".reginfo") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_REGINFO;
+ /* In a shared object on Irix 5.3, the .reginfo section has an
+ entsize of 0x18. FIXME: Does this matter? */
+ if (SGI_COMPAT (abfd))
+ {
+ if ((abfd->flags & DYNAMIC) != 0)
+ hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
+ else
+ hdr->sh_entsize = 1;
+ }
+ else
+ hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
+ }
+ else if (SGI_COMPAT (abfd)
+ && (strcmp (name, ".hash") == 0
+ || strcmp (name, ".dynamic") == 0
+ || strcmp (name, ".dynstr") == 0))
+ {
+ if (SGI_COMPAT (abfd))
+ hdr->sh_entsize = 0;
+#if 0
+ /* This isn't how the Irix 6 linker behaves. */
+ hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
+#endif
+ }
+ else if (strcmp (name, ".got") == 0
+ || strcmp (name, ".srdata") == 0
+ || strcmp (name, ".sdata") == 0
+ || strcmp (name, ".sbss") == 0
+ || strcmp (name, ".lit4") == 0
+ || strcmp (name, ".lit8") == 0)
+ hdr->sh_flags |= SHF_MIPS_GPREL;
+ else if (strcmp (name, ".MIPS.interfaces") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_IFACE;
+ hdr->sh_flags |= SHF_MIPS_NOSTRIP;
+ }
+ else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
+ {
+ hdr->sh_type = SHT_MIPS_CONTENT;
+ hdr->sh_flags |= SHF_MIPS_NOSTRIP;
+ /* The sh_info field is set in final_write_processing. */
+ }
+ else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
+ {
+ hdr->sh_type = SHT_MIPS_OPTIONS;
+ hdr->sh_entsize = 1;
+ hdr->sh_flags |= SHF_MIPS_NOSTRIP;
+ }
+ else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
+ hdr->sh_type = SHT_MIPS_DWARF;
+ else if (strcmp (name, ".MIPS.symlib") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
+ /* The sh_link and sh_info fields are set in
+ final_write_processing. */
+ }
+ else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
+ || strncmp (name, ".MIPS.post_rel",
+ sizeof ".MIPS.post_rel" - 1) == 0)
+ {
+ hdr->sh_type = SHT_MIPS_EVENTS;
+ hdr->sh_flags |= SHF_MIPS_NOSTRIP;
+ /* The sh_link field is set in final_write_processing. */
+ }
+ else if (strcmp (name, ".msym") == 0)
+ {
+ hdr->sh_type = SHT_MIPS_MSYM;
+ hdr->sh_flags |= SHF_ALLOC;
+ hdr->sh_entsize = 8;
+ }
+
+ /* The generic elf_fake_sections will set up REL_HDR using the
+ default kind of relocations. But, we may actually need both
+ kinds of relocations, so we set up the second header here.
+
+ This is not necessary for the O32 ABI since that only uses Elf32_Rel
+ relocations (cf. System V ABI, MIPS RISC Processor Supplement,
+ 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
+ of the resulting empty .rela.<section> sections starts with
+ sh_offset == object size, and ld doesn't allow that. While the check
+ is arguably bogus for empty or SHT_NOBITS sections, it can easily be
+ avoided by not emitting those useless sections in the first place. */
+ if (IRIX_COMPAT (abfd) != ict_irix5 && (sec->flags & SEC_RELOC) != 0)
+ {
+ struct bfd_elf_section_data *esd;
+ bfd_size_type amt = sizeof (Elf_Internal_Shdr);
+
+ esd = elf_section_data (sec);
+ BFD_ASSERT (esd->rel_hdr2 == NULL);
+ esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
+ if (!esd->rel_hdr2)
+ return false;
+ _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
+ !elf_section_data (sec)->use_rela_p);
+ }
+
+ return true;
+}
+
+/* Given a BFD section, try to locate the corresponding ELF section
+ index. This is used by both the 32-bit and the 64-bit ABI.
+ Actually, it's not clear to me that the 64-bit ABI supports these,
+ but for non-PIC objects we will certainly want support for at least
+ the .scommon section. */
+
+boolean
+_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ asection *sec;
+ int *retval;
+{
+ if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
+ {
+ *retval = SHN_MIPS_SCOMMON;
+ return true;
+ }
+ if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
+ {
+ *retval = SHN_MIPS_ACOMMON;
+ return true;
+ }
+ return false;
+}
+
+/* Hook called by the linker routine which adds symbols from an object
+ file. We must handle the special MIPS section numbers here. */
+
+boolean
+_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ const Elf_Internal_Sym *sym;
+ const char **namep;
+ flagword *flagsp ATTRIBUTE_UNUSED;
+ asection **secp;
+ bfd_vma *valp;
+{
+ if (SGI_COMPAT (abfd)
+ && (abfd->flags & DYNAMIC) != 0
+ && strcmp (*namep, "_rld_new_interface") == 0)
+ {
+ /* Skip Irix 5 rld entry name. */
+ *namep = NULL;
+ return true;
+ }
+
+ switch (sym->st_shndx)
+ {
+ case SHN_COMMON:
+ /* Common symbols less than the GP size are automatically
+ treated as SHN_MIPS_SCOMMON symbols. */
+ if (sym->st_size > elf_gp_size (abfd)
+ || IRIX_COMPAT (abfd) == ict_irix6)
+ break;
+ /* Fall through. */
+ case SHN_MIPS_SCOMMON:
+ *secp = bfd_make_section_old_way (abfd, ".scommon");
+ (*secp)->flags |= SEC_IS_COMMON;
+ *valp = sym->st_size;
+ break;
+
+ case SHN_MIPS_TEXT:
+ /* This section is used in a shared object. */
+ if (elf_tdata (abfd)->elf_text_section == NULL)
+ {
+ asymbol *elf_text_symbol;
+ asection *elf_text_section;
+ bfd_size_type amt = sizeof (asection);
+
+ elf_text_section = bfd_zalloc (abfd, amt);
+ if (elf_text_section == NULL)
+ return false;
+
+ amt = sizeof (asymbol);
+ elf_text_symbol = bfd_zalloc (abfd, amt);
+ if (elf_text_symbol == NULL)
+ return false;
+
+ /* Initialize the section. */
+
+ elf_tdata (abfd)->elf_text_section = elf_text_section;
+ elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
+
+ elf_text_section->symbol = elf_text_symbol;
+ elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
+
+ elf_text_section->name = ".text";
+ elf_text_section->flags = SEC_NO_FLAGS;
+ elf_text_section->output_section = NULL;
+ elf_text_section->owner = abfd;
+ elf_text_symbol->name = ".text";
+ elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
+ elf_text_symbol->section = elf_text_section;
+ }
+ /* This code used to do *secp = bfd_und_section_ptr if
+ info->shared. I don't know why, and that doesn't make sense,
+ so I took it out. */
+ *secp = elf_tdata (abfd)->elf_text_section;
+ break;
+
+ case SHN_MIPS_ACOMMON:
+ /* Fall through. XXX Can we treat this as allocated data? */
+ case SHN_MIPS_DATA:
+ /* This section is used in a shared object. */
+ if (elf_tdata (abfd)->elf_data_section == NULL)
+ {
+ asymbol *elf_data_symbol;
+ asection *elf_data_section;
+ bfd_size_type amt = sizeof (asection);
+
+ elf_data_section = bfd_zalloc (abfd, amt);
+ if (elf_data_section == NULL)
+ return false;
+
+ amt = sizeof (asymbol);
+ elf_data_symbol = bfd_zalloc (abfd, amt);
+ if (elf_data_symbol == NULL)
+ return false;
+
+ /* Initialize the section. */
+
+ elf_tdata (abfd)->elf_data_section = elf_data_section;
+ elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
+
+ elf_data_section->symbol = elf_data_symbol;
+ elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
+
+ elf_data_section->name = ".data";
+ elf_data_section->flags = SEC_NO_FLAGS;
+ elf_data_section->output_section = NULL;
+ elf_data_section->owner = abfd;
+ elf_data_symbol->name = ".data";
+ elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
+ elf_data_symbol->section = elf_data_section;
+ }
+ /* This code used to do *secp = bfd_und_section_ptr if
+ info->shared. I don't know why, and that doesn't make sense,
+ so I took it out. */
+ *secp = elf_tdata (abfd)->elf_data_section;
+ break;
+
+ case SHN_MIPS_SUNDEFINED:
+ *secp = bfd_und_section_ptr;
+ break;
+ }
+
+ if (SGI_COMPAT (abfd)
+ && ! info->shared
+ && info->hash->creator == abfd->xvec
+ && strcmp (*namep, "__rld_obj_head") == 0)
+ {
+ struct elf_link_hash_entry *h;
+
+ /* Mark __rld_obj_head as dynamic. */
+ h = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, *namep, BSF_GLOBAL, *secp,
+ (bfd_vma) *valp, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (! bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+
+ mips_elf_hash_table (info)->use_rld_obj_head = true;
+ }
+
+ /* If this is a mips16 text symbol, add 1 to the value to make it
+ odd. This will cause something like .word SYM to come up with
+ the right value when it is loaded into the PC. */
+ if (sym->st_other == STO_MIPS16)
+ ++*valp;
+
+ return true;
+}
+
+/* This hook function is called before the linker writes out a global
+ symbol. We mark symbols as small common if appropriate. This is
+ also where we undo the increment of the value for a mips16 symbol. */
+
+boolean
+_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ struct bfd_link_info *info ATTRIBUTE_UNUSED;
+ const char *name ATTRIBUTE_UNUSED;
+ Elf_Internal_Sym *sym;
+ asection *input_sec;
+{
+ /* If we see a common symbol, which implies a relocatable link, then
+ if a symbol was small common in an input file, mark it as small
+ common in the output file. */
+ if (sym->st_shndx == SHN_COMMON
+ && strcmp (input_sec->name, ".scommon") == 0)
+ sym->st_shndx = SHN_MIPS_SCOMMON;
+
+ if (sym->st_other == STO_MIPS16
+ && (sym->st_value & 1) != 0)
+ --sym->st_value;
+
+ return true;
+}
+
+/* Functions for the dynamic linker. */
+
+/* Create dynamic sections when linking against a dynamic object. */
+
+boolean
+_bfd_mips_elf_create_dynamic_sections (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ struct elf_link_hash_entry *h;
+ flagword flags;
+ register asection *s;
+ const char * const *namep;
+
+ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED | SEC_READONLY);
+
+ /* Mips ABI requests the .dynamic section to be read only. */
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s != NULL)
+ {
+ if (! bfd_set_section_flags (abfd, s, flags))
+ return false;
+ }
+
+ /* We need to create .got section. */
+ if (! mips_elf_create_got_section (abfd, info))
+ return false;
+
+ /* Create the .msym section on IRIX6. It is used by the dynamic
+ linker to speed up dynamic relocations, and to avoid computing
+ the ELF hash for symbols. */
+ if (IRIX_COMPAT (abfd) == ict_irix6
+ && !mips_elf_create_msym_section (abfd))
+ return false;
+
+ /* Create .stub section. */
+ if (bfd_get_section_by_name (abfd,
+ MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
+ {
+ s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
+ || ! bfd_set_section_alignment (abfd, s,
+ MIPS_ELF_LOG_FILE_ALIGN (abfd)))
+ return false;
+ }
+
+ if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
+ && !info->shared
+ && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
+ {
+ s = bfd_make_section (abfd, ".rld_map");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s,
+ MIPS_ELF_LOG_FILE_ALIGN (abfd)))
+ return false;
+ }
+
+ /* On IRIX5, we adjust add some additional symbols and change the
+ alignments of several sections. There is no ABI documentation
+ indicating that this is necessary on IRIX6, nor any evidence that
+ the linker takes such action. */
+ if (IRIX_COMPAT (abfd) == ict_irix5)
+ {
+ for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
+ {
+ h = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_SECTION;
+
+ if (! bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+ }
+
+ /* We need to create a .compact_rel section. */
+ if (SGI_COMPAT (abfd))
+ {
+ if (!mips_elf_create_compact_rel_section (abfd, info))
+ return false;
+ }
+
+ /* Change aligments of some sections. */
+ s = bfd_get_section_by_name (abfd, ".hash");
+ if (s != NULL)
+ bfd_set_section_alignment (abfd, s, 4);
+ s = bfd_get_section_by_name (abfd, ".dynsym");
+ if (s != NULL)
+ bfd_set_section_alignment (abfd, s, 4);
+ s = bfd_get_section_by_name (abfd, ".dynstr");
+ if (s != NULL)
+ bfd_set_section_alignment (abfd, s, 4);
+ s = bfd_get_section_by_name (abfd, ".reginfo");
+ if (s != NULL)
+ bfd_set_section_alignment (abfd, s, 4);
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s != NULL)
+ bfd_set_section_alignment (abfd, s, 4);
+ }
+
+ if (!info->shared)
+ {
+ h = NULL;
+ if (SGI_COMPAT (abfd))
+ {
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ }
+ else
+ {
+ /* For normal mips it is _DYNAMIC_LINKING. */
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
+ bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ }
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_SECTION;
+
+ if (! bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+
+ if (! mips_elf_hash_table (info)->use_rld_obj_head)
+ {
+ /* __rld_map is a four byte word located in the .data section
+ and is filled in by the rtld to contain a pointer to
+ the _r_debug structure. Its symbol value will be set in
+ _bfd_mips_elf_finish_dynamic_symbol. */
+ s = bfd_get_section_by_name (abfd, ".rld_map");
+ BFD_ASSERT (s != NULL);
+
+ h = NULL;
+ if (SGI_COMPAT (abfd))
+ {
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, abfd, "__rld_map", BSF_GLOBAL, s,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ }
+ else
+ {
+ /* For normal mips the symbol is __RLD_MAP. */
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (abfd)->collect,
+ (struct bfd_link_hash_entry **) &h)))
+ return false;
+ }
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (! bfd_elf32_link_record_dynamic_symbol (info, h))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Look through the relocs for a section during the first phase, and
+ allocate space in the global offset table. */
+
+boolean
+_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ asection *sec;
+ const Elf_Internal_Rela *relocs;
+{
+ const char *name;
+ bfd *dynobj;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ struct mips_got_info *g;
+ size_t extsymoff;
+ const Elf_Internal_Rela *rel;
+ const Elf_Internal_Rela *rel_end;
+ asection *sgot;
+ asection *sreloc;
+ struct elf_backend_data *bed;
+
+ if (info->relocateable)
+ return true;
+
+ dynobj = elf_hash_table (info)->dynobj;
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (abfd);
+ extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
+
+ /* Check for the mips16 stub sections. */
+
+ name = bfd_get_section_name (abfd, sec);
+ if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
+ {
+ unsigned long r_symndx;
+
+ /* Look at the relocation information to figure out which symbol
+ this is for. */
+
+ r_symndx = ELF_R_SYM (abfd, relocs->r_info);
+
+ if (r_symndx < extsymoff
+ || sym_hashes[r_symndx - extsymoff] == NULL)
+ {
+ asection *o;
+
+ /* This stub is for a local symbol. This stub will only be
+ needed if there is some relocation in this BFD, other
+ than a 16 bit function call, which refers to this symbol. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ Elf_Internal_Rela *sec_relocs;
+ const Elf_Internal_Rela *r, *rend;
+
+ /* We can ignore stub sections when looking for relocs. */
+ if ((o->flags & SEC_RELOC) == 0
+ || o->reloc_count == 0
+ || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
+ sizeof FN_STUB - 1) == 0
+ || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
+ sizeof CALL_STUB - 1) == 0
+ || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
+ sizeof CALL_FP_STUB - 1) == 0)
+ continue;
+
+ sec_relocs = (_bfd_elf32_link_read_relocs
+ (abfd, o, (PTR) NULL,
+ (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (sec_relocs == NULL)
+ return false;
+
+ rend = sec_relocs + o->reloc_count;
+ for (r = sec_relocs; r < rend; r++)
+ if (ELF_R_SYM (abfd, r->r_info) == r_symndx
+ && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
+ break;
+
+ if (! info->keep_memory)
+ free (sec_relocs);
+
+ if (r < rend)
+ break;
+ }
+
+ if (o == NULL)
+ {
+ /* There is no non-call reloc for this stub, so we do
+ not need it. Since this function is called before
+ the linker maps input sections to output sections, we
+ can easily discard it by setting the SEC_EXCLUDE
+ flag. */
+ sec->flags |= SEC_EXCLUDE;
+ return true;
+ }
+
+ /* Record this stub in an array of local symbol stubs for
+ this BFD. */
+ if (elf_tdata (abfd)->local_stubs == NULL)
+ {
+ unsigned long symcount;
+ asection **n;
+ bfd_size_type amt;
+
+ if (elf_bad_symtab (abfd))
+ symcount = NUM_SHDR_ENTRIES (symtab_hdr);
+ else
+ symcount = symtab_hdr->sh_info;
+ amt = symcount * sizeof (asection *);
+ n = (asection **) bfd_zalloc (abfd, amt);
+ if (n == NULL)
+ return false;
+ elf_tdata (abfd)->local_stubs = n;
+ }
+
+ elf_tdata (abfd)->local_stubs[r_symndx] = sec;
+
+ /* We don't need to set mips16_stubs_seen in this case.
+ That flag is used to see whether we need to look through
+ the global symbol table for stubs. We don't need to set
+ it here, because we just have a local stub. */
+ }
+ else
+ {
+ struct mips_elf_link_hash_entry *h;
+
+ h = ((struct mips_elf_link_hash_entry *)
+ sym_hashes[r_symndx - extsymoff]);
+
+ /* H is the symbol this stub is for. */
+
+ h->fn_stub = sec;
+ mips_elf_hash_table (info)->mips16_stubs_seen = true;
+ }
+ }
+ else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
+ || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
+ {
+ unsigned long r_symndx;
+ struct mips_elf_link_hash_entry *h;
+ asection **loc;
+
+ /* Look at the relocation information to figure out which symbol
+ this is for. */
+
+ r_symndx = ELF_R_SYM (abfd, relocs->r_info);
+
+ if (r_symndx < extsymoff
+ || sym_hashes[r_symndx - extsymoff] == NULL)
+ {
+ /* This stub was actually built for a static symbol defined
+ in the same file. We assume that all static symbols in
+ mips16 code are themselves mips16, so we can simply
+ discard this stub. Since this function is called before
+ the linker maps input sections to output sections, we can
+ easily discard it by setting the SEC_EXCLUDE flag. */
+ sec->flags |= SEC_EXCLUDE;
+ return true;
+ }
+
+ h = ((struct mips_elf_link_hash_entry *)
+ sym_hashes[r_symndx - extsymoff]);
+
+ /* H is the symbol this stub is for. */
+
+ if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
+ loc = &h->call_fp_stub;
+ else
+ loc = &h->call_stub;
+
+ /* If we already have an appropriate stub for this function, we
+ don't need another one, so we can discard this one. Since
+ this function is called before the linker maps input sections
+ to output sections, we can easily discard it by setting the
+ SEC_EXCLUDE flag. We can also discard this section if we
+ happen to already know that this is a mips16 function; it is
+ not necessary to check this here, as it is checked later, but
+ it is slightly faster to check now. */
+ if (*loc != NULL || h->root.other == STO_MIPS16)
+ {
+ sec->flags |= SEC_EXCLUDE;
+ return true;
+ }
+
+ *loc = sec;
+ mips_elf_hash_table (info)->mips16_stubs_seen = true;
+ }
+
+ if (dynobj == NULL)
+ {
+ sgot = NULL;
+ g = NULL;
+ }
+ else
+ {
+ sgot = mips_elf_got_section (dynobj);
+ if (sgot == NULL)
+ g = NULL;
+ else
+ {
+ BFD_ASSERT (elf_section_data (sgot) != NULL);
+ g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
+ BFD_ASSERT (g != NULL);
+ }
+ }
+
+ sreloc = NULL;
+ bed = get_elf_backend_data (abfd);
+ rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
+ for (rel = relocs; rel < rel_end; ++rel)
+ {
+ unsigned long r_symndx;
+ unsigned int r_type;
+ struct elf_link_hash_entry *h;
+
+ r_symndx = ELF_R_SYM (abfd, rel->r_info);
+ r_type = ELF_R_TYPE (abfd, rel->r_info);
+
+ if (r_symndx < extsymoff)
+ h = NULL;
+ else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
+ {
+ (*_bfd_error_handler)
+ (_("%s: Malformed reloc detected for section %s"),
+ bfd_archive_filename (abfd), name);
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ else
+ {
+ h = sym_hashes[r_symndx - extsymoff];
+
+ /* This may be an indirect symbol created because of a version. */
+ if (h != NULL)
+ {
+ while (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ }
+ }
+
+ /* Some relocs require a global offset table. */
+ if (dynobj == NULL || sgot == NULL)
+ {
+ switch (r_type)
+ {
+ case R_MIPS_GOT16:
+ case R_MIPS_CALL16:
+ case R_MIPS_CALL_HI16:
+ case R_MIPS_CALL_LO16:
+ case R_MIPS_GOT_HI16:
+ case R_MIPS_GOT_LO16:
+ case R_MIPS_GOT_PAGE:
+ case R_MIPS_GOT_OFST:
+ case R_MIPS_GOT_DISP:
+ if (dynobj == NULL)
+ elf_hash_table (info)->dynobj = dynobj = abfd;
+ if (! mips_elf_create_got_section (dynobj, info))
+ return false;
+ g = mips_elf_got_info (dynobj, &sgot);
+ break;
+
+ case R_MIPS_32:
+ case R_MIPS_REL32:
+ case R_MIPS_64:
+ if (dynobj == NULL
+ && (info->shared || h != NULL)
+ && (sec->flags & SEC_ALLOC) != 0)
+ elf_hash_table (info)->dynobj = dynobj = abfd;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (!h && (r_type == R_MIPS_CALL_LO16
+ || r_type == R_MIPS_GOT_LO16
+ || r_type == R_MIPS_GOT_DISP))
+ {
+ /* We may need a local GOT entry for this relocation. We
+ don't count R_MIPS_GOT_PAGE because we can estimate the
+ maximum number of pages needed by looking at the size of
+ the segment. Similar comments apply to R_MIPS_GOT16 and
+ R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
+ R_MIPS_CALL_HI16 because these are always followed by an
+ R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
+
+ This estimation is very conservative since we can merge
+ duplicate entries in the GOT. In order to be less
+ conservative, we could actually build the GOT here,
+ rather than in relocate_section. */
+ g->local_gotno++;
+ sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
+ }
+
+ switch (r_type)
+ {
+ case R_MIPS_CALL16:
+ if (h == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
+ bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ /* Fall through. */
+
+ case R_MIPS_CALL_HI16:
+ case R_MIPS_CALL_LO16:
+ if (h != NULL)
+ {
+ /* This symbol requires a global offset table entry. */
+ if (! mips_elf_record_global_got_symbol (h, info, g))
+ return false;
+
+ /* We need a stub, not a plt entry for the undefined
+ function. But we record it as if it needs plt. See
+ elf_adjust_dynamic_symbol in elflink.h. */
+ h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
+ h->type = STT_FUNC;
+ }
+ break;
+
+ case R_MIPS_GOT16:
+ case R_MIPS_GOT_HI16:
+ case R_MIPS_GOT_LO16:
+ case R_MIPS_GOT_DISP:
+ /* This symbol requires a global offset table entry. */
+ if (h && ! mips_elf_record_global_got_symbol (h, info, g))
+ return false;
+ break;
+
+ case R_MIPS_32:
+ case R_MIPS_REL32:
+ case R_MIPS_64:
+ if ((info->shared || h != NULL)
+ && (sec->flags & SEC_ALLOC) != 0)
+ {
+ if (sreloc == NULL)
+ {
+ const char *dname = ".rel.dyn";
+
+ sreloc = bfd_get_section_by_name (dynobj, dname);
+ if (sreloc == NULL)
+ {
+ sreloc = bfd_make_section (dynobj, dname);
+ if (sreloc == NULL
+ || ! bfd_set_section_flags (dynobj, sreloc,
+ (SEC_ALLOC
+ | SEC_LOAD
+ | SEC_HAS_CONTENTS
+ | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED
+ | SEC_READONLY))
+ || ! bfd_set_section_alignment (dynobj, sreloc,
+ 4))
+ return false;
+ }
+ }
+#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
+ if (info->shared)
+ {
+ /* When creating a shared object, we must copy these
+ reloc types into the output file as R_MIPS_REL32
+ relocs. We make room for this reloc in the
+ .rel.dyn reloc section. */
+ mips_elf_allocate_dynamic_relocations (dynobj, 1);
+ if ((sec->flags & MIPS_READONLY_SECTION)
+ == MIPS_READONLY_SECTION)
+ /* We tell the dynamic linker that there are
+ relocations against the text segment. */
+ info->flags |= DF_TEXTREL;
+ }
+ else
+ {
+ struct mips_elf_link_hash_entry *hmips;
+
+ /* We only need to copy this reloc if the symbol is
+ defined in a dynamic object. */
+ hmips = (struct mips_elf_link_hash_entry *) h;
+ ++hmips->possibly_dynamic_relocs;
+ if ((sec->flags & MIPS_READONLY_SECTION)
+ == MIPS_READONLY_SECTION)
+ /* We need it to tell the dynamic linker if there
+ are relocations against the text segment. */
+ hmips->readonly_reloc = true;
+ }
+
+ /* Even though we don't directly need a GOT entry for
+ this symbol, a symbol must have a dynamic symbol
+ table index greater that DT_MIPS_GOTSYM if there are
+ dynamic relocations against it. */
+ if (h != NULL
+ && ! mips_elf_record_global_got_symbol (h, info, g))
+ return false;
+ }
+
+ if (SGI_COMPAT (abfd))
+ mips_elf_hash_table (info)->compact_rel_size +=
+ sizeof (Elf32_External_crinfo);
+ break;
+
+ case R_MIPS_26:
+ case R_MIPS_GPREL16:
+ case R_MIPS_LITERAL:
+ case R_MIPS_GPREL32:
+ if (SGI_COMPAT (abfd))
+ mips_elf_hash_table (info)->compact_rel_size +=
+ sizeof (Elf32_External_crinfo);
+ break;
+
+ /* This relocation describes the C++ object vtable hierarchy.
+ Reconstruct it for later use during GC. */
+ case R_MIPS_GNU_VTINHERIT:
+ if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
+ return false;
+ break;
+
+ /* This relocation describes which C++ vtable entries are actually
+ used. Record for later use during GC. */
+ case R_MIPS_GNU_VTENTRY:
+ if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
+ return false;
+ break;
+
+ default:
+ break;
+ }
+
+ /* We must not create a stub for a symbol that has relocations
+ related to taking the function's address. */
+ switch (r_type)
+ {
+ default:
+ if (h != NULL)
+ {
+ struct mips_elf_link_hash_entry *mh;
+
+ mh = (struct mips_elf_link_hash_entry *) h;
+ mh->no_fn_stub = true;
+ }
+ break;
+ case R_MIPS_CALL16:
+ case R_MIPS_CALL_HI16:
+ case R_MIPS_CALL_LO16:
+ break;
+ }
+
+ /* If this reloc is not a 16 bit call, and it has a global
+ symbol, then we will need the fn_stub if there is one.
+ References from a stub section do not count. */
+ if (h != NULL
+ && r_type != R_MIPS16_26
+ && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
+ sizeof FN_STUB - 1) != 0
+ && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
+ sizeof CALL_STUB - 1) != 0
+ && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
+ sizeof CALL_FP_STUB - 1) != 0)
+ {
+ struct mips_elf_link_hash_entry *mh;
+
+ mh = (struct mips_elf_link_hash_entry *) h;
+ mh->need_fn_stub = true;
+ }
+ }
+
+ return true;
+}
+
+/* Adjust a symbol defined by a dynamic object and referenced by a
+ regular object. The current definition is in some section of the
+ dynamic object, but we're not including those sections. We have to
+ change the definition to something the rest of the link can
+ understand. */
+
+boolean
+_bfd_mips_elf_adjust_dynamic_symbol (info, h)
+ struct bfd_link_info *info;
+ struct elf_link_hash_entry *h;
+{
+ bfd *dynobj;
+ struct mips_elf_link_hash_entry *hmips;
+ asection *s;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ /* Make sure we know what is going on here. */
+ BFD_ASSERT (dynobj != NULL
+ && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
+ || h->weakdef != NULL
+ || ((h->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0
+ && (h->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_REGULAR) == 0)));
+
+ /* If this symbol is defined in a dynamic object, we need to copy
+ any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
+ file. */
+ hmips = (struct mips_elf_link_hash_entry *) h;
+ if (! info->relocateable
+ && hmips->possibly_dynamic_relocs != 0
+ && (h->root.type == bfd_link_hash_defweak
+ || (h->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_REGULAR) == 0))
+ {
+ mips_elf_allocate_dynamic_relocations (dynobj,
+ hmips->possibly_dynamic_relocs);
+ if (hmips->readonly_reloc)
+ /* We tell the dynamic linker that there are relocations
+ against the text segment. */
+ info->flags |= DF_TEXTREL;
+ }
+
+ /* For a function, create a stub, if allowed. */
+ if (! hmips->no_fn_stub
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
+ {
+ if (! elf_hash_table (info)->dynamic_sections_created)
+ return true;
+
+ /* If this symbol is not defined in a regular file, then set
+ the symbol to the stub location. This is required to make
+ function pointers compare as equal between the normal
+ executable and the shared library. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ {
+ /* We need .stub section. */
+ s = bfd_get_section_by_name (dynobj,
+ MIPS_ELF_STUB_SECTION_NAME (dynobj));
+ BFD_ASSERT (s != NULL);
+
+ h->root.u.def.section = s;
+ h->root.u.def.value = s->_raw_size;
+
+ /* XXX Write this stub address somewhere. */
+ h->plt.offset = s->_raw_size;
+
+ /* Make room for this stub code. */
+ s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
+
+ /* The last half word of the stub will be filled with the index
+ of this symbol in .dynsym section. */
+ return true;
+ }
+ }
+ else if ((h->type == STT_FUNC)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
+ {
+ /* This will set the entry for this symbol in the GOT to 0, and
+ the dynamic linker will take care of this. */
+ h->root.u.def.value = 0;
+ return true;
+ }
+
+ /* If this is a weak symbol, and there is a real definition, the
+ processor independent code will have arranged for us to see the
+ real definition first, and we can just use the same value. */
+ if (h->weakdef != NULL)
+ {
+ BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
+ || h->weakdef->root.type == bfd_link_hash_defweak);
+ h->root.u.def.section = h->weakdef->root.u.def.section;
+ h->root.u.def.value = h->weakdef->root.u.def.value;
+ return true;
+ }
+
+ /* This is a reference to a symbol defined by a dynamic object which
+ is not a function. */
+
+ return true;
+}
+
+/* This function is called after all the input files have been read,
+ and the input sections have been assigned to output sections. We
+ check for any mips16 stub sections that we can discard. */
+
+boolean
+_bfd_mips_elf_always_size_sections (output_bfd, info)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+{
+ asection *ri;
+
+ /* The .reginfo section has a fixed size. */
+ ri = bfd_get_section_by_name (output_bfd, ".reginfo");
+ if (ri != NULL)
+ bfd_set_section_size (output_bfd, ri,
+ (bfd_size_type) sizeof (Elf32_External_RegInfo));
+
+ if (info->relocateable
+ || ! mips_elf_hash_table (info)->mips16_stubs_seen)
+ return true;
+
+ mips_elf_link_hash_traverse (mips_elf_hash_table (info),
+ mips_elf_check_mips16_stubs,
+ (PTR) NULL);
+
+ return true;
+}
+
+/* Set the sizes of the dynamic sections. */
+
+boolean
+_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+{
+ bfd *dynobj;
+ asection *s;
+ boolean reltext;
+ struct mips_got_info *g = NULL;
+
+ dynobj = elf_hash_table (info)->dynobj;
+ BFD_ASSERT (dynobj != NULL);
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ /* Set the contents of the .interp section to the interpreter. */
+ if (! info->shared)
+ {
+ s = bfd_get_section_by_name (dynobj, ".interp");
+ BFD_ASSERT (s != NULL);
+ s->_raw_size
+ = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
+ s->contents
+ = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
+ }
+ }
+
+ /* The check_relocs and adjust_dynamic_symbol entry points have
+ determined the sizes of the various dynamic sections. Allocate
+ memory for them. */
+ reltext = false;
+ for (s = dynobj->sections; s != NULL; s = s->next)
+ {
+ const char *name;
+ boolean strip;
+
+ /* It's OK to base decisions on the section name, because none
+ of the dynobj section names depend upon the input files. */
+ name = bfd_get_section_name (dynobj, s);
+
+ if ((s->flags & SEC_LINKER_CREATED) == 0)
+ continue;
+
+ strip = false;
+
+ if (strncmp (name, ".rel", 4) == 0)
+ {
+ if (s->_raw_size == 0)
+ {
+ /* We only strip the section if the output section name
+ has the same name. Otherwise, there might be several
+ input sections for this output section. FIXME: This
+ code is probably not needed these days anyhow, since
+ the linker now does not create empty output sections. */
+ if (s->output_section != NULL
+ && strcmp (name,
+ bfd_get_section_name (s->output_section->owner,
+ s->output_section)) == 0)
+ strip = true;
+ }
+ else
+ {
+ const char *outname;
+ asection *target;
+
+ /* If this relocation section applies to a read only
+ section, then we probably need a DT_TEXTREL entry.
+ If the relocation section is .rel.dyn, we always
+ assert a DT_TEXTREL entry rather than testing whether
+ there exists a relocation to a read only section or
+ not. */
+ outname = bfd_get_section_name (output_bfd,
+ s->output_section);
+ target = bfd_get_section_by_name (output_bfd, outname + 4);
+ if ((target != NULL
+ && (target->flags & SEC_READONLY) != 0
+ && (target->flags & SEC_ALLOC) != 0)
+ || strcmp (outname, ".rel.dyn") == 0)
+ reltext = true;
+
+ /* We use the reloc_count field as a counter if we need
+ to copy relocs into the output file. */
+ if (strcmp (name, ".rel.dyn") != 0)
+ s->reloc_count = 0;
+ }
+ }
+ else if (strncmp (name, ".got", 4) == 0)
+ {
+ int i;
+ bfd_size_type loadable_size = 0;
+ bfd_size_type local_gotno;
+ bfd *sub;
+
+ BFD_ASSERT (elf_section_data (s) != NULL);
+ g = (struct mips_got_info *) elf_section_data (s)->tdata;
+ BFD_ASSERT (g != NULL);
+
+ /* Calculate the total loadable size of the output. That
+ will give us the maximum number of GOT_PAGE entries
+ required. */
+ for (sub = info->input_bfds; sub; sub = sub->link_next)
+ {
+ asection *subsection;
+
+ for (subsection = sub->sections;
+ subsection;
+ subsection = subsection->next)
+ {
+ if ((subsection->flags & SEC_ALLOC) == 0)
+ continue;
+ loadable_size += ((subsection->_raw_size + 0xf)
+ &~ (bfd_size_type) 0xf);
+ }
+ }
+ loadable_size += MIPS_FUNCTION_STUB_SIZE;
+
+ /* Assume there are two loadable segments consisting of
+ contiguous sections. Is 5 enough? */
+ local_gotno = (loadable_size >> 16) + 5;
+ if (IRIX_COMPAT (output_bfd) == ict_irix6)
+ /* It's possible we will need GOT_PAGE entries as well as
+ GOT16 entries. Often, these will be able to share GOT
+ entries, but not always. */
+ local_gotno *= 2;
+
+ g->local_gotno += local_gotno;
+ s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
+
+ /* There has to be a global GOT entry for every symbol with
+ a dynamic symbol table index of DT_MIPS_GOTSYM or
+ higher. Therefore, it make sense to put those symbols
+ that need GOT entries at the end of the symbol table. We
+ do that here. */
+ if (! mips_elf_sort_hash_table (info, 1))
+ return false;
+
+ if (g->global_gotsym != NULL)
+ i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
+ else
+ /* If there are no global symbols, or none requiring
+ relocations, then GLOBAL_GOTSYM will be NULL. */
+ i = 0;
+ g->global_gotno = i;
+ s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
+ }
+ else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
+ {
+ /* Irix rld assumes that the function stub isn't at the end
+ of .text section. So put a dummy. XXX */
+ s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
+ }
+ else if (! info->shared
+ && ! mips_elf_hash_table (info)->use_rld_obj_head
+ && strncmp (name, ".rld_map", 8) == 0)
+ {
+ /* We add a room for __rld_map. It will be filled in by the
+ rtld to contain a pointer to the _r_debug structure. */
+ s->_raw_size += 4;
+ }
+ else if (SGI_COMPAT (output_bfd)
+ && strncmp (name, ".compact_rel", 12) == 0)
+ s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
+ else if (strcmp (name, ".msym") == 0)
+ s->_raw_size = (sizeof (Elf32_External_Msym)
+ * (elf_hash_table (info)->dynsymcount
+ + bfd_count_sections (output_bfd)));
+ else if (strncmp (name, ".init", 5) != 0)
+ {
+ /* It's not one of our sections, so don't allocate space. */
+ continue;
+ }
+
+ if (strip)
+ {
+ _bfd_strip_section_from_output (info, s);
+ continue;
+ }
+
+ /* Allocate memory for the section contents. */
+ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
+ if (s->contents == NULL && s->_raw_size != 0)
+ {
+ bfd_set_error (bfd_error_no_memory);
+ return false;
+ }
+ }
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ /* Add some entries to the .dynamic section. We fill in the
+ values later, in _bfd_mips_elf_finish_dynamic_sections, but we
+ must add the entries now so that we get the correct size for
+ the .dynamic section. The DT_DEBUG entry is filled in by the
+ dynamic linker and used by the debugger. */
+ if (! info->shared)
+ {
+ /* SGI object has the equivalence of DT_DEBUG in the
+ DT_MIPS_RLD_MAP entry. */
+ if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
+ return false;
+ if (!SGI_COMPAT (output_bfd))
+ {
+ if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
+ return false;
+ }
+ }
+ else
+ {
+ /* Shared libraries on traditional mips have DT_DEBUG. */
+ if (!SGI_COMPAT (output_bfd))
+ {
+ if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
+ return false;
+ }
+ }
+
+ if (reltext && SGI_COMPAT (output_bfd))
+ info->flags |= DF_TEXTREL;
+
+ if ((info->flags & DF_TEXTREL) != 0)
+ {
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
+ return false;
+ }
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
+ return false;
+
+ if (bfd_get_section_by_name (dynobj, ".rel.dyn"))
+ {
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
+ return false;
+ }
+
+ if (SGI_COMPAT (output_bfd))
+ {
+ if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
+ return false;
+ }
+
+ if (SGI_COMPAT (output_bfd))
+ {
+ if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
+ return false;
+ }
+
+ if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
+ {
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
+ return false;
+
+ s = bfd_get_section_by_name (dynobj, ".liblist");
+ BFD_ASSERT (s != NULL);
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
+ return false;
+ }
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
+ return false;
+
+#if 0
+ /* Time stamps in executable files are a bad idea. */
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
+ return false;
+#endif
+
+#if 0 /* FIXME */
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
+ return false;
+#endif
+
+#if 0 /* FIXME */
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
+ return false;
+#endif
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
+ return false;
+
+ if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
+ return false;
+
+ if (IRIX_COMPAT (dynobj) == ict_irix5
+ && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
+ return false;
+
+ if (IRIX_COMPAT (dynobj) == ict_irix6
+ && (bfd_get_section_by_name
+ (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
+ && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
+ return false;
+
+ if (bfd_get_section_by_name (dynobj, ".msym")
+ && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
+ return false;
+ }
+
+ return true;
+}
+
+/* Relocate a MIPS ELF section. */
+
+boolean
+_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
+ contents, relocs, local_syms, local_sections)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ bfd *input_bfd;
+ asection *input_section;
+ bfd_byte *contents;
+ Elf_Internal_Rela *relocs;
+ Elf_Internal_Sym *local_syms;
+ asection **local_sections;
+{
+ Elf_Internal_Rela *rel;
+ const Elf_Internal_Rela *relend;
+ bfd_vma addend = 0;
+ boolean use_saved_addend_p = false;
+ struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (output_bfd);
+ relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
+ for (rel = relocs; rel < relend; ++rel)
+ {
+ const char *name;
+ bfd_vma value;
+ reloc_howto_type *howto;
+ boolean require_jalx;
+ /* True if the relocation is a RELA relocation, rather than a
+ REL relocation. */
+ boolean rela_relocation_p = true;
+ unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
+ const char * msg = (const char *) NULL;
+
+ /* Find the relocation howto for this relocation. */
+ if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
+ {
+ /* Some 32-bit code uses R_MIPS_64. In particular, people use
+ 64-bit code, but make sure all their addresses are in the
+ lowermost or uppermost 32-bit section of the 64-bit address
+ space. Thus, when they use an R_MIPS_64 they mean what is
+ usually meant by R_MIPS_32, with the exception that the
+ stored value is sign-extended to 64 bits. */
+ howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32,
+ NEWABI_P (input_bfd));
+
+ /* On big-endian systems, we need to lie about the position
+ of the reloc. */
+ if (bfd_big_endian (input_bfd))
+ rel->r_offset += 4;
+ }
+ else
+ /* NewABI defaults to RELA relocations. */
+ howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
+ NEWABI_P (input_bfd));
+
+ if (!use_saved_addend_p)
+ {
+ Elf_Internal_Shdr *rel_hdr;
+
+ /* If these relocations were originally of the REL variety,
+ we must pull the addend out of the field that will be
+ relocated. Otherwise, we simply use the contents of the
+ RELA relocation. To determine which flavor or relocation
+ this is, we depend on the fact that the INPUT_SECTION's
+ REL_HDR is read before its REL_HDR2. */
+ rel_hdr = &elf_section_data (input_section)->rel_hdr;
+ if ((size_t) (rel - relocs)
+ >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
+ rel_hdr = elf_section_data (input_section)->rel_hdr2;
+ if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
+ {
+ /* Note that this is a REL relocation. */
+ rela_relocation_p = false;
+
+ /* Get the addend, which is stored in the input file. */
+ addend = mips_elf_obtain_contents (howto, rel, input_bfd,
+ contents);
+ addend &= howto->src_mask;
+
+ /* For some kinds of relocations, the ADDEND is a
+ combination of the addend stored in two different
+ relocations. */
+ if (r_type == R_MIPS_HI16
+ || r_type == R_MIPS_GNU_REL_HI16
+ || (r_type == R_MIPS_GOT16
+ && mips_elf_local_relocation_p (input_bfd, rel,
+ local_sections, false)))
+ {
+ bfd_vma l;
+ const Elf_Internal_Rela *lo16_relocation;
+ reloc_howto_type *lo16_howto;
+ unsigned int lo;
+
+ /* The combined value is the sum of the HI16 addend,
+ left-shifted by sixteen bits, and the LO16
+ addend, sign extended. (Usually, the code does
+ a `lui' of the HI16 value, and then an `addiu' of
+ the LO16 value.)
+
+ Scan ahead to find a matching LO16 relocation. */
+ if (r_type == R_MIPS_GNU_REL_HI16)
+ lo = R_MIPS_GNU_REL_LO16;
+ else
+ lo = R_MIPS_LO16;
+ lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
+ rel, relend);
+ if (lo16_relocation == NULL)
+ return false;
+
+ /* Obtain the addend kept there. */
+ lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo,
+ rela_relocation_p);
+ l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
+ input_bfd, contents);
+ l &= lo16_howto->src_mask;
+ l = mips_elf_sign_extend (l, 16);
+
+ addend <<= 16;
+
+ /* Compute the combined addend. */
+ addend += l;
+
+ /* If PC-relative, subtract the difference between the
+ address of the LO part of the reloc and the address of
+ the HI part. The relocation is relative to the LO
+ part, but mips_elf_calculate_relocation() doesn't
+ know its address or the difference from the HI part, so
+ we subtract that difference here. See also the
+ comment in mips_elf_calculate_relocation(). */
+ if (r_type == R_MIPS_GNU_REL_HI16)
+ addend -= (lo16_relocation->r_offset - rel->r_offset);
+ }
+ else if (r_type == R_MIPS16_GPREL)
+ {
+ /* The addend is scrambled in the object file. See
+ mips_elf_perform_relocation for details on the
+ format. */
+ addend = (((addend & 0x1f0000) >> 5)
+ | ((addend & 0x7e00000) >> 16)
+ | (addend & 0x1f));
+ }
+ }
+ else
+ addend = rel->r_addend;
+ }
+
+ if (info->relocateable)
+ {
+ Elf_Internal_Sym *sym;
+ unsigned long r_symndx;
+
+ if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
+ && bfd_big_endian (input_bfd))
+ rel->r_offset -= 4;
+
+ /* Since we're just relocating, all we need to do is copy
+ the relocations back out to the object file, unless
+ they're against a section symbol, in which case we need
+ to adjust by the section offset, or unless they're GP
+ relative in which case we need to adjust by the amount
+ that we're adjusting GP in this relocateable object. */
+
+ if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
+ false))
+ /* There's nothing to do for non-local relocations. */
+ continue;
+
+ if (r_type == R_MIPS16_GPREL
+ || r_type == R_MIPS_GPREL16
+ || r_type == R_MIPS_GPREL32
+ || r_type == R_MIPS_LITERAL)
+ addend -= (_bfd_get_gp_value (output_bfd)
+ - _bfd_get_gp_value (input_bfd));
+ else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
+ || r_type == R_MIPS_GNU_REL16_S2)
+ /* The addend is stored without its two least
+ significant bits (which are always zero.) In a
+ non-relocateable link, calculate_relocation will do
+ this shift; here, we must do it ourselves. */
+ addend <<= 2;
+
+ r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
+ sym = local_syms + r_symndx;
+ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
+ /* Adjust the addend appropriately. */
+ addend += local_sections[r_symndx]->output_offset;
+
+ /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
+ then we only want to write out the high-order 16 bits.
+ The subsequent R_MIPS_LO16 will handle the low-order bits. */
+ if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
+ || r_type == R_MIPS_GNU_REL_HI16)
+ addend = mips_elf_high (addend);
+ else if (r_type == R_MIPS_HIGHER)
+ addend = mips_elf_higher (addend);
+ else if (r_type == R_MIPS_HIGHEST)
+ addend = mips_elf_highest (addend);
+
+ /* If the relocation is for an R_MIPS_26 relocation, then
+ the two low-order bits are not stored in the object file;
+ they are implicitly zero. */
+ else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
+ || r_type == R_MIPS_GNU_REL16_S2)
+ addend >>= 2;
+
+ if (rela_relocation_p)
+ /* If this is a RELA relocation, just update the addend.
+ We have to cast away constness for REL. */
+ rel->r_addend = addend;
+ else
+ {
+ /* Otherwise, we have to write the value back out. Note
+ that we use the source mask, rather than the
+ destination mask because the place to which we are
+ writing will be source of the addend in the final
+ link. */
+ addend &= howto->src_mask;
+
+ if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
+ /* See the comment above about using R_MIPS_64 in the 32-bit
+ ABI. Here, we need to update the addend. It would be
+ possible to get away with just using the R_MIPS_32 reloc
+ but for endianness. */
+ {
+ bfd_vma sign_bits;
+ bfd_vma low_bits;
+ bfd_vma high_bits;
+
+ if (addend & ((bfd_vma) 1 << 31))
+#ifdef BFD64
+ sign_bits = ((bfd_vma) 1 << 32) - 1;
+#else
+ sign_bits = -1;
+#endif
+ else
+ sign_bits = 0;
+
+ /* If we don't know that we have a 64-bit type,
+ do two separate stores. */
+ if (bfd_big_endian (input_bfd))
+ {
+ /* Store the sign-bits (which are most significant)
+ first. */
+ low_bits = sign_bits;
+ high_bits = addend;
+ }
+ else
+ {
+ low_bits = addend;
+ high_bits = sign_bits;
+ }
+ bfd_put_32 (input_bfd, low_bits,
+ contents + rel->r_offset);
+ bfd_put_32 (input_bfd, high_bits,
+ contents + rel->r_offset + 4);
+ continue;
+ }
+
+ if (! mips_elf_perform_relocation (info, howto, rel, addend,
+ input_bfd, input_section,
+ contents, false))
+ return false;
+ }
+
+ /* Go on to the next relocation. */
+ continue;
+ }
+
+ /* In the N32 and 64-bit ABIs there may be multiple consecutive
+ relocations for the same offset. In that case we are
+ supposed to treat the output of each relocation as the addend
+ for the next. */
+ if (rel + 1 < relend
+ && rel->r_offset == rel[1].r_offset
+ && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
+ use_saved_addend_p = true;
+ else
+ use_saved_addend_p = false;
+
+ /* Figure out what value we are supposed to relocate. */
+ switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
+ input_section, info, rel,
+ addend, howto, local_syms,
+ local_sections, &value,
+ &name, &require_jalx))
+ {
+ case bfd_reloc_continue:
+ /* There's nothing to do. */
+ continue;
+
+ case bfd_reloc_undefined:
+ /* mips_elf_calculate_relocation already called the
+ undefined_symbol callback. There's no real point in
+ trying to perform the relocation at this point, so we
+ just skip ahead to the next relocation. */
+ continue;
+
+ case bfd_reloc_notsupported:
+ msg = _("internal error: unsupported relocation error");
+ info->callbacks->warning
+ (info, msg, name, input_bfd, input_section, rel->r_offset);
+ return false;
+
+ case bfd_reloc_overflow:
+ if (use_saved_addend_p)
+ /* Ignore overflow until we reach the last relocation for
+ a given location. */
+ ;
+ else
+ {
+ BFD_ASSERT (name != NULL);
+ if (! ((*info->callbacks->reloc_overflow)
+ (info, name, howto->name, (bfd_vma) 0,
+ input_bfd, input_section, rel->r_offset)))
+ return false;
+ }
+ break;
+
+ case bfd_reloc_ok:
+ break;
+
+ default:
+ abort ();
+ break;
+ }
+
+ /* If we've got another relocation for the address, keep going
+ until we reach the last one. */
+ if (use_saved_addend_p)
+ {
+ addend = value;
+ continue;
+ }
+
+ if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
+ /* See the comment above about using R_MIPS_64 in the 32-bit
+ ABI. Until now, we've been using the HOWTO for R_MIPS_32;
+ that calculated the right value. Now, however, we
+ sign-extend the 32-bit result to 64-bits, and store it as a
+ 64-bit value. We are especially generous here in that we
+ go to extreme lengths to support this usage on systems with
+ only a 32-bit VMA. */
+ {
+ bfd_vma sign_bits;
+ bfd_vma low_bits;
+ bfd_vma high_bits;
+
+ if (value & ((bfd_vma) 1 << 31))
+#ifdef BFD64
+ sign_bits = ((bfd_vma) 1 << 32) - 1;
+#else
+ sign_bits = -1;
+#endif
+ else
+ sign_bits = 0;
+
+ /* If we don't know that we have a 64-bit type,
+ do two separate stores. */
+ if (bfd_big_endian (input_bfd))
+ {
+ /* Undo what we did above. */
+ rel->r_offset -= 4;
+ /* Store the sign-bits (which are most significant)
+ first. */
+ low_bits = sign_bits;
+ high_bits = value;
+ }
+ else
+ {
+ low_bits = value;
+ high_bits = sign_bits;
+ }
+ bfd_put_32 (input_bfd, low_bits,
+ contents + rel->r_offset);
+ bfd_put_32 (input_bfd, high_bits,
+ contents + rel->r_offset + 4);
+ continue;
+ }
+
+ /* Actually perform the relocation. */
+ if (! mips_elf_perform_relocation (info, howto, rel, value,
+ input_bfd, input_section,
+ contents, require_jalx))
+ return false;
+ }
+
+ return true;
+}
+
+/* If NAME is one of the special IRIX6 symbols defined by the linker,
+ adjust it appropriately now. */
+
+static void
+mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ const char *name;
+ Elf_Internal_Sym *sym;
+{
+ /* The linker script takes care of providing names and values for
+ these, but we must place them into the right sections. */
+ static const char* const text_section_symbols[] = {
+ "_ftext",
+ "_etext",
+ "__dso_displacement",
+ "__elf_header",
+ "__program_header_table",
+ NULL
+ };
+
+ static const char* const data_section_symbols[] = {
+ "_fdata",
+ "_edata",
+ "_end",
+ "_fbss",
+ NULL
+ };
+
+ const char* const *p;
+ int i;
+
+ for (i = 0; i < 2; ++i)
+ for (p = (i == 0) ? text_section_symbols : data_section_symbols;
+ *p;
+ ++p)
+ if (strcmp (*p, name) == 0)
+ {
+ /* All of these symbols are given type STT_SECTION by the
+ IRIX6 linker. */
+ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
+
+ /* The IRIX linker puts these symbols in special sections. */
+ if (i == 0)
+ sym->st_shndx = SHN_MIPS_TEXT;
+ else
+ sym->st_shndx = SHN_MIPS_DATA;
+
+ break;
+ }
+}
+
+/* Finish up dynamic symbol handling. We set the contents of various
+ dynamic sections here. */
+
+boolean
+_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ struct elf_link_hash_entry *h;
+ Elf_Internal_Sym *sym;
+{
+ bfd *dynobj;
+ bfd_vma gval;
+ asection *sgot;
+ asection *smsym;
+ struct mips_got_info *g;
+ const char *name;
+ struct mips_elf_link_hash_entry *mh;
+
+ dynobj = elf_hash_table (info)->dynobj;
+ gval = sym->st_value;
+ mh = (struct mips_elf_link_hash_entry *) h;
+
+ if (h->plt.offset != (bfd_vma) -1)
+ {
+ asection *s;
+ bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
+
+ /* This symbol has a stub. Set it up. */
+
+ BFD_ASSERT (h->dynindx != -1);
+
+ s = bfd_get_section_by_name (dynobj,
+ MIPS_ELF_STUB_SECTION_NAME (dynobj));
+ BFD_ASSERT (s != NULL);
+
+ /* FIXME: Can h->dynindex be more than 64K? */
+ if (h->dynindx & 0xffff0000)
+ return false;
+
+ /* Fill the stub. */
+ bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
+ bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
+ bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
+ bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
+
+ BFD_ASSERT (h->plt.offset <= s->_raw_size);
+ memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
+
+ /* Mark the symbol as undefined. plt.offset != -1 occurs
+ only for the referenced symbol. */
+ sym->st_shndx = SHN_UNDEF;
+
+ /* The run-time linker uses the st_value field of the symbol
+ to reset the global offset table entry for this external
+ to its stub address when unlinking a shared object. */
+ gval = s->output_section->vma + s->output_offset + h->plt.offset;
+ sym->st_value = gval;
+ }
+
+ BFD_ASSERT (h->dynindx != -1
+ || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
+
+ sgot = mips_elf_got_section (dynobj);
+ BFD_ASSERT (sgot != NULL);
+ BFD_ASSERT (elf_section_data (sgot) != NULL);
+ g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
+ BFD_ASSERT (g != NULL);
+
+ /* Run through the global symbol table, creating GOT entries for all
+ the symbols that need them. */
+ if (g->global_gotsym != NULL
+ && h->dynindx >= g->global_gotsym->dynindx)
+ {
+ bfd_vma offset;
+ bfd_vma value;
+
+ if (sym->st_value)
+ value = sym->st_value;
+ else
+ {
+ /* For an entity defined in a shared object, this will be
+ NULL. (For functions in shared objects for
+ which we have created stubs, ST_VALUE will be non-NULL.
+ That's because such the functions are now no longer defined
+ in a shared object.) */
+
+ if (info->shared && h->root.type == bfd_link_hash_undefined)
+ value = 0;
+ else
+ value = h->root.u.def.value;
+ }
+ offset = mips_elf_global_got_index (dynobj, h);
+ MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
+ }
+
+ /* Create a .msym entry, if appropriate. */
+ smsym = bfd_get_section_by_name (dynobj, ".msym");
+ if (smsym)
+ {
+ Elf32_Internal_Msym msym;
+
+ msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
+ /* It is undocumented what the `1' indicates, but IRIX6 uses
+ this value. */
+ msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
+ bfd_mips_elf_swap_msym_out
+ (dynobj, &msym,
+ ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
+ }
+
+ /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
+ name = h->root.root.string;
+ if (strcmp (name, "_DYNAMIC") == 0
+ || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
+ sym->st_shndx = SHN_ABS;
+ else if (strcmp (name, "_DYNAMIC_LINK") == 0
+ || strcmp (name, "_DYNAMIC_LINKING") == 0)
+ {
+ sym->st_shndx = SHN_ABS;
+ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
+ sym->st_value = 1;
+ }
+ else if (strcmp (name, "_gp_disp") == 0)
+ {
+ sym->st_shndx = SHN_ABS;
+ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
+ sym->st_value = elf_gp (output_bfd);
+ }
+ else if (SGI_COMPAT (output_bfd))
+ {
+ if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
+ || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
+ {
+ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
+ sym->st_other = STO_PROTECTED;
+ sym->st_value = 0;
+ sym->st_shndx = SHN_MIPS_DATA;
+ }
+ else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
+ {
+ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
+ sym->st_other = STO_PROTECTED;
+ sym->st_value = mips_elf_hash_table (info)->procedure_count;
+ sym->st_shndx = SHN_ABS;
+ }
+ else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
+ {
+ if (h->type == STT_FUNC)
+ sym->st_shndx = SHN_MIPS_TEXT;
+ else if (h->type == STT_OBJECT)
+ sym->st_shndx = SHN_MIPS_DATA;
+ }
+ }
+
+ /* Handle the IRIX6-specific symbols. */
+ if (IRIX_COMPAT (output_bfd) == ict_irix6)
+ mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
+
+ if (! info->shared)
+ {
+ if (! mips_elf_hash_table (info)->use_rld_obj_head
+ && (strcmp (name, "__rld_map") == 0
+ || strcmp (name, "__RLD_MAP") == 0))
+ {
+ asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
+ BFD_ASSERT (s != NULL);
+ sym->st_value = s->output_section->vma + s->output_offset;
+ bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
+ if (mips_elf_hash_table (info)->rld_value == 0)
+ mips_elf_hash_table (info)->rld_value = sym->st_value;
+ }
+ else if (mips_elf_hash_table (info)->use_rld_obj_head
+ && strcmp (name, "__rld_obj_head") == 0)
+ {
+ /* IRIX6 does not use a .rld_map section. */
+ if (IRIX_COMPAT (output_bfd) == ict_irix5
+ || IRIX_COMPAT (output_bfd) == ict_none)
+ BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
+ != NULL);
+ mips_elf_hash_table (info)->rld_value = sym->st_value;
+ }
+ }
+
+ /* If this is a mips16 symbol, force the value to be even. */
+ if (sym->st_other == STO_MIPS16
+ && (sym->st_value & 1) != 0)
+ --sym->st_value;
+
+ return true;
+}
+
+/* Finish up the dynamic sections. */
+
+boolean
+_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+{
+ bfd *dynobj;
+ asection *sdyn;
+ asection *sgot;
+ struct mips_got_info *g;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
+
+ sgot = bfd_get_section_by_name (dynobj, ".got");
+ if (sgot == NULL)
+ g = NULL;
+ else
+ {
+ BFD_ASSERT (elf_section_data (sgot) != NULL);
+ g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
+ BFD_ASSERT (g != NULL);
+ }
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ bfd_byte *b;
+
+ BFD_ASSERT (sdyn != NULL);
+ BFD_ASSERT (g != NULL);
+
+ for (b = sdyn->contents;
+ b < sdyn->contents + sdyn->_raw_size;
+ b += MIPS_ELF_DYN_SIZE (dynobj))
+ {
+ Elf_Internal_Dyn dyn;
+ const char *name;
+ size_t elemsize;
+ asection *s;
+ boolean swap_out_p;
+
+ /* Read in the current dynamic entry. */
+ (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
+
+ /* Assume that we're going to modify it and write it out. */
+ swap_out_p = true;
+
+ switch (dyn.d_tag)
+ {
+ case DT_RELENT:
+ s = (bfd_get_section_by_name (dynobj, ".rel.dyn"));
+ BFD_ASSERT (s != NULL);
+ dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
+ break;
+
+ case DT_STRSZ:
+ /* Rewrite DT_STRSZ. */
+ dyn.d_un.d_val =
+ _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
+ break;
+
+ case DT_PLTGOT:
+ name = ".got";
+ goto get_vma;
+ case DT_MIPS_CONFLICT:
+ name = ".conflict";
+ goto get_vma;
+ case DT_MIPS_LIBLIST:
+ name = ".liblist";
+ get_vma:
+ s = bfd_get_section_by_name (output_bfd, name);
+ BFD_ASSERT (s != NULL);
+ dyn.d_un.d_ptr = s->vma;
+ break;
+
+ case DT_MIPS_RLD_VERSION:
+ dyn.d_un.d_val = 1; /* XXX */
+ break;
+
+ case DT_MIPS_FLAGS:
+ dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
+ break;
+
+ case DT_MIPS_CONFLICTNO:
+ name = ".conflict";
+ elemsize = sizeof (Elf32_Conflict);
+ goto set_elemno;
+
+ case DT_MIPS_LIBLISTNO:
+ name = ".liblist";
+ elemsize = sizeof (Elf32_Lib);
+ set_elemno:
+ s = bfd_get_section_by_name (output_bfd, name);
+ if (s != NULL)
+ {
+ if (s->_cooked_size != 0)
+ dyn.d_un.d_val = s->_cooked_size / elemsize;
+ else
+ dyn.d_un.d_val = s->_raw_size / elemsize;
+ }
+ else
+ dyn.d_un.d_val = 0;
+ break;
+
+ case DT_MIPS_TIME_STAMP:
+ time ((time_t *) &dyn.d_un.d_val);
+ break;
+
+ case DT_MIPS_ICHECKSUM:
+ /* XXX FIXME: */
+ swap_out_p = false;
+ break;
+
+ case DT_MIPS_IVERSION:
+ /* XXX FIXME: */
+ swap_out_p = false;
+ break;
+
+ case DT_MIPS_BASE_ADDRESS:
+ s = output_bfd->sections;
+ BFD_ASSERT (s != NULL);
+ dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
+ break;
+
+ case DT_MIPS_LOCAL_GOTNO:
+ dyn.d_un.d_val = g->local_gotno;
+ break;
+
+ case DT_MIPS_UNREFEXTNO:
+ /* The index into the dynamic symbol table which is the
+ entry of the first external symbol that is not
+ referenced within the same object. */
+ dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
+ break;
+
+ case DT_MIPS_GOTSYM:
+ if (g->global_gotsym)
+ {
+ dyn.d_un.d_val = g->global_gotsym->dynindx;
+ break;
+ }
+ /* In case if we don't have global got symbols we default
+ to setting DT_MIPS_GOTSYM to the same value as
+ DT_MIPS_SYMTABNO, so we just fall through. */
+
+ case DT_MIPS_SYMTABNO:
+ name = ".dynsym";
+ elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
+ s = bfd_get_section_by_name (output_bfd, name);
+ BFD_ASSERT (s != NULL);
+
+ if (s->_cooked_size != 0)
+ dyn.d_un.d_val = s->_cooked_size / elemsize;
+ else
+ dyn.d_un.d_val = s->_raw_size / elemsize;
+ break;
+
+ case DT_MIPS_HIPAGENO:
+ dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
+ break;
+
+ case DT_MIPS_RLD_MAP:
+ dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
+ break;
+
+ case DT_MIPS_OPTIONS:
+ s = (bfd_get_section_by_name
+ (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
+ dyn.d_un.d_ptr = s->vma;
+ break;
+
+ case DT_MIPS_MSYM:
+ s = (bfd_get_section_by_name (output_bfd, ".msym"));
+ dyn.d_un.d_ptr = s->vma;
+ break;
+
+ default:
+ swap_out_p = false;
+ break;
+ }
+
+ if (swap_out_p)
+ (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
+ (dynobj, &dyn, b);
+ }
+ }
+
+ /* The first entry of the global offset table will be filled at
+ runtime. The second entry will be used by some runtime loaders.
+ This isn't the case of Irix rld. */
+ if (sgot != NULL && sgot->_raw_size > 0)
+ {
+ MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
+ MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
+ sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
+ }
+
+ if (sgot != NULL)
+ elf_section_data (sgot->output_section)->this_hdr.sh_entsize
+ = MIPS_ELF_GOT_SIZE (output_bfd);
+
+ {
+ asection *smsym;
+ asection *s;
+ Elf32_compact_rel cpt;
+
+ /* ??? The section symbols for the output sections were set up in
+ _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
+ symbols. Should we do so? */
+
+ smsym = bfd_get_section_by_name (dynobj, ".msym");
+ if (smsym != NULL)
+ {
+ Elf32_Internal_Msym msym;
+
+ msym.ms_hash_value = 0;
+ msym.ms_info = ELF32_MS_INFO (0, 1);
+
+ for (s = output_bfd->sections; s != NULL; s = s->next)
+ {
+ long dynindx = elf_section_data (s)->dynindx;
+
+ bfd_mips_elf_swap_msym_out
+ (output_bfd, &msym,
+ (((Elf32_External_Msym *) smsym->contents)
+ + dynindx));
+ }
+ }
+
+ if (SGI_COMPAT (output_bfd))
+ {
+ /* Write .compact_rel section out. */
+ s = bfd_get_section_by_name (dynobj, ".compact_rel");
+ if (s != NULL)
+ {
+ cpt.id1 = 1;
+ cpt.num = s->reloc_count;
+ cpt.id2 = 2;
+ cpt.offset = (s->output_section->filepos
+ + sizeof (Elf32_External_compact_rel));
+ cpt.reserved0 = 0;
+ cpt.reserved1 = 0;
+ bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
+ ((Elf32_External_compact_rel *)
+ s->contents));
+
+ /* Clean up a dummy stub function entry in .text. */
+ s = bfd_get_section_by_name (dynobj,
+ MIPS_ELF_STUB_SECTION_NAME (dynobj));
+ if (s != NULL)
+ {
+ file_ptr dummy_offset;
+
+ BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
+ dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
+ memset (s->contents + dummy_offset, 0,
+ MIPS_FUNCTION_STUB_SIZE);
+ }
+ }
+ }
+
+ /* We need to sort the entries of the dynamic relocation section. */
+
+ if (!ABI_64_P (output_bfd))
+ {
+ asection *reldyn;
+
+ reldyn = bfd_get_section_by_name (dynobj, ".rel.dyn");
+ if (reldyn != NULL && reldyn->reloc_count > 2)
+ {
+ reldyn_sorting_bfd = output_bfd;
+ qsort ((Elf32_External_Rel *) reldyn->contents + 1,
+ (size_t) reldyn->reloc_count - 1,
+ sizeof (Elf32_External_Rel), sort_dynamic_relocs);
+ }
+ }
+
+ /* Clean up a first relocation in .rel.dyn. */
+ s = bfd_get_section_by_name (dynobj, ".rel.dyn");
+ if (s != NULL && s->_raw_size > 0)
+ memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
+ }
+
+ return true;
+}
+
+/* The final processing done just before writing out a MIPS ELF object
+ file. This gets the MIPS architecture right based on the machine
+ number. This is used by both the 32-bit and the 64-bit ABI. */
+
+void
+_bfd_mips_elf_final_write_processing (abfd, linker)
+ bfd *abfd;
+ boolean linker ATTRIBUTE_UNUSED;
+{
+ unsigned long val;
+ unsigned int i;
+ Elf_Internal_Shdr **hdrpp;
+ const char *name;
+ asection *sec;
+
+ switch (bfd_get_mach (abfd))
+ {
+ default:
+ case bfd_mach_mips3000:
+ val = E_MIPS_ARCH_1;
+ break;
+
+ case bfd_mach_mips3900:
+ val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
+ break;
+
+ case bfd_mach_mips6000:
+ val = E_MIPS_ARCH_2;
+ break;
+
+ case bfd_mach_mips4000:
+ case bfd_mach_mips4300:
+ case bfd_mach_mips4400:
+ case bfd_mach_mips4600:
+ val = E_MIPS_ARCH_3;
+ break;
+
+ case bfd_mach_mips4010:
+ val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
+ break;
+
+ case bfd_mach_mips4100:
+ val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
+ break;
+
+ case bfd_mach_mips4111:
+ val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
+ break;
+
+ case bfd_mach_mips4650:
+ val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
+ break;
+
+ case bfd_mach_mips5000:
+ case bfd_mach_mips8000:
+ case bfd_mach_mips10000:
+ case bfd_mach_mips12000:
+ val = E_MIPS_ARCH_4;
+ break;
+
+ case bfd_mach_mips5:
+ val = E_MIPS_ARCH_5;
+ break;
+
+ case bfd_mach_mips_sb1:
+ val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
+ break;
+
+ case bfd_mach_mipsisa32:
+ val = E_MIPS_ARCH_32;
+ break;
+
+ case bfd_mach_mipsisa64:
+ val = E_MIPS_ARCH_64;
+ }
+
+ elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
+ elf_elfheader (abfd)->e_flags |= val;
+
+ /* Set the sh_info field for .gptab sections and other appropriate
+ info for each special section. */
+ for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
+ i < elf_numsections (abfd);
+ i++, hdrpp++)
+ {
+ switch ((*hdrpp)->sh_type)
+ {
+ case SHT_MIPS_MSYM:
+ case SHT_MIPS_LIBLIST:
+ sec = bfd_get_section_by_name (abfd, ".dynstr");
+ if (sec != NULL)
+ (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
+ break;
+
+ case SHT_MIPS_GPTAB:
+ BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
+ name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
+ BFD_ASSERT (name != NULL
+ && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
+ sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
+ BFD_ASSERT (sec != NULL);
+ (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
+ break;
+
+ case SHT_MIPS_CONTENT:
+ BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
+ name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
+ BFD_ASSERT (name != NULL
+ && strncmp (name, ".MIPS.content",
+ sizeof ".MIPS.content" - 1) == 0);
+ sec = bfd_get_section_by_name (abfd,
+ name + sizeof ".MIPS.content" - 1);
+ BFD_ASSERT (sec != NULL);
+ (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
+ break;
+
+ case SHT_MIPS_SYMBOL_LIB:
+ sec = bfd_get_section_by_name (abfd, ".dynsym");
+ if (sec != NULL)
+ (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
+ sec = bfd_get_section_by_name (abfd, ".liblist");
+ if (sec != NULL)
+ (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
+ break;
+
+ case SHT_MIPS_EVENTS:
+ BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
+ name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
+ BFD_ASSERT (name != NULL);
+ if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
+ sec = bfd_get_section_by_name (abfd,
+ name + sizeof ".MIPS.events" - 1);
+ else
+ {
+ BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
+ sizeof ".MIPS.post_rel" - 1) == 0);
+ sec = bfd_get_section_by_name (abfd,
+ (name
+ + sizeof ".MIPS.post_rel" - 1));
+ }
+ BFD_ASSERT (sec != NULL);
+ (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
+ break;
+
+ }
+ }
+}
+
+/* When creating an Irix 5 executable, we need REGINFO and RTPROC
+ segments. */
+
+int
+_bfd_mips_elf_additional_program_headers (abfd)
+ bfd *abfd;
+{
+ asection *s;
+ int ret = 0;
+
+ /* See if we need a PT_MIPS_REGINFO segment. */
+ s = bfd_get_section_by_name (abfd, ".reginfo");
+ if (s && (s->flags & SEC_LOAD))
+ ++ret;
+
+ /* See if we need a PT_MIPS_OPTIONS segment. */
+ if (IRIX_COMPAT (abfd) == ict_irix6
+ && bfd_get_section_by_name (abfd,
+ MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
+ ++ret;
+
+ /* See if we need a PT_MIPS_RTPROC segment. */
+ if (IRIX_COMPAT (abfd) == ict_irix5
+ && bfd_get_section_by_name (abfd, ".dynamic")
+ && bfd_get_section_by_name (abfd, ".mdebug"))
+ ++ret;
+
+ return ret;
+}
+
+/* Modify the segment map for an Irix 5 executable. */
+
+boolean
+_bfd_mips_elf_modify_segment_map (abfd)
+ bfd *abfd;
+{
+ asection *s;
+ struct elf_segment_map *m, **pm;
+ bfd_size_type amt;
+
+ /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
+ segment. */
+ s = bfd_get_section_by_name (abfd, ".reginfo");
+ if (s != NULL && (s->flags & SEC_LOAD) != 0)
+ {
+ for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
+ if (m->p_type == PT_MIPS_REGINFO)
+ break;
+ if (m == NULL)
+ {
+ amt = sizeof *m;
+ m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
+ if (m == NULL)
+ return false;
+
+ m->p_type = PT_MIPS_REGINFO;
+ m->count = 1;
+ m->sections[0] = s;
+
+ /* We want to put it after the PHDR and INTERP segments. */
+ pm = &elf_tdata (abfd)->segment_map;
+ while (*pm != NULL
+ && ((*pm)->p_type == PT_PHDR
+ || (*pm)->p_type == PT_INTERP))
+ pm = &(*pm)->next;
+
+ m->next = *pm;
+ *pm = m;
+ }
+ }
+
+ /* For IRIX 6, we don't have .mdebug sections, nor does anything but
+ .dynamic end up in PT_DYNAMIC. However, we do have to insert a
+ PT_OPTIONS segement immediately following the program header
+ table. */
+ if (IRIX_COMPAT (abfd) == ict_irix6)
+ {
+ for (s = abfd->sections; s; s = s->next)
+ if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
+ break;
+
+ if (s)
+ {
+ struct elf_segment_map *options_segment;
+
+ /* Usually, there's a program header table. But, sometimes
+ there's not (like when running the `ld' testsuite). So,
+ if there's no program header table, we just put the
+ options segement at the end. */
+ for (pm = &elf_tdata (abfd)->segment_map;
+ *pm != NULL;
+ pm = &(*pm)->next)
+ if ((*pm)->p_type == PT_PHDR)
+ break;
+
+ amt = sizeof (struct elf_segment_map);
+ options_segment = bfd_zalloc (abfd, amt);
+ options_segment->next = *pm;
+ options_segment->p_type = PT_MIPS_OPTIONS;
+ options_segment->p_flags = PF_R;
+ options_segment->p_flags_valid = true;
+ options_segment->count = 1;
+ options_segment->sections[0] = s;
+ *pm = options_segment;
+ }
+ }
+ else
+ {
+ if (IRIX_COMPAT (abfd) == ict_irix5)
+ {
+ /* If there are .dynamic and .mdebug sections, we make a room
+ for the RTPROC header. FIXME: Rewrite without section names. */
+ if (bfd_get_section_by_name (abfd, ".interp") == NULL
+ && bfd_get_section_by_name (abfd, ".dynamic") != NULL
+ && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
+ {
+ for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
+ if (m->p_type == PT_MIPS_RTPROC)
+ break;
+ if (m == NULL)
+ {
+ amt = sizeof *m;
+ m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
+ if (m == NULL)
+ return false;
+
+ m->p_type = PT_MIPS_RTPROC;
+
+ s = bfd_get_section_by_name (abfd, ".rtproc");
+ if (s == NULL)
+ {
+ m->count = 0;
+ m->p_flags = 0;
+ m->p_flags_valid = 1;
+ }
+ else
+ {
+ m->count = 1;
+ m->sections[0] = s;
+ }
+
+ /* We want to put it after the DYNAMIC segment. */
+ pm = &elf_tdata (abfd)->segment_map;
+ while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
+ pm = &(*pm)->next;
+ if (*pm != NULL)
+ pm = &(*pm)->next;
+
+ m->next = *pm;
+ *pm = m;
+ }
+ }
+ }
+ /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
+ .dynstr, .dynsym, and .hash sections, and everything in
+ between. */
+ for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
+ pm = &(*pm)->next)
+ if ((*pm)->p_type == PT_DYNAMIC)
+ break;
+ m = *pm;
+ if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
+ {
+ /* For a normal mips executable the permissions for the PT_DYNAMIC
+ segment are read, write and execute. We do that here since
+ the code in elf.c sets only the read permission. This matters
+ sometimes for the dynamic linker. */
+ if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
+ {
+ m->p_flags = PF_R | PF_W | PF_X;
+ m->p_flags_valid = 1;
+ }
+ }
+ if (m != NULL
+ && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
+ {
+ static const char *sec_names[] =
+ {
+ ".dynamic", ".dynstr", ".dynsym", ".hash"
+ };
+ bfd_vma low, high;
+ unsigned int i, c;
+ struct elf_segment_map *n;
+
+ low = 0xffffffff;
+ high = 0;
+ for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
+ {
+ s = bfd_get_section_by_name (abfd, sec_names[i]);
+ if (s != NULL && (s->flags & SEC_LOAD) != 0)
+ {
+ bfd_size_type sz;
+
+ if (low > s->vma)
+ low = s->vma;
+ sz = s->_cooked_size;
+ if (sz == 0)
+ sz = s->_raw_size;
+ if (high < s->vma + sz)
+ high = s->vma + sz;
+ }
+ }
+
+ c = 0;
+ for (s = abfd->sections; s != NULL; s = s->next)
+ if ((s->flags & SEC_LOAD) != 0
+ && s->vma >= low
+ && ((s->vma
+ + (s->_cooked_size !=
+ 0 ? s->_cooked_size : s->_raw_size)) <= high))
+ ++c;
+
+ amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
+ n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
+ if (n == NULL)
+ return false;
+ *n = *m;
+ n->count = c;
+
+ i = 0;
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ if ((s->flags & SEC_LOAD) != 0
+ && s->vma >= low
+ && ((s->vma
+ + (s->_cooked_size != 0 ?
+ s->_cooked_size : s->_raw_size)) <= high))
+ {
+ n->sections[i] = s;
+ ++i;
+ }
+ }
+
+ *pm = n;
+ }
+ }
+
+ return true;
+}
+
+/* Return the section that should be marked against GC for a given
+ relocation. */
+
+asection *
+_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
+ bfd *abfd;
+ struct bfd_link_info *info ATTRIBUTE_UNUSED;
+ Elf_Internal_Rela *rel;
+ struct elf_link_hash_entry *h;
+ Elf_Internal_Sym *sym;
+{
+ /* ??? Do mips16 stub sections need to be handled special? */
+
+ if (h != NULL)
+ {
+ switch (ELF_R_TYPE (abfd, rel->r_info))
+ {
+ case R_MIPS_GNU_VTINHERIT:
+ case R_MIPS_GNU_VTENTRY:
+ break;
+
+ default:
+ switch (h->root.type)
+ {
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ return h->root.u.def.section;
+
+ case bfd_link_hash_common:
+ return h->root.u.c.p->section;
+
+ default:
+ break;
+ }
+ }
+ }
+ else
+ {
+ return bfd_section_from_elf_index (abfd, sym->st_shndx);
+ }
+
+ return NULL;
+}
+
+/* Update the got entry reference counts for the section being removed. */
+
+boolean
+_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ struct bfd_link_info *info ATTRIBUTE_UNUSED;
+ asection *sec ATTRIBUTE_UNUSED;
+ const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
+{
+#if 0
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ bfd_signed_vma *local_got_refcounts;
+ const Elf_Internal_Rela *rel, *relend;
+ unsigned long r_symndx;
+ struct elf_link_hash_entry *h;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (abfd);
+ local_got_refcounts = elf_local_got_refcounts (abfd);
+
+ relend = relocs + sec->reloc_count;
+ for (rel = relocs; rel < relend; rel++)
+ switch (ELF_R_TYPE (abfd, rel->r_info))
+ {
+ case R_MIPS_GOT16:
+ case R_MIPS_CALL16:
+ case R_MIPS_CALL_HI16:
+ case R_MIPS_CALL_LO16:
+ case R_MIPS_GOT_HI16:
+ case R_MIPS_GOT_LO16:
+ /* ??? It would seem that the existing MIPS code does no sort
+ of reference counting or whatnot on its GOT and PLT entries,
+ so it is not possible to garbage collect them at this time. */
+ break;
+
+ default:
+ break;
+ }
+#endif
+
+ return true;
+}
+
+/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
+ hiding the old indirect symbol. Process additional relocation
+ information. Also called for weakdefs, in which case we just let
+ _bfd_elf_link_hash_copy_indirect copy the flags for us. */
+
+void
+_bfd_mips_elf_copy_indirect_symbol (dir, ind)
+ struct elf_link_hash_entry *dir, *ind;
+{
+ struct mips_elf_link_hash_entry *dirmips, *indmips;
+
+ _bfd_elf_link_hash_copy_indirect (dir, ind);
+
+ if (ind->root.type != bfd_link_hash_indirect)
+ return;
+
+ dirmips = (struct mips_elf_link_hash_entry *) dir;
+ indmips = (struct mips_elf_link_hash_entry *) ind;
+ dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
+ if (indmips->readonly_reloc)
+ dirmips->readonly_reloc = true;
+ if (dirmips->min_dyn_reloc_index == 0
+ || (indmips->min_dyn_reloc_index != 0
+ && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
+ dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
+ if (indmips->no_fn_stub)
+ dirmips->no_fn_stub = true;
+}
+
+void
+_bfd_mips_elf_hide_symbol (info, entry, force_local)
+ struct bfd_link_info *info;
+ struct elf_link_hash_entry *entry;
+ boolean force_local;
+{
+ bfd *dynobj;
+ asection *got;
+ struct mips_got_info *g;
+ struct mips_elf_link_hash_entry *h;
+ h = (struct mips_elf_link_hash_entry *) entry;
+ dynobj = elf_hash_table (info)->dynobj;
+ got = bfd_get_section_by_name (dynobj, ".got");
+ g = (struct mips_got_info *) elf_section_data (got)->tdata;
+
+ _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
+
+ /* FIXME: Do we allocate too much GOT space here? */
+ g->local_gotno++;
+ got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
+}
+
+/* MIPS ELF uses a special find_nearest_line routine in order the
+ handle the ECOFF debugging information. */
+
+struct mips_elf_find_line
+{
+ struct ecoff_debug_info d;
+ struct ecoff_find_line i;
+};
+
+boolean
+_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
+ functionname_ptr, line_ptr)
+ bfd *abfd;
+ asection *section;
+ asymbol **symbols;
+ bfd_vma offset;
+ const char **filename_ptr;
+ const char **functionname_ptr;
+ unsigned int *line_ptr;
+{
+ asection *msec;
+
+ if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
+ filename_ptr, functionname_ptr,
+ line_ptr))
+ return true;
+
+ if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
+ filename_ptr, functionname_ptr,
+ line_ptr,
+ (unsigned) (ABI_64_P (abfd) ? 8 : 0),
+ &elf_tdata (abfd)->dwarf2_find_line_info))
+ return true;
+
+ msec = bfd_get_section_by_name (abfd, ".mdebug");
+ if (msec != NULL)
+ {
+ flagword origflags;
+ struct mips_elf_find_line *fi;
+ const struct ecoff_debug_swap * const swap =
+ get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
+
+ /* If we are called during a link, mips_elf_final_link may have
+ cleared the SEC_HAS_CONTENTS field. We force it back on here
+ if appropriate (which it normally will be). */
+ origflags = msec->flags;
+ if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
+ msec->flags |= SEC_HAS_CONTENTS;
+
+ fi = elf_tdata (abfd)->find_line_info;
+ if (fi == NULL)
+ {
+ bfd_size_type external_fdr_size;
+ char *fraw_src;
+ char *fraw_end;
+ struct fdr *fdr_ptr;
+ bfd_size_type amt = sizeof (struct mips_elf_find_line);
+
+ fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
+ if (fi == NULL)
+ {
+ msec->flags = origflags;
+ return false;
+ }
+
+ if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
+ {
+ msec->flags = origflags;
+ return false;
+ }
+
+ /* Swap in the FDR information. */
+ amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
+ fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
+ if (fi->d.fdr == NULL)
+ {
+ msec->flags = origflags;
+ return false;
+ }
+ external_fdr_size = swap->external_fdr_size;
+ fdr_ptr = fi->d.fdr;
+ fraw_src = (char *) fi->d.external_fdr;
+ fraw_end = (fraw_src
+ + fi->d.symbolic_header.ifdMax * external_fdr_size);
+ for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
+ (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
+
+ elf_tdata (abfd)->find_line_info = fi;
+
+ /* Note that we don't bother to ever free this information.
+ find_nearest_line is either called all the time, as in
+ objdump -l, so the information should be saved, or it is
+ rarely called, as in ld error messages, so the memory
+ wasted is unimportant. Still, it would probably be a
+ good idea for free_cached_info to throw it away. */
+ }
+
+ if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
+ &fi->i, filename_ptr, functionname_ptr,
+ line_ptr))
+ {
+ msec->flags = origflags;
+ return true;
+ }
+
+ msec->flags = origflags;
+ }
+
+ /* Fall back on the generic ELF find_nearest_line routine. */
+
+ return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
+ filename_ptr, functionname_ptr,
+ line_ptr);
+}
+
+/* When are writing out the .options or .MIPS.options section,
+ remember the bytes we are writing out, so that we can install the
+ GP value in the section_processing routine. */
+
+boolean
+_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
+ bfd *abfd;
+ sec_ptr section;
+ PTR location;
+ file_ptr offset;
+ bfd_size_type count;
+{
+ if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
+ {
+ bfd_byte *c;
+
+ if (elf_section_data (section) == NULL)
+ {
+ bfd_size_type amt = sizeof (struct bfd_elf_section_data);
+ section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
+ if (elf_section_data (section) == NULL)
+ return false;
+ }
+ c = (bfd_byte *) elf_section_data (section)->tdata;
+ if (c == NULL)
+ {
+ bfd_size_type size;
+
+ if (section->_cooked_size != 0)
+ size = section->_cooked_size;
+ else
+ size = section->_raw_size;
+ c = (bfd_byte *) bfd_zalloc (abfd, size);
+ if (c == NULL)
+ return false;
+ elf_section_data (section)->tdata = (PTR) c;
+ }
+
+ memcpy (c + offset, location, (size_t) count);
+ }
+
+ return _bfd_elf_set_section_contents (abfd, section, location, offset,
+ count);
+}
+
+/* This is almost identical to bfd_generic_get_... except that some
+ MIPS relocations need to be handled specially. Sigh. */
+
+bfd_byte *
+_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
+ data, relocateable, symbols)
+ bfd *abfd;
+ struct bfd_link_info *link_info;
+ struct bfd_link_order *link_order;
+ bfd_byte *data;
+ boolean relocateable;
+ asymbol **symbols;
+{
+ /* Get enough memory to hold the stuff */
+ bfd *input_bfd = link_order->u.indirect.section->owner;
+ asection *input_section = link_order->u.indirect.section;
+
+ long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
+ arelent **reloc_vector = NULL;
+ long reloc_count;
+
+ if (reloc_size < 0)
+ goto error_return;
+
+ reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
+ if (reloc_vector == NULL && reloc_size != 0)
+ goto error_return;
+
+ /* read in the section */
+ if (!bfd_get_section_contents (input_bfd,
+ input_section,
+ (PTR) data,
+ (file_ptr) 0,
+ input_section->_raw_size))
+ goto error_return;
+
+ /* We're not relaxing the section, so just copy the size info */
+ input_section->_cooked_size = input_section->_raw_size;
+ input_section->reloc_done = true;
+
+ reloc_count = bfd_canonicalize_reloc (input_bfd,
+ input_section,
+ reloc_vector,
+ symbols);
+ if (reloc_count < 0)
+ goto error_return;
+
+ if (reloc_count > 0)
+ {
+ arelent **parent;
+ /* for mips */
+ int gp_found;
+ bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
+
+ {
+ struct bfd_hash_entry *h;
+ struct bfd_link_hash_entry *lh;
+ /* Skip all this stuff if we aren't mixing formats. */
+ if (abfd && input_bfd
+ && abfd->xvec == input_bfd->xvec)
+ lh = 0;
+ else
+ {
+ h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
+ lh = (struct bfd_link_hash_entry *) h;
+ }
+ lookup:
+ if (lh)
+ {
+ switch (lh->type)
+ {
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ case bfd_link_hash_common:
+ gp_found = 0;
+ break;
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ gp_found = 1;
+ gp = lh->u.def.value;
+ break;
+ case bfd_link_hash_indirect:
+ case bfd_link_hash_warning:
+ lh = lh->u.i.link;
+ /* @@FIXME ignoring warning for now */
+ goto lookup;
+ case bfd_link_hash_new:
+ default:
+ abort ();
+ }
+ }
+ else
+ gp_found = 0;
+ }
+ /* end mips */
+ for (parent = reloc_vector; *parent != (arelent *) NULL;
+ parent++)
+ {
+ char *error_message = (char *) NULL;
+ bfd_reloc_status_type r;
+
+ /* Specific to MIPS: Deal with relocation types that require
+ knowing the gp of the output bfd. */
+ asymbol *sym = *(*parent)->sym_ptr_ptr;
+ if (bfd_is_abs_section (sym->section) && abfd)
+ {
+ /* The special_function wouldn't get called anyways. */
+ }
+ else if (!gp_found)
+ {
+ /* The gp isn't there; let the special function code
+ fall over on its own. */
+ }
+ else if ((*parent)->howto->special_function
+ == _bfd_mips_elf32_gprel16_reloc)
+ {
+ /* bypass special_function call */
+ r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
+ input_section, relocateable,
+ (PTR) data, gp);
+ goto skip_bfd_perform_relocation;
+ }
+ /* end mips specific stuff */
+
+ r = bfd_perform_relocation (input_bfd,
+ *parent,
+ (PTR) data,
+ input_section,
+ relocateable ? abfd : (bfd *) NULL,
+ &error_message);
+ skip_bfd_perform_relocation:
+
+ if (relocateable)
+ {
+ asection *os = input_section->output_section;
+
+ /* A partial link, so keep the relocs */
+ os->orelocation[os->reloc_count] = *parent;
+ os->reloc_count++;
+ }
+
+ if (r != bfd_reloc_ok)
+ {
+ switch (r)
+ {
+ case bfd_reloc_undefined:
+ if (!((*link_info->callbacks->undefined_symbol)
+ (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
+ input_bfd, input_section, (*parent)->address,
+ true)))
+ goto error_return;
+ break;
+ case bfd_reloc_dangerous:
+ BFD_ASSERT (error_message != (char *) NULL);
+ if (!((*link_info->callbacks->reloc_dangerous)
+ (link_info, error_message, input_bfd, input_section,
+ (*parent)->address)))
+ goto error_return;
+ break;
+ case bfd_reloc_overflow:
+ if (!((*link_info->callbacks->reloc_overflow)
+ (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
+ (*parent)->howto->name, (*parent)->addend,
+ input_bfd, input_section, (*parent)->address)))
+ goto error_return;
+ break;
+ case bfd_reloc_outofrange:
+ default:
+ abort ();
+ break;
+ }
+
+ }
+ }
+ }
+ if (reloc_vector != NULL)
+ free (reloc_vector);
+ return data;
+
+error_return:
+ if (reloc_vector != NULL)
+ free (reloc_vector);
+ return NULL;
+}
+
+/* Create a MIPS ELF linker hash table. */
+
+struct bfd_link_hash_table *
+_bfd_mips_elf_link_hash_table_create (abfd)
+ bfd *abfd;
+{
+ struct mips_elf_link_hash_table *ret;
+ bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
+
+ ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
+ if (ret == (struct mips_elf_link_hash_table *) NULL)
+ return NULL;
+
+ if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
+ mips_elf_link_hash_newfunc))
+ {
+ bfd_release (abfd, ret);
+ return NULL;
+ }
+
+#if 0
+ /* We no longer use this. */
+ for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
+ ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
+#endif
+ ret->procedure_count = 0;
+ ret->compact_rel_size = 0;
+ ret->use_rld_obj_head = false;
+ ret->rld_value = 0;
+ ret->mips16_stubs_seen = false;
+
+ return &ret->root.root;
+}
+
+/* We need to use a special link routine to handle the .reginfo and
+ the .mdebug sections. We need to merge all instances of these
+ sections together, not write them all out sequentially. */
+
+boolean
+_bfd_mips_elf_final_link (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ asection **secpp;
+ asection *o;
+ struct bfd_link_order *p;
+ asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
+ asection *rtproc_sec;
+ Elf32_RegInfo reginfo;
+ struct ecoff_debug_info debug;
+ const struct ecoff_debug_swap *swap
+ = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
+ HDRR *symhdr = &debug.symbolic_header;
+ PTR mdebug_handle = NULL;
+ asection *s;
+ EXTR esym;
+ unsigned int i;
+ bfd_size_type amt;
+
+ static const char * const secname[] =
+ {
+ ".text", ".init", ".fini", ".data",
+ ".rodata", ".sdata", ".sbss", ".bss"
+ };
+ static const int sc[] =
+ {
+ scText, scInit, scFini, scData,
+ scRData, scSData, scSBss, scBss
+ };
+
+ /* If all the things we linked together were PIC, but we're
+ producing an executable (rather than a shared object), then the
+ resulting file is CPIC (i.e., it calls PIC code.) */
+ if (!info->shared
+ && !info->relocateable
+ && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
+ {
+ elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
+ elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
+ }
+
+ /* We'd carefully arranged the dynamic symbol indices, and then the
+ generic size_dynamic_sections renumbered them out from under us.
+ Rather than trying somehow to prevent the renumbering, just do
+ the sort again. */
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ bfd *dynobj;
+ asection *got;
+ struct mips_got_info *g;
+
+ /* When we resort, we must tell mips_elf_sort_hash_table what
+ the lowest index it may use is. That's the number of section
+ symbols we're going to add. The generic ELF linker only
+ adds these symbols when building a shared object. Note that
+ we count the sections after (possibly) removing the .options
+ section above. */
+ if (! mips_elf_sort_hash_table (info, (info->shared
+ ? bfd_count_sections (abfd) + 1
+ : 1)))
+ return false;
+
+ /* Make sure we didn't grow the global .got region. */
+ dynobj = elf_hash_table (info)->dynobj;
+ got = bfd_get_section_by_name (dynobj, ".got");
+ g = (struct mips_got_info *) elf_section_data (got)->tdata;
+
+ if (g->global_gotsym != NULL)
+ BFD_ASSERT ((elf_hash_table (info)->dynsymcount
+ - g->global_gotsym->dynindx)
+ <= g->global_gotno);
+ }
+
+ /* On IRIX5, we omit the .options section. On IRIX6, however, we
+ include it, even though we don't process it quite right. (Some
+ entries are supposed to be merged.) Empirically, we seem to be
+ better off including it then not. */
+ if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
+ for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
+ {
+ if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
+ {
+ for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
+ if (p->type == bfd_indirect_link_order)
+ p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
+ (*secpp)->link_order_head = NULL;
+ bfd_section_list_remove (abfd, secpp);
+ --abfd->section_count;
+
+ break;
+ }
+ }
+
+ /* We include .MIPS.options, even though we don't process it quite right.
+ (Some entries are supposed to be merged.) At IRIX6 empirically we seem
+ to be better off including it than not. */
+ for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
+ {
+ if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
+ {
+ for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
+ if (p->type == bfd_indirect_link_order)
+ p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
+ (*secpp)->link_order_head = NULL;
+ bfd_section_list_remove (abfd, secpp);
+ --abfd->section_count;
+
+ break;
+ }
+ }
+
+ /* Get a value for the GP register. */
+ if (elf_gp (abfd) == 0)
+ {
+ struct bfd_link_hash_entry *h;
+
+ h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
+ if (h != (struct bfd_link_hash_entry *) NULL
+ && h->type == bfd_link_hash_defined)
+ elf_gp (abfd) = (h->u.def.value
+ + h->u.def.section->output_section->vma
+ + h->u.def.section->output_offset);
+ else if (info->relocateable)
+ {
+ bfd_vma lo = MINUS_ONE;
+
+ /* Find the GP-relative section with the lowest offset. */
+ for (o = abfd->sections; o != (asection *) NULL; o = o->next)
+ if (o->vma < lo
+ && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
+ lo = o->vma;
+
+ /* And calculate GP relative to that. */
+ elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
+ }
+ else
+ {
+ /* If the relocate_section function needs to do a reloc
+ involving the GP value, it should make a reloc_dangerous
+ callback to warn that GP is not defined. */
+ }
+ }
+
+ /* Go through the sections and collect the .reginfo and .mdebug
+ information. */
+ reginfo_sec = NULL;
+ mdebug_sec = NULL;
+ gptab_data_sec = NULL;
+ gptab_bss_sec = NULL;
+ for (o = abfd->sections; o != (asection *) NULL; o = o->next)
+ {
+ if (strcmp (o->name, ".reginfo") == 0)
+ {
+ memset (&reginfo, 0, sizeof reginfo);
+
+ /* We have found the .reginfo section in the output file.
+ Look through all the link_orders comprising it and merge
+ the information together. */
+ for (p = o->link_order_head;
+ p != (struct bfd_link_order *) NULL;
+ p = p->next)
+ {
+ asection *input_section;
+ bfd *input_bfd;
+ Elf32_External_RegInfo ext;
+ Elf32_RegInfo sub;
+
+ if (p->type != bfd_indirect_link_order)
+ {
+ if (p->type == bfd_data_link_order)
+ continue;
+ abort ();
+ }
+
+ input_section = p->u.indirect.section;
+ input_bfd = input_section->owner;
+
+ /* The linker emulation code has probably clobbered the
+ size to be zero bytes. */
+ if (input_section->_raw_size == 0)
+ input_section->_raw_size = sizeof (Elf32_External_RegInfo);
+
+ if (! bfd_get_section_contents (input_bfd, input_section,
+ (PTR) &ext,
+ (file_ptr) 0,
+ (bfd_size_type) sizeof ext))
+ return false;
+
+ bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
+
+ reginfo.ri_gprmask |= sub.ri_gprmask;
+ reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
+ reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
+ reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
+ reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
+
+ /* ri_gp_value is set by the function
+ mips_elf32_section_processing when the section is
+ finally written out. */
+
+ /* Hack: reset the SEC_HAS_CONTENTS flag so that
+ elf_link_input_bfd ignores this section. */
+ input_section->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ /* Size has been set in _bfd_mips_elf_always_size_sections. */
+ BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
+
+ /* Skip this section later on (I don't think this currently
+ matters, but someday it might). */
+ o->link_order_head = (struct bfd_link_order *) NULL;
+
+ reginfo_sec = o;
+ }
+
+ if (strcmp (o->name, ".mdebug") == 0)
+ {
+ struct extsym_info einfo;
+ bfd_vma last;
+
+ /* We have found the .mdebug section in the output file.
+ Look through all the link_orders comprising it and merge
+ the information together. */
+ symhdr->magic = swap->sym_magic;
+ /* FIXME: What should the version stamp be? */
+ symhdr->vstamp = 0;
+ symhdr->ilineMax = 0;
+ symhdr->cbLine = 0;
+ symhdr->idnMax = 0;
+ symhdr->ipdMax = 0;
+ symhdr->isymMax = 0;
+ symhdr->ioptMax = 0;
+ symhdr->iauxMax = 0;
+ symhdr->issMax = 0;
+ symhdr->issExtMax = 0;
+ symhdr->ifdMax = 0;
+ symhdr->crfd = 0;
+ symhdr->iextMax = 0;
+
+ /* We accumulate the debugging information itself in the
+ debug_info structure. */
+ debug.line = NULL;
+ debug.external_dnr = NULL;
+ debug.external_pdr = NULL;
+ debug.external_sym = NULL;
+ debug.external_opt = NULL;
+ debug.external_aux = NULL;
+ debug.ss = NULL;
+ debug.ssext = debug.ssext_end = NULL;
+ debug.external_fdr = NULL;
+ debug.external_rfd = NULL;
+ debug.external_ext = debug.external_ext_end = NULL;
+
+ mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
+ if (mdebug_handle == (PTR) NULL)
+ return false;
+
+ esym.jmptbl = 0;
+ esym.cobol_main = 0;
+ esym.weakext = 0;
+ esym.reserved = 0;
+ esym.ifd = ifdNil;
+ esym.asym.iss = issNil;
+ esym.asym.st = stLocal;
+ esym.asym.reserved = 0;
+ esym.asym.index = indexNil;
+ last = 0;
+ for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
+ {
+ esym.asym.sc = sc[i];
+ s = bfd_get_section_by_name (abfd, secname[i]);
+ if (s != NULL)
+ {
+ esym.asym.value = s->vma;
+ last = s->vma + s->_raw_size;
+ }
+ else
+ esym.asym.value = last;
+ if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
+ secname[i], &esym))
+ return false;
+ }
+
+ for (p = o->link_order_head;
+ p != (struct bfd_link_order *) NULL;
+ p = p->next)
+ {
+ asection *input_section;
+ bfd *input_bfd;
+ const struct ecoff_debug_swap *input_swap;
+ struct ecoff_debug_info input_debug;
+ char *eraw_src;
+ char *eraw_end;
+
+ if (p->type != bfd_indirect_link_order)
+ {
+ if (p->type == bfd_data_link_order)
+ continue;
+ abort ();
+ }
+
+ input_section = p->u.indirect.section;
+ input_bfd = input_section->owner;
+
+ if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
+ || (get_elf_backend_data (input_bfd)
+ ->elf_backend_ecoff_debug_swap) == NULL)
+ {
+ /* I don't know what a non MIPS ELF bfd would be
+ doing with a .mdebug section, but I don't really
+ want to deal with it. */
+ continue;
+ }
+
+ input_swap = (get_elf_backend_data (input_bfd)
+ ->elf_backend_ecoff_debug_swap);
+
+ BFD_ASSERT (p->size == input_section->_raw_size);
+
+ /* The ECOFF linking code expects that we have already
+ read in the debugging information and set up an
+ ecoff_debug_info structure, so we do that now. */
+ if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
+ &input_debug))
+ return false;
+
+ if (! (bfd_ecoff_debug_accumulate
+ (mdebug_handle, abfd, &debug, swap, input_bfd,
+ &input_debug, input_swap, info)))
+ return false;
+
+ /* Loop through the external symbols. For each one with
+ interesting information, try to find the symbol in
+ the linker global hash table and save the information
+ for the output external symbols. */
+ eraw_src = input_debug.external_ext;
+ eraw_end = (eraw_src
+ + (input_debug.symbolic_header.iextMax
+ * input_swap->external_ext_size));
+ for (;
+ eraw_src < eraw_end;
+ eraw_src += input_swap->external_ext_size)
+ {
+ EXTR ext;
+ const char *name;
+ struct mips_elf_link_hash_entry *h;
+
+ (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
+ if (ext.asym.sc == scNil
+ || ext.asym.sc == scUndefined
+ || ext.asym.sc == scSUndefined)
+ continue;
+
+ name = input_debug.ssext + ext.asym.iss;
+ h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
+ name, false, false, true);
+ if (h == NULL || h->esym.ifd != -2)
+ continue;
+
+ if (ext.ifd != -1)
+ {
+ BFD_ASSERT (ext.ifd
+ < input_debug.symbolic_header.ifdMax);
+ ext.ifd = input_debug.ifdmap[ext.ifd];
+ }
+
+ h->esym = ext;
+ }
+
+ /* Free up the information we just read. */
+ free (input_debug.line);
+ free (input_debug.external_dnr);
+ free (input_debug.external_pdr);
+ free (input_debug.external_sym);
+ free (input_debug.external_opt);
+ free (input_debug.external_aux);
+ free (input_debug.ss);
+ free (input_debug.ssext);
+ free (input_debug.external_fdr);
+ free (input_debug.external_rfd);
+ free (input_debug.external_ext);
+
+ /* Hack: reset the SEC_HAS_CONTENTS flag so that
+ elf_link_input_bfd ignores this section. */
+ input_section->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ if (SGI_COMPAT (abfd) && info->shared)
+ {
+ /* Create .rtproc section. */
+ rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
+ if (rtproc_sec == NULL)
+ {
+ flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED | SEC_READONLY);
+
+ rtproc_sec = bfd_make_section (abfd, ".rtproc");
+ if (rtproc_sec == NULL
+ || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
+ || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
+ return false;
+ }
+
+ if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
+ info, rtproc_sec,
+ &debug))
+ return false;
+ }
+
+ /* Build the external symbol information. */
+ einfo.abfd = abfd;
+ einfo.info = info;
+ einfo.debug = &debug;
+ einfo.swap = swap;
+ einfo.failed = false;
+ mips_elf_link_hash_traverse (mips_elf_hash_table (info),
+ mips_elf_output_extsym,
+ (PTR) &einfo);
+ if (einfo.failed)
+ return false;
+
+ /* Set the size of the .mdebug section. */
+ o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
+
+ /* Skip this section later on (I don't think this currently
+ matters, but someday it might). */
+ o->link_order_head = (struct bfd_link_order *) NULL;
+
+ mdebug_sec = o;
+ }
+
+ if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
+ {
+ const char *subname;
+ unsigned int c;
+ Elf32_gptab *tab;
+ Elf32_External_gptab *ext_tab;
+ unsigned int j;
+
+ /* The .gptab.sdata and .gptab.sbss sections hold
+ information describing how the small data area would
+ change depending upon the -G switch. These sections
+ not used in executables files. */
+ if (! info->relocateable)
+ {
+ for (p = o->link_order_head;
+ p != (struct bfd_link_order *) NULL;
+ p = p->next)
+ {
+ asection *input_section;
+
+ if (p->type != bfd_indirect_link_order)
+ {
+ if (p->type == bfd_data_link_order)
+ continue;
+ abort ();
+ }
+
+ input_section = p->u.indirect.section;
+
+ /* Hack: reset the SEC_HAS_CONTENTS flag so that
+ elf_link_input_bfd ignores this section. */
+ input_section->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ /* Skip this section later on (I don't think this
+ currently matters, but someday it might). */
+ o->link_order_head = (struct bfd_link_order *) NULL;
+
+ /* Really remove the section. */
+ for (secpp = &abfd->sections;
+ *secpp != o;
+ secpp = &(*secpp)->next)
+ ;
+ bfd_section_list_remove (abfd, secpp);
+ --abfd->section_count;
+
+ continue;
+ }
+
+ /* There is one gptab for initialized data, and one for
+ uninitialized data. */
+ if (strcmp (o->name, ".gptab.sdata") == 0)
+ gptab_data_sec = o;
+ else if (strcmp (o->name, ".gptab.sbss") == 0)
+ gptab_bss_sec = o;
+ else
+ {
+ (*_bfd_error_handler)
+ (_("%s: illegal section name `%s'"),
+ bfd_get_filename (abfd), o->name);
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ return false;
+ }
+
+ /* The linker script always combines .gptab.data and
+ .gptab.sdata into .gptab.sdata, and likewise for
+ .gptab.bss and .gptab.sbss. It is possible that there is
+ no .sdata or .sbss section in the output file, in which
+ case we must change the name of the output section. */
+ subname = o->name + sizeof ".gptab" - 1;
+ if (bfd_get_section_by_name (abfd, subname) == NULL)
+ {
+ if (o == gptab_data_sec)
+ o->name = ".gptab.data";
+ else
+ o->name = ".gptab.bss";
+ subname = o->name + sizeof ".gptab" - 1;
+ BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
+ }
+
+ /* Set up the first entry. */
+ c = 1;
+ amt = c * sizeof (Elf32_gptab);
+ tab = (Elf32_gptab *) bfd_malloc (amt);
+ if (tab == NULL)
+ return false;
+ tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
+ tab[0].gt_header.gt_unused = 0;
+
+ /* Combine the input sections. */
+ for (p = o->link_order_head;
+ p != (struct bfd_link_order *) NULL;
+ p = p->next)
+ {
+ asection *input_section;
+ bfd *input_bfd;
+ bfd_size_type size;
+ unsigned long last;
+ bfd_size_type gpentry;
+
+ if (p->type != bfd_indirect_link_order)
+ {
+ if (p->type == bfd_data_link_order)
+ continue;
+ abort ();
+ }
+
+ input_section = p->u.indirect.section;
+ input_bfd = input_section->owner;
+
+ /* Combine the gptab entries for this input section one
+ by one. We know that the input gptab entries are
+ sorted by ascending -G value. */
+ size = bfd_section_size (input_bfd, input_section);
+ last = 0;
+ for (gpentry = sizeof (Elf32_External_gptab);
+ gpentry < size;
+ gpentry += sizeof (Elf32_External_gptab))
+ {
+ Elf32_External_gptab ext_gptab;
+ Elf32_gptab int_gptab;
+ unsigned long val;
+ unsigned long add;
+ boolean exact;
+ unsigned int look;
+
+ if (! (bfd_get_section_contents
+ (input_bfd, input_section, (PTR) &ext_gptab,
+ (file_ptr) gpentry,
+ (bfd_size_type) sizeof (Elf32_External_gptab))))
+ {
+ free (tab);
+ return false;
+ }
+
+ bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
+ &int_gptab);
+ val = int_gptab.gt_entry.gt_g_value;
+ add = int_gptab.gt_entry.gt_bytes - last;
+
+ exact = false;
+ for (look = 1; look < c; look++)
+ {
+ if (tab[look].gt_entry.gt_g_value >= val)
+ tab[look].gt_entry.gt_bytes += add;
+
+ if (tab[look].gt_entry.gt_g_value == val)
+ exact = true;
+ }
+
+ if (! exact)
+ {
+ Elf32_gptab *new_tab;
+ unsigned int max;
+
+ /* We need a new table entry. */
+ amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
+ new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
+ if (new_tab == NULL)
+ {
+ free (tab);
+ return false;
+ }
+ tab = new_tab;
+ tab[c].gt_entry.gt_g_value = val;
+ tab[c].gt_entry.gt_bytes = add;
+
+ /* Merge in the size for the next smallest -G
+ value, since that will be implied by this new
+ value. */
+ max = 0;
+ for (look = 1; look < c; look++)
+ {
+ if (tab[look].gt_entry.gt_g_value < val
+ && (max == 0
+ || (tab[look].gt_entry.gt_g_value
+ > tab[max].gt_entry.gt_g_value)))
+ max = look;
+ }
+ if (max != 0)
+ tab[c].gt_entry.gt_bytes +=
+ tab[max].gt_entry.gt_bytes;
+
+ ++c;
+ }
+
+ last = int_gptab.gt_entry.gt_bytes;
+ }
+
+ /* Hack: reset the SEC_HAS_CONTENTS flag so that
+ elf_link_input_bfd ignores this section. */
+ input_section->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ /* The table must be sorted by -G value. */
+ if (c > 2)
+ qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
+
+ /* Swap out the table. */
+ amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
+ ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
+ if (ext_tab == NULL)
+ {
+ free (tab);
+ return false;
+ }
+
+ for (j = 0; j < c; j++)
+ bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
+ free (tab);
+
+ o->_raw_size = c * sizeof (Elf32_External_gptab);
+ o->contents = (bfd_byte *) ext_tab;
+
+ /* Skip this section later on (I don't think this currently
+ matters, but someday it might). */
+ o->link_order_head = (struct bfd_link_order *) NULL;
+ }
+ }
+
+ /* Invoke the regular ELF backend linker to do all the work. */
+ if (ABI_64_P (abfd))
+ {
+#ifdef BFD64
+ if (!bfd_elf64_bfd_final_link (abfd, info))
+ return false;
+#else
+ abort ();
+ return false;
+#endif /* BFD64 */
+ }
+ else if (!bfd_elf32_bfd_final_link (abfd, info))
+ return false;
+
+ /* Now write out the computed sections. */
+
+ if (reginfo_sec != (asection *) NULL)
+ {
+ Elf32_External_RegInfo ext;
+
+ bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
+ if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
+ (file_ptr) 0,
+ (bfd_size_type) sizeof ext))
+ return false;
+ }
+
+ if (mdebug_sec != (asection *) NULL)
+ {
+ BFD_ASSERT (abfd->output_has_begun);
+ if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
+ swap, info,
+ mdebug_sec->filepos))
+ return false;
+
+ bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
+ }
+
+ if (gptab_data_sec != (asection *) NULL)
+ {
+ if (! bfd_set_section_contents (abfd, gptab_data_sec,
+ gptab_data_sec->contents,
+ (file_ptr) 0,
+ gptab_data_sec->_raw_size))
+ return false;
+ }
+
+ if (gptab_bss_sec != (asection *) NULL)
+ {
+ if (! bfd_set_section_contents (abfd, gptab_bss_sec,
+ gptab_bss_sec->contents,
+ (file_ptr) 0,
+ gptab_bss_sec->_raw_size))
+ return false;
+ }
+
+ if (SGI_COMPAT (abfd))
+ {
+ rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
+ if (rtproc_sec != NULL)
+ {
+ if (! bfd_set_section_contents (abfd, rtproc_sec,
+ rtproc_sec->contents,
+ (file_ptr) 0,
+ rtproc_sec->_raw_size))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Merge backend specific data from an object file to the output
+ object file when linking. */
+
+boolean
+_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
+ bfd *ibfd;
+ bfd *obfd;
+{
+ flagword old_flags;
+ flagword new_flags;
+ boolean ok;
+ boolean null_input_bfd = true;
+ asection *sec;
+
+ /* Check if we have the same endianess */
+ if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
+ return false;
+
+ if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
+ || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
+ return true;
+
+ new_flags = elf_elfheader (ibfd)->e_flags;
+ elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
+ old_flags = elf_elfheader (obfd)->e_flags;
+
+ if (! elf_flags_init (obfd))
+ {
+ elf_flags_init (obfd) = true;
+ elf_elfheader (obfd)->e_flags = new_flags;
+ elf_elfheader (obfd)->e_ident[EI_CLASS]
+ = elf_elfheader (ibfd)->e_ident[EI_CLASS];
+
+ if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
+ && bfd_get_arch_info (obfd)->the_default)
+ {
+ if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
+ bfd_get_mach (ibfd)))
+ return false;
+ }
+
+ return true;
+ }
+
+ /* Check flag compatibility. */
+
+ new_flags &= ~EF_MIPS_NOREORDER;
+ old_flags &= ~EF_MIPS_NOREORDER;
+
+ if (new_flags == old_flags)
+ return true;
+
+ /* Check to see if the input BFD actually contains any sections.
+ If not, its flags may not have been initialised either, but it cannot
+ actually cause any incompatibility. */
+ for (sec = ibfd->sections; sec != NULL; sec = sec->next)
+ {
+ /* Ignore synthetic sections and empty .text, .data and .bss sections
+ which are automatically generated by gas. */
+ if (strcmp (sec->name, ".reginfo")
+ && strcmp (sec->name, ".mdebug")
+ && ((!strcmp (sec->name, ".text")
+ || !strcmp (sec->name, ".data")
+ || !strcmp (sec->name, ".bss"))
+ && sec->_raw_size != 0))
+ {
+ null_input_bfd = false;
+ break;
+ }
+ }
+ if (null_input_bfd)
+ return true;
+
+ ok = true;
+
+ if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
+ {
+ new_flags &= ~EF_MIPS_PIC;
+ old_flags &= ~EF_MIPS_PIC;
+ (*_bfd_error_handler)
+ (_("%s: linking PIC files with non-PIC files"),
+ bfd_archive_filename (ibfd));
+ ok = false;
+ }
+
+ if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
+ {
+ new_flags &= ~EF_MIPS_CPIC;
+ old_flags &= ~EF_MIPS_CPIC;
+ (*_bfd_error_handler)
+ (_("%s: linking abicalls files with non-abicalls files"),
+ bfd_archive_filename (ibfd));
+ ok = false;
+ }
+
+ /* Compare the ISA's. */
+ if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
+ != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
+ {
+ int new_mach = new_flags & EF_MIPS_MACH;
+ int old_mach = old_flags & EF_MIPS_MACH;
+ int new_isa = elf_mips_isa (new_flags);
+ int old_isa = elf_mips_isa (old_flags);
+
+ /* If either has no machine specified, just compare the general isa's.
+ Some combinations of machines are ok, if the isa's match. */
+ if (! new_mach
+ || ! old_mach
+ || new_mach == old_mach
+ )
+ {
+ /* Don't warn about mixing code using 32-bit ISAs, or mixing code
+ using 64-bit ISAs. They will normally use the same data sizes
+ and calling conventions. */
+
+ if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
+ ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
+ {
+ (*_bfd_error_handler)
+ (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
+ bfd_archive_filename (ibfd), new_isa, old_isa);
+ ok = false;
+ }
+ else
+ {
+ /* Do we need to update the mach field? */
+ if (old_mach == 0 && new_mach != 0)
+ elf_elfheader (obfd)->e_flags |= new_mach;
+
+ /* Do we need to update the ISA field? */
+ if (new_isa > old_isa)
+ {
+ elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH;
+ elf_elfheader (obfd)->e_flags
+ |= new_flags & EF_MIPS_ARCH;
+ }
+ }
+ }
+ else
+ {
+ (*_bfd_error_handler)
+ (_("%s: ISA mismatch (%d) with previous modules (%d)"),
+ bfd_archive_filename (ibfd),
+ _bfd_elf_mips_mach (new_flags),
+ _bfd_elf_mips_mach (old_flags));
+ ok = false;
+ }
+
+ new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
+ old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
+ }
+
+ /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
+ does set EI_CLASS differently from any 32-bit ABI. */
+ if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
+ || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
+ != elf_elfheader (obfd)->e_ident[EI_CLASS]))
+ {
+ /* Only error if both are set (to different values). */
+ if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
+ || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
+ != elf_elfheader (obfd)->e_ident[EI_CLASS]))
+ {
+ (*_bfd_error_handler)
+ (_("%s: ABI mismatch: linking %s module with previous %s modules"),
+ bfd_archive_filename (ibfd),
+ elf_mips_abi_name (ibfd),
+ elf_mips_abi_name (obfd));
+ ok = false;
+ }
+ new_flags &= ~EF_MIPS_ABI;
+ old_flags &= ~EF_MIPS_ABI;
+ }
+
+ /* Warn about any other mismatches */
+ if (new_flags != old_flags)
+ {
+ (*_bfd_error_handler)
+ (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
+ bfd_archive_filename (ibfd), (unsigned long) new_flags,
+ (unsigned long) old_flags);
+ ok = false;
+ }
+
+ if (! ok)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+
+ return true;
+}
+
+/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
+
+boolean
+_bfd_mips_elf_set_private_flags (abfd, flags)
+ bfd *abfd;
+ flagword flags;
+{
+ BFD_ASSERT (!elf_flags_init (abfd)
+ || elf_elfheader (abfd)->e_flags == flags);
+
+ elf_elfheader (abfd)->e_flags = flags;
+ elf_flags_init (abfd) = true;
+ return true;
+}
+
+boolean
+_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
+ bfd *abfd;
+ PTR ptr;
+{
+ FILE *file = (FILE *) ptr;
+
+ BFD_ASSERT (abfd != NULL && ptr != NULL);
+
+ /* Print normal ELF private data. */
+ _bfd_elf_print_private_bfd_data (abfd, ptr);
+
+ /* xgettext:c-format */
+ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
+
+ if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
+ fprintf (file, _(" [abi=O32]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
+ fprintf (file, _(" [abi=O64]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
+ fprintf (file, _(" [abi=EABI32]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
+ fprintf (file, _(" [abi=EABI64]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
+ fprintf (file, _(" [abi unknown]"));
+ else if (ABI_N32_P (abfd))
+ fprintf (file, _(" [abi=N32]"));
+ else if (ABI_64_P (abfd))
+ fprintf (file, _(" [abi=64]"));
+ else
+ fprintf (file, _(" [no abi set]"));
+
+ if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
+ fprintf (file, _(" [mips1]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
+ fprintf (file, _(" [mips2]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
+ fprintf (file, _(" [mips3]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
+ fprintf (file, _(" [mips4]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
+ fprintf (file, _(" [mips5]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
+ fprintf (file, _(" [mips32]"));
+ else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
+ fprintf (file, _(" [mips64]"));
+ else
+ fprintf (file, _(" [unknown ISA]"));
+
+ if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
+ fprintf (file, _(" [32bitmode]"));
+ else
+ fprintf (file, _(" [not 32bitmode]"));
+
+ fputc ('\n', file);
+
+ return true;
+}